1
|
Li K, Qian W, Zhang F, Zhang W, Lv H, Quan M, Sun W, Liu R, Cao X, Xian Z, Bao S, Jiang H, Du J, Zhang M, Chen Y, Zhang J, Han C, Ai D. Maternal high-fat diet exacerbates atherosclerosis development in offspring through epigenetic memory. NATURE CARDIOVASCULAR RESEARCH 2025:10.1038/s44161-025-00622-4. [PMID: 40087523 DOI: 10.1038/s44161-025-00622-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/06/2025] [Indexed: 03/17/2025]
Abstract
Maternal exposure to a Western-type diet (WD) increases the susceptibility of adult offspring to atherosclerosis, partly because fetal endothelial cells (ECs) become dysfunctional and inflamed due to risk factors transmitted via maternal-fetal blood exchange. However, the underlying mechanisms remain unclear. Here we show that maternal WD accelerates atherogenesis in adult offspring mice by regulating chromatin dynamics through activator protein-1 (AP-1) in aortic ECs, inducing inflammatory memory at the chromatin level. We found that 27-hydroxycholesterol is involved in memory establishment and also acts as a secondary stimulator, amplifying the expression of inflammatory factors and enhancing the enrichment of AP-1/p300 and H3K27ac in ECs. Inhibiting AP-1 binding to chromatin reduced the inflammatory response in human umbilical vein ECs from mothers with hypercholesterolemia and decreased atherogenesis in offspring mice exposed to maternal WD. Our findings demonstrate that maternal WD exacerbates EC dysfunction and atherosclerosis in adult offspring by inducing AP-1-associated epigenetic memory, which increases chromatin accessibility to inflammatory genes.
Collapse
Affiliation(s)
- Kan Li
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Weiqi Qian
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Fangni Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Wenhui Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Huizhen Lv
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Meixi Quan
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Weiyan Sun
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Ruixin Liu
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xinyi Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Zhong Xian
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Suya Bao
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hongfeng Jiang
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jie Du
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Meng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Jian Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cha Han
- Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China.
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
2
|
Zhao Q. Thermodynamic for biological development: A hypothesis. Biosystems 2025; 249:105413. [PMID: 39929432 DOI: 10.1016/j.biosystems.2025.105413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
This paper proposes a thermodynamic model of biological development. Several key thoughts are presented: 1) in view of thermodynamics, biological development processes irreversibly; 2) in view of thermodynamics and molecular biology, positive autoregulation, or self-regulation, of transcription factors is the only way to ensure irreversibility of a thermodynamic process of biology; 3) change in the autoregulation of transcription factors can irreversibly result in alterations in the physiological state) a physiological state is a system of signaling networks; 5) a cell and its physiological state can be identified by the pattern of its transcription factors. 6) from points aforementioned, we can analyze some thermodynamic properties of biological development by knowledge of molecular biology and biochemistry. The possible mechanisms of plant vernalization are also proposed.
Collapse
Affiliation(s)
- Qinyi Zhao
- Medical Institute, CRRC, Beijing, PR China.
| |
Collapse
|
3
|
Rapps K, Weller A, Meiri N. Epigenetic regulation is involved in reversal of obesity. Neurosci Biobehav Rev 2024; 167:105906. [PMID: 39343077 DOI: 10.1016/j.neubiorev.2024.105906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Epigenetic processes play a crucial role in mediating the impact of environmental energetic challenges, from overconsumption to starvation. Over-nutrition of energy-dense foods and sedentary lifestyles contribute to the development of obesity, characterized by excessive fat storage and impaired metabolic signaling, stemming from disrupted brain signaling. Conversely, dieting and physical activity facilitate body weight rebalancing and trigger adaptive neural responses. These adaptations involve the upregulation of neurogenesis, synaptic plasticity and optimized brain function and energy homeostasis, balanced hormone signaling, normal metabolism, and reduced inflammation. The transition of the brain from a maladaptive to an adaptive state is partially guided by epigenetic mechanisms. While epigenetic mechanisms underlying obesity-related brain changes have been described, their role in mediating the reversal of maladaptation/obesity through lifestyle interventions remains less explored. This review focuses on elucidating epigenetic mechanisms involved in hypothalamic adaptations induced by lifestyle interventions. Given that lifestyle interventions are widely prescribed and accessible approaches for weight loss and maintenance, it is our challenge to uncover epigenetic mechanisms moderating these hypothalamic-functional beneficial changes.
Collapse
Affiliation(s)
- Kayla Rapps
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel; Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Aron Weller
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel.
| |
Collapse
|
4
|
Awotoye W, Machado-Paula LA, Hovey L, Keen H, Chimenti M, Darbro B, Dabdoub S, Thomas JC, Murray J, Venugopalan SR, Moreno-Uribe L, Petrin AL. Multi-omic analyses of a twin pair with mirror image cleft lip identifies pathogenic variant in FGF20 modified by differential methylation upstream of ZFP57. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.16.24317351. [PMID: 39606391 PMCID: PMC11601713 DOI: 10.1101/2024.11.16.24317351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Disturbances in the intricate processes that control craniofacial morphogenesis can result in birth defects, most common of which are orofacial clefts (OFCs). Nonsyndromic cleft lip (nsCL), one of the phenotypic forms amongst OFCs, has a non-random laterality presentation with the left side being affected twice as often compared to the right side. This study investigates the etiology of nsCL and the factors contributing to its laterality using a pair of monozygotic twins with mirror-image cleft lip. Methods We conducted whole-genome sequencing (WGS) analyses in a female twin pair with mirror image nsCL, their affected mother and unaffected father to identify etiopathogenic variants. Additionally, to identify possible cleft lip laterality modifiers, DNA-methylome analysis was conducted to test for differential methylation patterns between the mirror twins. Lastly, DNA methylation patterns were also analyzed on an independent cohort of female cases with unilateral cleft lip (left=22; right=17) for replication purposes. Results We identified a protein-altering variant in FGF20 (p.Ile79Val) within the fibroblast growth factor interacting family domain segregating with the nsCL in this family. Concurrently, DNA-methylome analysis identified differential methylation regions (DMRs) upstream of Zinc-finger transcription factor ZFP57 (Δβ > 5%). Replication of these results on an independent cohort, confirmed these DMRs, emphasizing their biological significance (p<0.05). Enrichment analysis indicated that these DMRs are involved in DNA methylation during early embryo development (FDR adjusted p-value = 1.3241E-13). Further bioinformatics analyses showed one of these DMRs acting as a binding site for transcription factor AP2A (TFAP2A), a key player in craniofacial development. Interactome analysis also suggested a potential role for ZFP57 in left/right axis specification, thus emphasizing its significance in cleft laterality. Conclusion This study provides novel insights into the etiology of nsCL and its laterality, suggesting an interplay between etiopathogenic variants and DNA methylation in cleft laterality. Our findings elucidate the intricate mechanisms underlying OFCs development. Understanding these factors may offer new tools for prevention and management of OFCs, alleviating the burden on affected individuals, their families and global health.
Collapse
Affiliation(s)
- Waheed Awotoye
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, 52240
| | | | - Luke Hovey
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, 52240
| | - Henry Keen
- Carver College of Medicine, University of Iowa, Iowa City, IA, 52240
| | - Michael Chimenti
- Carver College of Medicine, University of Iowa, Iowa City, IA, 52240
| | - Benjamin Darbro
- Carver College of Medicine, University of Iowa, Iowa City, IA, 52240
| | - Shareef Dabdoub
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, 52240
| | - James C Thomas
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, 52240
| | - Jeff Murray
- Carver College of Medicine, University of Iowa, Iowa City, IA, 52240
| | | | - Lina Moreno-Uribe
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, 52240
| | - Aline L Petrin
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, 52240
| |
Collapse
|
5
|
Castelon Konkiewitz E, Ziff EB. Brain Evolution in the Times of the Pandemic and Multimedia. Eur Neurol 2024; 87:261-272. [PMID: 39265548 DOI: 10.1159/000541361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND In this paper, we argue that recent unprecedented social changes arising from social media and the internet represent powerful behavioral and environmental forces that are driving human evolutionary adaptive responses in a way that might reshape our brain and the way it perceives reality and interacts with it. These forces include decreases in physical activity, decreases in exposure to light, and face-to-face social interactions, as well as diminished predictability in biological rhythms (i.e., the sleep cycle is no longer dictated by natural light exposure and season). SUMMARY We discuss the roles of stress and of creativity and adaptability in Homo sapiens evolution and propose mechanisms for human adaptation to the new forces including epigenetic mechanisms, gene-culture coevolution, and novel mechanisms of evolution of the nervous system. KEY MESSAGES We present the provocative idea that evolution under the strong selective pressures of today's society could ultimately enable H. sapiens to thrive despite social, physical, circadian, and cultural deprivation and possible neurological disease, and thus withstand the loss of factors that contribute to H. sapiens survival of today. The new H. sapiens would flourish under a lifestyle in which the current form would feel undervalued and replaceable.
Collapse
Affiliation(s)
| | - Edward B Ziff
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
6
|
McClarty BM, Rodriguez G, Dong H. Class 1 histone deacetylases differentially modulate memory and synaptic genes in a spatial and temporal manner in aged and APP/PS1 mice. Brain Res 2024; 1837:148951. [PMID: 38642789 PMCID: PMC11182336 DOI: 10.1016/j.brainres.2024.148951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Epigenetics plays a vital role in aging and Alzheimer's disease (AD); however, whether epigenetic alterations during aging can initiate AD and exacerbate AD progression remains unclear. In this study, using 3-, 12- and 18- month-old APP/PS1 mice and age matched WT littermates, we conducted a series of memory tests, measured synapse-related gene expression, class 1 histone deacetylases (HDACs) abundance, and H3K9ac levels at target gene promoters in the hippocampus and prefrontal cortex (PFC). Our results showed impaired recognition and long-term spatial memory in 18-month-old WT mice and impaired recognition, short-term working, and long-term spatial reference memory in 12-and 18- month-old APP/PS1 mice. These memory impairments are associated with changes of synapse-related gene (nr2a, glur1, glur2, psd95) expression, HDAC abundance, and H3K9ac levels; more specifically, increased HDAC2 was associated with synapse-related gene expression changes through modulation of H3K9ac at the gene promoters during aging and AD progression in the hippocampus. Conversely, increased HDAC3 was associated with synapse-related gene expression changes through modulation of H3K9ac at the gene promoters during AD progression in the PFC. These findings suggest memory impairments in aging and AD may associated with a differential HDAC modulation of synapse-related gene expression in the brain.
