1
|
Sarahian N, Khodagholi F, Valian N, Ahmadiani A. Interplay of MeCP2/REST/Synaptophysin-BDNF and intranasal oxytocin influence on Aβ-induced memory and cognitive impairments. Behav Brain Res 2025; 476:115235. [PMID: 39236931 DOI: 10.1016/j.bbr.2024.115235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is linked to the accumulation of Aβ, increased tau hyperphosphorylation, persistent neuroinflammation, and a decline in neurotrophic factors, neurogenesis, and synaptic plasticity. Oxytocin (OT) has a significant impact on memory and learning. We examined the influence of intranasal (IN) OT on synaptic plasticity, neurogenesis, histone acetylation, and spatial and cognitive memories in rats. METHODS Aβ25-35 (5 µg/2.5 µl) was administered bilaterally in the CA1 of male Wistar rats for four consecutive days. After seven days of recovery, OT (2 µg/µl, 10 µl in each nostril) was administered IN for seven consecutive days. Working, spatial, and cognitive memories, and gene expression of neurogenesis- and synaptic plasticity-involved factors were measured in the hippocampus. Histone acetylation (H3K9 and H4K8) was also measured using western blotting. RESULTS IN administration of OT significantly improved working and spatial memory impairment induced by Aβ and increased the factors involved in synaptic plasticity (MeCP2, REST, synaptophysin, and BDNF) and neurogenesis (Ki67 and DCX). We also found an enhancement in the levels of H3K9ac and H4K8ac following OT administration. CONCLUSION These findings indicated that IN OT could improve hippocampus-related behaviors by increasing synaptic plasticity, stimulating neurogenesis, and chromatin plasticity.
Collapse
Affiliation(s)
- Nahid Sarahian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
2
|
Yang F, You H, Mizui T, Ishikawa Y, Takao K, Miyakawa T, Li X, Bai T, Xia K, Zhang L, Pang D, Xu Y, Zhu C, Kojima M, Lu B. Inhibiting proBDNF to mature BDNF conversion leads to ASD-like phenotypes in vivo. Mol Psychiatry 2024; 29:3462-3474. [PMID: 38762692 DOI: 10.1038/s41380-024-02595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Autism Spectrum Disorders (ASD) comprise a range of early age-onset neurodevelopment disorders with genetic heterogeneity. Most ASD related genes are involved in synaptic function, which is regulated by mature brain-derived neurotrophic factor (mBDNF) and its precursor proBDNF in a diametrically opposite manner: proBDNF inhibits while mBDNF potentiates synapses. Here we generated a knock-in mouse line (BDNFmet/leu) in which the conversion of proBDNF to mBDNF is attenuated. Biochemical experiments revealed residual mBDNF but excessive proBDNF in the brain. Similar to other ASD mouse models, the BDNFmet/leu mice showed reduced dendritic arborization, altered spines, and impaired synaptic transmission and plasticity in the hippocampus. They also exhibited ASD-like phenotypes, including stereotypical behaviors and deficits in social interaction. Moreover, the plasma proBDNF/mBDNF ratio was significantly increased in ASD patients compared to normal children in a case-control study. Thus, deficits in proBDNF to mBDNF conversion in the brain may contribute to ASD-like behaviors, and plasma proBDNF/mBDNF ratio may be a potential biomarker for ASD.
Collapse
Affiliation(s)
- Feng Yang
- China National Clinical Research Center for Neurological Diseases, Basic and Translational Medicine Center, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100070, Beijing, China
| | - He You
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100070, Beijing, China
- School of Pharmaceutical Sciences and IDG/McGovern Institute for Brain Research, Tsinghua University, 100084, Beijing, China
| | - Toshiyuki Mizui
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
| | - Yasuyuki Ishikawa
- Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi, 371-0816, Japan
| | - Keizo Takao
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama, 930-0194, Japan
| | - Tsuyoshi Miyakawa
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Xiaofei Li
- China National Clinical Research Center for Neurological Diseases, Basic and Translational Medicine Center, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100070, Beijing, China
| | - Ting Bai
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dizhou Pang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Masami Kojima
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan.
- Biomedical Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology (KIT), Ishikawa, 924-0838, Japan.
| | - Bai Lu
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100070, Beijing, China.
- School of Pharmaceutical Sciences and IDG/McGovern Institute for Brain Research, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
3
|
Abdullahi A, Wong TW, Ng SS. Understanding the potential mechanisms of disease modifying effects of physical activity and exercise in people with schizophrenia. Schizophr Res 2024; 274:381-391. [PMID: 39490219 DOI: 10.1016/j.schres.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
Schizophrenia is a serious chronic mental health problem that usually starts during adolescence and early childhood. It is characterized by positive symptoms (delusions, hallucinations and grossly disorganized speech and behaviour), negative symptoms (apathy, isolation and diminished affect), and cognitive impairment that negatively affect quality of life. Its treatments include the use of pharmacological interventions, exercise, non-invasive brain stimulation and cognitive remediation training. Exercise is a very simple and cost-effective intervention. However, it is important the mechanisms of its effects are understood so that it can be trusted in clinical practice. In addition, understanding the mechanisms is important for its modification and safe use. Similarly, it may help provide the basis for invention of safe and cost-effective pharmacological or alternative therapies. From the literature, the mechanisms of diseases modifying effects of exercise seem to include increased cardiorespiratory fitness, biochemical changes (increased level of BDNF, increased N-acetylaspartate (NAA)/cr (creatine) ratio, decreased level of triglycerides, increased high density lipoprotein (HDL) and decreased salivary cortisol), structural changes (increase in cerebral volume, increased white matter integrity and increased cortical thickness) and anthropometric changes (reduced body weight and body mass index (BMI), increased muscular strength and decreased waist-hip ratio or waist circumference or hip circumference).
Collapse
Affiliation(s)
- Auwal Abdullahi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Thomson Wl Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shamay Sm Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
4
|
Zhang Y, Chen X, Chen L, Shao M, Zhu W, Xing T, Guo T, Jia Q, Yang H, Yin P, Yan XX, Yu J, Li S, Li XJ, Yang S. Increased expression of mesencephalic astrocyte-derived neurotrophic factor (MANF) contributes to synapse loss in Alzheimer's disease. Mol Neurodegener 2024; 19:75. [PMID: 39425207 PMCID: PMC11490049 DOI: 10.1186/s13024-024-00771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND The activation of endoplasmic reticulum (ER) stress is an early pathological hallmark of Alzheimer's disease (AD) brain, but how ER stress contributes to the onset and development of AD remains poorly characterized. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a non-canonical neurotrophic factor and an ER stress inducible protein. Previous studies reported that MANF is increased in the brains of both pre-symptomatic and symptomatic AD patients, but the consequence of the early rise in MANF protein is unknown. METHODS We examined the expression of MANF in the brain of AD mouse models at different pathological stages. Through behavioral, electrophysiological, and neuropathological analyses, we assessed the level of synaptic dysfunctions in the MANF transgenic mouse model which overexpresses MANF in the brain and in wild type (WT) mice with MANF overexpression in the hippocampus. Using proteomic and transcriptomic screening, we identified and validated the molecular mechanism underlying the effects of MANF on synaptic function. RESULTS We found that increased expression of MANF correlates with synapse loss in the hippocampus of AD mice. The ectopic expression of MANF in mice via transgenic or viral approaches causes synapse loss and defects in learning and memory. We also identified that MANF interacts with ELAV like RNA-binding protein 2 (ELAVL2) and affects its binding to RNA transcripts that are involved in synaptic functions. Increasing or decreasing MANF expression in the hippocampus of AD mice exacerbates or ameliorates the behavioral deficits and synaptic pathology, respectively. CONCLUSIONS Our study established MANF as a mechanistic link between ER stress and synapse loss in AD and hinted at MANF as a therapeutic target in AD treatment.
Collapse
Affiliation(s)
- Yiran Zhang
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xiusheng Chen
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Laiqiang Chen
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Mingting Shao
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Wenzhen Zhu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Tingting Xing
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Tingting Guo
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Qingqing Jia
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Huiming Yang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, China
| | - Peng Yin
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Jiandong Yu
- Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Su Yang
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Song L, Liu H, Yang W, Yin H, Wang J, Guo M, Yang Z. Biological functions of the m6A reader YTHDF2 and its role in central nervous system disorders. Biochem Pharmacol 2024; 230:116576. [PMID: 39424201 DOI: 10.1016/j.bcp.2024.116576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
N6-methyladenosine (m6A) is a prevalent mRNA modification in eukaryotic cells, characterized by its reversible nature. YTH structural domain family protein 2 (YTHDF2), a key reader of m6A, plays a crucial role in identifying and binding m6A-containing RNAs, thereby influencing RNA metabolism through various functional mechanisms. The upstream and downstream targets of YTHDF2 are critical in the pathogenesis of various central nervous system (CNS) diseases, affecting disease development by regulating signaling pathways and gene expression. This paper provides an overview of current research on the role of YTHDF2 in CNS diseases and investigates the regulatory mechanisms by which YTHDF2 influences the development of these conditions. This exploration aims to improve understanding of disease pathogenesis and offer novel insights for the targeted prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Lili Song
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China
| | - Huimin Liu
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China
| | - Weiyu Yang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China
| | - Hongqing Yin
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China
| | - Jiayi Wang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China
| | - Maojuan Guo
- Department of Pathology, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, China
| | - Zhen Yang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China.
| |
Collapse
|
6
|
de Oliveira BH, Lins EF, Kunde NF, Salgado ASI, Martins LM, Bobinski F, Vieira WF, Cassano P, Quialheiro A, Martins DF. Transcranial photobiomodulation increases cognition and serum BDNF levels in adults over 50 years: A randomized, double-blind, placebo-controlled trial. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113041. [PMID: 39423445 DOI: 10.1016/j.jphotobiol.2024.113041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND There is a significant lack of therapeutic options for mild cognitive impairment (MCI), which is rapidly becoming a global epidemic due to aging. Transcranial photobiomodulation (t-PBM) involves delivering near-infrared light (NIR) to the scalp, targeting cortical areas of the brain. NIR t-PBM has recently emerged as a potential therapy for various neurodegenerative conditions, including memory issues. AIMS This study aimed to evaluate cognition scores (primary outcome), depression, anxiety, resilience scores, neuroplasticity, and neurodegeneration biomarkers (secondary outcomes) in individuals with MCI undergoing t-PBM therapy or receiving a placebo. MATERIALS AND METHODS A total of 93 older adult individuals with MCI were randomly assigned to either a t-PBM (n = 47) or Placebo (n = 46) group. Clinical assessments were conducted at baseline, 60 days post-treatment, and a 150-day follow-up. We also measured serum levels of brain-derived neurotrophic factor (BDNF), a neuroplasticity biomarker, as well as neuron-specific enolase (NSE) and calcium-binding protein B (S100B), which are neurodegeneration biomarkers. Intervention effects were analyzed using repeated measures (RM) two-way ANOVA followed by Tukey post hoc test. Fischer's exact test and Generalized Estimating Equations (GEE) were also applied. RESULTS Of the 93 older adults individuals invited to participate, 76 (t-PBM: 40, placebo: 36) completed the study. The t-PBM significantly improved cognition as measured by the Montreal Cognitive Assessment (MoCA) compared to placebo (p = 0.0301). The delta values for MoCA scores were 3.20 in the t-PBM group and 1.97 in the placebo group. This effect persisted until the three-month follow-up, accompanied by increased BDNF levels in the t-PBM group but not in the placebo group (p = 0.0046). The delta values for BDNF were 821.94 in the t-PBM group and 359.41 in the placebo group. t-PBM did not alter depression, anxiety, resilience scores, nor the levels of NSE and S100B in individuals with MCI. CONCLUSION The t-PBM increases cognitive function and BDNF levels in adults with MCI. Its application as an adjunctive treatment may play a crucial role in preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Bruna H de Oliveira
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Elisa F Lins
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Naiara F Kunde
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | | | - Leidiane M Martins
- Department of morphological sciences, Federal University Santa Catarina, Florianópolis, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Willians F Vieira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Paolo Cassano
- Photobiomodulation, Division of Neuropsychiatry, Depression Clinical and Research Program Center for Anxiety and Traumatic Stress Disorders Associate Professor Harvard Medical School, Massachusetts General, Boston, USA
| | - Anna Quialheiro
- The Artificial Intelligence and Health Research Unit, Polytechnic University of Health, CESPU, Portugal
| | - Daniel F Martins
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil.
