1
|
Kawabata R, Fujita A, Oke Y, Yao I, Koga K. The elevated open platform stress suppresses excitatory synaptic transmission in the layer V anterior cingulate cortex. Neuroscience 2025; 564:243-259. [PMID: 39369946 DOI: 10.1016/j.neuroscience.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
There are various forms of stress including; physical, psychological and social stress. Exposure to physical stress can lead to physical sensations (e.g. hyperalgesia) and negative emotions including anxiety and depression in animals and humans. Recently, our studies in mice have shown that acute physical stress induced by the elevated open platform (EOP) can provoke long-lasting mechanical hypersensitivity. This effect appears to be related to activity in the anterior cingulate cortex (ACC) at the synaptic level. Indeed, EOP exposure induces synaptic plasticity in layer II/III pyramidal neurons from the ACC. However, it is still unclear whether or not EOP exposure alters intrinsic properties and synaptic transmission in layer V pyramidal neurons. This is essential because these neurons are known to be a primary output to subcortical structures which may ultimately impact the behavioral stress response. Here, we studied both intrinsic properties and excitatory/inhibitory synaptic transmission by using whole-cell patch-clamp method in brain slice preparations. The EOP exposure did not change intrinsic properties including resting membrane potentials and action potentials. In contrast, EOP exposure suppressed the frequency of miniature and spontaneous excitatory synaptic transmission with an alteration of kinetics of AMPA/GluK receptors. EOP exposure also reduced evoked synaptic transmission induced by electrical stimulation. Furthermore, we investigated projection-selective responses of the mediodorsal thalamus to the layer V ACC neurons. EOP exposure produced short-term depression in excitatory synaptic transmission on thalamo-ACC projections. These results suggest that the EOP stress provokes abnormal excitatory synaptic transmission in layer V pyramidal neurons of the ACC.
Collapse
Affiliation(s)
- Ryo Kawabata
- Biomedical Chemistry Major, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan; Department of Neurophysiology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Ayumi Fujita
- Department of Neurophysiology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Yoshihiko Oke
- Department of Physiology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Ikuko Yao
- Biomedical Chemistry Major, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Kohei Koga
- Department of Neurophysiology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
2
|
Prajapati KP, Mittal S, Ansari M, Mishra N, Mahato OP, Tiku AB, Anand BG, Kar K. Structural Conversion of Serotonin into Amyloid-like Nanoassemblies Conceptualizes an Unexplored Neurotoxicity Risk. ACS NANO 2024; 18:34044-34062. [PMID: 39621873 DOI: 10.1021/acsnano.4c09522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The neuromodulator 5-hydroxytryptamine, known as serotonin, plays a key regulatory role in the central nervous system and peripheral organs; however, several research revelations have indicated a direct link between the oxidation of serotonin and a plethora of detrimental consequences. Hence, the question of how several neuronal and non-neuronal complications originate via serotonin oxidation remains an important area of investigation. Here, we show the autoxidation-driven structural conversion of serotonin into hemolytic and cytotoxic amyloid-like nanoassemblies under physiological conditions. We also observed the catalysis of serotonin oxidation in the presence of Aβ1-42 amyloid fibrils and Cu(II) ions. The serotonin nanostructures generated from its spontaneous and amyloid-mediated oxidation exhibited typical structural and functional characteristics of amyloid entities, and their effective internalization in neuroblastoma cells caused cell-damaging effects via cytosolic aggregation, ROS generation and necrosis/apoptosis-mediated cell death. Since imbalance in the serotonin level is known to predispose diverse pathological conditions including serotonin syndrome, atherosclerosis, diabetes, and Alzheimer's diseases, our results on the formation of cytotoxic nanoassemblies via serotonin oxidation may provide important evidence for understanding the molecular mechanism of serotonin associated complications.
Collapse
Affiliation(s)
- Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Mittal
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nishant Mishra
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Om Prakash Mahato
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashu Bhan Tiku
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bibin Gnanadhason Anand
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
3
|
Gong Z, Wu T, Zhao Y, Guo J, Zhang Y, Li B, Li Y. Intercellular Tunneling Nanotubes as Natural Biophotonic Conveyors. ACS NANO 2024. [PMID: 39630614 DOI: 10.1021/acsnano.4c12681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Tunneling nanotubes (TNTs), submicrometer membranous channels that bridge and connect distant cells, play a pivotal role in intercellular communication. Organelle transfer within TNTs is crucial in regulating cell growth, signal transmission, and disease progression. However, precise control over individual organelle transport within TNTs remains elusive. In this study, we introduce an optical technique that harnesses TNTs as biophotonic conveyors for the directional transport of individual organelles between cells. By utilizing near-infrared light propagating along the TNTs, optical forces were exerted on the organelles, enabling their active transport in a predetermined direction and at a controlled velocity. As a potential application, TNT conveyors were employed to inhibit mitochondrial hijacking from immune cells to cancer cells, thereby activating immune cells and suppressing cancer cell growth. Furthermore, neural modulation was achieved by transporting mitochondria and neurotransmitter-containing vesicles between neurons via TNT conveyors and axonal conveyors, respectively. This study presents a robust and precise approach to immune activation and neural regulation through the manipulation of organelle transfer at the subcellular level.
Collapse
Affiliation(s)
- Zhiyong Gong
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tianli Wu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Yanan Zhao
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Jinghui Guo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yao Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Yuchao Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| |
Collapse
|
4
|
Li YZ, Wang Y, Jiao Q, Chi J, Liang Y, Fan B, Li GY. Complexin regulation of synaptic vesicle release: mechanisms in the central nervous system and specialized retinal ribbon synapses. Cell Commun Signal 2024; 22:581. [PMID: 39627811 PMCID: PMC11613576 DOI: 10.1186/s12964-024-01942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024] Open
Abstract
Synaptic ribbons, recognized for their pivotal role in conveying sensory signals in the visual pathway, are intricate assemblages of presynaptic proteins. Complexin (CPX) regulates synaptic vesicle fusion and neurotransmitter release by modulating the assembly of the soluble NSF attachment protein receptor (SNARE) complex, ensuring precise signal transmission in the retina and the broader central nervous system (CNS). While CPX1 or CPX2 isoforms (CPX1/2) play crucial roles in classical CNS synapses, CPX3 or CPX4 isoforms (CPX3/4) specifically regulate retinal ribbon synapses. These isoforms are essential for sustaining synaptic plasticity related to light signaling, adapting to changes in circadian rhythms, and dynamically regulating visual function under varying light conditions. This review explores the regulation of synaptic vesicle release by CPX in both the CNS and retinal ribbon synapses, with a focus on the mechanisms governing CPX3/4 function in the retina. Additionally, by reviewing the role of CPX and ribbon synapse dysfunction in non-retinal diseases, we further hypothesize the potential mechanisms of CPX in retinal diseases and propose therapeutic strategies targeting CPX to address retinal and CNS disorders associated with synaptic dysfunction.
Collapse
Affiliation(s)
- Yun-Zhi Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China
| | - Yu Wang
- Department of Neurology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China
| | - Qing Jiao
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China
| | - Jing Chi
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China
| | - Yang Liang
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China
| | - Bin Fan
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China.
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China.
| |
Collapse
|
5
|
Ragozzino FJ, Karatsoreos IN, Peters JH. Principles of synaptic encoding of brainstem circadian rhythms. Exp Physiol 2024; 109:2006-2010. [PMID: 38308846 PMCID: PMC11607608 DOI: 10.1113/ep090867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
Circadian regulation of autonomic tone and reflex pathways pairs physiological processes with the daily light cycle. However, the underlying mechanisms mediating these changes on autonomic neurocircuitry are only beginning to be understood. The brainstem nucleus of the solitary tract (NTS) and adjacent nuclei, including the area postrema and dorsal motor nucleus of the vagus, are key candidates for rhythmic control of some aspects of the autonomic nervous system. Recent findings have contributed to a working model of circadian regulation in the brainstem which manifests from the transcriptional, to synaptic, to circuit levels of organization. Vagal afferent neurons and the NTS possess rhythmic clock gene expression, rhythmic action potential firing, and our recent findings demonstrate rhythmic spontaneous glutamate release. In addition, postsynaptic conductances also vary across the day producing subtle changes in membrane depolarization which govern synaptic efficacy. Together these coordinated pre- and postsynaptic changes provide nuanced control of synaptic transmission across the day to tune the sensitivity of primary afferent input and likely govern reflex output. Further, given the important role for the brainstem in integrating cues such as feeding, cardiovascular function and temperature, it may also be an underappreciated locus in mediating the effects of such non-photic entraining cues. This short review focuses on the neurophysiological principles that govern NTS synaptic transmission and how circadian rhythms impacted them across the day.