Collapse
Affiliation(s)
- Bryan M McClarty
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL 60611, USA
| | - Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL 60611, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL 60611, USA.
| |
Collapse
|
7
|
Singh AK, Rai A, Joshi I, Reddy DN, Guha R, Alka K, Shukla S, Rath SK, Nazir A, Clement JP, Kundu TK. Oral Administration of a Specific p300/CBP Lysine Acetyltransferase Activator Induces Synaptic Plasticity and Repairs Spinal Cord Injury. ACS Chem Neurosci 2024; 15:2741-2755. [PMID: 38795032 DOI: 10.1021/acschemneuro.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024] Open
Abstract
TTK21 is a small-molecule activator of p300/creb binding protein (CBP) acetyltransferase activity, which, upon conjugation with a glucose-derived carbon nanosphere (CSP), can efficiently cross the blood-brain barrier and activate histone acetylation in the brain. Its role in adult neurogenesis and retention of long-term spatial memory following intraperitoneal (IP) administration is well established. In this study, we successfully demonstrate that CSP-TTK21 can be effectively administered via oral gavage. Using a combination of molecular biology, microscopy, and electrophysiological techniques, we systematically investigate the comparative efficacy of oral administration of CSP and CSP-TTK21 in wild-type mice and evaluate their functional effects in comparison to intraperitoneal (IP) administration. Our findings indicate that CSP-TTK21, when administered orally, induces long-term potentiation in the hippocampus without significantly altering basal synaptic transmission, a response comparable to that achieved through IP injection. Remarkably, in a spinal cord injury model, oral administration of CSP-TTK21 exhibits efficacy equivalent to that of IP administration. Furthermore, our research demonstrates that oral delivery of CSP-TTK21 leads to improvements in motor function, histone acetylation dynamics, and increased expression of regeneration-associated genes (RAGs) in a spinal injury rat model, mirroring the effectiveness of IP administration. Importantly, no toxic and mutagenic effects of CSP-TTK21 are observed at a maximum tolerated dose of 1 g/kg in Sprague-Dawley (SD) rats via the oral route. Collectively, these results underscore the potential utility of CSP as an oral drug delivery system, particularly for targeting the neural system.
Collapse
Affiliation(s)
- Akash Kumar Singh
- Transcription and Disease Laboratory, Molecular Biology, and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Amrish Rai
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ila Joshi
- Transcription and Disease Laboratory, Molecular Biology, and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India
| | - Damodara N Reddy
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajdeep Guha
- Division of Laboratory Animal Facility, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kumari Alka
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shubha Shukla
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology, and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
8
|
Raghubeer S. The influence of epigenetics and inflammation on cardiometabolic risks. Semin Cell Dev Biol 2024; 154:175-184. [PMID: 36804178 DOI: 10.1016/j.semcdb.2023.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Cardiometabolic diseases include metabolic syndrome, obesity, type 2 diabetes mellitus, and hypertension. Epigenetic modifications participate in cardiometabolic diseases through several pathways, including inflammation, vascular dysfunction, and insulin resistance. Epigenetic modifications, which encompass alterations to gene expression without mutating the DNA sequence, have gained much attention in recent years, since they have been correlated with cardiometabolic diseases and may be targeted for therapeutic interventions. Epigenetic modifications are greatly influenced by environmental factors, such as diet, physical activity, cigarette smoking, and pollution. Some modifications are heritable, indicating that the biological expression of epigenetic alterations may be observed across generations. Moreover, many patients with cardiometabolic diseases present with chronic inflammation, which can be influenced by environmental and genetic factors. The inflammatory environment worsens the prognosis of cardiometabolic diseases and further induces epigenetic modifications, predisposing patients to the development of other metabolism-associated diseases and complications. A deeper understanding of inflammatory processes and epigenetic modifications in cardiometabolic diseases is necessary to improve our diagnostic capabilities, personalized medicine approaches, and the development of targeted therapeutic interventions. Further understanding may also assist in predicting disease outcomes, especially in children and young adults. This review describes epigenetic modifications and inflammatory processes underlying cardiometabolic diseases, and further discusses advances in the research field with a focus on specific points for interventional therapy.
Collapse
Affiliation(s)
- Shanel Raghubeer
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health & Wellness Sciences, Cape Peninsula University of Technology, South Africa.
| |
Collapse
|
9
|
Coda DM, Gräff J. From cellular to fear memory: An epigenetic toolbox to remember. Curr Opin Neurobiol 2024; 84:102829. [PMID: 38128422 DOI: 10.1016/j.conb.2023.102829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Throughout development, the neuronal epigenome is highly sensitive to external stimuli, yet capable of safeguarding cellular memory for a lifetime. In the adult brain, memories of fearful experiences are rapidly instantiated, yet can last for decades, but the mechanisms underlying such longevity remain unknown. Here, we showcase how fear memory formation and storage - traditionally thought to exclusively affect synapse-based events - elicit profound and enduring changes to the chromatin, proposing epigenetic regulation as a plausible molecular template for mnemonic processes. By comparing these to mechanisms occurring in development and differentiation, we notice that an epigenetic machinery similar to that preserving cellular memories might be employed by brain cells so as to form, store, and retrieve behavioral memories.
Collapse
Affiliation(s)
- Davide Martino Coda
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Federale Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Federale Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
10
|
Giri S, Mehta R, Mallick BN. REM Sleep Loss-Induced Elevated Noradrenaline Plays a Significant Role in Neurodegeneration: Synthesis of Findings to Propose a Possible Mechanism of Action from Molecule to Patho-Physiological Changes. Brain Sci 2023; 14:8. [PMID: 38275513 PMCID: PMC10813190 DOI: 10.3390/brainsci14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
Wear and tear are natural processes for all living and non-living bodies. All living cells and organisms are metabolically active to generate energy for their routine needs, including for survival. In the process, the cells are exposed to oxidative load, metabolic waste, and bye-products. In an organ, the living non-neuronal cells divide and replenish the lost or damaged cells; however, as neuronal cells normally do not divide, they need special feature(s) for their protection, survival, and sustenance for normal functioning of the brain. The neurons grow and branch as axons and dendrites, which contribute to the formation of synapses with near and far neurons, the basic scaffold for complex brain functions. It is necessary that one or more basic and instinct physiological process(es) (functions) is likely to contribute to the protection of the neurons and maintenance of the synapses. It is known that rapid eye movement sleep (REMS), an autonomic instinct behavior, maintains brain functioning including learning and memory and its loss causes dysfunctions. In this review we correlate the role of REMS and its loss in synaptogenesis, memory consolidation, and neuronal degeneration. Further, as a mechanism of action, we will show that REMS maintains noradrenaline (NA) at a low level, which protects neurons from oxidative damage and maintains neuronal growth and synaptogenesis. However, upon REMS loss, the level of NA increases, which withdraws protection and causes apoptosis and loss of synapses and neurons. We propose that the latter possibly causes REMS loss associated neurodegenerative diseases and associated symptoms.
Collapse
Affiliation(s)
- Shatrunjai Giri
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, India;
| | - Rachna Mehta
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida 201301, India;
| | - Birendra Nath Mallick
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida 201301, India;
| |
Collapse
|
11
|
Mallick R, Duttaroy AK. Epigenetic modification impacting brain functions: Effects of physical activity, micronutrients, caffeine, toxins, and addictive substances. Neurochem Int 2023; 171:105627. [PMID: 37827244 DOI: 10.1016/j.neuint.2023.105627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Changes in gene expression are involved in many brain functions. Epigenetic processes modulate gene expression by histone modification and DNA methylation or RNA-mediated processes, which is important for brain function. Consequently, epigenetic changes are also a part of brain diseases such as mental illness and addiction. Understanding the role of different factors on the brain epigenome may help us understand the function of the brain. This review discussed the effects of caffeine, lipids, addictive substances, physical activity, and pollutants on the epigenetic changes in the brain and their modulatory effects on brain function.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, POB 1046 Blindern, Oslo, Norway.
| |
Collapse
|
12
|
Keimasi M, Salehifard K, Mirshah Jafar Esfahani N, Esmaeili F, Farghadani A, Amirsadri M, Keimasi M, Noorbakhshnia M, Moradmand M, Mofid MR. The synergic effects of presynaptic calcium channel antagonists purified from spiders on memory elimination of glutamate-induced excitotoxicity in the rat hippocampus trisynaptic circuit. Front Mol Biosci 2023; 10:1243976. [PMID: 38099194 PMCID: PMC10720730 DOI: 10.3389/fmolb.2023.1243976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
The hippocampus is a complex area of the mammalian brain and is responsible for learning and memory. The trisynaptic circuit engages with explicit memory. Hippocampal neurons express two types of presynaptic voltage-gated calcium channels (VGCCs) comprising N and P/Q-types. These VGCCs play a vital role in the release of neurotransmitters from presynaptic neurons. The chief excitatory neurotransmitter at these synapses is glutamate. Glutamate has an essential function in learning and memory under normal conditions. The release of neurotransmitters depends on the activity of presynaptic VGCCs. Excessive glutamate activity, due to either excessive release or insufficient uptake from the synapse, leads to a condition called excitotoxicity. This pathological state is common among all neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Under these conditions, glutamate adversely affects the trisynaptic circuitry, leading to synaptic destruction and loss of memory and learning performance. This study attempts to clarify the role of presynaptic VGCCs in memory performance and reveals that modulating the activity of presynaptic calcium channels in the trisynaptic pathway can regulate the excitotoxic state and consequently prevent the elimination of neurons and synaptic degradation. All of these can lead to an improvement in learning and memory function. In the current study, two calcium channel blockers-omega-agatoxin-Aa2a and omega-Lsp-IA-were extracted, purified, and identified from spiders (Agelena orientalis and Hogna radiata) and used to modulate N and P/Q VGCCs. The effect of omega-agatoxin-Aa2a and omega-Lsp-IA on glutamate-induced excitotoxicity in rats was evaluated using the Morris water maze task as a behavioral test. The local expression of synaptophysin (SYN) was visualized for synaptic quantification using an immunofluorescence assay. The electrophysiological amplitudes of the field excitatory postsynaptic potentials (fEPSPs) in the input-output and LTP curves of the mossy fiber and Schaffer collateral circuits were recorded. The results of our study demonstrated that N and P/Q VGCC modulation in the hippocampus trisynaptic circuit of rats with glutamate-induced excitotoxicity dysfunction could prevent the destructive consequences of excitotoxicity in synapses and improve memory function and performance.