| |
Collapse
|
7
|
Keshri PK, Singh SP. Unraveling the AKT/ERK cascade and its role in Parkinson disease. Arch Toxicol 2024; 98:3169-3190. [PMID: 39136731 DOI: 10.1007/s00204-024-03829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/25/2024] [Indexed: 09/17/2024]
Abstract
Parkinson disease represents a significant and growing burden on global healthcare systems, necessitating a deeper understanding of their underlying molecular mechanisms for the development of effective treatments. The AKT and ERK pathways play crucial roles in the disease, influencing multiple cellular pathways that support neuronal survival. Researchers have made notable progress in uncovering how these pathways are controlled by upstream kinases and how their downstream effects contribute to cell signalling. However, as we delve deeper into their intricacies, we encounter increasing complexity, compounded by the convergence of multiple signalling pathways. Many of their targets overlap with those of other kinases, and they not only affect specific substrates but also influence entire signalling networks. This review explores the intricate interplay of the AKT/ERK pathways with several other signalling cascades, including oxidative stress, endoplasmic reticulum stress, calcium homeostasis, inflammation, and autophagy, in the context of Parkinson disease. We discuss how dysregulation of these pathways contributes to disease progression and neuronal dysfunction, highlighting potential therapeutic targets for intervention. By elucidating the complex network of interactions between the AKT/ERK pathways and other signalling cascades, this review aims to provide insights into the pathogenesis of Parkinson disease and describe the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
8
|
Sanchez-Martinez J, Solis-Urra P, Olivares-Arancibia J, Plaza-Diaz J. Physical Exercise and Mechanism Related to Alzheimer's Disease: Is Gut-Brain Axis Involved? Brain Sci 2024; 14:974. [PMID: 39451988 PMCID: PMC11506766 DOI: 10.3390/brainsci14100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Alzheimer's disease is a progressive neurodegenerative disease characterized by structural changes in the brain, including hippocampal atrophy, cortical thinning, amyloid plaques, and tau tangles. Due to the aging of the global population, the burden of Alzheimer's disease is expected to increase, making the exploration of non-pharmacological interventions, such as physical exercise, an urgent priority. RESULTS There is emerging evidence that regular physical exercise may mitigate the structural and functional declines associated with Alzheimer's disease. The underlying mechanisms, however, remain poorly understood. Gut-brain axis research is a promising area for further investigation. This system involves bidirectional communication between the gut microbiome and the brain. According to recent studies, the gut microbiome may influence brain health through modulating neuroinflammation, producing neuroactive compounds, and altering metabolic processes. Exercise has been shown to alter the composition of the gut microbiome, potentially impacting brain structure and function. In this review, we aim to synthesize current research on the relationship between physical exercise, structural brain changes in Alzheimer's disease, and the gut-brain axis. CONCLUSIONS In this study, we will investigate whether changes in the gut microbiome induced by physical exercise can mediate its neuroprotective effects, offering new insights into the prevention and treatment of Alzheimer's disease. By integrating findings from neuroimaging studies, clinical trials, and microbiome research, this review will highlight potential mechanisms. It will also identify key gaps in the literature. This will pave the way for future research directions.
Collapse
Affiliation(s)
- Javier Sanchez-Martinez
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain;
| | - Patricio Solis-Urra
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain;
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 8370134, Chile
| | - Jorge Olivares-Arancibia
- AFySE Group, Research in Physical Activity and School Health, School of Physical Education, Faculty of Education, Universidad de Las Américas, Santiago 7500975, Chile;
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
9
|
Shekho D, Mishra R, Kamal R, Bhatia R, Awasthi A. Breaking Barriers in Alzheimer's Disease: the Role of Advanced Drug Delivery Systems. AAPS PharmSciTech 2024; 25:207. [PMID: 39237748 DOI: 10.1208/s12249-024-02923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024] Open
Abstract
Alzheimer's disease (AD), characterized by cognitive impairment, brain plaques, and tangles, is a global health concern affecting millions. It involves the build-up of amyloid-β (Aβ) and tau proteins, the formation of neuritic plaques and neurofibrillary tangles, cholinergic system dysfunction, genetic variations, and mitochondrial dysfunction. Various signaling pathways and metabolic processes are implicated in AD, along with numerous biomarkers used for diagnosis, risk assessment, and research. Despite these, there is no cure or effective treatment for AD. It is critically important to address this immediately to develop novel drug delivery systems (NDDS) capable of targeting the brain and delivering therapeutic agents to modulate the pathological processes of AD. This review summarizes AD, its pathogenesis, related signaling pathways, biomarkers, conventional treatments, the need for NDDS, and their application in AD treatment. It also covers preclinical, clinical, and ongoing trials, patents, and marketed AD formulations.
Collapse
Affiliation(s)
- Devank Shekho
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ritika Mishra
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Rohit Bhatia
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
10
|
Madhubala D, Mahato R, Khan MR, Bala A, Mukherjee AK. Neurotrophin peptidomimetics for the treatment of neurodegenerative diseases. Drug Discov Today 2024; 29:104156. [PMID: 39233307 DOI: 10.1016/j.drudis.2024.104156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Neurotrophins, such as nerve growth factor and brain-derived neurotrophic factor, play an essential role in the survival of neurons. However, incorporating better features can increase their therapeutic efficacy in neurodegenerative diseases (NDs). Peptidomimetics, which mimic these neurotrophins, show potential for treating NDs. This study emphasizes the use of peptidomimetics from neurotrophins for treating NDs and their benefits. By improving bioavailability and stability, these molecules can completely transform the therapy for NDs. This in-depth review guides researchers and pharmaceutical developers, providing insight into the changing field of neurodegenerative medicine.
Collapse
Affiliation(s)
- Dev Madhubala
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India
| | - Rosy Mahato
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Mojibur R Khan
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Asis Bala
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
11
|
Liu X, Ding Y, Jiang C, Xin Y, Ma X, Xu M, Wang Q, Hou B, Li Y, Zhang S, Shao B. Astragaloside IV mediates radiation-induced neuronal damage through activation of BDNF-TrkB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155803. [PMID: 38876008 DOI: 10.1016/j.phymed.2024.155803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Electromagnetic radiation is relevant to human life, and radiation can trigger neurodegenerative diseases by altering the function of the central nervous system through oxidative stress, mitochondrial dysfunction, and protein degradation. Astragaloside IV (AS-IV) is anti-oxidative, anti-apoptotic, activates the BDNF-TrkB pathway and enhances synaptic plasticity in radiated mice, which can exert its neuroprotection. However, the exact molecular mechanisms are still unclear. PURPOSE This study investigated whether AS-IV could play a neuroprotective role by regulating BDNF-TrkB pathway in radiation damage and its underlying molecular mechanisms. METHODS Transgenic mice (Thy1-YFP line H) were injected with AS-IV (40 mg/kg/day body weight) by intraperitoneal injection daily for 4 weeks, followed by X-rays. PC12 cells and primary cortical neurons were also exposed to UVA after 24 h of AS-IV treatment (25 μg/ml and 50 μg/ml) in vitro. The impact of radiation on learning and cognitive functions was visualized in the Morris water maze assay. Subsequently, Immunofluorescence and Golgi-Cox staining analyses were utilized to investigate the structural damage of neuronal dendrites and the density of dendritic spines. Transmission electron microscopy was performed to examine how the radiation affected the ultrastructure of neurons. Finally, western blotting analysis and Quantitative RT-PCR were used to evaluate the expression levels and locations of proteins in vitro and in vivo. RESULTS Radiation induced BDNF-TrkB signaling dysregulation and decreased the levels of neuron-related functional genes (Ngf, Bdnf, Gap-43, Ras, Psd-95, Arc, Creb, c-Fos), PSD-95 and F-actin, which subsequently led to damage of neuronal ultrastructure and dendrites, loss of dendritic spines, and decreased dendritic complexity index, contributing to spatial learning and memory deficits. These abnormalities were prevented by AS-IV treatment. In addition, TrkB receptor antagonists antagonized these neuroprotective actions of AS-IV. 7,8-dihydroxyflavone and AS-IV had neuroprotective effects after radiation. CONCLUSION AS-IV inhibits morphological damage of neurons and cognitive dysfunction in mice after radiation exposure, resulting in a neuroprotective effect, which were mediated by activating the BDNF-TrkB pathway.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Yanping Ding
- School of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu Province, PR China
| | - Chenxin Jiang
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Yuanyuan Xin
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Xin Ma
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Min Xu
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Qianhao Wang
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Boru Hou
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, PR China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Shengxiang Zhang
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Baoping Shao
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China.
| |
Collapse
|
12
|
Kathia MM, Duplea SG, Bommarito JC, Hinks A, Leake E, Shannon J, Pitman J, Khangura PK, Coates AM, Slysz JT, Katerberg C, McCarthy DG, Beedie T, Malcolm R, Witton LA, Connolly BS, Burr JF, Vallis LA, Power GA, Millar PJ. High-intensity interval versus moderate-intensity continuous cycling training in Parkinson's disease: a randomized trial. J Appl Physiol (1985) 2024; 137:603-615. [PMID: 39008618 DOI: 10.1152/japplphysiol.00219.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Exercise training is recommended to improve the quality of life in those living with Parkinson's disease (PD); however, the optimal prescription to improve cardiorespiratory fitness and disease-related motor symptoms remains unknown. Twenty-nine participants with PD were randomly allocated to either 10 wk of high-intensity interval training (HIIT) (n = 15; 6 female) or moderate-intensity continuous training (MICT) (n = 14; 5 female). The primary outcome was the change in maximal oxygen consumption (V̇o2peak). Secondary outcomes included changes in the Unified Parkinson's Disease Rating Scale (UPDRS) Part III motor score, Parkinson's Fatigue Scale (PFS)-16, resting and exercise cardiovascular measures, gait, balance, and knee extensor strength and fatigability. Exercise training increased V̇o2peak (main effect of time, P < 0.01), with a clinically meaningful difference in the change following HIIT versus MICT (Δ3.7 ± 3.7 vs. 1.7 ± 3.2 mL·kg-1·min-1, P = 0.099). The UPDRS motor score improved over time (P < 0.001) but without any differences between HIIT versus MICT (Δ-9.7 ± 1.3 vs. -8.4 ± 1.4, P = 0.51). Self-reported subjective fatigue (PFS-16) decreased over time (P < 0.01) but was similar between HIIT and MICT groups (P = 0.6). Gait, balance, blood pressure (BP), and heart rate (HR) were unchanged with training (all P > 0.09). Knee extensor strength increased over time (P = 0.03) but did not differ between HIIT versus MICT (Δ8.2 ± 5.9 vs. 11.7 ± 6.2 Nm, P = 0.69). HIIT alone increased the muscular endurance of the knee extensors during an isotonic fatigue task to failure (P = 0.04). In participants with PD, HIIT and MICT both increased V̇o2peak and led to improvements in motor symptoms and perceived fatigue; HIIT may offer the potential for larger changes in V̇o2peak and reduced knee extensor fatigability.NEW & NOTEWORTHY The optimal exercise prescription to improve cardiorespiratory fitness and disease-related motor symptoms in adults with Parkinson's disease remains unknown. In a single-center randomized trial consisting of either 10 wk of high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT), we found that both training modes increased V̇o2peak, with a larger clinically meaningful difference following HIIT. Both exercise modes improved motor symptoms and subjective fatigue, whereas HIIT increased the muscular endurance of the knee extensors.
Collapse
Affiliation(s)
- Muhammad M Kathia
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Sergiu-Gabriel Duplea
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Julian C Bommarito
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Avery Hinks
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Elira Leake
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Julia Shannon
- Gait Biomechanics Laboratory, Department of Human Health & Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jenna Pitman
- Gait Biomechanics Laboratory, Department of Human Health & Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Pardeep K Khangura
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Alexandra M Coates
- Human Performance and Health Research Laboratory, Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Joshua T Slysz
- Human Performance and Health Research Laboratory, Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Carlin Katerberg
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Devin G McCarthy
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
- Human Performance and Health Research Laboratory, Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Taylor Beedie
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Rhianna Malcolm
- Gait Biomechanics Laboratory, Department of Human Health & Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | - Barbara S Connolly
- Division of Neurology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jamie F Burr
- Human Performance and Health Research Laboratory, Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lori Ann Vallis
- Gait Biomechanics Laboratory, Department of Human Health & Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Geoffrey A Power
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Philip J Millar
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Kang DW, Choi SR, Shin H, Lee H, Park J, Lee M, Bae M, Kim HW. Modulation of Brain-derived Neurotrophic Factor Expression by Physical Exercise in Reserpine-induced Pain-depression Dyad in Mice. Exp Neurobiol 2024; 33:165-179. [PMID: 39266473 PMCID: PMC11411092 DOI: 10.5607/en24014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
Pain accompanied by depressive symptoms is a common reason for seeking medical assistance, and many chronic pain patients experience comorbid depression. The brain-derived neurotrophic factor (BDNF) is a well-known neurotrophin expressed throughout the nervous system, playing a crucial role in neuronal growth and neuroplasticity. This study aimed to examine the effects of exercise on BDNF expression in the nervous system and reserpine (RSP)-induced pain-depression dyad. RSP (1 mg/kg) was subcutaneously administered once daily for three days in mice. The exercise was performed using a rota-rod tester for seven consecutive days following RSP administration. Pain responses were evaluated using von Frey filaments, and depression-like behaviors were assessed through forced swimming and open field tests. Immunofluorescence staining was performed to examine the changes in BDNF expression in the dorsal root ganglion (DRG), spinal cord, and hippocampus. Administration of RSP reduced mechanical paw withdrawal threshold, increased immobility time in the forced swimming test, and decreased movement in the open field test. The immunoreactivity of BDNF was increased in the DRG and spinal dorsal regions, and decreased in the hippocampus after RSP administration. Physical exercise significantly reduced the RSP-induced mechanical hypersensitivity and depression-like behaviors. In addition, exercise suppressed not only the increased expression of BDNF in the DRG and spinal dorsal regions but also the decreased expression of BDNF in the hippocampus induced by RSP administration. These findings suggest that repetitive exercise could serve as an effective and non-invasive treatment option for individuals experiencing both pain and depression by modulating BDNF expression.