Collapse
Affiliation(s)
- Forrest J. Ragozzino
- Department of Integrative Physiology and Neuroscience, College of Veterinary MedicineWashington State UniversityPullmanWashingtonUSA
| | - Ilia N. Karatsoreos
- Department of Psychological and Brain SciencesUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - James H. Peters
- Department of Integrative Physiology and Neuroscience, College of Veterinary MedicineWashington State UniversityPullmanWashingtonUSA
| |
Collapse
|
6
|
Monma N, Yamamoto H, Fujiwara N, Murota H, Moriya S, Hirano-Iwata A, Sato S. Directional intermodular coupling enriches functional complexity in biological neuronal networks. Neural Netw 2024; 184:106967. [PMID: 39756118 DOI: 10.1016/j.neunet.2024.106967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025]
Abstract
Hierarchically modular organization is a canonical network topology that is evolutionarily conserved in the nervous systems of animals. Within the network, neurons form directional connections defined by the growth of their axonal terminals. However, this topology is dissimilar to the network formed by dissociated neurons in culture because they form randomly connected networks on homogeneous substrates. In this study, we fabricated microfluidic devices to reconstitute hierarchically modular neuronal networks in culture (in vitro) and investigated how non-random structures, such as directional connectivity between modules, affect global network dynamics. Embedding directional connections in a pseudo-feedforward manner suppressed excessive synchrony in cultured neuronal networks and enhanced the integration-segregation balance. Modeling the behavior of biological neuronal networks using spiking neural networks (SNNs) further revealed that modularity and directionality cooperate to shape such network dynamics. Finally, we demonstrate that for a given network topology, the statistics of network dynamics, such as global network activation, correlation coefficient, and functional complexity, can be analytically predicted based on eigendecomposition of the transition matrix in the state-transition model. Hence, the integration of bioengineering and cell culture technologies enables us not only to reconstitute complex network circuitry in the nervous system but also to understand the structure-function relationships in biological neuronal networks by bridging theoretical modeling with in vitro experiments.
Collapse
Affiliation(s)
- Nobuaki Monma
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Hideaki Yamamoto
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan; Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan.
| | - Naoya Fujiwara
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan; International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Hakuba Murota
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Satoshi Moriya
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan
| | - Ayumi Hirano-Iwata
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan; Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
| | - Shigeo Sato
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
7
|
Zhang L, Xia J, Li B, Cao Z, Dong S. Multimodal integrated flexible neural probe for in situ monitoring of EEG and lactic acid. RSC Adv 2024; 14:35520-35528. [PMID: 39507693 PMCID: PMC11540061 DOI: 10.1039/d4ra06336h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024] Open
Abstract
In physiological activities, the brain's electroencephalogram (EEG) signal and chemical concentration change are crucial for diagnosing and treating neurological disorders. Despite the advantages of flexible neural probes, such as their flexibility and biocompatibility, it remains a challenge to achieve in situ monitoring of electrophysiological and chemical signals on a small scale simultaneously. This study developed a new method to construct an efficient dual-sided multimodal integrated flexible neural probe, which combines a density electrode array for EEG recordings and an electrochemical sensor for detecting lactic acid. The EEG electrode array includes a 6-channel recording electrode array with each electrode 30 × 50 μm in size, and the lactic acid sensor with overall contact is approximately 100 μm wide. The EEG electrodes have an average impedance of 2.57 kΩ at 1 kHz and remained stable after immersing in NS (normal saline) for 3 months. The lactic acid sensor showed a sensitivity of 52.8 nA mM-1. The in vivo experiments demonstrated that the probe can reliably monitor electrophysiological signals. The probe is able to be implanted into the desired site with the help of a guide port. This flexible neural probe can provide more comprehensive insights into brain activity in the field of neuroscience and clinical practices.
Collapse
Affiliation(s)
- Luxi Zhang
- The State Key Laboratory of Brain-Machine Intelligence, College of Information Science and Electronic Engineering, Zhejiang University Hangzhou 310027 China
| | - Jie Xia
- The State Key Laboratory of Brain-Machine Intelligence, College of Information Science and Electronic Engineering, Zhejiang University Hangzhou 310027 China
| | - Boyu Li
- The State Key Laboratory of Brain-Machine Intelligence, College of Information Science and Electronic Engineering, Zhejiang University Hangzhou 310027 China
| | - Zhen Cao
- The State Key Laboratory of Brain-Machine Intelligence, College of Information Science and Electronic Engineering, Zhejiang University Hangzhou 310027 China
| | - Shurong Dong
- The State Key Laboratory of Brain-Machine Intelligence, College of Information Science and Electronic Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
8
|
Zhang Y, Fan S, He L, Li L. The ZDHHC13/ZDHHC17 subfamily: From biological functions to therapeutic targets of diseases. Pharmacol Res 2024; 209:107418. [PMID: 39306022 DOI: 10.1016/j.phrs.2024.107418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024]
Abstract
The ZDHHC13/ZDHHC17 subfamily belongs to the zinc finger DHHC-domain containing (ZDHHC) family, including ZDHHC13 and ZDHHC17. Recent studies have shown that the ZDHHC13/ZDHHC17 subfamily is involved in various pathological and physiological processes, including S-palmitoylation, Mg2+ transport, and CALCOCO1-mediated Golgiphagy. Moreover, the ZDHHC13/ZDHHC17 subfamily plays a crucial role in the occurrence and development of many diseases, including Huntington disease (HD), osteoporosis, atopic dermatitis, diabetes, and cancer. In the present review, we describe the distribution, structure, and post-translational modifications (PTMs) of the ZDHHC13/ZDHHC17 subfamily. Moreover, we effectively summarize the biological functions and associated diseases of this subfamily. Given the pleiotropy of the ZDHHC13/ZDHHC17 subfamily, it is imperative to conduct further research on its members to comprehend the pertinent pathophysiological mechanisms and to devise tactics for managing and controlling various diseases.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Sisi Fan
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Lu He
- The First Affiliated Hospital, Department of Neurosurgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
9
|
Dedek A, Topcu E, Dedek C, McDermott JS, Krajewski JL, Tsai EC, Hildebrand ME. Heterogeneity of synaptic NMDA receptor responses within individual lamina I pain-processing neurons across sex in rats and humans. J Physiol 2024; 602:5309-5327. [PMID: 39316518 DOI: 10.1113/jp285521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Excitatory glutamatergic NMDA receptors (NMDARs) are key regulators of spinal pain processing, and yet the biophysical properties of NMDARs in dorsal horn nociceptive neurons remain poorly understood. Despite the clinical implications, it is unknown whether the molecular and functional properties of synaptic NMDAR responses are conserved between males and females or translate from rodents to humans. To address these translational gaps, we systematically compared individual and averaged excitatory synaptic responses from lamina I pain-processing neurons of adult Sprague-Dawley rats and human organ donors, including both sexes. By combining patch-clamp recordings of outward miniature excitatory postsynaptic currents with non-biased data analyses, we uncovered a wide range of decay constants of excitatory synaptic events within individual lamina I neurons. Decay constants of synaptic responses were distributed in a continuum from 1-20 ms to greater than 1000 ms, suggesting that individual lamina I neurons contain AMPA receptor (AMPAR)-only as well as GluN2A-, GluN2B- and GluN2D-NMDAR-dominated synaptic events. This intraneuronal heterogeneity in AMPAR- and NMDAR-mediated decay kinetics was observed across sex and species. However, we discovered an increased relative contribution of GluN2A-dominated NMDAR responses at human lamina I synapses compared with rodent synapses, suggesting a species difference relevant to NMDAR subunit-targeting therapeutic approaches. The conserved heterogeneity in decay rates of excitatory synaptic events within individual lamina I pain-processing neurons may enable synapse-specific forms of plasticity and sensory integration within dorsal horn nociceptive networks. KEY POINTS: Synaptic NMDA receptors (NMDARs) in spinal dorsal horn nociceptive neurons are key regulators of pain processing, but it is unknown whether their functional properties are conserved between males and females or translate from rodents to humans. In this study, we compared individual excitatory synaptic responses from lamina I pain-processing neurons of male and female adult Sprague-Dawley rats and human organ donors. Individual lamina I neurons from male and female rats and humans contain AMPA receptor-only as well as GluN2A, GluN2B- and GluN2D-NMDAR-dominated synaptic events. This may enable synapse-specific forms of plasticity and sensory integration within dorsal horn nociceptive networks. Human lamina I synapses have an increased relative contribution of GluN2A-dominated NMDAR responses compared with rodent synapses. These results uncover a species difference relevant to NMDAR subunit-targeting therapeutic approaches.