Collapse
Affiliation(s)
- Mohammad Keimasi
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Kowsar Salehifard
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Mirshah Jafar Esfahani
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Fariba Esmaeili
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Arman Farghadani
- Department of Biology, Faculty of Biological Sciences, University Duisburg-Essen, Essen, Germany
| | - Mohammadreza Amirsadri
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadjavad Keimasi
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Maryam Noorbakhshnia
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Majid Moradmand
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Reza Mofid
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Moore DS. On the evolution of epigenetics via exaptation: A developmental systems perspective. Ann N Y Acad Sci 2023; 1529:21-32. [PMID: 37750405 DOI: 10.1111/nyas.15065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Evolution and development are interrelated processes influenced by genomic, epigenetic, and environmental factors. Epigenetic processes serve critical roles in development and operate as intermediaries that connect the genome to the rest of the world. Therefore, it is of interest to consider the evolution of epigenetic processes. The developmental systems perspective offers a distinctive, coherent, integrative way to understand the relationships between evolution, epigenetics, development, and the effects of experienced contexts. By adopting this perspective, this paper draws attention to the role of exaptation in the evolution of epigenetics in the RNA world and addresses the role of epigenetics in the later evolution of developmental processes such as cellular differentiation, learning, and memory. In so doing, the paper considers the appearance and functions of epigenetics in evolutionary history-sketching a pathway by which epigenetic processes might have evolved via exaptation and then contributed to the later development and evolution of phenotypes.
Collapse
Affiliation(s)
- David S Moore
- Psychology Field Group, Pitzer College, Claremont, California, USA
- Division of Behavioral & Organizational Sciences, Claremont Graduate University, Claremont, California, USA
| |
Collapse
|
14
|
Dyakonova VE. DNA Instability in Neurons: Lifespan Clock and Driver of Evolution. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1719-1731. [PMID: 38105193 DOI: 10.1134/s0006297923110044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023]
Abstract
In the last ten years, the discovery of neuronal DNA postmitotic instability has changed the theoretical landscape in neuroscience and, more broadly, biology. In 2003, A. M. Olovnikov suggested that neuronal DNA is the "initial substrate of aging". Recent experimental data have significantly increased the likelihood of this hypothesis. How does neuronal DNA accumulate damage and in what genome regions? What factors contribute to this process and how are they associated with aging and lifespan? These questions will be discussed in the review. In the course of Metazoan evolution, the instability of neuronal DNA has been accompanied by searching for the pathways to reduce the biological cost of brain activity. Various processes and activities, such as sleep, evolutionary increase in the number of neurons in the vertebrate brain, adult neurogenesis, distribution of neuronal activity, somatic polyploidy, and RNA editing in cephalopods, can be reconsidered in the light of the trade-off between neuronal plasticity and DNA instability in neurons. This topic is of considerable importance for both fundamental neuroscience and translational medicine.
Collapse
Affiliation(s)
- Varvara E Dyakonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
15
|
Zuzina AB, Vinarskaya AK, Balaban PM. DNA Methylation Inhibition Reversibly Impairs the Long-Term Context Memory Maintenance in Helix. Int J Mol Sci 2023; 24:14068. [PMID: 37762369 PMCID: PMC10531757 DOI: 10.3390/ijms241814068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
This work aims to study the epigenetic mechanisms of regulating long-term context memory in the gastropod mollusk: Helix. We have shown that RG108, an inhibitor of DNA methyltransferase (DNMT), impaired long-term context memory in snails, and this impairment can be reversed within a limited time window: no more than 48 h. Research on the mechanisms through which the long-term context memory impaired by DNMT inhibition could be reinstated demonstrated that this effect depends on several biochemical mechanisms: nitric oxide synthesis, protein synthesis, and activity of the serotonergic system. Memory recovery did not occur if at least one of these mechanisms was impaired. The need for the joint synergic activity of several biochemical systems for a successful memory rescue confirms the assumption that the memory recovery process depends on the process of active reconsolidation, and is not simply a passive weakening of the effect of RG108 over time. Finally, we showed that the reactivation of the impaired memory by RG108, followed by administration of histone deacetylase inhibitor sodium butyrate, led to memory recovery only within a narrow time window: no more than 48 h after memory disruption.
Collapse
Affiliation(s)
| | | | - Pavel M. Balaban
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia; (A.B.Z.); (A.K.V.)
| |
Collapse
|
16
|
Yuan M, Yang B, Rothschild G, Mann JJ, Sanford LD, Tang X, Huang C, Wang C, Zhang W. Epigenetic regulation in major depression and other stress-related disorders: molecular mechanisms, clinical relevance and therapeutic potential. Signal Transduct Target Ther 2023; 8:309. [PMID: 37644009 PMCID: PMC10465587 DOI: 10.1038/s41392-023-01519-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 08/31/2023] Open
Abstract
Major depressive disorder (MDD) is a chronic, generally episodic and debilitating disease that affects an estimated 300 million people worldwide, but its pathogenesis is poorly understood. The heritability estimate of MDD is 30-40%, suggesting that genetics alone do not account for most of the risk of major depression. Another factor known to associate with MDD involves environmental stressors such as childhood adversity and recent life stress. Recent studies have emerged to show that the biological impact of environmental factors in MDD and other stress-related disorders is mediated by a variety of epigenetic modifications. These epigenetic modification alterations contribute to abnormal neuroendocrine responses, neuroplasticity impairment, neurotransmission and neuroglia dysfunction, which are involved in the pathophysiology of MDD. Furthermore, epigenetic marks have been associated with the diagnosis and treatment of MDD. The evaluation of epigenetic modifications holds promise for further understanding of the heterogeneous etiology and complex phenotypes of MDD, and may identify new therapeutic targets. Here, we review preclinical and clinical epigenetic findings, including DNA methylation, histone modification, noncoding RNA, RNA modification, and chromatin remodeling factor in MDD. In addition, we elaborate on the contribution of these epigenetic mechanisms to the pathological trait variability in depression and discuss how such mechanisms can be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Biao Yang
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gerson Rothschild
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Radiology, Columbia University, New York, NY, 10032, USA
| | - Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuang Wang
- Department of Pharmacology, and Provincial Key Laboratory of Pathophysiology in School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Medical Big Data Center, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Histone Modifications in Alzheimer's Disease. Genes (Basel) 2023; 14:genes14020347. [PMID: 36833274 PMCID: PMC9956192 DOI: 10.3390/genes14020347] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Since Late-onset Alzheimer's disease (LOAD) derives from a combination of genetic variants and environmental factors, epigenetic modifications have been predicted to play a role in the etiopathology of LOAD. Along with DNA methylation, histone modifications have been proposed as the main epigenetic modifications that contribute to the pathologic mechanisms of LOAD; however, little is known about how these mechanisms contribute to the disease's onset or progression. In this review, we highlighted the main histone modifications and their functional role, including histone acetylation, histone methylation, and histone phosphorylation, as well as changes in such histone modifications that occur in the aging process and mainly in Alzheimer's disease (AD). Furthermore, we pointed out the main epigenetic drugs tested for AD treatment, such as those based on histone deacetylase (HDAC) inhibitors. Finally, we remarked on the perspectives around the use of such epigenetics drugs for treating AD.
Collapse
|
18
|
HDAC1-mediated regulation of GABA signaling within the lateral septum facilitates long-lasting social fear extinction in male mice. Transl Psychiatry 2023; 13:10. [PMID: 36646675 PMCID: PMC9842607 DOI: 10.1038/s41398-023-02310-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Social anxiety disorder (SAD) is caused by traumatic social experiences. It is characterized by intense fear and avoidance of social contexts, which can be robustly mimicked by the social fear conditioning (SFC) paradigm. The extinction phase of the SFC paradigm is akin to exposure therapy for SAD and requires learning to disassociate the trauma with the social context. Learning-induced acetylation of histones is critical for extinction memory formation and its endurance. Although class I histone deacetylases (HDACs) regulate the abovementioned learning process, there is a lack of clarity in isoforms and spatial specificity in HDAC function in social learning. Utilizing the SFC paradigm, we functionally characterized the role of HDAC1, specifically in the lateral septum (LS), in regulating the formation of long-term social fear extinction memory. We measured a local increase in activity-inducing HDAC1 phosphorylation at serine residues of social fear-conditioned (SFC+) mice in response to the extinction of social fear. We also found that LS-HDAC1 function negatively correlates with acute social fear extinction learning using pharmacological and viral approaches. Further, inhibition of LS-HDAC1 enhanced the expression of the GABA-A receptor β1 subunit (Gabrb1) in SFC+ mice, and activation of GABA-A receptors facilitated acute extinction learning. Finally, the facilitation of extinction learning by HDAC1 inhibition or GABA-A receptor activation within the LS led to the formation of long-lasting extinction memory, which persisted even 30 days after extinction. Our results show that HDAC1-mediated regulation of GABA signaling in the LS is crucial for the formation of long-lasting social fear extinction memory.
Collapse
|
19
|
Császár-Nagy N, Bókkon I. Hypnotherapy and IBS: Implicit, long-term stress memory in the ENS? Heliyon 2022; 9:e12751. [PMID: 36685398 PMCID: PMC9849985 DOI: 10.1016/j.heliyon.2022.e12751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/20/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The association between irritable bowel syndrome (IBS) and psychiatric and mood disorders may be more fundamental than was previously believed. Prenatal, perinatal, postnatal, and early-age conditions can have a key role in the development of IBS. Subthreshold mental disorders (SMDs) could also be a significant source of countless diverse diseases and may be a cause of IBS development. We hypothesize that stress-induced implicit memories may persist throughout life by epigenetic processes in the enteric nervous system (ENS). These stress-induced implicit memories may play an essential role in the emergence and maintenance of IBS. In recent decades, numerous studies have proven that hypnosis can improve the primary symptoms of IBS and also reduce noncolonic symptoms such as anxiety and depression and improve quality of life and cognitive function. These significant beneficial effects of hypnosis on IBS may be because hypnosis allows access to unconscious brain processes.