Collapse
Affiliation(s)
- Dong-Wook Kang
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Sheu-Ran Choi
- Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea
| | - Hyunjin Shin
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Hyeryeong Lee
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Jaehong Park
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Miae Lee
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Miok Bae
- Preclinical Research Center, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Hyun-Woo Kim
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
14
|
Wei X, Browning JL, Olsen ML. Neuron and astrocyte specific 5mC and 5hmC signatures of BDNF's receptor, TrkB. Front Mol Neurosci 2024; 17:1463437. [PMID: 39268252 PMCID: PMC11390696 DOI: 10.3389/fnmol.2024.1463437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Brain derived neurotrophic factor (BDNF) is the most studied trophic factor in the central nervous system (CNS), and its role in the maturation of neurons, including synapse development and maintenance has been investigated intensely for over three decades. The primary receptor for BDNF is the tropomyosin receptor kinase B (TrkB), which is broadly expressed as two primary isoforms in the brain; the full length TrkB (TrkB.FL) receptor, expressed mainly in neurons and the truncated TrkB (TrkB.T1) receptor. We recently demonstrated that TrkB.T1 is predominately expressed in astrocytes, and appears critical for astrocyte morphological maturation. Given the critical role of BDNF/TrkB pathway in healthy brain development and mature CNS function, we aimed to identify molecular underpinnings of cell-type specific expression of each TrkB isoform. Using Nanopore sequencing which enables direct, long read sequencing of native DNA, we profiled DNA methylation patterns of the entire TrkB gene, Ntrk2, in both neurons and astrocytes. Here, we identified robust differences in cell-type specific isoform expression associated with significantly different methylation patterns of the Ntrk2 gene in each cell type. Notably, astrocytes demonstrated lower 5mC methylation, and higher 5hmC across the entire gene when compared to neurons, including differentially methylated sites (DMSs) found in regions flanking the unique TrkB.T1 protein coding sequence (CDS). These data suggest DNA methylation patterns may provide instruction for isoform specific TrkB expression across unique CNS cell types.
Collapse
Affiliation(s)
- Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate Program, Virginia Tech, Blacksburg, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Jack L. Browning
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
- Genetics, Bioinformatics and Computational Biology Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Michelle L. Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
15
|
Lin J, Yu Z, Gao X. Advanced Noninvasive Strategies for the Brain Delivery of Therapeutic Proteins and Peptides. ACS NANO 2024; 18:22752-22779. [PMID: 39133564 DOI: 10.1021/acsnano.4c06851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Recent years have witnessed rapid progress in the discovery of therapeutic proteins and peptides for the treatment of central nervous system (CNS) diseases. However, their clinical applications have been considerably hindered by challenges such as low biomembrane permeability, poor stability, short circulation time, and the formidable blood-brain barrier (BBB). Recently, substantial improvements have been made in understanding the dynamics of the BBB and developing efficient approaches for delivering proteins and peptides to the CNS, especially by using various nanoparticles. Herein, we present an overview of the up-to-date understanding of the BBB under physiological and pathological conditions, emphasizing their effects on brain drug delivery. We summarize advanced strategies and elucidate the underlying mechanisms for delivering proteins and peptides to the brain. We highlight the developments and applications of nanocarriers in treating CNS diseases via BBB crossing. We also provide critical opinions on the limitations and obstacles of the current strategies and put forward prospects for future research.
Collapse
Affiliation(s)
- Jiayuan Lin
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Zhihua Yu
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
16
|
Thomson D, Rosenich E, Maruff P, Lim YY. BDNF Val66Met moderates episodic memory decline and tau biomarker increases in early sporadic Alzheimer's disease. Arch Clin Neuropsychol 2024; 39:683-691. [PMID: 38454193 PMCID: PMC11345111 DOI: 10.1093/arclin/acae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVE Allelic variation in the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism has been shown to moderate rates of cognitive decline in preclinical sporadic Alzheimer's disease (AD; i.e., Aβ + older adults), and pre-symptomatic autosomal dominant Alzheimer's disease (ADAD). In ADAD, Met66 was also associated with greater increases in CSF levels of total-tau (t-tau) and phosphorylated tau (p-tau181). This study sought to determine the extent to which BDNF Val66Met is associated with changes in episodic memory and CSF t-tau and p-tau181 in Aβ + older adults in early-stage sporadic AD. METHOD Aβ + Met66 carriers (n = 94) and Val66 homozygotes (n = 192) enrolled in the Alzheimer's Disease Neuroimaging Initiative who did not meet criteria for AD dementia, and with at least one follow-up neuropsychological and CSF assessment, were included. A series of linear mixed models were conducted to investigate changes in each outcome over an average of 2.8 years, covarying for CSF Aβ42, APOE ε4 status, sex, age, baseline diagnosis, and years of education. RESULTS Aβ + Met66 carriers demonstrated significantly faster memory decline (d = 0.33) and significantly greater increases in CSF t-tau (d = 0.30) and p-tau181 (d = 0.29) compared to Val66 homozygotes, despite showing equivalent changes in CSF Aβ42. CONCLUSIONS These findings suggest that reduced neurotrophic support, which is associated with Met66 carriage, may increase vulnerability to Aβ-related tau hyperphosphorylation, neuronal dysfunction, and cognitive decline even prior to the emergence of dementia. Additionally, these findings highlight the need for neuropsychological and clinicopathological models of AD to account for neurotrophic factors and the genes which moderate their expression.
Collapse
Affiliation(s)
- Diny Thomson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3168, Australia
| | | | - Paul Maruff
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3168, Australia
- Cogstate Ltd, Melbourne, VIC 3000, Australia
| | - Yen Ying Lim
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3168, Australia
| | | |
Collapse
|
17
|
Feng L, Sun J, Xia L, Shi Q, Hou Y, Zhang L, Li M, Fan C, Sun B. Ferroptosis mechanism and Alzheimer's disease. Neural Regen Res 2024; 19:1741-1750. [PMID: 38103240 PMCID: PMC10960301 DOI: 10.4103/1673-5374.389362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/05/2023] [Accepted: 09/09/2023] [Indexed: 12/18/2023] Open
Abstract
Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms. This process plays a crucial role in modulating homeostasis and is evolutionarily conserved across a diverse range of living organisms. Ferroptosis is a classic regulatory mode of cell death. Extensive studies of regulatory cell death in Alzheimer's disease have yielded increasing evidence that ferroptosis is closely related to the occurrence, development, and prognosis of Alzheimer's disease. This review summarizes the molecular mechanisms of ferroptosis and recent research advances in the role of ferroptosis in Alzheimer's disease. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Lina Feng
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Jingyi Sun
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Ling Xia
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Qiang Shi
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Yajun Hou
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Lili Zhang
- Department of Internal Medicine, Taian Traffic Hospital, Taian, Shandong Province, China
| | - Mingquan Li
- Department of Neurology, the Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Cundong Fan
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Baoliang Sun
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| |
Collapse
|
18
|
Zhang X, Ma W, Liu H, Liu Y, Zhang Y, He S, Ding X, Li B, Yan Y. Daphnetin protects neurons in an Alzheimer disease mouse model and normal rat neurons by inhibiting BACE1 activity and activating the Nrf2/HO-1 pathway. J Neuropathol Exp Neurol 2024; 83:670-683. [PMID: 38819094 DOI: 10.1093/jnen/nlae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
The common neurodegenerative disorder Alzheimer disease (AD) is characterized by memory dysfunction and cognitive decline in the elderly. Neuropathological features include aggregated β-amyloid (Aβ) accumulation, neuroinflammation, and oxidative stress in the brain. Daphnetin (DAPH), a natural coumarin derivative, has the potential for inhibiting inflammatory and oxidative responses. We explored neuroprotective roles of DAPH treatment in the APP/PS1 transgenic mouse AD model. DAPH ameliorated spatial learning disabilities in Morris water maze tests and reduced Aβ deposition, assessed by immunohistochemistry. It also reduced the Aβ content in supernatants of neurons from fetal APP/PS1 mice, assessed by cell-based soluble ELISA. Molecular docking and fluorescence resonance energy transfer-based assay results suggested that DAPH could directly inhibit BACE1 activity. Furthermore, in vitro experiments utilizing isolated rat neurons assessing RNA expression profiling, immunofluorescence, TUNEL assay, and Western-blot analysis, suggested the potential of DAPH for regulating BDNF and GM-CSF expression and mitigating Aβ1-42-induced cortical injury, synaptic loss, and apoptosis. HO-1 and Nrf2 mRNA and protein expression were also increased in a dose-dependent manner. These results underscore the potential of DAPH as a neuroprotective agent in reversing memory deficits associated with AD and bolster its candidacy as a multitarget natural small-molecule drug for AD patients.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Shaanxi, P. R. China
| | - Wen Ma
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Shaanxi, P. R. China
| | - Huanyi Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Shaanxi, P. R. China
| | - Yuanchu Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Shaanxi, P. R. China
| | - Yaling Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Shaanxi, P. R. China
| | - Sitong He
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Shaanxi, P. R. China
| | - Xiaoli Ding
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Shaanxi, P. R. China
| | - Baolin Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, P. R. China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Shaanxi, P. R. China
| |
Collapse
|
19
|
K Soman S, Swain M, Dagda RK. BDNF-TrkB Signaling in Mitochondria: Implications for Neurodegenerative Diseases. Mol Neurobiol 2024:10.1007/s12035-024-04357-4. [PMID: 39030441 DOI: 10.1007/s12035-024-04357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a pivotal role in neuronal development, synaptic plasticity, and overall neuronal health by binding to its receptor, tyrosine receptor kinase B (TrkB). This review delves into the intricate mechanisms through which BDNF-TrkB signaling influences mitochondrial function and potentially influences pathology in neurodegenerative diseases. This review highlights the BDNF-TrkB signaling pathway which regulates mitochondrial bioenergetics, biogenesis, and dynamics, mitochondrial processes vital for synaptic transmission and plasticity. Furthermore, we explore how the BDNF-TrkB-PKA signaling in the cytosol and in mitochondria affects mitochondrial transport and distribution and mitochondrial content, which is crucial for supporting the energy demands of synapses. The dysregulation of this signaling pathway is linked to various neurodegenerative diseases, including Alzheimer's and Parkinson's disease, which are characterized by mitochondrial dysfunction and reduced BDNF expression. By examining seminal studies that have characterized this signaling pathway in health and disease, the present review underscores the potential of enhancing BDNF-TrkB signaling to mitigate mitochondrial dysfunction in neurodegenerative diseases, offering insights into therapeutic strategies to enhance neuronal resilience and function.