Collapse
Affiliation(s)
- Annemarie Dedek
- Department of Neuroscience, Carleton University, Ontario, Canada
- Neuroscience Program, Ottawa Hospital Research Institute, Ontario, Canada
- School of Pharmacy, University of Waterloo, Ontario, Canada
| | - Emine Topcu
- Department of Neuroscience, Carleton University, Ontario, Canada
| | | | - Jeff S McDermott
- Lilly Research Laboratories, Indianapolis, Indiana, United States
| | | | - Eve C Tsai
- Neuroscience Program, Ottawa Hospital Research Institute, Ontario, Canada
- Brain and Mind Research Institute, University of Ottawa, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, The Ottawa Hospital, Ontario, Canada
| | - Michael E Hildebrand
- Department of Neuroscience, Carleton University, Ontario, Canada
- Neuroscience Program, Ottawa Hospital Research Institute, Ontario, Canada
| |
Collapse
|
10
|
Akter M, Moghimianavval H, Luker GD, Liu AP. Light-triggered protease-mediated release of actin-bound cargo from synthetic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613133. [PMID: 39314483 PMCID: PMC11419145 DOI: 10.1101/2024.09.15.613133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion. Here, we designed and constructed a protein-based platform termed TEV Protease-mediated Releasable Actin-binding protein (TRAP) for selective, rapid, and triggerable secretion in synthetic cells. TRAP is designed to bind tightly to reconstituted actin networks and is proteolytically released from bound actin, followed by secretion via cell-penetrating peptide membrane translocation. We demonstrated TRAP's efficacy in facilitating light-activated secretion of both fluorescent and luminescent proteins. By equipping synthetic cells with a controlled secretion mechanism, TRAP paves the way for the development of stimuli-responsive biomaterials, versatile synthetic cell-based biosensing systems, and therapeutic applications through the integration of synthetic cells with living cells for targeted delivery of protein therapeutics.
Collapse
Affiliation(s)
- Mousumi Akter
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Gary D. Luker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
11
|
Nair AG, Bollmohr N, Schökle L, Keim J, Melero JMM, Müller M. Presynaptic quantal size enhancement counteracts post-tetanic release depression. J Physiol 2024. [PMID: 39183664 DOI: 10.1113/jp286176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
Repetitive synaptic stimulation can induce different forms of synaptic plasticity but may also limit the robustness of synaptic transmission by exhausting key resources. Little is known about how synaptic transmission is stabilized after high-frequency stimulation. In the present study, we observed that tetanic stimulation of the Drosophila neuromuscular junction (NMJ) decreases quantal content, release-ready vesicle pool size and synaptic vesicle density for minutes after stimulation. This was accompanied by a pronounced increase in quantal size. Interestingly, action potential-evoked synaptic transmission remained largely unchanged. EPSC amplitude fluctuation analysis confirmed the post-tetanic increase in quantal size and the decrease in quantal content, suggesting that the quantal size increase counteracts release depression to maintain evoked transmission. The magnitude of the post-tetanic quantal size increase and release depression correlated with stimulation frequency and duration, indicating activity-dependent stabilization of synaptic transmission. The post-tetanic quantal size increase persisted after genetic ablation of the glutamate receptor subunits GluRIIA or GluRIIB, and glutamate receptor calcium permeability, as well as blockade of postsynaptic calcium channels. By contrast, it was strongly attenuated by pharmacological or presynaptic genetic perturbation of the GTPase dynamin. Similar observations were made after inhibition of the H+-ATPase, suggesting that the quantal size increase is presynaptically driven. Additionally, dynamin and H+-ATPase perturbation resulted in a post-tetanic decrease in evoked amplitudes. Finally, we observed an increase in synaptic vesicle diameter after tetanic stimulation. Thus, a presynaptically-driven quantal size increase, likely mediated by larger synaptic vesicles, counterbalances post-tetanic release depression, thereby conferring robustness to synaptic transmission on the minute time scale. KEY POINTS: Many synapses transmit robustly after sustained activity despite the limitation of key resources, such as release-ready synaptic vesicles. We report robust synaptic transmission after sustained high-frequency stimulation of the Drosophila neuromuscular junction despite a reduction in release-ready vesicle number. An increased postsynaptic response to individual vesicles, likely driven by an increase in vesicle size due to endocytosis defects, stabilizes synaptic efficacy for minutes after sustained activity. Our study provides novel insights into the mechanisms governing synaptic stability after sustained neural activity.
Collapse
Affiliation(s)
- Anu G Nair
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Present address: Roche Pharma Research and Early Development, Basel, Switzerland
| | - Nasrin Bollmohr
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Levin Schökle
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Jennifer Keim
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Present address: AbbVie AG, Cham, Switzerland
| | | | - Martin Müller
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Sceniak MP, Sabo SL. Prefrontal cortical network dysfunction from acute neurotoxicant exposure. J Neurophysiol 2024; 132:277-289. [PMID: 38864824 DOI: 10.1152/jn.00049.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024] Open
Abstract
Prefrontal cortical (PFC) dysfunction has been linked to disorders exhibiting deficits in cognitive performance, attention, motivation, and impulse control. Neurons of the PFC are susceptible to glutamatergic excitotoxicity, an effect associated with cortical degeneration in frontotemporal disorders (FTDs). PFC susceptibility to environmental toxicant exposure, one possible contributor to sporadic FTD, has not been systematically studied. Here, we tested the ability of a well-known environmental neurotoxicant, methylmercury (MeHg), to induce hyperexcitability in medial prefrontal cortex (mPFC) excitatory pyramidal neurons, using whole cell patch-clamp recording. Acute MeHg exposure (20 μM) produced significant mPFC dysfunction, with a shift in the excitatory to inhibitory (E-I) balance toward increased excitability. Both excitatory postsynaptic current (EPSC) and inhibitory postsynaptic current (IPSC) charges were significantly increased after MeHg exposure. MeHg increased EPSC frequency, but there was no observable effect on IPSC frequency, EPSC amplitude or IPSC amplitude. Neither evoked AMPA receptor- nor NMDA receptor-mediated EPSC amplitudes were affected by MeHg. However, excitatory synapses experienced a significant reduction in paired-pulse depression and probability of release. In addition, MeHg induced temporal synchrony in spontaneous IPSCs, reflecting mPFC inhibitory network dysfunction. MeHg exposure also produced increased intrinsic excitability in mPFC neurons, with an increase in action potential firing rate. The observed effects of MeHg on mPFC reflect key potential mechanisms for neuropsychological symptoms from MeHg poisoning. Therefore, MeHg has a significant effect on mPFC circuits known to contribute to cognitive and emotional function and might contribute to etiology of neurodegenerative diseases, such as FTD.NEW & NOTEWORTHY Prefrontal cortical neurons are highly susceptible to glutamatergic excitotoxicity associated with neuronal degeneration in frontal dementia and to environmental toxicant exposure, one potential contributor to FTD. However, this has not been systematically studied. Our results demonstrate that methylmercury exposure leads to hyperexcitability of prefrontal cortical neurons by shifting excitatory to inhibitory (E-I) balance and raising sensitivity for spiking. Our results provide a mechanism by which environmental neurotoxicants may contribute to pathogenesis of diseases such as FTD.