Collapse
Affiliation(s)
- N. Császár-Nagy
- National University of Public Services, Budapest, Hungary,Psychosomatic Outpatient Clinics, Budapest, Hungary
| | - I. Bókkon
- Psychosomatic Outpatient Clinics, Budapest, Hungary,Vision Research Institute, Neuroscience and Consciousness Research Department, Lowell, MA, USA,Corresponding author. H-1238, Budapest, Láng Endre 68, Hungary.
| |
Collapse
|
20
|
Yin BK, Lázaro D, Wang ZQ. TRRAP-mediated acetylation on Sp1 regulates adult neurogenesis. Comput Struct Biotechnol J 2022; 21:472-484. [PMID: 36618986 PMCID: PMC9804013 DOI: 10.1016/j.csbj.2022.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The adult hippocampal neurogenesis plays a vital role in the function of the central nervous system (CNS), including memory consolidation, cognitive flexibility, emotional function, and social behavior. The deficiency of adult neural stem cells (aNSCs) in maintaining the quiescence and entering cell cycle, self-renewal and differentiation capacity is detrimental to the functional integrity of neurons and cognition of the adult brain. Histone acetyltransferase (HAT) and histone deacetylase (HDAC) have been shown to modulate brain functionality and are important for embryonic neurogenesis via regulation of gene transcription. We showed previously that Trrap, an adapter for several HAT complexes, is required for Sp1 transcriptional control of the microtubule dynamics in neuronal cells. Here, we find that Trrap deletion compromises self-renewal and differentiation of aNSCs in mice and in cultures. We find that the acetylation status of lysine residues K16, K19, K703 and K639 all fail to overcome Trrap-deficiency-incurred instability of Sp1, indicating a scaffold role of Trrap. Interestingly, the deacetylation of Sp1 at K639 and K703 greatly increases Sp1 binding to the promoter of target genes, which antagonizes Trrap binding, and thereby elevates Sp1 activity. However, only deacetylated K639 is refractory to Trrap deficiency and corrects the differentiation defects of Trrap-deleted aNSCs. We demonstrate that the acetylation pattern at K639 by HATs dictates the role of Sp1 in the regulation of adult neurogenesis.
Collapse
Affiliation(s)
- Bo-Kun Yin
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - David Lázaro
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany,Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, Bachstrasse 18k, 07743 Jena, Germany,Corresponding author at: Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany,.
| |
Collapse
|
21
|
Zuzina AB, Balaban PM. Contribution of histone acetylation to the serotonin-mediated long-term synaptic plasticity in terrestrial snails. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:521-535. [PMID: 35943582 DOI: 10.1007/s00359-022-01562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/16/2022] [Accepted: 07/24/2022] [Indexed: 12/14/2022]
Abstract
Serotonin plays a decisive role in long-term synaptic plasticity and long-term memory in mollusks. Previously, we demonstrated that histone acetylation is a regulatory mechanism of long-term memory in terrestrial snail. At the behavioral level, many studies were done in Helix to elucidate the role of histone acetylation and serotonin. However, the impact of histone acetylation on long-term potentiation of synaptic efficiency in electrophysiological studies in Helix has been studied only in one paper. Here we investigated effects of serotonin, histone deacetylases inhibitors sodium butyrate and trichostatin A, and a serotonergic receptor inhibitor methiothepin on long-term potentiation of synaptic responses in vitro. We demonstrated that methiothepin drastically declined the EPSPs amplitudes when long-term potentiation was induced, while co-application either of histone deacetylase inhibitors sodium butyrate or trichostatin A with methiothepin prevented the weakening of potentiation. We showed that single serotonin application in combination with histone deacetylase blockade could mimic the effect of repeated serotonin applications and be enough for sustained long-lasting synaptic changes. The data obtained demonstrated that histone deacetylases blockade ameliorated deficits in synaptic plasticity induced by different paradigms (methiothepin treatment, the weak training protocol with single application of serotonin), suggesting that histone acetylation contributes to the serotonin-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Alena B Zuzina
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel M Balaban
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
22
|
Kelvington BA, Nickl-Jockschat T, Abel T. Neurobiological insights into twice-exceptionality: Circuits, cells, and molecules. Neurobiol Learn Mem 2022; 195:107684. [PMID: 36174887 PMCID: PMC9888516 DOI: 10.1016/j.nlm.2022.107684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 02/02/2023]
Abstract
Twice-exceptional learners face a unique set of challenges arising from the intersection of extraordinary talent and disability. Neurobiology research has the capacity to complement pedagogical research and provide support for twice-exceptional learners. Very few studies have attempted to specifically address the neurobiological underpinnings of twice-exceptionality. However, neurobiologists have built a broad base of knowledge in nervous system function spanning from the level of neural circuits to the molecular basis of behavior. It is known that distinct neural circuits mediate different neural functions, which suggests that 2e learning may result from enhancement in one circuit and disruption in another. Neural circuits are known to adapt and change in response to experience, a cellular process known as neuroplasticity. Plasticity is controlled by a bidirectional connection between the synapse, where neural signals are received, and the nucleus, where regulated gene expression can return to alter synaptic function. Complex molecular mechanisms compose this connection in distinct neural circuits, and genetic alterations in these mechanisms are associated with both memory enhancements and psychiatric disorder. Understanding the consequences of these changes at the molecular, cellular, and circuit levels will provide critical insights into the neurobiological bases of twice-exceptionality.
Collapse
Affiliation(s)
- Benjamin A Kelvington
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Thomas Nickl-Jockschat
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Ted Abel
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
23
|
Mezheritskiy MI, Dyakonova VE. Direct and Inherited Epigenetic Changes in the Nervous System Caused by Intensive Locomotion: Possible Adaptive Significance. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422050058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
This review is devoted to the analysis of works that investigated the long-term effects of species-specific forms of intensive locomotion on the cognitive functions of animals and humans, which can be transmitted to the next generation. To date, the anxiolytic and cognitive-enhancing long-term effects of intensive locomotion have been demonstrated in humans, rodents, fish, insects, mollusks, and nematodes. In rodents, changes in the central nervous system caused by intense locomotion can be transmitted through the maternal and paternal line to the descendants of the first generation. These include reduced anxiety, improved spatial learning and memory, increased levels of brain neurotrophic factor and vascular endothelial growth factor in the hippocampus and frontal cortex. The shift of the balance of histone acetylation in the hippocampus of rodents towards hyperacetylation, and the balance of DNA methylation towards demethylation manifests itself both as a direct and as a first-generation inherited effect of motor activity. The question about the mechanisms that link locomotion with an increase in the plasticity of a genome in the brain of descendants remains poorly understood, and invertebrate model organisms can be an ideal object for its study. Currently, there is a lack of a theoretical model explaining why motor activity leads to long-term improvement of some cognitive functions that can be transmitted to the next generation and why such an influence could have appeared in evolution. The answer to these questions is not only of fundamental interest, but it is necessary for predicting therapeutic and possible side effects of motor activity in humans. In this regard, the article pays special attention to the review of ideas on the evolutionary aspects of the problem. We propose our own hypothesis, according to which the activating effect of intensive locomotion on the function of the nervous system could have been formed in evolution as a preadaptation to a possible entry into a new environment.
Collapse
|
24
|
Yadav Y, Dey CS. Ser/Thr phosphatases: One of the key regulators of insulin signaling. Rev Endocr Metab Disord 2022; 23:905-917. [PMID: 35697962 DOI: 10.1007/s11154-022-09727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
Protein phosphorylation is an important post-translational modification that regulates several cellular processes including insulin signaling. The evidences so far have already portrayed the importance of balanced actions of kinases and phosphatases in regulating the insulin signaling cascade. Therefore, elucidating the role of both kinases and phosphatases are equally important. Unfortunately, the role of phosphatases is less studied as compared to kinases. Since brain responds to insulin and insulin signaling is reported to be crucial for many neuronal processes, it is important to understand the role of neuronal insulin signaling regulators. Ser/Thr phosphatases seem to play significant roles in regulating neuronal insulin signaling. Therefore, in this review, we discussed the involvement of Ser/Thr phosphatases in regulating insulin signaling and insulin resistance in neuronal system at the backdrop of the same phosphatases in peripheral insulin sensitive tissues.
Collapse
Affiliation(s)
- Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
25
|
Qian S, Shi C, Huang S, Yang C, Luo Y. DNA methyltransferase activity in the basolateral amygdala is critical for reconsolidation of a heroin reward memory. Front Mol Neurosci 2022; 15:1002139. [PMID: 36176958 PMCID: PMC9513049 DOI: 10.3389/fnmol.2022.1002139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
The persistence of drug memory contributes to relapse to drug seeking. The association between repeated drug exposure and drug-related cues leads to cravings triggered by drug-paired cues. The erasure of drug memories has been considered a promising way to inhibit cravings and prevent relapse. The re-exposure to drug-related cues destabilizes well-consolidated drug memories, during which a de novo protein synthesis-dependent process termed “reconsolidation” occurs to restabilize the reactivated drug memory. Disrupting reconsolidation of drug memories leads to the attenuation of drug-seeking behavior in both animal models and people with addictions. Additionally, epigenetic mechanisms regulated by DNA methyltransferase (DNMT) are involved in the reconsolidation of fear and cocaine reward memory. In the present study, we investigated the role of DNMT in the reconsolidation of heroin reward memory. In the heroin self-administration model in rats, we tested the effects of DNMT inhibition during the reconsolidation process on cue-induced reinstatement, heroin-priming-induced reinstatement, and spontaneous recovery of heroin-seeking behavior. We found that the bilateral infusion of 5-azacytidine (5-AZA) inhibiting DNMT into the basolateral amygdala (BLA) immediately after heroin reward memory retrieval, but not delayed 6 h after retrieval or without retrieval, decreased subsequent cue-induced and heroin-priming-induced reinstatement of heroin-seeking behavior. These findings demonstrate that inhibiting the activity of DNMT in BLA during the reconsolidation of heroin reward memory attenuates heroin-seeking behavior, which may provide a potential strategy for the therapeutic of heroin addiction.
Collapse
Affiliation(s)
- Shuyi Qian
- Department of Nephrology and Laboratory of Kidney Disease, Hunan Provincial People’s Hospital, Hunan Normal University, Changsha, China
| | - Cuijie Shi
- Hunan Province People’s Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Shihao Huang
- National Institute on Drug Dependence, Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Chang Yang
- Hunan Province People’s Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yixiao Luo
- Hunan Province People’s Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, China
- *Correspondence: Yixiao Luo,
| |
Collapse
|
26
|
Maity S, Abbaspour R, Nahabedian D, Connor SA. Norepinephrine, beyond the Synapse: Coordinating Epigenetic Codes for Memory. Int J Mol Sci 2022; 23:ijms23179916. [PMID: 36077313 PMCID: PMC9456295 DOI: 10.3390/ijms23179916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
The noradrenergic system is implicated in neuropathologies contributing to major disorders of the memory, including post-traumatic stress disorder and Alzheimer’s disease. Determining the impact of norepinephrine on cellular function and plasticity is thus essential for making inroads into our understanding of these brain conditions, while expanding our capacity for treating them. Norepinephrine is a neuromodulator within the mammalian central nervous system which plays important roles in cognition and associated synaptic plasticity. Specifically, norepinephrine regulates the formation of memory through the stimulation of β-ARs, increasing the dynamic range of synaptic modifiability. The mechanisms through which NE influences neural circuit function have been extended to the level of the epigenome. This review focuses on recent insights into how the noradrenergic recruitment of epigenetic modifications, including DNA methylation and post-translational modification of histones, contribute to homo- and heterosynaptic plasticity. These advances will be placed in the context of synaptic changes associated with memory formation and linked to brain disorders and neurotherapeutic applications.