Collapse
Affiliation(s)
- Smijin K Soman
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Maryann Swain
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA.
| |
Collapse
|
20
|
Shen Y, Zhao M, Zhao P, Meng L, Zhang Y, Zhang G, Taishi Y, Sun L. Molecular mechanisms and therapeutic potential of lithium in Alzheimer's disease: repurposing an old class of drugs. Front Pharmacol 2024; 15:1408462. [PMID: 39055498 PMCID: PMC11269163 DOI: 10.3389/fphar.2024.1408462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. Despite advances in understanding the pathophysiological mechanisms of AD, effective treatments remain scarce. Lithium salts, recognized as mood stabilizers in bipolar disorder, have been extensively studied for their neuroprotective effects. Several studies indicate that lithium may be a disease-modifying agent in the treatment of AD. Lithium's neuroprotective properties in AD by acting on multiple neuropathological targets, such as reducing amyloid deposition and tau phosphorylation, enhancing autophagy, neurogenesis, and synaptic plasticity, regulating cholinergic and glucose metabolism, inhibiting neuroinflammation, oxidative stress, and apoptosis, while preserving mitochondrial function. Clinical trials have demonstrated that lithium therapy can improve cognitive function in patients with AD. In particular, meta-analyses have shown that lithium may be a more effective and safer treatment than the recently FDA-approved aducanumab for improving cognitive function in patients with AD. The affordability and therapeutic efficacy of lithium have prompted a reassessment of its use. However, the use of lithium may lead to potential side effects and safety issues, which may limit its clinical application. Currently, several new lithium formulations are undergoing clinical trials to improve safety and efficacy. This review focuses on lithium's mechanism of action in treating AD, highlighting the latest advances in preclinical studies and clinical trials. It also explores the side effects of lithium therapy and coping strategies, offering a potential therapeutic strategy for patients with AD.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Meng Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Lingjie Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yan Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yezi Taishi
- Department of Cadre Ward, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
21
|
Pei Z, Guo X, Zheng F, Yang Z, Li T, Yu Z, Li X, Guo X, Chen Q, Fu C, Tang T, Feng D, Wang Y. Xuefu Zhuyu decoction promotes synaptic plasticity by targeting miR-191a-5p/BDNF-TrkB axis in severe traumatic brain injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155566. [PMID: 38565001 DOI: 10.1016/j.phymed.2024.155566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/08/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Xuefu Zhuyu decoction (XFZYD) is a traditional Chinese herbal formula known for its ability to eliminate blood stasis and improve blood circulation, providing neuroprotection against severe traumatic brain injury (sTBI). However, the underlying mechanism is still unclear. PURPOSE We aim to investigate the neuroprotective effects of XFZYD in sTBI from a novel mechanistic perspective of miRNA-mRNA. Additionally, we sought to elucidate a potential specific mechanism by integrating transcriptomics, bioinformatics, and conducting both in vitro and in vivo experiments. METHODS The sTBI rat model was established, and the rats were treated with XFZYD for 14 days. The neuroprotective effects of XFZYD were evaluated using a modified neurological severity score, hematoxylin and eosin staining, as well as Nissl staining. The anti-inflammatory effects of XFZYD were explored using quantitative real-time PCR (qRT-PCR), Western blot analysis, and immunofluorescence. Next, miRNA sequencing of the hippocampus was performed to determine which miRNAs were differentially expressed. Subsequently, qRT-PCR was used to validate the differentially expressed miRNAs. Target core mRNAs were determined using various methods, including miRNA prediction targets, mRNA sequencing, miRNA-mRNA network, and protein-protein interaction (PPI) analysis. The miRNA/mRNA regulatory axis were verified through qRT-PCR or Western blot analysis. Finally, morphological changes in the neural synapses were observed using transmission electron microscopy and immunofluorescence. RESULTS XFZYD exhibited significant neuroprotective and anti-inflammatory effects on subacute sTBI rats' hippocampus. The analyses of miRNA/mRNA sequences combined with the PPI network revealed that the therapeutic effects of XFZYD on sTBI were associated with the regulation of the rno-miR-191a-5p/BDNF axis. Subsequently, qRT-PCR and Western blot analysis confirmed XFZYD reversed the decrease of BDNF and TrkB in the hippocampus caused by sTBI. Additionally, XFZYD treatment potentially increased the number of synaptic connections, and the expression of the synapse-related protein PSD95, axon-related protein GAP43 and neuron-specific protein TUBB3. CONCLUSIONS XFZYD exerts neuroprotective effects by promoting hippocampal synaptic remodeling and improving cognition during the subacute phase of sTBI through downregulating of rno-miR-191a-5p/BDNF axis, further activating BDNF-TrkB signaling.
Collapse
Affiliation(s)
- Zhuan Pei
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Zhaoyu Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China
| | - Zhe Yu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xuexuan Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xin Guo
- The First Affiliated Hospital, Department of Child Healthcare, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Quan Chen
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Chunyan Fu
- College of Pharmacy, Shaoyang University, Shaoyang 422100, PR China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China
| | - Dandan Feng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China.
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China.
| |
Collapse
|
22
|
Latif‐Hernandez A, Yang T, Butler RR, Losada PM, Minhas PS, White H, Tran KC, Liu H, Simmons DA, Langness V, Andreasson KI, Wyss‐Coray T, Longo FM. A TrkB and TrkC partial agonist restores deficits in synaptic function and promotes activity-dependent synaptic and microglial transcriptomic changes in a late-stage Alzheimer's mouse model. Alzheimers Dement 2024; 20:4434-4460. [PMID: 38779814 PMCID: PMC11247716 DOI: 10.1002/alz.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Tropomyosin related kinase B (TrkB) and C (TrkC) receptor signaling promotes synaptic plasticity and interacts with pathways affected by amyloid beta (Aβ) toxicity. Upregulating TrkB/C signaling could reduce Alzheimer's disease (AD)-related degenerative signaling, memory loss, and synaptic dysfunction. METHODS PTX-BD10-2 (BD10-2), a small molecule TrkB/C receptor partial agonist, was orally administered to aged London/Swedish-APP mutant mice (APPL/S) and wild-type controls. Effects on memory and hippocampal long-term potentiation (LTP) were assessed using electrophysiology, behavioral studies, immunoblotting, immunofluorescence staining, and RNA sequencing. RESULTS In APPL/S mice, BD10-2 treatment improved memory and LTP deficits. This was accompanied by normalized phosphorylation of protein kinase B (Akt), calcium-calmodulin-dependent kinase II (CaMKII), and AMPA-type glutamate receptors containing the subunit GluA1; enhanced activity-dependent recruitment of synaptic proteins; and increased excitatory synapse number. BD10-2 also had potentially favorable effects on LTP-dependent complement pathway and synaptic gene transcription. DISCUSSION BD10-2 prevented APPL/S/Aβ-associated memory and LTP deficits, reduced abnormalities in synapse-related signaling and activity-dependent transcription of synaptic genes, and bolstered transcriptional changes associated with microglial immune response. HIGHLIGHTS Small molecule modulation of tropomyosin related kinase B (TrkB) and C (TrkC) restores long-term potentiation (LTP) and behavior in an Alzheimer's disease (AD) model. Modulation of TrkB and TrkC regulates synaptic activity-dependent transcription. TrkB and TrkC receptors are candidate targets for translational therapeutics. Electrophysiology combined with transcriptomics elucidates synaptic restoration. LTP identifies neuron and microglia AD-relevant human-mouse co-expression modules.
Collapse
Affiliation(s)
- Amira Latif‐Hernandez
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Tao Yang
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Robert R. Butler
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Patricia Moran Losada
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordCaliforniaUSA
| | - Paras S. Minhas
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Halle White
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Kevin C. Tran
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Harry Liu
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Danielle A. Simmons
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Vanessa Langness
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Katrin I. Andreasson
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordCaliforniaUSA
- Chan Zuckerberg BiohubSan FranciscoCaliforniaUSA
| | - Tony Wyss‐Coray
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordCaliforniaUSA
- The Phil and Penny Knight Initiative for Brain ResilienceStanford UniversityStanfordCaliforniaUSA
| | - Frank M. Longo
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
23
|
Kamaei AK, Hosseini SF, Teimourparsaei P, Payamani M, Vaseghi S. The effect of acute crocin on behavioral changes and BDNF expression level in socially isolated rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3929-3944. [PMID: 37987792 DOI: 10.1007/s00210-023-02843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Social isolation is a reliable method used for the induction of depression and psychiatric disorders in rodents. It has been suggested that social isolation can lead to hyperlocomotion, as a schizophrenic-like symptom in rodents. On the other hand, crocin (the major constituent of Crocus sativus) induces a wide-range of neuroprotective and mood enhancer effects. In the present study, we aimed to investigate the effect of acute crocin on social isolation-induced behavioral changes and BDNF expression in the hippocampus. Novelty-suppressed feeding test, open field test, marble burying test, hot plate, forced swim test, and the shuttle box were used to assess anxiety-like behavior, locomotor activity, obsessive-compulsive-like (OCD-like) behavior, pain threshold, depressive-like behavior, and passive avoidance memory, respectively. Real-time PCR was used to assess BDNF hippocampal expression level. The results showed that social isolation decreased anxiety- and depressive-like behavior, pain threshold, and BDNF expression, and induced OCD-like behavior and hyperlocomotion. Crocin dose-dependently restored the effect of social isolation on pain threshold, locomotor activity, depressive-like behavior, OCD-like behavior, and BDNF expression. Passive avoidance memory performance was also unaffected. In conclusion, we showed a hyperlocomotion profile and OCD-like behaviors, and a robust decrease in pain threshold in socially isolated rats. It can be suggested that social isolation from adolescence induces a "hyperlocomotion state" that affects all the behavioral functions of rats. Also, the function of BDNF can be related to a hyperlocomotion state and OCD-like symptom. It seems that BDNF expression level can be related to the therapeutic effect of crocin.
Collapse
Affiliation(s)
- Amir-Kamyar Kamaei
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran
| | - Seyedeh-Fatemeh Hosseini
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran
| | - Parisa Teimourparsaei
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran
| | - Masoumeh Payamani
- Department of Psychology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
24
|
Wu WF, Chen C, Lin JT, Jiao XH, Dong W, Wan J, Liu Q, Qiu YK, Sun A, Liu YQ, Jin CH, Huang H, Zheng H, Zhou CH, Wu YQ. Impaired synaptic plasticity and decreased glutamatergic neuron excitability induced by SIRT1/BDNF downregulation in the hippocampal CA1 region are involved in postoperative cognitive dysfunction. Cell Mol Biol Lett 2024; 29:79. [PMID: 38783169 PMCID: PMC11112897 DOI: 10.1186/s11658-024-00595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a common complication after anesthesia/surgery, especially among elderly patients, and poses a significant threat to their postoperative quality of life and overall well-being. While it is widely accepted that elderly patients may experience POCD following anesthesia/surgery, the exact mechanism behind this phenomenon remains unclear. Several studies have indicated that the interaction between silent mating type information regulation 2 homologue 1 (SIRT1) and brain-derived neurotrophic factor (BDNF) is crucial in controlling cognitive function and is strongly linked to neurodegenerative disorders. Hence, this research aims to explore how SIRT1/BDNF impacts cognitive decline caused by anesthesia/surgery in aged mice. METHODS Open field test (OFT) was used to determine whether anesthesia/surgery affected the motor ability of mice, while the postoperative cognitive function of 18 months old mice was evaluated with Novel object recognition test (NORT), Object location test (OLT) and Fear condition test (FC). The expressions of SIRT1 and other molecules were analyzed by western blot and immunofluorescence staining. The hippocampal synaptic plasticity was detected by Golgi staining and Long-term potentiation (LTP). The effects of SIRT1 and BDNF overexpression as well as chemogenetic activation of glutamatergic neurons in hippocampal CA1 region of 18 months old vesicular glutamate transporter 1 (VGLUT1) mice on POCD were further investigated. RESULTS The research results revealed that older mice exhibited cognitive impairment following intramedullary fixation of tibial fracture. Additionally, a notable decrease in the expression of SIRT1/BDNF and neuronal excitability in hippocampal CA1 glutamatergic neurons was observed. By increasing levels of SIRT1/BDNF or enhancing glutamatergic neuron excitability in the CA1 region, it was possible to effectively mitigate synaptic plasticity impairment and ameliorate postoperative cognitive dysfunction. CONCLUSIONS The decline in SIRT1/BDNF levels leading to changes in synaptic plasticity and neuronal excitability in older mice could be a significant factor contributing to cognitive impairment after anesthesia/surgery.