Collapse
Affiliation(s)
- Michael P Sceniak
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States
| | - Shasta L Sabo
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States
| |
Collapse
|
13
|
Yang SM, Ghoshal A, Hubbard JM, Gackière F, Teyssié R, Neale SA, Hopkins SC, Koblan KS, Bristow LJ, Dedic N. TAAR1 agonist ulotaront modulates striatal and hippocampal glutamate function in a state-dependent manner. Neuropsychopharmacology 2024; 49:1091-1103. [PMID: 38110609 PMCID: PMC11109157 DOI: 10.1038/s41386-023-01779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023]
Abstract
Aberrant dopaminergic and glutamatergic function, particularly within the striatum and hippocampus, has repeatedly been associated with the pathophysiology of schizophrenia. Supported by preclinical and recent clinical data, trace amine-associated receptor 1 (TAAR1) agonism has emerged as a potential new treatment approach for schizophrenia. While current evidence implicates TAAR1-mediated regulation of dopaminergic tone as the primary circuit mechanism, little is known about the effects of TAAR1 agonists on the glutamatergic system and excitation-inhibition balance. Here we assessed the impact of ulotaront (SEP-363856), a TAAR1 agonist in Phase III clinical development for schizophrenia, on glutamate function in the mouse striatum and hippocampus. Ulotaront reduced spontaneous glutamatergic synaptic transmission and neuronal firing in striatal and hippocampal brain slices, respectively. Interestingly, ulotaront potentiated electrically-evoked excitatory synaptic transmission in both brain regions, suggesting the ability to modulate glutamatergic signaling in a state-dependent manner. Similar striatal effects were also observed with the TAAR1 agonist, RO5166017. Furthermore, we show that ulotaront regulates excitation-inhibition balance in the striatum by specifically modulating glutamatergic, but not GABAergic, spontaneous synaptic events. These findings expand the mechanistic circuit hypothesis of ulotaront and TAAR1 agonists, which may be uniquely positioned to normalize both the excessive dopaminergic tone and regulate abnormal glutamatergic function associated with schizophrenia.
Collapse
Affiliation(s)
- Sung M Yang
- Sumitomo Pharma America, Inc., Marlborough, MA, USA
| | - Ayan Ghoshal
- Sumitomo Pharma America, Inc., Marlborough, MA, USA
| | | | | | | | | | | | | | | | - Nina Dedic
- Sumitomo Pharma America, Inc., Marlborough, MA, USA.
| |
Collapse
|
14
|
van Boven MA, Mestroni M, Zwijnenburg PJG, Verhage M, Cornelisse LN. A de novo missense mutation in synaptotagmin-1 associated with neurodevelopmental disorder desynchronizes neurotransmitter release. Mol Psychiatry 2024; 29:1798-1809. [PMID: 38321119 PMCID: PMC11371641 DOI: 10.1038/s41380-024-02444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Synaptotagmin-1 (Syt1) is a presynaptic calcium sensor with two calcium binding domains, C2A and C2B, that triggers action potential-induced synchronous neurotransmitter release, while suppressing asynchronous and spontaneous release. We identified a de novo missense mutation (P401L) in the C2B domain in a patient with developmental delay and autistic symptoms. Expressing the orthologous mouse mutant (P400L) in cultured Syt1 null mutant neurons revealed a reduction in dendrite outgrowth with a proportional reduction in synapses. This was not observed in single Syt1PL-rescued neurons that received normal synaptic input when cultured in a control network. Patch-clamp recordings showed that spontaneous miniature release events per synapse were increased more than 500% in Syt1PL-rescued neurons, even beyond the increased rates in Syt1 KO neurons. Furthermore, action potential-induced asynchronous release was increased more than 100%, while synchronous release was unaffected. A similar shift to more asynchronous release was observed during train stimulations. These cellular phenotypes were also observed when Syt1PL was overexpressed in wild type neurons. Our findings show that Syt1PL desynchronizes neurotransmission by increasing the readily releasable pool for asynchronous release and reducing the suppression of spontaneous and asynchronous release. Neurons respond to this by shortening their dendrites, possibly to counteract the increased synaptic input. Syt1PL acts in a dominant-negative manner supporting a causative role for the mutation in the heterozygous patient. We propose that the substitution of a rigid proline to a more flexible leucine at the bottom of the C2B domain impairs clamping of release by interfering with Syt1's primary interface with the SNARE complex. This is a novel cellular phenotype, distinct from what was previously found for other SYT1 disease variants, and points to a role for spontaneous and asynchronous release in SYT1-associated neurodevelopmental disorder.
Collapse
Affiliation(s)
- Maaike A van Boven
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Marta Mestroni
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | | | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Functional Genomics and Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam UMC-Location VUmc, 1081 HV, Amsterdam, The Netherlands
| | - L Niels Cornelisse
- Department of Functional Genomics and Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam UMC-Location VUmc, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Lamanna J, Gloria G, Villa A, Malgaroli A. Anomalous diffusion of synaptic vesicles and its influences on spontaneous and evoked neurotransmission. J Physiol 2024; 602:2873-2898. [PMID: 38723211 DOI: 10.1113/jp284926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 04/22/2024] [Indexed: 06/15/2024] Open
Abstract
Neurons in the central nervous system communicate with each other by activating billions of tiny synaptic boutons distributed along their fine axons. These presynaptic varicosities are very crowded environments, comprising hundreds of synaptic vesicles. Only a fraction of these vesicles can be recruited in a single release episode, either spontaneous or evoked by action potentials. Since the seminal work by Fatt and Katz, spontaneous release has been modelled as a memoryless process. Nevertheless, at central synapses, experimental evidence indicates more complex features, including non-exponential distributions of release intervals and power-law behaviour in their rate. To describe these features, we developed a probabilistic model of spontaneous release based on Brownian motion of synaptic vesicles in the presynaptic environment. To account for different diffusion regimes, we based our simulations on fractional Brownian motion. We show that this model can predict both deviation from the Poisson hypothesis and power-law features in experimental quantal release series, thus suggesting that the vesicular motion by diffusion could per se explain the emergence of these properties. We demonstrate the efficacy of our modelling approach using electrophysiological recordings at single synaptic boutons and ultrastructural data. When this approach was used to simulate evoked responses, we found that the replenishment of the readily releasable pool driven by Brownian motion of vesicles can reproduce the characteristic binomial release distributions seen experimentally. We believe that our modelling approach supports the idea that vesicle diffusion and readily releasable pool dynamics are crucial factors for the physiological functioning of neuronal communication. KEY POINTS: We developed a new probabilistic model of spontaneous and evoked vesicle fusion based on simple biophysical assumptions, including the motion of vesicles before they dock to the release site. We provide closed-form equations for the interval distribution of spontaneous releases in the special case of Brownian diffusion of vesicles, showing that a power-law heavy tail is generated. Fractional Brownian motion (fBm) was exploited to simulate anomalous vesicle diffusion, including directed and non-directed motion, by varying the Hurst exponent. We show that our model predicts non-linear features observed in experimental spontaneous quantal release series as well as ultrastructural data of synaptic vesicles spatial distribution. Evoked exocytosis based on a diffusion-replenished readily releasable pool might explain the emergence of power-law behaviour in neuronal activity.