Collapse
Affiliation(s)
- Sabyasachi Maity
- Department of Physiology, Neuroscience, and Behavioral Sciences, St. George’s University School of Medicine, True Blue FZ818, Grenada
| | - Raman Abbaspour
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - David Nahabedian
- The Center for Biomedical Visualization, Department of Anatomical Sciences, St. George’s University School of Medicine, True Blue FZ818, Grenada
| | - Steven A. Connor
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Correspondence: ; Tel.: +1-(416)-736-2100 (ext. 33803)
| |
Collapse
|
27
|
Shang A, Bieszczad KM. Epigenetic mechanisms regulate cue memory underlying discriminative behavior. Neurosci Biobehav Rev 2022; 141:104811. [PMID: 35961385 DOI: 10.1016/j.neubiorev.2022.104811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 12/01/2022]
Abstract
The burgeoning field of neuroepigenetics has introduced chromatin modification as an important interface between experience and brain function. For example, epigenetic mechanisms like histone acetylation and DNA methylation operate throughout a lifetime to powerfully regulate gene expression in the brain that is required for experiences to be transformed into long-term memories. This review highlights emerging evidence from sensory models of memory that converge on the premise that epigenetic regulation of activity-dependent transcription in the sensory brain facilitates highly precise memory recall. Chromatin modifications may be key for neurophysiological responses to transient sensory cue features experienced in the "here and now" to be recapitulated over the long term. We conclude that the function of epigenetic control of sensory system neuroplasticity is to regulate the amount and type of sensory information retained in long-term memories by regulating neural representations of behaviorally relevant cues that guide behavior. This is of broad importance in the neuroscience field because there are few circumstances in which behavioral acts are devoid of an initiating sensory experience.
Collapse
Affiliation(s)
- Andrea Shang
- Dept. of Psychology - Behavioral and Systems Neuroscience, Rutgers University - New Brunswick, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Kasia M Bieszczad
- Dept. of Psychology - Behavioral and Systems Neuroscience, Rutgers University - New Brunswick, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA; Rutgers Center for Cognitive Science (RuCCS), Rutgers University, Piscataway, NJ 08854, USA; Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA.
| |
Collapse
|
28
|
Riyahi J, Abdoli B, Gelfo F, Petrosini L, Khatami L, Meftahi GH, Haghparast A. Multigenerational effects of paternal spatial training are lasting in the F1 and F2 male offspring. Behav Pharmacol 2022; 33:342-354. [PMID: 35502983 DOI: 10.1097/fbp.0000000000000682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent studies on intergenerational transmission of learning and memory performances demonstrated that parental spatial training before fertilization could facilitate learning and memory in the offspring, but many questions remain unclarified. Essential issues regarding whether and how long the effects of parental training in a task can last in several generations, and whether learning a task repeated in the successive generations can enhance a load of multigenerational effects. In the present study, the spatial performances of F1 and F2 generations of male offspring of fathers or grandfathers spatially trained in the Morris Water Maze were evaluated and compared with the performance of a control sample matched for age and sex. Further, to investigate the memory process in F1 and F2 male offspring, brain-derived neurotrophic factor (BDNF), p-ERK1/2 and acetylated histone 3 lysine 14 (H3K14) expression levels in the hippocampus were analyzed. The findings showed that paternal training reduced escape latencies and increased time spent in the target quadrant by F1 and F2 male offspring. Besides, paternal spatial training repeated in two generations did not enhance the beneficial effects on offspring's spatial performances. These findings were supported by neurobiologic data showing that paternal training increased BDNF and p-ERK1/2 in the hippocampus of F1 and F2 male offspring. Furthermore, the hippocampal level of acetylated H3K14 increased in the offspring of spatially trained fathers, reinforcing the hypothesis that the augmented histone acetylation might play an essential role in the inheritance of spatial competence.
Collapse
Affiliation(s)
- Javad Riyahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences
| | - Behrouz Abdoli
- Department of Cognitive and Behavioral Science and Technology in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Francesca Gelfo
- IRCCS Santa Lucia Foundation
- Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Leila Khatami
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| |
Collapse
|
29
|
Werthman EH, Colloca L, Oswald LM. Adverse childhood experiences and burn pain: a review of biopsychosocial mechanisms that may influence healing. Pain Rep 2022; 7:e1013. [PMID: 38304399 PMCID: PMC10833651 DOI: 10.1097/pr9.0000000000001013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/09/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022] Open
Abstract
Adverse childhood experiences (ACEs) affect over half of the adults in the United States and are known to contribute to the development of a wide variety of negative health and behavioral outcomes. The consequences of ACE exposure have been studied in patient populations that include individuals with gynecologic, orthopedic, metabolic, autoimmune, cardiovascular, and gastrointestinal conditions among others. Findings indicate that ACEs not only increase risks for chronic pain but also influence emotional responses to pain in many of these individuals. A growing body of research suggests that these effects may be the result of long-lasting changes induced by ACEs in neurobiological systems during early development. However, one area that is still largely unexplored concerns the effects of ACEs on burn patients, who account for almost 450,000 hospitalizations in the United States annually. Patients with severe burns frequently suffer from persistent pain that affects their well-being long after the acute injury, but considerable variability has been observed in the experience of pain across individuals. A literature search was conducted in CINAHL and PubMed to evaluate the possibility that previously documented ACE-induced changes in biological, psychological, and social processes might contribute to these differences. Findings suggest that better understanding of the role that ACEs play in burn outcomes could lead to improved treatment strategies, but further empirical research is needed to identify the predictors and mechanisms that dictate individual differences in pain outcomes in patients with ACE exposure and to clarify the role that ACE-related alterations play in early healing and recovery from burn injuries.
Collapse
Affiliation(s)
- Emily H. Werthman
- Department of Pain and Translational Symptom Science, School of Nursing, University of Maryland, Baltimore, MD, USA
- The Johns Hopkins Bayview Medical Center, The Johns Hopkins Burn Center, Baltimore, MD, USA
| | - Luana Colloca
- Department of Pain and Translational Symptom Science, School of Nursing, University of Maryland, Baltimore, MD, USA
- Departments of Anesthesiology and Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
- Center to Advance Chronic Pain Research (CACPR), University of Maryland, Baltimore, MD, USA
| | - Lynn M. Oswald
- Department of Family and Community Health, School of Nursing, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
30
|
Kamal SR, Potukutchi S, Gelovani DJ, Bonomi RE, Kallakuri S, Cavanaugh JM, Mangner T, Conti A, Liu RS, Pasqualini R, Arap W, Sidman RL, Perrine SA, Gelovani JG. Spatial and temporal dynamics of HDACs class IIa following mild traumatic brain injury in adult rats. Mol Psychiatry 2022; 27:1683-1693. [PMID: 35027678 PMCID: PMC11629393 DOI: 10.1038/s41380-021-01369-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022]
Abstract
The fundamental role of epigenetic regulatory mechanisms involved in neuroplasticity and adaptive responses to traumatic brain injury (TBI) is gaining increased recognition. TBI-induced neurodegeneration is associated with several changes in the expression-activity of various epigenetic regulatory enzymes, including histone deacetylases (HDACs). In this study, PET/CT with 6-([18F]trifluoroacetamido)-1- hexanoicanilide ([18F]TFAHA) to image spatial and temporal dynamics of HDACs class IIa expression-activity in brains of adult rats subjected to a weight drop model of diffuse, non-penetrating, mild traumatic brain injury (mTBI). The mTBI model was validated by histopathological and immunohistochemical analyses of brain tissue sections for localization and magnitude of expression of heat-shock protein-70 kDa (HSP70), amyloid precursor protein (APP), cannabinoid receptor-2 (CB2), ionized calcium-binding adapter protein-1 (IBA1), histone deacetylase-4 and -5 (HDAC4 and HDAC5). In comparison to baseline, the expression-activities of HDAC4 and HDAC5 were downregulated in the hippocampus, nucleus accumbens, peri-3rd ventricular part of the thalamus, and substantia nigra at 1-3 days post mTBI, and remained low at 7-8 days post mTBI. Reduced levels of HDAC4 and HDAC5 expression observed in neurons of these brain regions post mTBI were associated with the reduced nuclear and neuropil levels of HDAC4 and HDAC5 with the shift to perinuclear localization of these enzymes. These results support the rationale for the development of therapeutic strategies to upregulate expression-activity of HDACs class IIa post-TBI. PET/CT (MRI) with [18F]TFAHA can facilitate the development and clinical translation of unique therapeutic approaches to upregulate the expression and activity of HDACs class IIa enzymes in the brain after TBI.
Collapse
Affiliation(s)
- Swatabdi R Kamal
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Shreya Potukutchi
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - David J Gelovani
- School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Robin E Bonomi
- School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Srinivasu Kallakuri
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - John M Cavanaugh
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Thomas Mangner
- Cyclotron-Radiochemistry Facility, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alana Conti
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, 48201, USA
- Departments of Neurosurgery and Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Ren-Shyan Liu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Department of Nuclear Medicine, Cheng-Hsin General Hospital, Taipei, 112, Taiwan
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Renata Pasqualini
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Rutgers Cancer Institute of New Jersey, Newark, NJ, 07103, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ, 07103, USA
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Richard L Sidman
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Juri G Gelovani
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI, 48201, USA.
- Molecular Imaging Program, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA.
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.
| |
Collapse
|
31
|
Wilson KD, Porter EG, Garcia BA. Reprogramming of the epigenome in neurodevelopmental disorders. Crit Rev Biochem Mol Biol 2022; 57:73-112. [PMID: 34601997 PMCID: PMC9462920 DOI: 10.1080/10409238.2021.1979457] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The etiology of neurodevelopmental disorders (NDDs) remains a challenge for researchers. Human brain development is tightly regulated and sensitive to cellular alterations caused by endogenous or exogenous factors. Intriguingly, the surge of clinical sequencing studies has revealed that many of these disorders are monogenic and monoallelic. Notably, chromatin regulation has emerged as highly dysregulated in NDDs, with many syndromes demonstrating phenotypic overlap, such as intellectual disabilities, with one another. Here we discuss epigenetic writers, erasers, readers, remodelers, and even histones mutated in NDD patients, predicted to affect gene regulation. Moreover, this review focuses on disorders associated with mutations in enzymes involved in histone acetylation and methylation, and it highlights syndromes involving chromatin remodeling complexes. Finally, we explore recently discovered histone germline mutations and their pathogenic outcome on neurological function. Epigenetic regulators are mutated at every level of chromatin organization. Throughout this review, we discuss mechanistic investigations, as well as various animal and iPSC models of these disorders and their usefulness in determining pathomechanism and potential therapeutics. Understanding the mechanism of these mutations will illuminate common pathways between disorders. Ultimately, classifying these disorders based on their effects on the epigenome will not only aid in prognosis in patients but will aid in understanding the role of epigenetic machinery throughout neurodevelopment.