Collapse
Affiliation(s)
- Wei-Feng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jia-Tao Lin
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xin-Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Wei Dong
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yong-Kang Qiu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ao Sun
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yi-Qi Liu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chun-Hui Jin
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - He Huang
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
25
|
Song J. BDNF Signaling in Vascular Dementia and Its Effects on Cerebrovascular Dysfunction, Synaptic Plasticity, and Cholinergic System Abnormality. J Lipid Atheroscler 2024; 13:122-138. [PMID: 38826183 PMCID: PMC11140249 DOI: 10.12997/jla.2024.13.2.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 06/04/2024] Open
Abstract
Vascular dementia (VaD) is the second most common type of dementia and is characterized by memory impairment, blood-brain barrier disruption, neuronal cell loss, glia activation, impaired synaptic plasticity, and cholinergic system abnormalities. To effectively prevent and treat VaD a good understanding of the mechanisms underlying its neuropathology is needed. Brain-derived neurotrophic factor (BDNF) is an important neurotrophic factor with multiple functions in the systemic circulation and the central nervous system and is known to regulate neuronal cell survival, synaptic formation, glia activation, and cognitive decline. Recent studies indicate that when compared with normal subjects, patients with VaD have low serum BDNF levels and that BDNF deficiency in the serum and cerebrospinal fluid is an important indicator of VaD. Here, we review current knowledge on the role of BDNF signaling in the pathology of VaD, such as cerebrovascular dysfunction, synaptic dysfunction, and cholinergic system impairment.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
26
|
Li X, Sun Y, Zhou Z, Li J, Liu S, Chen L, Shi Y, Wang M, Zhu Z, Wang G, Lu Q. Deep Learning-Driven Exploration of Pyrroloquinoline Quinone Neuroprotective Activity in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308970. [PMID: 38454653 PMCID: PMC11095145 DOI: 10.1002/advs.202308970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Alzheimer's disease (AD) is a pressing concern in neurodegenerative research. To address the challenges in AD drug development, especially those targeting Aβ, this study uses deep learning and a pharmacological approach to elucidate the potential of pyrroloquinoline quinone (PQQ) as a neuroprotective agent for AD. Using deep learning for a comprehensive molecular dataset, blood-brain barrier (BBB) permeability is predicted and the anti-inflammatory and antioxidative properties of compounds are evaluated. PQQ, identified in the Mediterranean-DASH intervention for a diet that delays neurodegeneration, shows notable BBB permeability and low toxicity. In vivo tests conducted on an Aβ₁₋₄₂-induced AD mouse model verify the effectiveness of PQQ in reducing cognitive deficits. PQQ modulates genes vital for synapse and anti-neuronal death, reduces reactive oxygen species production, and influences the SIRT1 and CREB pathways, suggesting key molecular mechanisms underlying its neuroprotective effects. This study can serve as a basis for future studies on integrating deep learning with pharmacological research and drug discovery.
Collapse
Affiliation(s)
- Xinuo Li
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| | - Yuan Sun
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| | - Zheng Zhou
- Department of Computer ScienceRWTH Aachen University52074AachenGermany
| | - Jinran Li
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| | - Sai Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| | - Long Chen
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| | - Yiting Shi
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| | - Min Wang
- Affiliated Brain Hospital of Nanjing Medical UniversityNanjing210029China
| | - Zheying Zhu
- School of PharmacyThe University of NottinghamNottinghamNG7 2RDUK
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| | - Qiulun Lu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| |
Collapse
|
27
|
Fujimura M, Unoki T. BDNF specifically expressed in hippocampal neurons is involved in methylmercury neurotoxicity resistance. ENVIRONMENTAL TOXICOLOGY 2024; 39:3149-3159. [PMID: 38323385 DOI: 10.1002/tox.24174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024]
Abstract
Methylmercury (MeHg) causes selective neuronal damage to cerebrocortical neurons (CCNs) in the central nervous system, but not to hippocampal neurons (HiNs), which are highly vulnerable to neurodegenerative diseases. In our previous study using cultured rat neurons, we performed a comprehensive gene expression analysis and found that the brain-derived neurotrophic factor (BDNF), a neurotrophin (NT), was specifically expressed in HiNs. Therefore, to elucidate the causal factors of MeHg toxicity resistance in HiNs, we conducted a comparative study of the protein expression and function of several NTs, including BDNF, using CCNs showing vulnerability to MeHg toxicity and HiNs showing resistance. BDNF was specifically expressed in HiNs, whereas nerve growth factor was barely detectable in either neuron type. In addition, other NTs, NT3 and NT4/5, were expressed in small but nearly equal amounts in both neuron types. Furthermore, among the various pathways involved in MeHg neurotoxicity, the p44/42 MAPK pathway was specifically activated in HiNs, even without MeHg treatment. siRNAs were used to reduce NTs in both neuron types. Only a specific reduction in BDNF attenuated the resistance to MeHg toxicity and p44/42 MAPK activation in HiNs. In addition, the external addition of BDNF and NT4/5, which act on the same tyrosine receptor kinase (Trk), TrkB, suppressed MeHg neurotoxicity in both neuron types. These results suggest that BDNF, expressed specifically in HiNs, is involved in the resistance to MeHg neurotoxicity via TrkB. Additionally, the activation of the p44/42 MAPK pathway may contribute to the inhibitory effect of BDNF on MeHg neurotoxicity.
Collapse
Affiliation(s)
- Masatake Fujimura
- Department of Basic Medical Science, National Institute for Minamata Disease, Kumamoto, Japan
| | - Takamitsu Unoki
- Department of Basic Medical Science, National Institute for Minamata Disease, Kumamoto, Japan
| |
Collapse
|
28
|
Dong H, Wang S, Hu C, Wang M, Zhou T, Zhou Y. Neuroprotective Effects of Intermittent Fasting in the Aging Brain. ANNALS OF NUTRITION & METABOLISM 2024; 80:175-185. [PMID: 38631305 DOI: 10.1159/000538782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND A major risk factor for neurodegenerative disorders is old age. Nutritional interventions that delay aging, such as calorie restriction (CR) and intermittent fasting (IF), as well as pharmaceuticals that affect the pathways linking nutrition and aging processes, have been developed in recent decades and have been shown to alleviate the effects of aging on the brain. SUMMARY CR is accomplished by alternating periods of ad libitum feeding and fasting. In animal models, IF has been shown to increase lifespan and slow the progression and severity of age-related pathologies such as cardiovascular and neurodegenerative diseases and cancer. According to recent research, dietary changes can help older people with dementia retain brain function. However, the mechanisms underlying the neuroprotective effect of IF on the aging brain and related questions in this area of study (i.e., the potential of IF to treat neurodegenerative disorders) remain to be examined. KEY MESSAGES This review addresses the hypothesis that IF may have translational potential in protecting the aged brain while summarizing the research supporting the putative neuroprotective mechanisms of IF in animal models. Additionally, given the emerging understanding of the connection between aging and dementia, our investigations may offer a fresh perspective on the use of dietary interventions for enhancing brain function and preventing dementia in elderly individuals. Finally, the absence of guidelines regarding the application of IF in patients hampers its broad utilization in clinical practice, and further studies are needed to improve our knowledge of the long-term effects of IF on dementia before it can be widely prescribed. In conclusion, IF may be an ancillary intervention for preserving memory and cognition in elderly individuals.
Collapse
Affiliation(s)
- Hao Dong
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Chenji Hu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhou
- Department of Pharmaceutical and Medical Equipment, Ba Yi Orthopedic Hospital, Chengdu, China
| | - Yue Zhou
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
29
|
Xu C, Wu N, Song T, Dai Y. Rapid ejaculator rats are more susceptible to anxiety compared with normal ejaculator rats. Int J Impot Res 2024:10.1038/s41443-024-00888-5. [PMID: 38622269 DOI: 10.1038/s41443-024-00888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
By observation of Sprague-Dawley male rats with different ejaculatory behaviors, we have identified distinct behavioral characteristics in rapid ejaculator rats. To validate these differential behaviors, we conducted multifaceted behavioral experiments on rapid ejaculator rats and normal rats. Through mating experiments, 42 male rats were categorized into 5 rapid ejaculator rats, 29 normal ejaculator rats, and 8 sluggish ejaculator rats according to their ejaculation frequency. We selected 5 rats exhibiting rapid ejaculation and 5 rats with normal ejaculation for participation in the Morris water maze, open-field test, and balance beam experiments. The open-field tests revealed that rapid ejaculator rats spent shorter time in the center region (1.23 ± 1.21 vs. 6.56 ± 2.40 s, P = 0.0041), less entered the center region (0.80 ± 0.75 vs. 3.40 ± 1.50, time, P = 0.0145), traveled shorter distances (17,003.77 ± 3339.42 vs. 25,037.90 ± 5499.94 mm, P = 0.0371), and had a lower average speed compared with normal rats (66.09 ± 62.36 vs. 195.56 ± 83.41 mm/s, P = 0.0377). However, no significant differences were observed in the Morris water maze and balance beam experiments (0.25 ± 0.05 vs. 0.26 ± 0.07, P = 0.7506;16.40 ± 3.77 vs. 16.25 ± 2.05, P = 0.9515). These behavioral results indicated that the rapid ejaculator rats were more prone to anxiety. To further substantiate this claim, we examined Brain-derived neurotrophic factor expression levels in the hippocampus of rat brains using immunohistochemistry and western blotting. The results demonstrate lower Brain-derived neurotrophic factor expression in the hippocampus of rapid ejaculator rats compared with that in normal rats (P = 0.0093). Thus, our experiments indicate that rapid ejaculator rats exhibit a higher propensity for anxiety, potentially linked to their abnormal neurophysiologic state. It is concluded that rapid ejaculator rats may be more susceptible to anxiety on a pathophysiological basis.
Collapse
Affiliation(s)
- Chunlu Xu
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Ning Wu
- Department of Urology, People's Hospital of Jiaozuo City, No. 263 Jiefang Middle Road, Jiaozuo City, Henan Province, 454002, China
- Department of Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, No 321 Zhongshan Road, Gulou District, Nanjing, 210023, China
| | - Tao Song
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210000, China.
| | - Yutian Dai
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210000, China.
| |
Collapse
|
30
|
Farajdokht F, Sadigh-Eteghad S, Vatandoust S, Hosseini L, Morsali S, Feizi H, Shadbad PG, Mahmoudi J. Sericin Improves Memory Impairment Via Activation of the PKA-CREB-BDNF Signaling Pathway and Suppression of Oxidative Stress in Ovariectomized Mice. Neurochem Res 2024; 49:1093-1104. [PMID: 38291264 DOI: 10.1007/s11064-023-04094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024]
Abstract
Menopause results in estrogen hormone deficiency which causes changes in brain morphology and cognitive impairments. The risk of breast and ovarian cancer increases with estrogen therapy. Thus, finding a substitute treatment option for women in menopause is necessary. In the current study, the impact of chronic sericin treatment (200 mg/kg/day for 6 weeks, gavage) on memory process, oxidative stress markers, synaptic neurotransmission, and acetylcholinesterase (AChE) activity in the hippocampus (HIP) of ovariectomized (OVX) mice was examined and compared to the effects of 17β-estradiol (Es; 20 µg/kg, s.c.). The results demonstrated that sericin and Es administration improved spatial and recognition memory of the OVX animals in the both Lashley III maze and novel object recognition tests. Moreover, sericin-treated OVX mice showed decreased ROS levels, increased endogenous antioxidant defense capacity, and decreased AChE activity in the HIP. Additionally, sericin and Es therapy up-regulated pre-and-post-synaptic protein markers and increased BDNF, CREB, and protein kinase A (PKA) protein expressions in the HIP of OVX mice. Overall, the activation of the PKA-CREB-BDNF signaling pathway by sericin can provide protection against OVX-induced cognitive dysfunction, making it a potential alternative for managing cognitive deficits in postmenopausal women.
Collapse
Affiliation(s)
- Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Seyedmahdi Vatandoust
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soroush Morsali
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Feizi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pedram Ghaderi Shadbad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran.
| |
Collapse
|
31
|
Liu YC, Su WS, Hung TH, Yang FY. Low-Intensity Pulsed Ultrasound Protects SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Neurotoxicity by Upregulating Neurotrophic Factors. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:610-616. [PMID: 38290910 DOI: 10.1016/j.ultrasmedbio.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE Neonatal hypoxic-ischemic brain damage (HIBD) can have long-term implications on patients' physical and mental health, yet the available treatment options are limited. Recent research has shown that low-intensity pulsed ultrasound (LIPUS) holds promise for treating neurodegenerative diseases and traumatic brain injuries. Our objective was to explore the therapeutic potential of LIPUS for HIBD. METHODS Due to the lack of a suitable animal model for neonatal HIBD, we will initially simulate the therapeutic effects of LIPUS on neuronal cells under oxidative stress and neuroinflammation using cell experiments. Previous studies have investigated the biologic responses following intracranial injection of 6-hydroxydopamine (6-OHDA). In this experiment, we will focus on the biologic effects produced by LIPUS treatment on neuronal cells (specifically, SH-SY5Y cells) without the presence of other neuroglial cell assistance after stimulation with 6-OHDA. RESULTS We found that (i) pulsed ultrasound exposure, specifically three-intermittent sonication at intensities ranging from 0.1 to 0.5 W/cm², did not lead to a significant decrease in viability among SH-SY5Y cells; (ii) LIPUS treatment exhibited a positive effect on cell viability, accompanied by an increase in glial cell-derived neurotrophic factor (GDNF) levels and a decrease in caspase three levels; (iii) the administration of 6-OHDA had a significant impact on cell viability, resulting in a decrease in both brain cell-derived neurotrophic factor (BDNF) and GDNF levels, while concurrently elevating caspase three and matrix metalloproteinase-9 (MMP-9) levels; and (iv) LIPUS treatment demonstrated its potential to alleviate the changes induced by 6-OHDA, particularly in the levels of BDNF, GDNF, and tyrosine hydroxylase (TH). CONCLUSION LIPUS treatment may possess partial therapeutic capabilities for SH-SY5Y cells damaged by 6-OHDA neurotoxicity. Our findings enhance our understanding of the effects of LIPUS treatment on cell viability and its modulation of key factors involved in the pathophysiology of HIBD and show the promising potential of LIPUS as an alternative therapeutic approach for neonates with HIBD.