Collapse
Affiliation(s)
- Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Gloria
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| | | | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- San Raffaele Turro, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
16
|
Mougkogiannis P, Adamatzky A. Proto-neural networks from thermal proteins. Biochem Biophys Res Commun 2024; 709:149725. [PMID: 38579617 DOI: 10.1016/j.bbrc.2024.149725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/25/2024] [Indexed: 04/07/2024]
Abstract
Proteinoids are synthetic polymers that have structural similarities to natural proteins, and their formation is achieved through the application of heat to amino acid combinations in a dehydrated environment. The thermal proteins, initially synthesised by Sidney Fox during the 1960s, has the ability to undergo self-assembly, resulting in the formation of microspheres that resemble cells. These microspheres have fascinating biomimetic characteristics. In recent studies, substantial advancements have been made in elucidating the electrical signalling phenomena shown by proteinoids, hence showcasing their promising prospects in the field of neuro-inspired computing. This study demonstrates the advancement of experimental prototypes that employ proteinoids in the construction of fundamental neural network structures. The article provides an overview of significant achievements in proteinoid systems, such as the demonstration of electrical excitability, emulation of synaptic functions, capabilities in pattern recognition, and adaptability of network structures. This study examines the similarities and differences between proteinoid networks and spontaneous neural computation. We examine the persistent challenges associated with deciphering the underlying mechanisms of emergent proteinoid-based intelligence. Additionally, we explore the potential for developing bio-inspired computing systems using synthetic thermal proteins in forthcoming times. The results of this study offer a theoretical foundation for the advancement of adaptive, self-assembling electronic systems that operate using artificial bio-neural principles.
Collapse
|
17
|
Zhang H, Lei M, Zhang Y, Li H, He Z, Xie S, Zhu L, Wang S, Liu J, Li Y, Lu Y, Ma C. Phosphorylation of Doc2 by EphB2 modulates Munc13-mediated SNARE complex assembly and neurotransmitter release. SCIENCE ADVANCES 2024; 10:eadi7024. [PMID: 38758791 PMCID: PMC11100570 DOI: 10.1126/sciadv.adi7024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
At the synapse, presynaptic neurotransmitter release is tightly controlled by release machinery, involving the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and Munc13. The Ca2+ sensor Doc2 cooperates with Munc13 to regulate neurotransmitter release, but the underlying mechanisms remain unclear. In our study, we have characterized the binding mode between Doc2 and Munc13 and found that Doc2 originally occludes Munc13 to inhibit SNARE complex assembly. Moreover, our investigation unveiled that EphB2, a presynaptic adhesion molecule (SAM) with inherent tyrosine kinase functionality, exhibits the capacity to phosphorylate Doc2. This phosphorylation attenuates Doc2 block on Munc13 to promote SNARE complex assembly, which functionally induces spontaneous release and synaptic augmentation. Consistently, application of a Doc2 peptide that interrupts Doc2-Munc13 interplay impairs excitatory synaptic transmission and leads to dysfunction in spatial learning and memory. These data provide evidence that SAMs modulate neurotransmitter release by controlling SNARE complex assembly.
Collapse
Affiliation(s)
- Hong Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Mengshi Lei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Yu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Hao Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen He
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Sheng Xie
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Le Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Jianfeng Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Youming Lu
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
18
|
Kopell BH, Kaji DA, Liharska LE, Vornholt E, Valentine A, Lund A, Hashemi A, Thompson RC, Lohrenz T, Johnson JS, Bussola N, Cheng E, Park YJ, Shah P, Ma W, Searfoss R, Qasim S, Miller GM, Chand NM, Aristel A, Humphrey J, Wilkins L, Ziafat K, Silk H, Linares LM, Sullivan B, Feng C, Batten SR, Bang D, Barbosa LS, Twomey T, White JP, Vannucci M, Hadj-Amar B, Cohen V, Kota P, Moya E, Rieder MK, Figee M, Nadkarni GN, Breen MS, Kishida KT, Scarpa J, Ruderfer DM, Narain NR, Wang P, Kiebish MA, Schadt EE, Saez I, Montague PR, Beckmann ND, Charney AW. Multiomic foundations of human prefrontal cortex tissue function. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.17.24307537. [PMID: 38798344 PMCID: PMC11118644 DOI: 10.1101/2024.05.17.24307537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The prefrontal cortex (PFC) is a region of the brain that in humans is involved in the production of higher-order functions such as cognition, emotion, perception, and behavior. Neurotransmission in the PFC produces higher-order functions by integrating information from other areas of the brain. At the foundation of neurotransmission, and by extension at the foundation of higher-order brain functions, are an untold number of coordinated molecular processes involving the DNA sequence variants in the genome, RNA transcripts in the transcriptome, and proteins in the proteome. These "multiomic" foundations are poorly understood in humans, perhaps in part because most modern studies that characterize the molecular state of the human PFC use tissue obtained when neurotransmission and higher-order brain functions have ceased (i.e., the postmortem state). Here, analyses are presented on data generated for the Living Brain Project (LBP) to investigate whether PFC tissue from individuals with intact higher-order brain function has characteristic multiomic foundations. Two complementary strategies were employed towards this end. The first strategy was to identify in PFC samples obtained from living study participants a signature of RNA transcript expression associated with neurotransmission measured intracranially at the time of PFC sampling, in some cases while participants performed a task engaging higher-order brain functions. The second strategy was to perform multiomic comparisons between PFC samples obtained from individuals with intact higher-order brain function at the time of sampling (i.e., living study participants) and PFC samples obtained in the postmortem state. RNA transcript expression within multiple PFC cell types was associated with fluctuations of dopaminergic, serotonergic, and/or noradrenergic neurotransmission in the substantia nigra measured while participants played a computer game that engaged higher-order brain functions. A subset of these associations - termed the "transcriptional program associated with neurotransmission" (TPAWN) - were reproduced in analyses of brain RNA transcript expression and intracranial neurotransmission data obtained from a second LBP cohort and from a cohort in an independent study. RNA transcripts involved in TPAWN were found to be (1) enriched for RNA transcripts associated with measures of neurotransmission in rodent and cell models, (2) enriched for RNA transcripts encoded by evolutionarily constrained genes, (3) depleted of RNA transcripts regulated by common DNA sequence variants, and (4) enriched for RNA transcripts implicated in higher-order brain functions by human population genetic studies. In PFC excitatory neurons of living study participants, higher expression of the genes in TPAWN tracked with higher expression of RNA transcripts that in rodent PFC samples are markers of a class of excitatory neurons that connect the PFC to deep brain structures. TPAWN was further reproduced by RNA transcript expression patterns differentiating living PFC samples from postmortem PFC samples, and significant differences between living and postmortem PFC samples were additionally observed with respect to (1) the expression of most primary RNA transcripts, mature RNA transcripts, and proteins, (2) the splicing of most primary RNA transcripts into mature RNA transcripts, (3) the patterns of co-expression between RNA transcripts and proteins, and (4) the effects of some DNA sequence variants on RNA transcript and protein expression. Taken together, this report highlights that studies of brain tissue obtained in a safe and ethical manner from large cohorts of living individuals can help advance understanding of the multiomic foundations of brain function.