Collapse
Affiliation(s)
- Khadija D. Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth G. Porter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
32
|
Histone Modifications in Neurological Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:95-107. [DOI: 10.1007/978-3-031-05460-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Zimmer C, Woods HA, Martin LB. Information theory in vertebrate stress physiology. Trends Endocrinol Metab 2022; 33:8-17. [PMID: 34750063 DOI: 10.1016/j.tem.2021.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/01/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022]
Abstract
Information theory has been applied productively across biology, but it has been used minimally in endocrinology. Here, we advocate for the integration of information theory into stress endocrinology. Presently, the majority of models of stress center on the regulation of hormone concentrations, even though what interests most endocrinologists and matters in terms of individual health and evolutionary fitness is the information content of hormones. In neuroscience, the free energy principle, a concept offered to explain how the brain infers current and future states of the environment, could be a guide for resolving how information is instantiated in hormones such as the glucocorticoids. Here, we offer several ideas and promising options for research addressing how hormones encode and cells respond to information in glucocorticoids.
Collapse
Affiliation(s)
- Cedric Zimmer
- Global Health and Infectious Disease Research Center, University of South Florida, FL 33612, USA; Laboratoire d'Ethologie Expérimentale et Comparée, LEEC, UR 4443, Université Sorbonne Paris Nord, 93430, Villetaneuse, France.
| | - H Arthur Woods
- University of Montana, Division of Biological Sciences, Missoula, MT 59812, USA
| | - Lynn B Martin
- Global Health and Infectious Disease Research Center, University of South Florida, FL 33612, USA
| |
Collapse
|
34
|
Bandeira IC, Giombelli L, Werlang IC, Abujamra AL, Secchi TL, Brondani R, Bragatti JA, Bizzi JWJ, Leistner-Segal S, Bianchin MM. Methylation of BDNF and SLC6A4 Gene Promoters in Brazilian Patients With Temporal Lobe Epilepsy Presenting or Not Psychiatric Comorbidities. Front Integr Neurosci 2021; 15:764742. [PMID: 34912196 PMCID: PMC8667271 DOI: 10.3389/fnint.2021.764742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 01/09/2023] Open
Abstract
The relationship between epilepsy and psychiatric comorbidities has been recognized for centuries, but its pathophysiological mechanisms are still misunderstood. It is biologically plausible that genetic or epigenetic variations in genes that codify important neurotransmitters involved in epilepsy as well as in psychiatric disorders may influence the development of the latter in patients with epilepsy. However, this possibility remains poorly investigated. The aim of this study was to evaluate the methylation profile of the BDNF and SLC6A4, two genes importantly involved in neuroplasticity, in patients with temporal lobe epilepsy (TLE) regarding the development or not of psychiatric comorbidities. One hundred and thirty-nine patients with TLE, 90 females and 45 males, were included in the study. The mean age of patients was 44.0 (+12.0) years, and mean duration of epilepsy was 25.7 (+13.3) years. The Structured Clinical Interview for DSM-IV shows that 83 patients (59.7%) had neuropsychiatric disorders and 56 (40.3%) showed no psychiatric comorbidity. Mood disorders were the most common psychiatric disorder observed, being present in 64 (46.0%) of all 139 patients. Thirty-three (23.7%) patients showed anxiety disorders, 10 (7.2%) patients showed history of psychosis and 8 (5.8%) patients showed history of alcohol//drug abuse. Considering all 139 patients, 18 (12.9%) demonstrated methylation of the promoter region of both BDNF and SLC6A4 genes. A significant decreased methylation profile was observed only in TLE patients with mood disorders when compared with TLE patients without a history of mood disorders (O.R. = 3.45; 95% C.I. = 1.08–11.11; p = 0.04). A sub-analysis showed that TLE patients with major depressive disorder mostly account for this result (O.R. = 7.20; 95% C.I. = 1.01–56.16; p = 0.042). A logistic regression analysis showed that the independent factors associated with a history of depression in our TLE patients was female sex (O.R. = 2.30; 95% C.I. = 1.02–5.18; p = 0.044), not controlled seizures (O.R. = 2.51; 95% C.I. = 1.16–5.41; p = 0.019) and decreased methylation in BDNF and SLC6A4 genes (O.R. = 5.32; 95% C.I. = 1.14–25.00; p = 0.033). Our results suggest that BDNF or SLC6A4 genes profile methylation is independently associated with depressive disorders in patients with epilepsy. Further studies are necessary to clarify these matters.
Collapse
Affiliation(s)
- Isabel Cristina Bandeira
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Basic Research and Advanced Investigations in Neurosciences, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lucas Giombelli
- Basic Research and Advanced Investigations in Neurosciences, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Isabel Cristina Werlang
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Basic Research and Advanced Investigations in Neurosciences, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Ana Lucia Abujamra
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thais Leite Secchi
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rosane Brondani
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Division of Neurology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | | | - Sandra Leistner-Segal
- Basic Research and Advanced Investigations in Neurosciences, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Marino Muxfeldt Bianchin
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Basic Research and Advanced Investigations in Neurosciences, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Division of Neurology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Centro de Tratamento de Epilepsia Refratária (CETER), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
35
|
Epigenetic Mechanisms in Memory and Cognitive Decline Associated with Aging and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222212280. [PMID: 34830163 PMCID: PMC8618067 DOI: 10.3390/ijms222212280] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022] Open
Abstract
Epigenetic mechanisms, which include DNA methylation, a variety of post-translational modifications of histone proteins (acetylation, phosphorylation, methylation, ubiquitination, sumoylation, serotonylation, dopaminylation), chromatin remodeling enzymes, and long non-coding RNAs, are robust regulators of activity-dependent changes in gene transcription. In the brain, many of these epigenetic modifications have been widely implicated in synaptic plasticity and memory formation. Dysregulation of epigenetic mechanisms has been reported in the aged brain and is associated with or contributes to memory decline across the lifespan. Furthermore, alterations in the epigenome have been reported in neurodegenerative disorders, including Alzheimer’s disease. Here, we review the diverse types of epigenetic modifications and their role in activity- and learning-dependent synaptic plasticity. We then discuss how these mechanisms become dysregulated across the lifespan and contribute to memory loss with age and in Alzheimer’s disease. Collectively, the evidence reviewed here strongly supports a role for diverse epigenetic mechanisms in memory formation, aging, and neurodegeneration in the brain.
Collapse
|
36
|
Császár N, Scholkmann F, Bókkon I. Implications on hypnotherapy: Neuroplasticity, epigenetics and pain. Neurosci Biobehav Rev 2021; 131:755-764. [PMID: 34619172 DOI: 10.1016/j.neubiorev.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 01/11/2023]
Abstract
We provide a brief review about the significance of hypnosis with respect to applications and physiological processes in hypnotherapy. Our review concludes that hypnosis is a promising method to manage acute and chronic pain. In addition, we discuss indications pointing toward the view that hypnosis can induce changes in neuroplasticity possibly involving epigenetic mechanisms.
Collapse
Affiliation(s)
- N Császár
- National University of Public Services, Budapest, Hungary; Psychosomatic Outpatient Clinics, Budapest, Hungary.
| | - F Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Switzerland.
| | - I Bókkon
- Psychosomatic Outpatient Clinics, Budapest, Hungary; Vision Research Institute, Neuroscience and Consciousness Research Department, Lowell, MA, USA.
| |
Collapse
|
37
|
Gostolupce D, Iordanova MD, Lay BPP. Mechanisms of higher-order learning in the amygdala. Behav Brain Res 2021; 414:113435. [PMID: 34197867 DOI: 10.1016/j.bbr.2021.113435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Adaptive behaviour is under the potent control of environmental cues. Such cues can acquire value by virtue of their associations with outcomes of motivational significance, be they appetitive or aversive. There are at least two ways through which an environmental cue can acquire value, through first-order and higher-order conditioning. In first-order conditioning, a neutral cue is directly paired with an outcome of motivational significance. In higher-order conditioning, a cue is indirectly associated with motivational events via a directly conditioned first-order stimulus. The present article reviews some of the associations that support learning in first- and higher-order conditioning, as well as the role of the BLA and the molecular mechanisms involved in these two types of learning.
Collapse
Affiliation(s)
- Dilara Gostolupce
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Mihaela D Iordanova
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada.
| | - Belinda P P Lay
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
38
|
Bellver-Sanchis A, Pallàs M, Griñán-Ferré C. The Contribution of Epigenetic Inheritance Processes on Age-Related Cognitive Decline and Alzheimer's Disease. EPIGENOMES 2021; 5:15. [PMID: 34968302 PMCID: PMC8594669 DOI: 10.3390/epigenomes5020015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
During the last years, epigenetic processes have emerged as important factors for many neurodegenerative diseases, such as Alzheimer's disease (AD). These complex diseases seem to have a heritable component; however, genome-wide association studies failed to identify the genetic loci involved in the etiology. So, how can these changes be transmitted from one generation to the next? Answering this question would allow us to understand how the environment can affect human populations for multiple generations and explain the high prevalence of neurodegenerative diseases, such as AD. This review pays particular attention to the relationship among epigenetics, cognition, and neurodegeneration across generations, deepening the understanding of the relevance of heritability in neurodegenerative diseases. We highlight some recent examples of EI induced by experiences, focusing on their contribution of processes in learning and memory to point out new targets for therapeutic interventions. Here, we first describe the prominent role of epigenetic factors in memory processing. Then, we briefly discuss aspects of EI. Additionally, we summarize evidence of how epigenetic marks inherited by experience and/or environmental stimuli contribute to cognitive status offspring since better knowledge of EI can provide clues in the appearance and development of age-related cognitive decline and AD.