Collapse
Affiliation(s)
- Yu-Cheng Liu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Wei-Shen Su
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
32
|
Tang N, Kido T, Shi J, McCafferty E, Ford JM, Dal Bon K, Pulliam L. Blood Markers Show Neural Consequences of LongCOVID-19. Cells 2024; 13:478. [PMID: 38534322 DOI: 10.3390/cells13060478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) persists throughout the world with over 65 million registered cases of survivors with post-COVID-19 sequelae, also known as LongCOVID-19 (LongC). LongC survivors exhibit various symptoms that span multiple organ systems, including the nervous system. To search for neurological markers of LongC, we investigated the soluble biomolecules present in the plasma and the proteins associated with plasma neuronal-enriched extracellular vesicles (nEVs) in 33 LongC patients with neurological impairment (nLongC), 12 COVID-19 survivors without any LongC symptoms (Cov), and 28 pre-COVID-19 healthy controls (HC). COVID-19 positive participants were infected between 2020 and 2022, not hospitalized, and were vaccinated or unvaccinated before infection. IL-1β was significantly increased in both nLongC and Cov and IL-8 was elevated in only nLongC. Both brain-derived neurotrophic factor and cortisol were significantly elevated in nLongC and Cov compared to HC. nEVs from people with nLongC had significantly elevated protein markers of neuronal dysfunction, including amyloid beta 42, pTau181 and TDP-43. This study shows chronic peripheral inflammation with increased stress after COVID-19 infection. Additionally, differentially expressed nEV neurodegenerative proteins were identified in people recovering from COVID-19 regardless of persistent symptoms.
Collapse
Affiliation(s)
- Norina Tang
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA
| | - Tatsuo Kido
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA
| | - Jian Shi
- Department of Neurology, San Francisco VA Health Care System, San Francisco, CA 94121, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Erin McCafferty
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA
| | - Judith M Ford
- Department of Mental Health, San Francisco VA Health Care System, San Francisco, CA 94121, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kaitlyn Dal Bon
- Department of Mental Health, San Francisco VA Health Care System, San Francisco, CA 94121, USA
| | - Lynn Pulliam
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
33
|
Zhu XQ, Gao D. Naringenin alleviates cognitive dysfunction in rats with cerebral ischemia/reperfusion injury through up-regulating hippocampal BDNF-TrkB signaling: involving suppression in neuroinflammation and oxidative stress. Neuroreport 2024; 35:216-224. [PMID: 38141009 PMCID: PMC10852040 DOI: 10.1097/wnr.0000000000001989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023]
Abstract
Cognitive dysfunction is one of the common complications of cerebral ischemia-reperfusion (CI/R) injury after ischemic stroke. Neuroinflammation and oxidative stress are the core pathological mechanism of CI/R injury. The activation of brain derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling antagonize cognitive dysfunction in a series of neuropathy. Naringenin (NAR) improves cognitive function in many diseases, but the role of NAR in CI/R injury-induced cognitive dysfunction remains unexplored. The study aimed to explore the potential protective effects of NAR in CI/R injury-induced cognitive dysfunction and underlying mechanism. The rats were exposed to transient middle cerebral artery occlusion (MCAO) and then treated with distilled water or NAR (50 or 100 mg/kg/day, p.o.) for 30 days. The Y-maze test, Novel object recognition test and Morris water maze test were performed to assess cognitive function. The levels of oxidative stress and inflammatory cytokines were measured by ELISA. The expressions of BDNF/TrkB signaling were detected by Western blot. NAR prevented cognitive impairment in MCAO-induced CI/R injury rats. Moreover, NAR inhibited oxidative stress (reduced levels of malondialdehyde and 4-hydroxynonenal, increased activities of superoxide dismutase and Glutathione peroxidase) and inflammatory cytokines (reduced levels of tumor necrosis factor-α, Interleukin-1β and Interleukin-6), up-regulated the expressions of BDNF and p-TrkB in hippocampus of MCAO-induced CI/R rats. NAR ameliorated cognitive dysfunction of CI/R rats via inhibiting oxidative stress, reducing inflammatory response, and up-regulating BDNF/TrkB signaling pathways in the hippocampus.
Collapse
Affiliation(s)
- Xiao-Qin Zhu
- Health School of Nuclear Industry, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China
| | - Dong Gao
- The Affiliated Nanhua Hospital, Medical administration division, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
34
|
Farokhi Larijani S, Hassanzadeh G, Zahmatkesh M, Radfar F, Farahmandfar M. Intranasal insulin intake and exercise improve memory function in amyloid-β induced Alzheimer's-like disease in rats: Involvement of hippocampal BDNF-TrkB receptor. Behav Brain Res 2024; 460:114814. [PMID: 38104636 DOI: 10.1016/j.bbr.2023.114814] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
The most prevalent type of dementia, Alzheimer's disease (AD), is a compelling illustration of the link between cognitive deficits and neurophysiological anomalies. We investigated the possible protective effect of intranasal insulin intake with exercise on amyloid-β (Aβ)-induced neuronal damage. The level of hippocampal brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) were analyzed to understand the involvement of BDNF-TrkB pathway in this modulation. In this study, we induced AD-like pathology by amyloid-β (Aβ) administration. Then, we examined the impact of a 4-week pretreatment of moderate treadmill exercise and intranasal intake of insulin on working and spatial memory in male Wistar rats. We also analyzed the mechanisms of improved memory and anxiety through changes in the protein level of BDNF and TrkB. Results showed that animals received Aβ had impaired working memory, increased anxiety which were accompanied by lower protein levels of BDNF and TrkB in the hippocampus. The exercise training and intranasal insulin improved working memory deficits, decreased anxiety, and increased BDNF, and TrkB levels in the hippocampus of animals received Aβ. Our finding of improved memory performance after intranasal intake of insulin and exercise may be of significance for the treatment of memory impairments and anxiety-like behavior in AD.
Collapse
Affiliation(s)
- Setare Farokhi Larijani
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Zahmatkesh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Radfar
- Department of Behavioral and Cognitive Sciences in Sports, Sports and Health Sciences Faculty, University of Tehran, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
López-Ortiz S, Caruso G, Emanuele E, Menéndez H, Peñín-Grandes S, Guerrera CS, Caraci F, Nisticò R, Lucia A, Santos-Lozano A, Lista S. Digging into the intrinsic capacity concept: Can it be applied to Alzheimer's disease? Prog Neurobiol 2024; 234:102574. [PMID: 38266702 DOI: 10.1016/j.pneurobio.2024.102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Historically, aging research has largely centered on disease pathology rather than promoting healthy aging. The World Health Organization's (WHO) policy framework (2015-2030) underscores the significance of fostering the contributions of older individuals to their families, communities, and economies. The WHO has introduced the concept of intrinsic capacity (IC) as a key metric for healthy aging, encompassing five primary domains: locomotion, vitality, sensory, cognitive, and psychological. Past AD research, constrained by methodological limitations, has focused on single outcome measures, sidelining the complexity of the disease. Our current scientific milieu, however, is primed to adopt the IC concept. This is due to three critical considerations: (I) the decline in IC is linked to neurocognitive disorders, including AD, (II) cognition, a key component of IC, is deeply affected in AD, and (III) the cognitive decline associated with AD involves multiple factors and pathophysiological pathways. Our study explores the application of the IC concept to AD patients, offering a comprehensive model that could revolutionize the disease's diagnosis and prognosis. There is a dearth of information on the biological characteristics of IC, which are a result of complex interactions within biological systems. Employing a systems biology approach, integrating omics technologies, could aid in unraveling these interactions and understanding IC from a holistic viewpoint. This comprehensive analysis of IC could be leveraged in clinical settings, equipping healthcare providers to assess AD patients' health status more effectively and devise personalized therapeutic interventions in accordance with the precision medicine paradigm. We aimed to determine whether the IC concept could be extended from older individuals to patients with AD, thereby presenting a model that could significantly enhance the diagnosis and prognosis of this disease.
Collapse
Affiliation(s)
- Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | | | - Héctor Menéndez
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Saúl Peñín-Grandes
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Claudia Savia Guerrera
- Department of Educational Sciences, University of Catania, 95125 Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", 00133 Rome, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, 00143 Rome, Italy
| | - Alejandro Lucia
- Research Institute of the Hospital 12 de Octubre ('imas12'), 28041 Madrid, Spain; Faculty of Sport Sciences, European University of Madrid, 28670 Villaviciosa de Odón, Madrid, Spain; CIBER of Frailty and Healthy Ageing (CIBERFES), 28029 Madrid, Spain
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain; Research Institute of the Hospital 12 de Octubre ('imas12'), 28041 Madrid, Spain
| | - Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain.
| |
Collapse
|
36
|
Zhuge F, Zheng L, Pan Y, Ni L, Fu Z, Shi J, Ni Y. DPP-4 inhibition by linagliptin ameliorates age-related mild cognitive impairment by regulating microglia polarization in mice. Exp Neurol 2024; 373:114689. [PMID: 38199510 DOI: 10.1016/j.expneurol.2024.114689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Extensive preclinical evidence demonstrates a causative link between insulin signaling dysfunction and the pathogenesis of Alzheimer's disease (AD), and diabetic drugs may represent a promising approach to fighting AD. However, it remains to be determined which antidiabetic drugs are more effective in preventing cognitive impairment. Thus, the present study investigated the effect of dipeptidyl peptidase-4 (DPP-4) inhibitor linagliptin on cognitive impairment in middle-aged mice by comparing it with the effect of metformin. We found that DPP-4 activity increased in the hippocampus of middle-aged mice, and DPP-4 was mainly expressed by microglia rather than astrocytes and oligodendrocytes. DPP-4 directly regulated M1/M2 microglia polarization following LPS or IL-4 stimulation, while DPP-4 inhibitor, linagliptin, suppressed M1-polarized activation and induced M2-polarized activation. Both linagliptin and metformin enhanced cognitive ability, increased hippocampal synaptic plasticity and neurogenesis, and decreased age-related oxidative stress and inflammation by regulating microglia polarization in the hippocampus of middle-aged mice. The combination of linagliptin and metformin showed a maximum protective effect compared to the individual drugs alone. Loss of macrophage inflammatory protein-1α (MIP-1α), a DPP-4 substrate, abrogated the cognitive protection and anti-inflammation effects of linagliptin. Therefore, the current investigation exhibits a potential utility for DPP-4 inhibition in attenuating microglia-mediated inflammation and preventing mild cognitive impairment (MCI) in middle-aged mice, and the effect was partly mediated by MIP-1α.
Collapse
Affiliation(s)
- Fen Zhuge
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Liujie Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuxiang Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Liyang Ni
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Junping Shi
- Department of Infectious Disease, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
37
|
AlRuwaili R, Al-Kuraishy HM, Al-Gareeb AI, Ali NH, Alexiou A, Papadakis M, Saad HM, Batiha GES. The Possible Role of Brain-derived Neurotrophic Factor in Epilepsy. Neurochem Res 2024; 49:533-547. [PMID: 38006577 PMCID: PMC10884085 DOI: 10.1007/s11064-023-04064-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Epilepsy is a neurological disease characterized by repeated seizures. Despite of that the brain-derived neurotrophic factor (BDNF) is implicated in the pathogenesis of epileptogenesis and epilepsy, BDNF may have a neuroprotective effect against epilepsy. Thus, the goal of the present review was to highlight the protective and detrimental roles of BDNF in epilepsy. In this review, we also try to find the relation of BDNF with other signaling pathways and cellular processes including autophagy, mTOR pathway, progranulin (PGN), and α-Synuclein (α-Syn) which negatively and positively regulate BDNF/tyrosine kinase receptor B (TrkB) signaling pathway. Therefore, the assessment of BDNF levels in epilepsy should be related to other neuronal signaling pathways and types of epilepsy in both preclinical and clinical studies. In conclusion, there is a strong controversy concerning the potential role of BDNF in epilepsy. Therefore, preclinical, molecular, and clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Raed AlRuwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
38
|
Chang X, You J, Yang P, He Y, Liu Y, Shi M, Guo D, Peng Y, Chen J, Wang A, Xu T, He J, Zhang Y, Zhu Z. High-Serum Brain-Derived Neurotrophic Factor Levels Are Associated With Decreased Risk of Poststroke Cognitive Impairment. Stroke 2024; 55:643-650. [PMID: 38235585 DOI: 10.1161/strokeaha.123.044698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND BDNF (brain-derived neurotrophic factor) is widely implicated in the pathophysiological process of stroke, but the effect of BDNF on poststroke cognitive impairment (PSCI) remains unclear. We aimed to investigate the association between baseline serum BDNF and the risk of PSCI at 3 months in a multicenter study based on a preplanned ancillary study of the CATIS trial (China Antihypertensive Trial in Acute Ischemic Stroke). METHODS We examined serum BDNF levels at baseline and used the Mini-Mental State Examination and Montreal Cognitive Assessment to evaluate cognitive function at 3-month follow-up after ischemic stroke. PSCI was defined as Mini-Mental State Examination score <27 or Montreal Cognitive Assessment score <25. Logistic regression analyses were performed to evaluate the association between serum BDNF and the risk of 3-month PSCI. RESULTS In this ancillary study, a total of 660 patients with ischemic stroke with hypertension were included, and 593 patients (mean age, 59.90±10.44 years; 410 males and 183 females) were finally included in this analysis. According to mini-mental state examination score, after adjustment for age, sex, education, baseline National Institutes of Health Stroke Scale score, APOE ɛ4 carriers, and other potential confounders, the odds ratio of PSCI for the highest tertile of BDNF was 0.60 ([95% CI, 0.39-0.94]; P=0.024) compared with the lowest tertile. Multiple-adjusted spline regression model showed a linear association of serum BDNF levels with PSCI at 3 months (P value for linearity=0.010). Adding serum BDNF to conventional prognostic factors slightly improved the risk reclassification of PSCI (net reclassification improvement: 27.46%, P=0.001; integrated discrimination index: 1.02%, P=0.015). Similar significant findings were observed when PSCI was defined by the Montreal Cognitive Assessment score. CONCLUSIONS Elevated serum BDNF levels were associated with a decreased risk of PSCI at 3 months, suggesting that serum BDNF might be a potential predictive biomarker for PSCI among patients with ischemic stroke with hypertension.