Collapse
|
19
|
Choi HK, Chen M, Goldston LL, Lee KB. Extracellular vesicles as nanotheranostic platforms for targeted neurological disorder interventions. NANO CONVERGENCE 2024; 11:19. [PMID: 38739358 PMCID: PMC11091041 DOI: 10.1186/s40580-024-00426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Central Nervous System (CNS) disorders represent a profound public health challenge that affects millions of people around the world. Diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and traumatic brain injury (TBI) exemplify the complexities and diversities that complicate their early detection and the development of effective treatments. Amid these challenges, the emergence of nanotechnology and extracellular vesicles (EVs) signals a new dawn for treating and diagnosing CNS ailments. EVs are cellularly derived lipid bilayer nanosized particles that are pivotal in intercellular communication within the CNS and have the potential to revolutionize targeted therapeutic delivery and the identification of novel biomarkers. Integrating EVs with nanotechnology amplifies their diagnostic and therapeutic capabilities, opening new avenues for managing CNS diseases. This review focuses on examining the fascinating interplay between EVs and nanotechnology in CNS theranostics. Through highlighting the remarkable advancements and unique methodologies, we aim to offer valuable perspectives on how these approaches can bring about a revolutionary change in disease management. The objective is to harness the distinctive attributes of EVs and nanotechnology to forge personalized, efficient interventions for CNS disorders, thereby providing a beacon of hope for affected individuals. In short, the confluence of EVs and nanotechnology heralds a promising frontier for targeted and impactful treatments against CNS diseases, which continue to pose significant public health challenges. By focusing on personalized and powerful diagnostic and therapeutic methods, we might improve the quality of patients.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Meizi Chen
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Li Ling Goldston
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA.
| |
Collapse
|
20
|
Rodriguez Gotor JJ, Mahfooz K, Perez-Otano I, Wesseling JF. Parallel processing of quickly and slowly mobilized reserve vesicles in hippocampal synapses. eLife 2024; 12:RP88212. [PMID: 38727712 PMCID: PMC11087054 DOI: 10.7554/elife.88212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Vesicles within presynaptic terminals are thought to be segregated into a variety of readily releasable and reserve pools. The nature of the pools and trafficking between them is not well understood, but pools that are slow to mobilize when synapses are active are often assumed to feed pools that are mobilized more quickly, in a series. However, electrophysiological studies of synaptic transmission have suggested instead a parallel organization where vesicles within slowly and quickly mobilized reserve pools would separately feed independent reluctant- and fast-releasing subdivisions of the readily releasable pool. Here, we use FM-dyes to confirm the existence of multiple reserve pools at hippocampal synapses and a parallel organization that prevents intermixing between the pools, even when stimulation is intense enough to drive exocytosis at the maximum rate. The experiments additionally demonstrate extensive heterogeneity among synapses in the relative sizes of the slowly and quickly mobilized reserve pools, which suggests equivalent heterogeneity in the numbers of reluctant and fast-releasing readily releasable vesicles that may be relevant for understanding information processing and storage.
Collapse
Affiliation(s)
| | - Kashif Mahfooz
- Department of Pharmacology, University of OxfordOxfordUnited Kingdom
| | - Isabel Perez-Otano
- Instituto de Neurociencias de Alicante CSIC-UMHSan Juan de AlicanteSpain
| | - John F Wesseling
- Instituto de Neurociencias de Alicante CSIC-UMHSan Juan de AlicanteSpain
| |
Collapse
|
21
|
Li MQ, Chen C, Ma YQ, Ding HM. Effect of terahertz waves on the aggregation behavior of neurotransmitters. Phys Chem Chem Phys 2024; 26:13751-13761. [PMID: 38683175 DOI: 10.1039/d4cp00556b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Understanding the dynamics of neurotransmitters is crucial for unraveling synaptic transmission mechanisms in neuroscience. In this study, we investigated the impact of terahertz (THz) waves on the aggregation of four common neurotransmitters through all-atom molecular dynamics (MD) simulations. The simulations revealed enhanced nicotine (NCT) aggregation under 11.05 and 21.44 THz, with a minimal effect at 42.55 THz. Structural analysis further indicated strengthened intermolecular interactions and weakened hydration effects under specific THz stimulation. In addition, enhanced aggregation was observed at stronger field strengths, particularly at 21.44 THz. Furthermore, similar investigations on epinephrine (EPI), 5-hydroxytryptamine (5-HT), and γ-aminobutyric acid (GABA) corroborated these findings. Notably, EPI showed increased aggregation at 19.05 THz, emphasizing the influence of vibrational modes on aggregation. However, 5-HT and GABA, with charged or hydrophilic functional groups, exhibited minimal aggregation under THz stimulation. The present study sheds some light on neurotransmitter responses to THz waves, offering implications for neuroscience and interdisciplinary applications.
Collapse
Affiliation(s)
- Meng-Qiu Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Chen Chen
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| |
Collapse
|
22
|
Xu N, Cao R, Chen SY, Gou XZ, Wang B, Luo HM, Gao F, Tang AH. Structural and functional reorganization of inhibitory synapses by activity-dependent cleavage of neuroligin-2. Proc Natl Acad Sci U S A 2024; 121:e2314541121. [PMID: 38657049 PMCID: PMC11067042 DOI: 10.1073/pnas.2314541121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Recent evidence has demonstrated that the transsynaptic nanoscale organization of synaptic proteins plays a crucial role in regulating synaptic strength in excitatory synapses. However, the molecular mechanism underlying this transsynaptic nanostructure in inhibitory synapses still remains unclear and its impact on synapse function in physiological or pathological contexts has not been demonstrated. In this study, we utilized an engineered proteolysis technique to investigate the effects of acute cleavage of neuroligin-2 (NL2) on synaptic transmission. Our results show that the rapid cleavage of NL2 led to impaired synaptic transmission by reducing both neurotransmitter release probability and quantum size. These changes were attributed to the dispersion of RIM1/2 and GABAA receptors and a weakened spatial alignment between them at the subsynaptic scale, as observed through superresolution imaging and model simulations. Importantly, we found that endogenous NL2 undergoes rapid MMP9-dependent cleavage during epileptic activities, which further exacerbates the decrease in inhibitory transmission. Overall, our study demonstrates the significant impact of nanoscale structural reorganization on inhibitory transmission and unveils ongoing modulation of mature GABAergic synapses through active cleavage of NL2 in response to hyperactivity.
Collapse
Affiliation(s)
- Na Xu
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital, University of Science and Technology of China, Luyang District, Hefei, Anhui230001, China
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Gaoxin District, Hefei, Anhui230088, China
- Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Shushan District, Hefei, Anhui230027, China
| | - Ran Cao
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Gaoxin District, Hefei, Anhui230088, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Baohe District, Hefei, Anhui230026, China
| | - Si-Yu Chen
- Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Shushan District, Hefei, Anhui230027, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Baohe District, Hefei, Anhui230026, China
| | - Xu-Zhuo Gou
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Gaoxin District, Hefei, Anhui230088, China
- Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Shushan District, Hefei, Anhui230027, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Baohe District, Hefei, Anhui230026, China
| | - Bin Wang
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Gaoxin District, Hefei, Anhui230088, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan450001, China
| | - Hong-Mei Luo
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Gaoxin District, Hefei, Anhui230088, China
- Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Shushan District, Hefei, Anhui230027, China
| | - Feng Gao
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital, University of Science and Technology of China, Luyang District, Hefei, Anhui230001, China
| | - Ai-Hui Tang
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital, University of Science and Technology of China, Luyang District, Hefei, Anhui230001, China
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Gaoxin District, Hefei, Anhui230088, China
- Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Shushan District, Hefei, Anhui230027, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Baohe District, Hefei, Anhui230026, China
| |
Collapse
|
23
|
Sun SED, Levenstein D, Li B, Mandelberg N, Chenouard N, Suutari BS, Sanchez S, Tian G, Rinzel J, Buzsáki G, Tsien RW. Synaptic homeostasis transiently leverages Hebbian mechanisms for a multiphasic response to inactivity. Cell Rep 2024; 43:113839. [PMID: 38507409 DOI: 10.1016/j.celrep.2024.113839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/19/2023] [Accepted: 02/05/2024] [Indexed: 03/22/2024] Open
Abstract
Homeostatic regulation of synapses is vital for nervous system function and key to understanding a range of neurological conditions. Synaptic homeostasis is proposed to operate over hours to counteract the destabilizing influence of long-term potentiation (LTP) and long-term depression (LTD). The prevailing view holds that synaptic scaling is a slow first-order process that regulates postsynaptic glutamate receptors and fundamentally differs from LTP or LTD. Surprisingly, we find that the dynamics of scaling induced by neuronal inactivity are not exponential or monotonic, and the mechanism requires calcineurin and CaMKII, molecules dominant in LTD and LTP. Our quantitative model of these enzymes reconstructs the unexpected dynamics of homeostatic scaling and reveals how synapses can efficiently safeguard future capacity for synaptic plasticity. This mechanism of synaptic adaptation supports a broader set of homeostatic changes, including action potential autoregulation, and invites further inquiry into how such a mechanism varies in health and disease.