Collapse
Affiliation(s)
| | | | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028 Barcelona, Spain; (A.B.-S.); (M.P.)
| |
Collapse
|
39
|
Bin Ibrahim MZ, Benoy A, Sajikumar S. Long-term plasticity in the hippocampus: maintaining within and 'tagging' between synapses. FEBS J 2021; 289:2176-2201. [PMID: 34109726 DOI: 10.1111/febs.16065] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Synapses between neurons are malleable biochemical structures, strengthening and diminishing over time dependent on the type of information they receive. This phenomenon known as synaptic plasticity underlies learning and memory, and its different forms, long-term potentiation (LTP) and long-term depression (LTD), perform varied cognitive roles in reinforcement, relearning and associating memories. Moreover, both LTP and LTD can exist in an early transient form (early-LTP/LTD) or a late persistent form (late-LTP/LTD), which are triggered by different induction protocols, and also differ in their dependence on protein synthesis and the involvement of key molecular players. Beyond homosynaptic modifications, synapses can also interact with one another. This is encapsulated in the synaptic tagging and capture hypothesis (STC), where synapses expressing early-LTP/LTD present a 'tag' that can capture the protein synthesis products generated during a temporally proximal late-LTP/LTD induction. This 'tagging' phenomenon forms the framework of synaptic interactions in various conditions and accounts for the cellular basis of the time-dependent associativity of short-lasting and long-lasting memories. All these synaptic modifications take place under controlled neuronal conditions, regulated by subcellular elements such as epigenetic regulation, proteasomal degradation and neuromodulatory signals. Here, we review current understanding of the different forms of synaptic plasticity and its regulatory mechanisms in the hippocampus, a brain region critical for memory formation. We also discuss expression of plasticity in hippocampal CA2 area, a long-overlooked narrow hippocampal subfield and the behavioural correlate of STC. Lastly, we put forth perspectives for an integrated view of memory representation in synapses.
Collapse
Affiliation(s)
- Mohammad Zaki Bin Ibrahim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore
| | - Amrita Benoy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
40
|
Blazejewski SM, Bennison SA, Liu X, Toyo-Oka K. High-throughput kinase inhibitor screening reveals roles for Aurora and Nuak kinases in neurite initiation and dendritic branching. Sci Rep 2021; 11:8156. [PMID: 33854138 PMCID: PMC8047044 DOI: 10.1038/s41598-021-87521-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/31/2021] [Indexed: 12/25/2022] Open
Abstract
Kinases are essential regulators of a variety of cellular signaling processes, including neurite formation—a foundational step in neurodevelopment. Aberrant axonal sprouting and failed regeneration of injured axons are associated with conditions like traumatic injury, neurodegenerative disease, and seizures. Investigating the mechanisms underlying neurite formation will allow for identification of potential therapeutics. We used a kinase inhibitor library to screen 493 kinase inhibitors and observed that 45% impacted neuritogenesis in Neuro2a (N-2a) cells. Based on the screening, we further investigated the roles of Aurora kinases A, B, and C and Nuak kinases 1 and 2. The roles of Aurora and Nuak kinases have not been thoroughly studied in the nervous system. Inhibition or overexpression of Aurora and Nuak kinases in primary cortical neurons resulted in various neuromorphological defects, with Aurora A regulating neurite initiation, Aurora B and C regulating neurite initiation and elongation, all Aurora kinases regulating arborization, and all Nuak kinases regulating neurite initiation and elongation and arborization. Our high-throughput screening and analysis of Aurora and Nuak kinases revealed their functions and may contribute to the identification of therapeutics.
Collapse
Affiliation(s)
- Sara M Blazejewski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Xiaonan Liu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
41
|
Kumar A, Misra S, Nair P, Algahtany M. Epigenetics Mechanisms in Ischemic Stroke: A Promising Avenue? J Stroke Cerebrovasc Dis 2021; 30:105690. [PMID: 33684709 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/27/2022] Open
Abstract
Stroke has emerged as the second most common cause of mortality worldwide and is a major public health problem. It is a multi-factorial disease and genetics plays an important role in its pathophysiology, however, mechanisms of genome involvement in the disease remain unclear. Both genetic and epigenetic mechanisms could play a role in the development of stroke disease. Although epigenetic characteristics may also be heritable, they can be modified during the lifetime under different environmental exposure in response to lifestyle. Recent studies provide clear evidence that epigenetic factors play an important role in the pathological mechanisms leading to an elevated risk of cardiovascular diseases and stroke. Epigenetic changes are reversible therefore; studying epigenetic factors may serve as a marker for disease progression, biomarker for disease diagnosis, and development of novel targets for therapeutic intervention. Identifying the factors which predispose the risk of stroke provides information for the mechanism of stroke and the design of new drug targets where epigenetic modifications play a significant role. Epigenetic modifications play an essential role in a large variety of multifactorial diseases. This review will focus on the evidence that epigenetic mechanisms play a crucial role in the pathophysiology of ischemic stroke.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India.
| | - Shubham Misra
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India.
| | - Pallavi Nair
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India.
| | - Mubarak Algahtany
- Division of Neurosurgery, Department of Surgery, College of Medicine, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
42
|
Pulya S, Mahale A, Bobde Y, Routholla G, Patel T, Swati, Biswas S, Sharma V, Kulkarni OP, Ghosh B. PT3: A Novel Benzamide Class Histone Deacetylase 3 Inhibitor Improves Learning and Memory in Novel Object Recognition Mouse Model. ACS Chem Neurosci 2021; 12:883-892. [PMID: 33577290 DOI: 10.1021/acschemneuro.0c00721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The importance of HDAC3 in transcriptional regulation of genes associated with long-term memory is well established. Here, we report a novel HDAC3 inhibitor, PT3, with an excellent blood-brain barrier permeability and ability to enhance long-term memory in mouse model of novel object recognition (NOR). PT3 exhibited higher selectivity for HDAC3 over HDAC1, HDAC6, and HDAC8 compared to the reference compound CI994. PT3 has significant distribution into the brain tissue with Cmax at 0.5 h and t1/2 of 2.5 h. Treatment with PT3 significantly improved the discrimination index in C57/BL6 mice in the NOR model. Brain tissue analysis of mice treated with PT3 for NOR test showed significant increase in H3K9 acetylation in hippocampus. Gene expression analysis by RT-qPCR of the hippocampus tissue revealed upregulation of CREB 1, BDNF, TRKB, Nr4a2, c-fos, PKA, GAP 43, PSD 95 and MMP9 expression in mice treated with PT3. Similar to the phenotype observed in the in vivo experiment, we found upregulation of H3K9 acetylation, CREB 1, BDNF, TRKB, Nr4a2, c-fos, PKA, GAP 43 and MMP9 expression in mouse neuronal (N2A) cells treated with PT3. Thus, our preclinical studies identify PT3 as a potential HDAC3 selective inhibitor that crosses the blood-brain barrier and improves the long-term memory formation in C57/BL6 mice. We propose PT3 as a candidate with therapeutic potential to treat age-related memory loss as well as other disorders with declined memory function like Alzheimer's disease.
Collapse
Affiliation(s)
- Sravani Pulya
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Ashutosh Mahale
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Yamini Bobde
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Ganesh Routholla
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Tarun Patel
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Swati
- Department of Biological Science, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Swati Biswas
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Vivek Sharma
- Department of Biological Science, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Onkar P. Kulkarni
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
43
|
Vinarskaya AK, Balaban PM, Roshchin MV, Zuzina AB. Sodium butyrate as a selective cognitive enhancer for weak or impaired memory. Neurobiol Learn Mem 2021; 180:107414. [PMID: 33610771 DOI: 10.1016/j.nlm.2021.107414] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/23/2021] [Accepted: 02/15/2021] [Indexed: 01/09/2023]
Abstract
Several recent studies showed that memory can be modulated by manipulating chromatin modifications using histone deacetylase (HDAC) inhibitors during memory formation, consolidation, and reconsolidation. We used a context fear conditioning paradigm with minimal non-painful current as a reinforcement, what elicited alertness to the context and freezing during tests in rats. Such paradigm resulted in a relatively weak memory in significant part of the rats. Here, we demonstrate that intraperitoneal administration of the HDAC inhibitor sodium butyrate immediately following memory reactivation, produced memory enhancement in rats with weak memory, however, not in rats with strong memory. Additionally, we investigated the ability of the HDAC inhibitor sodium butyrate to restore the contextual memory impaired due to the blockade of protein synthesis during memory reactivation. The results obtained evidence that the HDAC inhibitor sodium butyrate reinstated the impaired contextual memory. This enhancement effect is consistent with other studies demonstrating a role for HDAC inhibitors in the facilitation of contextual fear.
Collapse
Affiliation(s)
- Aliya Kh Vinarskaya
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia.
| | - Pavel M Balaban
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia
| | - Matvey V Roshchin
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia
| | - Alena B Zuzina
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia.
| |
Collapse
|
44
|
Tapias A, Lázaro D, Yin BK, Rasa SMM, Krepelova A, Kelmer Sacramento E, Grigaravicius P, Koch P, Kirkpatrick J, Ori A, Neri F, Wang ZQ. HAT cofactor TRRAP modulates microtubule dynamics via SP1 signaling to prevent neurodegeneration. eLife 2021; 10:61531. [PMID: 33594975 PMCID: PMC7939550 DOI: 10.7554/elife.61531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/16/2021] [Indexed: 01/22/2023] Open
Abstract
Brain homeostasis is regulated by the viability and functionality of neurons. HAT (histone acetyltransferase) and HDAC (histone deacetylase) inhibitors have been applied to treat neurological deficits in humans; yet, the epigenetic regulation in neurodegeneration remains elusive. Mutations of HAT cofactor TRRAP (transformation/transcription domain-associated protein) cause human neuropathies, including psychosis, intellectual disability, autism, and epilepsy, with unknown mechanism. Here we show that Trrap deletion in Purkinje neurons results in neurodegeneration of old mice. Integrated transcriptomics, epigenomics, and proteomics reveal that TRRAP via SP1 conducts a conserved transcriptomic program. TRRAP is required for SP1 binding at the promoter proximity of target genes, especially microtubule dynamics. The ectopic expression of Stathmin3/4 ameliorates defects of TRRAP-deficient neurons, indicating that the microtubule dynamics is particularly vulnerable to the action of SP1 activity. This study unravels a network linking three well-known, but up-to-date unconnected, signaling pathways, namely TRRAP, HAT, and SP1 with microtubule dynamics, in neuroprotection.