Collapse
Affiliation(s)
- Xinyue Chang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
| | - Jiaxing You
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
| | - Pinni Yang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
| | - Yu He
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
| | - Yi Liu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (M.S., J.C., J.H., Z.Z.)
| | - Daoxia Guo
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
| | - Yanbo Peng
- Department of Neurology, Affiliated Hospital of North China University of Science and Technology, Hebei (Y.P.)
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (M.S., J.C., J.H., Z.Z.)
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA (J.C., J.H.)
| | - Aili Wang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
| | - Tan Xu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (M.S., J.C., J.H., Z.Z.)
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA (J.C., J.H.)
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (M.S., J.C., J.H., Z.Z.)
| |
Collapse
|
39
|
Ishimoto T, Yamashita R, Matsumoto R, Matsumoto S, Matsuo Y, Nakao S, Masuo Y, Suzuki M, Kato Y. TrkB phosphorylation in serum extracellular vesicles correlates with cognitive function enhanced by ergothioneine in humans. NPJ Sci Food 2024; 8:11. [PMID: 38321007 PMCID: PMC10847428 DOI: 10.1038/s41538-024-00250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Oral administration of the food-derived antioxidant amino acid ergothioneine (ERGO) results in its efficient distribution in the brain and enhances cognitive function. However, effect of ERGO deficiency on cognitive impairment and the underlying mechanisms remain unknown. We revealed that cognitive function and hippocampal neurogenesis were lower in mice fed an ERGO-free diet than in those fed the control diet. Furthermore, ERGO supplementation to achieve the control diet ERGO levels reversed these effects and restored ERGO concentrations in the plasma and hippocampus. The ERGO-induced recovery of cognitive function and hippocampal neurogenesis was blocked by inhibiting the neurotrophic factor receptor tropomyosin receptor kinase B (TrkB), with a concomitant reduction in hippocampal phosphorylated TrkB, suggesting the involvement of TrkB in these events in mice. Phosphorylated TrkB was also detected in extracellular vesicles (EVs) derived from serum of volunteers who had been orally administered placebo or ERGO-containing tablets. Importantly, the ratio of serum EV-derived phosphorylated TrkB was significantly higher in the ERGO-treated group than in the placebo-treated group and was positively correlated with both serum ERGO concentrations and several cognitive domain scores from Cognitrax. Altogether, TrkB phosphorylation is involved in ERGO-induced cognitive enhancement in mice, and TrkB phosphorylation levels in serum EVs may quantitatively represent ERGO-induced cognitive enhancement in humans.
Collapse
Affiliation(s)
- Takahiro Ishimoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Reiya Yamashita
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Ruri Matsumoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Satoshi Matsumoto
- L·S Corporation Co. Ltd., 3-10-1 Ningyocho-Nihonbashi, Chuo-ku, Tokyo, 103-0013, Japan
| | - Yusuke Matsuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Shunsuke Nakao
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Makoto Suzuki
- L·S Corporation Co. Ltd., 3-10-1 Ningyocho-Nihonbashi, Chuo-ku, Tokyo, 103-0013, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
40
|
Abdullahi A, Wong TW, Ng SS. Understanding the mechanisms of disease modifying effects of aerobic exercise in people with Alzheimer's disease. Ageing Res Rev 2024; 94:102202. [PMID: 38272266 DOI: 10.1016/j.arr.2024.102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Alzheimer's disease (AD) is a very disabling disease. Pathologically, it is characterized by the presence of amyloid plaques and neurofibrillary tangles in the brain that results in neurodegeneration. Its clinical manifestations include progressive memory impairment, language decline and difficulty in carrying out activities of daily living (ADL). The disease is managed using interventions such as pharmacological interventions and aerobic exercise. Use of aerobic exercise has shown some promises in reducing the risk of developing AD, and improving cognitive function and the ability to carry out both basic and instrumental ADL. Although, the mechanisms through which aerobic exercise improves AD are poorly understood, improvement in vascular function, brain glucose metabolism and cardiorespiratory fitness, increase in antioxidant capacity and haemoglobin level, amelioration of immune-related and inflammatory responses, modulation of concentration of circulating Neurotrophins and peptides and decrease in concentration of tau protein and cortisol level among others seem to be the possible mechanisms. Therefore, understanding these mechanisms is important to help characterize the dose and the nature of the aerobic exercise to be given. In addition, they may also help in finding ways to optimize other interventions such as the pharmacological interventions. However, more quality studies are needed to verify the mechanisms.
Collapse
Affiliation(s)
- Auwal Abdullahi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Thomson Wl Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shamay Sm Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
41
|
Dadkhah M, Baziar M, Rezaei N. The regulatory role of BDNF in neuroimmune axis function and neuroinflammation induced by chronic stress: A new therapeutic strategies for neurodegenerative disorders. Cytokine 2024; 174:156477. [PMID: 38147741 DOI: 10.1016/j.cyto.2023.156477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/14/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Neurodegenerative disorders account for a high proportion of neurological diseases that significantly threaten public health worldwide. Various factors are involved in the pathophysiology of such diseases which can lead to neurodegeneration and neural damage. Furthermore, neuroinflammation is a well-known factor in predisposing factors of neurological and especially neurodegenerative disorders which can be strongly suppressed by "anti-inflammatory" actions of brain-derived neurotrophic factor (BDNF). Stress has has also been identified as a risk factor in developing neurodegenerative disorders potentially leading to increased neuroinflammation in the brain and progressive loss in neuronal structures and impaired functions in the CNS. Recently, more studies have increasingly been focused on the role of neuroimmune system in regulating the neurobiology of stress. Emerging evidence indicate that exposure to chronic stress might alter the susceptibility to neurodegeneration via influencing the microglia function. Microglia is considered as the first responding group of cells in suppressing neuroinflammation, leading to an increased inflammatory cytokine signaling that promote the synaptic plasticity deficiencies, impairment in neurogenesis, and development of neurodegenerative disorders. In this review we discuss how exposure to chronic stress might alter the neuroimmune response potentially leading to progress of neurodegenerative disorders. We also emphasize on the role of BDNF in regulating the neuroimmune axis function and microglia modulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Milad Baziar
- Student Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran 1419733151, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran
| |
Collapse
|
42
|
Zhao Q, Wan H, Pan H, Xu Y. Postoperative cognitive dysfunction-current research progress. Front Behav Neurosci 2024; 18:1328790. [PMID: 38357422 PMCID: PMC10865506 DOI: 10.3389/fnbeh.2024.1328790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) commonly occurs after surgery, particularly in elderly individuals. It is characterized by a notable decline in cognitive performance, encompassing memory, attention, coordination, orientation, verbal fluency, and executive function. This reduction in cognitive abilities contributes to extended hospital stays and heightened mortality. The prevalence of POCD can reach 40% within 1 week following cardiovascular surgery and remains as high as 17% 3 months post-surgery. Furthermore, POCD exacerbates the long-term risk of Alzheimer's disease (AD). As a result, numerous studies have been conducted to investigate the molecular mechanisms underlying POCD and potential preventive strategies. This article provides a review of the research progress on POCD.
Collapse
Affiliation(s)
| | | | - Hui Pan
- Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yiquan Xu
- Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
43
|
Latino F, Tafuri F. Physical Activity and Cognitive Functioning. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:216. [PMID: 38399504 PMCID: PMC10890300 DOI: 10.3390/medicina60020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Neuroscience applied to motor activity is a growing area that aims to understand the effects of motor activity on the structures and functions of the Central Nervous System. Attention has been paid to this multidisciplinary field of investigation by the scientific community both because it is of great importance in the treatment of many chronic diseases and because of its potential applications in the Movement Sciences. Motor activity during a developmental age is, in fact, an indispensable tool for the physical and mental growth of children, both able-bodied and disabled. Through movement, individuals can improve their physical efficiency and promote their own better health, establish relationships with the environment and others, express themselves and their emotions, form their identity and develop cognitive processes. This literature review aims, therefore, to highlight how an adequate practice of motor activity offers extraordinary possibilities for everyone in relation to learning, from the perspective of an integral development of the person, and, consequently, can raise the awareness of those involved in the training and growth, especially the youngest, towards the educational value of motor and sports activities. According to this review, and in line with the modern neuroscientific approach toward the relationships between motor activities and cognitive functions, it is possible to claim that hypokinesia tends to inhibit learning. Therefore, it now seems more topical than ever to draw attention to the need to introduce working proposals that integrate brain-based motor activity programs into the school curriculum.
Collapse
Affiliation(s)
- Francesca Latino
- Department of Human Science, Educational and Sport, Pegaso University, 80143 Naples, Italy
| | - Francesco Tafuri
- Heracle Lab Research in Educational Neuroscience, Niccolò Cusano University, 00166 Rome, Italy;
| |
Collapse
|
44
|
Dejanovic B, Sheng M, Hanson JE. Targeting synapse function and loss for treatment of neurodegenerative diseases. Nat Rev Drug Discov 2024; 23:23-42. [PMID: 38012296 DOI: 10.1038/s41573-023-00823-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/29/2023]
Abstract
Synapse dysfunction and loss are hallmarks of neurodegenerative diseases that correlate with cognitive decline. However, the mechanisms and therapeutic strategies to prevent or reverse synaptic damage remain elusive. In this Review, we discuss recent advances in understanding the molecular and cellular pathways that impair synapses in neurodegenerative diseases, including the effects of protein aggregation and neuroinflammation. We also highlight emerging therapeutic approaches that aim to restore synaptic function and integrity, such as enhancing synaptic plasticity, preventing synaptotoxicity, modulating neuronal network activity and targeting immune signalling. We discuss the preclinical and clinical evidence for each strategy, as well as the challenges and opportunities for developing effective synapse-targeting therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Morgan Sheng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jesse E Hanson
- Department of Neuroscience, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
45
|
Tikhonova MA, Shvaikovskaya AA, Zhanaeva SY, Moysak GI, Akopyan AA, Rzaev JA, Danilenko KV, Aftanas LI. Concordance between the In Vivo Content of Neurospecific Proteins (BDNF, NSE, VILIP-1, S100B) in the Hippocampus and Blood in Patients with Epilepsy. Int J Mol Sci 2023; 25:502. [PMID: 38203674 PMCID: PMC10779095 DOI: 10.3390/ijms25010502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The identification of reliable brain-specific biomarkers in periphery contributes to better understanding of normal neurophysiology and neuropsychiatric diseases. The neurospecific proteins BDNF, NSE, VILIP-1, and S100B play an important role in the pathogenesis of neuropsychiatric disorders, including epilepsy. This study aimed to assess the correspondence of the expression of BDNF, NSE, VILIP-1, and S100B in the blood (serum and peripheral blood mononuclear cells (PBMCs)) to the in vivo hippocampal levels of subjects with drug-resistant epilepsy who underwent neurosurgery (N = 44) using multiplex solid-phase analysis, ELISA, and immunohistochemical methods, as well as to analyze the correlations and associations of the blood and hippocampal levels of these proteins with clinical parameters. We first studied the concordance between in vivo brain and blood levels of BDNF, NSE, VILIP-1, and S100B in epileptic patients. A positive correlation for NSE between hippocampal and PBMC levels was revealed. NSE levels in PBMCs were also significantly correlated with average seizure duration. BDNF levels in PBMCs were associated with seizure frequency and hippocampal sclerosis. Thus, NSE and BDNF levels in PBMCs may have potential as clinically significant biomarkers. Significant correlations between the levels of the neurospecific proteins studied herein suggest interactions between BDNF, NSE, VILIP-1, and S100B in the pathophysiology of epilepsy.