Collapse
Affiliation(s)
- Simón E D Sun
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Daniel Levenstein
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3810 University Street, Montreal, QC, Canada
| | - Boxing Li
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510810, China
| | - Nataniel Mandelberg
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Nicolas Chenouard
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Sorbonne Université, INSERM U1127, UMR CNRS 7225, Institut du Cerveau (ICM), 47 bld de l'hôpital, 75013 Paris, France
| | - Benjamin S Suutari
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Sandrine Sanchez
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Guoling Tian
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - John Rinzel
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - György Buzsáki
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Richard W Tsien
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
24
|
Wang CS, McCarthy CI, Guzikowski NJ, Kavalali ET, Monteggia LM. Brain-derived neurotrophic factor scales presynaptic calcium transients to modulate excitatory neurotransmission. Proc Natl Acad Sci U S A 2024; 121:e2303664121. [PMID: 38621124 PMCID: PMC11047077 DOI: 10.1073/pnas.2303664121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays a critical role in synaptic physiology, as well as mechanisms underlying various neuropsychiatric diseases and their treatment. Despite its clear physiological role and disease relevance, BDNF's function at the presynaptic terminal, a fundamental unit of neurotransmission, remains poorly understood. In this study, we evaluated single synapse dynamics using optical imaging techniques in hippocampal cell cultures. We find that exogenous BDNF selectively increases evoked excitatory neurotransmission without affecting spontaneous neurotransmission. However, acutely blocking endogenous BDNF has no effect on evoked or spontaneous release, demonstrating that different approaches to studying BDNF may yield different results. When we suppressed BDNF-Tropomyosin receptor kinase B (TrkB) activity chronically over a period of days to weeks using a mouse line enabling conditional knockout of TrkB, we found that evoked glutamate release was significantly decreased while spontaneous release remained unchanged. Moreover, chronic blockade of BDNF-TrkB activity selectively downscales evoked calcium transients without affecting spontaneous calcium events. Via pharmacological blockade by voltage-gated calcium channel (VGCC) selective blockers, we found that the changes in evoked calcium transients are mediated by the P/Q subtype of VGCCs. These results suggest that BDNF-TrkB activity increases presynaptic VGCC activity to selectively increase evoked glutamate release.
Collapse
Affiliation(s)
- Camille S. Wang
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN3729-7933
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240-7933
| | - Clara I. McCarthy
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN3729-7933
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240-7933
| | - Natalie J. Guzikowski
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN3729-7933
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240-7933
| | - Ege T. Kavalali
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN3729-7933
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240-7933
| | - Lisa M. Monteggia
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN3729-7933
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240-7933
| |
Collapse
|
25
|
Ling W, Shang X, Yu C, Li C, Xu K, Feng L, Wei Y, Tang T, Huang X. Miniaturized Implantable Fluorescence Probes Integrated with Metal-Organic Frameworks for Deep Brain Dopamine Sensing. ACS NANO 2024; 18:10596-10608. [PMID: 38557034 DOI: 10.1021/acsnano.4c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Continuously monitoring neurotransmitter dynamics can offer profound insights into neural mechanisms and the etiology of neurological diseases. Here, we present a miniaturized implantable fluorescence probe integrated with metal-organic frameworks (MOFs) for deep brain dopamine sensing. The probe is assembled from physically thinned light-emitting diodes (LEDs) and phototransistors, along with functional surface coatings, resulting in a total thickness of 120 μm. A fluorescent MOF that specifically binds dopamine is introduced, enabling a highly sensitive dopamine measurement with a detection limit of 79.9 nM. A compact wireless circuit weighing only 0.85 g is also developed and interfaced with the probe, which was later applied to continuously monitor real-time dopamine levels during deep brain stimulation in rats, providing critical information on neurotransmitter dynamics. Cytotoxicity tests and immunofluorescence analysis further suggest a favorable biocompatibility of the probe for implantable applications. This work presents fundamental principles and techniques for integrating fluorescent MOFs and flexible electronics for brain-computer interfaces and may provide more customized platforms for applications in neuroscience, disease tracing, and smart diagnostics.
Collapse
Affiliation(s)
- Wei Ling
- Research Center for Augmented Intelligence, Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou 311121, China
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Xue Shang
- Research Center for Intelligent Sensing Systems, Research Institute of Intelligent Sensing, Zhejiang Lab, Hangzhou 311121, China
| | - Chaonan Yu
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
| | - Chenxi Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Kedi Xu
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
- Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Linqing Feng
- Research Center for Augmented Intelligence, Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou 311121, China
| | - Yina Wei
- Research Center for Augmented Intelligence, Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou 311121, China
| | - Tao Tang
- Research Center for Augmented Intelligence, Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou 311121, China
| | - Xian Huang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, 906 Yatai Road, Jiaxing 314006, China
| |
Collapse
|
26
|
Paulussen I, Beckert H, Musial TF, Gschossmann LJ, Wolf J, Schmitt M, Clasadonte J, Mairet-Coello G, Wolff C, Schoch S, Dietrich D. SV2B defines a subpopulation of synaptic vesicles. J Mol Cell Biol 2024; 15:mjad054. [PMID: 37682518 PMCID: PMC11184983 DOI: 10.1093/jmcb/mjad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/03/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023] Open
Abstract
Synaptic vesicles can undergo several modes of exocytosis, endocytosis, and trafficking within individual synapses, and their fates may be linked to different vesicular protein compositions. Here, we mapped the intrasynaptic distribution of the synaptic vesicle proteins SV2B and SV2A in glutamatergic synapses of the hippocampus using three-dimensional electron microscopy. SV2B was almost completely absent from docked vesicles and a distinct cluster of vesicles found near the active zone. In contrast, SV2A was found in all domains of the synapse and was slightly enriched near the active zone. SV2B and SV2A were found on the membrane in the peri-active zone, suggesting the recycling from both clusters of vesicles. SV2B knockout mice displayed an increased seizure induction threshold only in a model employing high-frequency stimulation. Our data show that glutamatergic synapses generate molecularly distinct populations of synaptic vesicles and are able to maintain them at steep spatial gradients. The almost complete absence of SV2B from vesicles at the active zone of wildtype mice may explain why SV2A has been found more important for vesicle release.