Collapse
Affiliation(s)
- Alicia Tapias
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - David Lázaro
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Bo-Kun Yin
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Anna Krepelova
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | | | - Philipp Koch
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Joanna Kirkpatrick
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Francesco Neri
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.,Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, Jena, Germany
| |
Collapse
|
45
|
Ramirez-Mejia G, Gil-Lievana E, Urrego-Morales O, Soto-Reyes E, Bermúdez-Rattoni F. Class I HDAC inhibition improves object recognition memory consolidation through BDNF/TrkB pathway in a time-dependent manner. Neuropharmacology 2021; 187:108493. [PMID: 33581144 DOI: 10.1016/j.neuropharm.2021.108493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 11/25/2022]
Abstract
There is increasing evidence showing that HDACs regulates BDNF (brain-derived neurotrophic factor) expression through its interaction with the Bdnf gene promoter, a key regulator to consolidate memory. Although the nuclear mechanisms regulated by HDACs that control BDNF expression have been partially described recently, the temporal events for memory consolidation remain unknown. Hence, in this work, we studied the temporal pattern for the activation of the BDNF/TrkB pathway through class I HDAC inhibition to enhance object recognition memory (ORM) consolidation. To this end, we inhibited class I HDAC into the insular cortex (IC) and a weak ORM protocol was used to assess temporal expression and function of the BDNF/TrkB pathway in the IC. We found that cortical class I HDAC inhibition enhanced long-term ORM, coincident with a clear peak of BDNF expression at 4 h after acquisition. Furthermore, the tyrosine kinase B (TrkB) receptor blockade at 4 h, but not at 8 h, impaired the consolidation of ORM. These results suggest that histone acetylation regulates the temporal expression of BDNF in cortical circuits potentiating the long-term recognition memory.
Collapse
Affiliation(s)
- Gerardo Ramirez-Mejia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico
| | - Elvi Gil-Lievana
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico
| | - Oscar Urrego-Morales
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, 05348, Ciudad de Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico.
| |
Collapse
|
46
|
Mews P, Calipari ES, Day J, Lobo MK, Bredy T, Abel T. From Circuits to Chromatin: The Emerging Role of Epigenetics in Mental Health. J Neurosci 2021; 41:873-882. [PMID: 33446519 PMCID: PMC7880276 DOI: 10.1523/jneurosci.1649-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 02/01/2023] Open
Abstract
A central goal of neuroscience research is to understand how experiences modify brain circuits to guide future adaptive behavior. In response to environmental stimuli, neural circuit activity engages gene regulatory mechanisms within each cell. This activity-dependent gene expression is governed, in part, by epigenetic processes that can produce persistent changes in both neural circuits and the epigenome itself. The complex interplay between circuit activity and neuronal gene regulation is vital to learning and memory, and, when disrupted, is linked to debilitating psychiatric conditions, such as substance use disorder. To develop clinical treatments, it is paramount to advance our understanding of how neural circuits and the epigenome cooperate to produce behavioral adaptation. Here, we discuss how new genetic tools, used to manipulate neural circuits and chromatin, have enabled the discovery of epigenetic processes that bring about long-lasting changes in behavior relevant to mental health and disease.
Collapse
Affiliation(s)
- Philipp Mews
- Friedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10129
| | - Erin S Calipari
- Departments of Pharmacology, Molecular Physiology and Biophysics, Psychiatry and Behavioral Sciences; Vanderbilt Center for Addiction Research; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37323
| | - Jeremy Day
- Department of Neurobiology, McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Timothy Bredy
- Queensland Brain Institute, University of Queensland, Brisbane, 4072, Australia
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
47
|
Lorgen-Ritchie M, Murray AD, Staff R, Ferguson-Smith AC, Richards M, Horgan GW, Phillips LH, Hoad G, McNeil C, Ribeiro A, Haggarty P. Imprinting methylation predicts hippocampal volumes and hyperintensities and the change with age in later life. Sci Rep 2021; 11:943. [PMID: 33441584 PMCID: PMC7806645 DOI: 10.1038/s41598-020-78062-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/16/2020] [Indexed: 12/29/2022] Open
Abstract
Epigenetic imprinting is important for neurogenesis and brain function. Hippocampal volumes and brain hyperintensities in late life have been associated with early life circumstances. Epigenetic imprinting may underpin these associations. Methylation was measured at 982 sites in 13 imprinted locations in blood samples from a longitudinal cohort by bisulphite amplicon sequencing. Hippocampal volumes and hyperintensities were determined at age 64y and 72y using MRI. Hyperintensities were determined in white matter, grey matter and infratentorial regions. Permutation methods were used to adjust for multiple testing. At 64y, H19/IGF2 and NESPAS methylation predicted hippocampal volumes. PEG3 predicted hyperintensities in hippocampal grey matter, and white matter. GNASXL predicted grey matter hyperintensities. Changes with age were predicted for hippocampal volume (MEST1, KvDMR, L3MBTL, GNASXL), white matter (MEST1, PEG3) and hippocampal grey matter hyperintensities (MCTS2, GNASXL, NESPAS, L3MBTL, MCTS2, SNRPN, MEST1). Including childhood cognitive ability, years in education, or socioeconomic status as additional explanatory variables in regression analyses did not change the overall findings. Imprinting methylation in multiple genes predicts brain structures, and their change over time. These findings are potentially relevant to the development of novel tests of brain structure and function across the life-course, strategies to improve cognitive outcomes, and our understanding of early influences on brain development and function.
Collapse
Affiliation(s)
- Marlene Lorgen-Ritchie
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Alison D Murray
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | | | | | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Graham W Horgan
- Biomathematics and Statistics Scotland, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Louise H Phillips
- School of Psychology, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Gwen Hoad
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Chris McNeil
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Antonio Ribeiro
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Paul Haggarty
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
48
|
Coda DM, Gräff J. Neurogenetic and Neuroepigenetic Mechanisms in Cognitive Health and Disease. Front Mol Neurosci 2020; 13:205. [PMID: 33343294 PMCID: PMC7745653 DOI: 10.3389/fnmol.2020.589109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/05/2020] [Indexed: 01/02/2023] Open
Abstract
Over the last two decades, the explosion of experimental, computational, and high-throughput technologies has led to critical insights into how the brain functions in health and disease. It has become increasingly clear that the vast majority of brain activities result from the complex entanglement of genetic factors, epigenetic changes, and environmental stimuli, which, when altered, can lead to neurodegenerative and neuropsychiatric disorders. Nevertheless, a complete understanding of the molecular mechanisms underlying neuronal activities and higher-order cognitive processes continues to elude neuroscientists. Here, we provide a concise overview of how the interaction between the environment and genetic as well as epigenetic mechanisms shapes complex neuronal processes such as learning, memory, and synaptic plasticity. We then consider how this interaction contributes to the development of neurodegenerative and psychiatric disorders, and how it can be modeled to predict phenotypic variability and disease risk. Finally, we outline new frontiers in neurogenetic and neuroepigenetic research and highlight the challenges these fields will face in their quest to decipher the molecular mechanisms governing brain functioning.
Collapse
Affiliation(s)
- Davide Martino Coda
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
49
|
Marco A, Meharena HS, Dileep V, Raju RM, Davila-Velderrain J, Zhang AL, Adaikkan C, Young JZ, Gao F, Kellis M, Tsai LH. Mapping the epigenomic and transcriptomic interplay during memory formation and recall in the hippocampal engram ensemble. Nat Neurosci 2020; 23:1606-1617. [PMID: 33020654 PMCID: PMC7686266 DOI: 10.1038/s41593-020-00717-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/01/2020] [Indexed: 12/22/2022]
Abstract
The epigenome and three-dimensional (3D) genomic architecture are emerging as key factors in the dynamic regulation of different transcriptional programs required for neuronal functions. In this study, we used an activity-dependent tagging system in mice to determine the epigenetic state, 3D genome architecture and transcriptional landscape of engram cells over the lifespan of memory formation and recall. Our findings reveal that memory encoding leads to an epigenetic priming event, marked by increased accessibility of enhancers without the corresponding transcriptional changes. Memory consolidation subsequently results in spatial reorganization of large chromatin segments and promoter-enhancer interactions. Finally, with reactivation, engram neurons use a subset of de novo long-range interactions, where primed enhancers are brought in contact with their respective promoters to upregulate genes involved in local protein translation in synaptic compartments. Collectively, our work elucidates the comprehensive transcriptional and epigenomic landscape across the lifespan of memory formation and recall in the hippocampal engram ensemble.
Collapse
Affiliation(s)
- Asaf Marco
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Hiruy S Meharena
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vishnu Dileep
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ravikiran M Raju
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jose Davila-Velderrain
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amy Letao Zhang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chinnakkaruppan Adaikkan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jennie Z Young
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fan Gao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
50
|
Navabpour S, Rogers J, McFadden T, Jarome TJ. DNA Double-Strand Breaks Are a Critical Regulator of Fear Memory Reconsolidation. Int J Mol Sci 2020; 21:ijms21238995. [PMID: 33256213 PMCID: PMC7730899 DOI: 10.3390/ijms21238995] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022] Open
Abstract
Numerous studies have shown that following retrieval, a previously consolidated memory requires increased transcriptional regulation in order to be reconsolidated. Previously, it was reported that histone H3 lysine-4 trimethylation (H3K4me3), a marker of active transcription, is increased in the hippocampus after the retrieval of contextual fear memory. However, it is currently unknown how this epigenetic mark is regulated during the reconsolidation process. Furthermore, though recent evidence suggests that neuronal activity triggers DNA double-strand breaks (DSBs) in some early-response genes, it is currently unknown if DSBs contribute to the reconsolidation of a memory following retrieval. Here, using chromatin immunoprecipitation (ChIP) analyses, we report a significant overlap between DSBs and H3K4me3 in area CA1 of the hippocampus during the reconsolidation process. We found an increase in phosphorylation of histone H2A.X at serine 139 (H2A.XpS139), a marker of DSB, in the Npas4, but not c-fos, promoter region 5 min after retrieval, which correlated with increased H3K4me3 levels, suggesting that the two epigenetic marks may work in concert during the reconsolidation process. Consistent with this, in vivo siRNA-mediated knockdown of topoisomerase II β, the enzyme responsible for DSB, prior to retrieval, reduced Npas4 promoter-specific H2A.XpS139 and H3K4me3 levels and impaired long-term memory, indicating an indispensable role of DSBs in the memory reconsolidation process. Collectively, our data propose a novel mechanism for memory reconsolidation through increases in epigenetic-mediated transcriptional control via DNA double-strand breaks.
Collapse
Affiliation(s)
- Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Translational Biology, Medicine & Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016, USA;
| | - Jessie Rogers
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Taylor McFadden
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Timothy J. Jarome
- Fralin Biomedical Research Institute, Translational Biology, Medicine & Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016, USA;
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Correspondence: ; Tel.: +1-540-231-3520
| |
Collapse
|