Collapse
Affiliation(s)
- Maria A. Tikhonova
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia (S.Y.Z.); (L.I.A.)
| | - Anna A. Shvaikovskaya
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia (S.Y.Z.); (L.I.A.)
| | - Svetlana Y. Zhanaeva
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia (S.Y.Z.); (L.I.A.)
| | - Galina I. Moysak
- FSBI “Federal Center for Neurosurgery”, 630087 Novosibirsk, Russia (J.A.R.)
| | - Anna A. Akopyan
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia (S.Y.Z.); (L.I.A.)
| | - Jamil A. Rzaev
- FSBI “Federal Center for Neurosurgery”, 630087 Novosibirsk, Russia (J.A.R.)
| | - Konstantin V. Danilenko
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia (S.Y.Z.); (L.I.A.)
| | - Lyubomir I. Aftanas
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia (S.Y.Z.); (L.I.A.)
| |
Collapse
|
46
|
O'Neill KM, Anderson ED, Mukherjee S, Gandu S, McEwan SA, Omelchenko A, Rodriguez AR, Losert W, Meaney DF, Babadi B, Firestein BL. Time-dependent homeostatic mechanisms underlie brain-derived neurotrophic factor action on neural circuitry. Commun Biol 2023; 6:1278. [PMID: 38110605 PMCID: PMC10728104 DOI: 10.1038/s42003-023-05638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
Plasticity and homeostatic mechanisms allow neural networks to maintain proper function while responding to physiological challenges. Despite previous work investigating morphological and synaptic effects of brain-derived neurotrophic factor (BDNF), the most prevalent growth factor in the central nervous system, how exposure to BDNF manifests at the network level remains unknown. Here we report that BDNF treatment affects rodent hippocampal network dynamics during development and recovery from glutamate-induced excitotoxicity in culture. Importantly, these effects are not obvious when traditional activity metrics are used, so we delve more deeply into network organization, functional analyses, and in silico simulations. We demonstrate that BDNF partially restores homeostasis by promoting recovery of weak and medium connections after injury. Imaging and computational analyses suggest these effects are caused by changes to inhibitory neurons and connections. From our in silico simulations, we find that BDNF remodels the network by indirectly strengthening weak excitatory synapses after injury. Ultimately, our findings may explain the difficulties encountered in preclinical and clinical trials with BDNF and also offer information for future trials to consider.
Collapse
Affiliation(s)
- Kate M O'Neill
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
- Biomedical Engineering Graduate Program, Rutgers University, Piscataway, NJ, USA
- Institute for Physical Science & Technology, University of Maryland, College Park, MD, USA
| | - Erin D Anderson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Shoutik Mukherjee
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA
| | - Srinivasa Gandu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers University, Piscataway, NJ, USA
| | - Sara A McEwan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
- Neuroscience Graduate Program, Rutgers University, Piscataway, NJ, USA
| | - Anton Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
- Neuroscience Graduate Program, Rutgers University, Piscataway, NJ, USA
| | - Ana R Rodriguez
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
- Biomedical Engineering Graduate Program, Rutgers University, Piscataway, NJ, USA
| | - Wolfgang Losert
- Department of Physics, University of Maryland, College Park, MD, USA
- Institute for Physical Science & Technology, University of Maryland, College Park, MD, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Behtash Babadi
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
47
|
Rodriguez G, Eren M, Haupfear I, Viola KL, Cline EN, Miyata T, Klein WL, Vaughan DE, Dong H. Pharmacological inhibition of plasminogen activator inhibitor-1 prevents memory deficits and reduces neuropathology in APP/PS1 mice. Psychopharmacology (Berl) 2023; 240:2641-2655. [PMID: 37700086 DOI: 10.1007/s00213-023-06459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
RATIONALE Extracellular proteolytic activity plays an important role in memory formation and the preservation of cognitive function. Previous studies have shown increased levels of plasminogen activator inhibitor-1 (PAI-1) in the brain of mouse models of Alzheimer's disease (AD) and plasma of AD patients, associated with memory and cognitive decline; however, the exact function of PAI-1 in AD onset and progression is largely unclear. OBJECTIVE In this study, we evaluated a novel PAI-1 inhibitor, TM5A15, on its ability to prevent or reverse memory deficits and decrease Aβ levels and plaque deposition in APP/PS1 mice. METHODS We administered TM5A15 mixed in a chow diet to 3-month and 9-month-old APP/PS1 mice before and after neuropathological changes were distinguishable. We then evaluated the effects of TM5A15 on memory function and neuropathology at 9 months and 18 months of age. RESULTS In the younger mice, 6 months of TM5A15 treatment protected against recognition and short-term working memory impairment. TM5A15 also decreased oligomer levels and amyloid plaques, and increased mBDNF expression in APP/PS1 mice at 9 months of age. In aged mice, 9 months of TM5A15 treatment did not significantly improve memory function nor decrease amyloid plaques. However, TM5A15 treatment showed a trend in decreasing oligomer levels in APP/PS1 mice at 18 months of age. CONCLUSION Our results suggest that PAI-1 inhibition could improve memory function and reduce the accumulation of amyloid levels in APP/PS1 mice. Such effects are more prominent when TM5A15 is administered before advanced AD pathology and memory deficits occur.
Collapse
Affiliation(s)
- Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL, 60611, USA
| | - Mesut Eren
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Isabel Haupfear
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL, 60611, USA
| | - Kirsten L Viola
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 4-160, Evanston, IL, 60208, USA
| | - Erika N Cline
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 4-160, Evanston, IL, 60208, USA
| | - Toshio Miyata
- Department of Molecular Medicine and Therapy, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - William L Klein
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 4-160, Evanston, IL, 60208, USA
| | - Douglas E Vaughan
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL, 60611, USA.
| |
Collapse
|
48
|
Dufor T, Lohof AM, Sherrard RM. Magnetic Stimulation as a Therapeutic Approach for Brain Modulation and Repair: Underlying Molecular and Cellular Mechanisms. Int J Mol Sci 2023; 24:16456. [PMID: 38003643 PMCID: PMC10671429 DOI: 10.3390/ijms242216456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Neurological and psychiatric diseases generally have no cure, so innovative non-pharmacological treatments, including non-invasive brain stimulation, are interesting therapeutic tools as they aim to trigger intrinsic neural repair mechanisms. A common brain stimulation technique involves the application of pulsed magnetic fields to affected brain regions. However, investigations of magnetic brain stimulation are complicated by the use of many different stimulation parameters. Magnetic brain stimulation is usually divided into two poorly connected approaches: (1) clinically used high-intensity stimulation (0.5-2 Tesla, T) and (2) experimental or epidemiologically studied low-intensity stimulation (μT-mT). Human tests of both approaches are reported to have beneficial outcomes, but the underlying biology is unclear, and thus optimal stimulation parameters remain ill defined. Here, we aim to bring together what is known about the biology of magnetic brain stimulation from human, animal, and in vitro studies. We identify the common effects of different stimulation protocols; show how different types of pulsed magnetic fields interact with nervous tissue; and describe cellular mechanisms underlying their effects-from intracellular signalling cascades, through synaptic plasticity and the modulation of network activity, to long-term structural changes in neural circuits. Recent advances in magneto-biology show clear mechanisms that may explain low-intensity stimulation effects in the brain. With its large breadth of stimulation parameters, not available to high-intensity stimulation, low-intensity focal magnetic stimulation becomes a potentially powerful treatment tool for human application.
Collapse
Affiliation(s)
- Tom Dufor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Ann M. Lohof
- Sorbonne Université and CNRS, UMR8256 Biological Adaptation and Ageing, 75005 Paris, France;
| | - Rachel M. Sherrard
- Sorbonne Université and CNRS, UMR8256 Biological Adaptation and Ageing, 75005 Paris, France;
| |
Collapse
|
49
|
Lee JY, Lee HJ, Jang YH, Kim H, Im K, Yang S, Hoh JK, Ahn JH. Maternal pre-pregnancy obesity affects the uncinate fasciculus white matter tract in preterm infants. Front Pediatr 2023; 11:1225960. [PMID: 38034827 PMCID: PMC10684693 DOI: 10.3389/fped.2023.1225960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Background A growing body of evidence suggests an association between a higher maternal pre-pregnancy body mass index (BMI) and adverse long-term neurodevelopmental outcomes for their offspring. Despite recent attention to the effects of maternal obesity on fetal and neonatal brain development, changes in the brain microstructure of preterm infants born to mothers with pre-pregnancy obesity are still not well understood. This study aimed to detect the changes in the brain microstructure of obese mothers in pre-pregnancy and their offspring born as preterm infants using diffusion tensor imaging (DTI). Methods A total of 32 preterm infants (born to 16 mothers with normal BMI and 16 mothers with a high BMI) at <32 weeks of gestation without brain injury underwent brain magnetic resonance imaging at term-equivalent age (TEA). The BMI of all pregnant women was measured within approximately 12 weeks before pregnancy or the first 2 weeks of gestation. We analyzed the brain volume using a morphologically adaptive neonatal tissue segmentation toolbox and calculated the major white matter (WM) tracts using probabilistic maps of the Johns Hopkins University neonatal atlas. We investigated the differences in brain volume and WM microstructure between preterm infants of mothers with normal and high BMI. The DTI parameters were compared among groups using analysis of covariance adjusted for postmenstrual age at scan and multiple comparisons. Results Preterm infants born to mothers with a high BMI showed significantly increased cortical gray matter volume (p = 0.001) and decreased WM volume (p = 0.003) after controlling for postmenstrual age and multiple comparisons. We found a significantly lower axial diffusivity in the uncinate fasciculus (UNC) in mothers with high BMI than that in mothers with normal BMI (1.690 ± 0.066 vs. 1.762 ± 0.101, respectively; p = 0.005). Conclusion Our study is the first to demonstrate that maternal obesity impacts perinatal brain development patterns in preterm infants at TEA, even in the absence of apparent brain injury. These findings provide evidence for the detrimental effects of maternal obesity on brain developmental trajectories in offspring and suggest potential neurodevelopmental outcomes based on an altered UNC WM microstructure, which is known to be critical for language and social-emotional functions.
Collapse
Affiliation(s)
- Joo Young Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Division of Neonatology and Development Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| | - Yong Hun Jang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Hyuna Kim
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Kiho Im
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Seung Yang
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Hanyang University Hospital, Seoul, Republic of Korea
| | - Jeong-Kyu Hoh
- Department of Obstetrics and Gynecology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Hanyang University Hospital, Seoul, Republic of Korea
| | - Ja-Hye Ahn
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Division of Neonatology and Development Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
50
|
Sokolowski I, Kucharska-Lusina A, Miller E, Majsterek I. Exploring the mRNA and Plasma Protein Levels of BDNF, NT4, SIRT1, HSP27, and HSP70 in Multiple Sclerosis Patients and Healthy Controls. Int J Mol Sci 2023; 24:16176. [PMID: 38003363 PMCID: PMC10671202 DOI: 10.3390/ijms242216176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune neurodegenerative disease affecting the central nervous system. It is a major cause of non-traumatic neurological disability among young adults in North America and Europe. This study focuses on neuroprotective genes (BDNF, NT4/5, SIRT1, HSP70, and HSP27). Gene expression and protein levels of these markers were compared between MS patients and healthy controls. Blood samples were collected from 42 patients with multiple sclerosis (MS) and 48 control subjects without MS. Quantitative real-time PCR was performed to measure the expression of specific genes. The samples were analyzed in duplicate, and the abundance of mRNA was quantified using the 2-ΔCt method. ELISA assay was used to measure the concentration of specific proteins in the plasma samples. The results show that a 3.5-fold decrease in the gene expression of BDNF corresponds to a 1.5-fold downregulation in the associated plasma protein concentration (p < 0.001). Similar trends were observed with NT-4 (five-fold decrease, slight elevation in protein), SIRT1 (two-fold decrease, two-fold protein decrease), HSP70 (four-fold increase, nearly two-fold protein increase), and HSP27 (four-fold increase, two-fold protein increase) (p < 0.001). This study reveals strong correlations between gene expression and protein concentration in MS patients, emphasizing the relevance of these neuroprotective markers in the disease.
Collapse
Affiliation(s)
- Igor Sokolowski
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (I.S.); (A.K.-L.)
| | - Aleksandra Kucharska-Lusina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (I.S.); (A.K.-L.)
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (I.S.); (A.K.-L.)
| |
Collapse
|