Collapse
Affiliation(s)
- Isabelle Paulussen
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, Bonn 53127, Germany
- Synaptic Neuroscience Team, Department of Neuropathology, University Hospital Bonn, Bonn 53127, Germany
| | - Hannes Beckert
- Microscopy Core Facility, Medical Faculty, University of Bonn, Bonn 53127, Germany
| | - Timothy F Musial
- Microscopy Core Facility, Medical Faculty, University of Bonn, Bonn 53127, Germany
| | - Lena J Gschossmann
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, Bonn 53127, Germany
- Synaptic Neuroscience Team, Department of Neuropathology, University Hospital Bonn, Bonn 53127, Germany
| | - Julia Wolf
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, Bonn 53127, Germany
- Synaptic Neuroscience Team, Department of Neuropathology, University Hospital Bonn, Bonn 53127, Germany
| | | | | | | | | | - Susanne Schoch
- Synaptic Neuroscience Team, Department of Neuropathology, University Hospital Bonn, Bonn 53127, Germany
| | - Dirk Dietrich
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, Bonn 53127, Germany
| |
Collapse
|
27
|
Vareberg AD, Bok I, Eizadi J, Ren X, Hai A. Inference of network connectivity from temporally binned spike trains. J Neurosci Methods 2024; 404:110073. [PMID: 38309313 PMCID: PMC10949361 DOI: 10.1016/j.jneumeth.2024.110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Processing neural activity to reconstruct network connectivity is a central focus of neuroscience, yet the spatiotemporal requisites of biological nervous systems are challenging for current neuronal sensing modalities. Consequently, methods that leverage limited data to successfully infer synaptic connections, predict activity at single unit resolution, and decipher their effect on whole systems, can uncover critical information about neural processing. Despite the emergence of powerful methods for inferring connectivity, network reconstruction based on temporally subsampled data remains insufficiently unexplored. NEW METHOD We infer synaptic weights by processing firing rates within variable time bins for a heterogeneous feed-forward network of excitatory, inhibitory, and unconnected units. We assess classification and optimize model parameters for postsynaptic spike train reconstruction. We test our method on a physiological network of leaky integrate-and-fire neurons displaying bursting patterns and assess prediction of postsynaptic activity from microelectrode array data. RESULTS Results reveal parameters for improved prediction and performance and suggest that lower resolution data and limited access to neurons can be preferred. COMPARISON WITH EXISTING METHOD(S) Recent computational methods demonstrate highly improved reconstruction of connectivity from networks of parallel spike trains by considering spike lag, time-varying firing rates, and other underlying dynamics. However, these methods insufficiently explore temporal subsampling representative of novel data types. CONCLUSIONS We provide a framework for reverse engineering neural networks from data with limited temporal quality, describing optimal parameters for each bin size, which can be further improved using non-linear methods and applied to more complicated readouts and connectivity distributions in multiple brain circuits.
Collapse
Affiliation(s)
- Adam D Vareberg
- Department of Biomedical Engineering, University of Wisconsin-Madison, United States; Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, United States
| | - Ilhan Bok
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, United States; Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, United States
| | - Jenna Eizadi
- Department of Biomedical Engineering, University of Wisconsin-Madison, United States; Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, United States
| | - Xiaoxuan Ren
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, United States
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin-Madison, United States; Department of Electrical and Computer Engineering, University of Wisconsin-Madison, United States; Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, United States.
| |
Collapse
|
28
|
Ye C, Zhou T, Deng Y, Wu S, Zeng T, Yang J, Shi YS, Yin Y, Li G. Enhanced performance of enzymes confined in biocatalytic hydrogen-bonded organic frameworks for sensing of glutamate in the central nervous system. Biosens Bioelectron 2024; 247:115963. [PMID: 38147717 DOI: 10.1016/j.bios.2023.115963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Glutamate (Glu) is a key excitatory neurotransmitter associated with various neurological disorders in the central nervous system, so its measurement is vital to both basic research and biomedical application. In this work, we propose the first example of using biocatalytic hydrogen-bonded organic frameworks (HOFs) as the hosting matrix to encapsulate glutamate oxidase (GLOD) via a de novo approach, fabricating a cascaded-enzyme nanoreactor for Glu biosensing. In this design, the ferriporphyrin ligands can assemble to form Fe-HOFs with high catalase-like activity, while offering a scaffold for the in-situ immobilization of GLOD. Moreover, the formed GLOD@Fe-HOFs are favorable for the efficient diffusion of Glu into the active sites of GLOD via the porous channels, accelerating the cascade reaction with neighboring Fe-HOFs. Consequently, the constructed nanoreactor can offer superior activity and operational stability in the catalytic cascade for Glu biosensing. More importantly, rapid and selective detection can be achieved in the cerebrospinal fluid (CSF) collected from mice in a low sample consumption. Therefore, the successful fabrication of enzyme@HOFs may offer promise to develop high-performance biosensor for further biomedical applications.
Collapse
Affiliation(s)
- Chang Ye
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing, 210032, PR China
| | - Tianci Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ying Deng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Shuai Wu
- Women & Children Central Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Tianyu Zeng
- Women & Children Central Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China; Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Jie Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing, 210032, PR China.
| | - Yongmei Yin
- Women & Children Central Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China; Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
29
|
Guo N, Yu L. SIP30 involvement in vesicle exocytosis from PC12 cells. Biochem Biophys Rep 2024; 37:101614. [PMID: 38188363 PMCID: PMC10770524 DOI: 10.1016/j.bbrep.2023.101614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
SNAP25 (synaptosome-associated protein of 25 kDa) is a core SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) protein; and the interaction between SNAP25 and other SNARE proteins is essential for synaptic vesicle exocytosis. Identified as a SNAP25 interacting protein, SIP30 (SNAP25 interacting protein at 30 kDa) has been shown to modulate neuropathic pain behavior, and is potentially involved in the cellular process of vesicle exocytosis. Previous study demonstrated that using a vesicle secretion assay in PC12 cells, anti-SIP30 siRNA reduced vesicle exocytosis. We investigated vesicle exocytosis from PC12 cells with FM1-43 fluorescence dye, and demonstrated that anti-SIP30 siRNA reduced the pool of releasable vesicles and the rate of vesicle exocytosis, without affecting the endocytosis and recycling of the exocytosed vesicles. The results show that SIP30 is involved in vesicle exocytosis, suggesting a potential mechanism of SIP30 modulation of neuropathic pain.
Collapse
Affiliation(s)
- Ning Guo
- Department of Genetics, and Center of Alcohol & Substance Use Studies, Rutgers University, Piscataway, NJ, 08854, USA
| | - Lei Yu
- Department of Genetics, and Center of Alcohol & Substance Use Studies, Rutgers University, Piscataway, NJ, 08854, USA
| |
Collapse
|
30
|
Vaglio-Garro A, Kozlov AV, Smirnova YD, Weidinger A. Pathological Interplay between Inflammation and Mitochondria Aggravates Glutamate Toxicity. Int J Mol Sci 2024; 25:2276. [PMID: 38396952 PMCID: PMC10889519 DOI: 10.3390/ijms25042276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial dysfunction and glutamate toxicity are associated with neural disorders, including brain trauma. A review of the literature suggests that toxic and transmission actions of neuronal glutamate are spatially and functionally separated. The transmission pathway utilizes synaptic GluN2A receptors, rapidly released pool of glutamate, evoked release of glutamate mediated by Synaptotagmin 1 and the amount of extracellular glutamate regulated by astrocytes. The toxic pathway utilizes extrasynaptic GluN2B receptors and a cytoplasmic pool of glutamate, which results from the spontaneous release of glutamate mediated by Synaptotagmin 7 and the neuronal 2-oxoglutarate dehydrogenase complex (OGDHC), a tricarboxylic acid (TCA) cycle enzyme. Additionally, the inhibition of OGDHC observed upon neuro-inflammation is due to an excessive release of reactive oxygen/nitrogen species by immune cells. The loss of OGDHC inhibits uptake of glutamate by mitochondria, thus facilitating its extracellular accumulation and stimulating toxic glutamate pathway without affecting transmission. High levels of extracellular glutamate lead to dysregulation of intracellular redox homeostasis and cause ferroptosis, excitotoxicity, and mitochondrial dysfunction. The latter affects the transmission pathway demanding high-energy supply and leading to cell death. Mitochondria aggravate glutamate toxicity due to impairments in the TCA cycle and become a victim of glutamate toxicity, which disrupts oxidative phosphorylation. Thus, therapies targeting the TCA cycle in neurological disorders may be more efficient than attempting to preserve mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Annette Vaglio-Garro
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andrey V. Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Yuliya D. Smirnova
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
31
|
Cea Salazar VI, Perez MD, Robison AJ, Trainor BC. Impacts of sex differences on optogenetic, chemogenetic, and calcium-imaging tools. Curr Opin Neurobiol 2024; 84:102817. [PMID: 38042130 PMCID: PMC11374099 DOI: 10.1016/j.conb.2023.102817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/04/2023]
Abstract
Technical innovation in neuroscience introduced powerful tools for measuring and manipulating neuronal activity via optical, chemogenetic, and calcium-imaging tools. These tools were initially tested primarily in male animals but are now increasingly being used in females as well. In this review, we consider how these tools may work differently in males and females. For example, we review sex differences in the metabolism of chemogenetic ligands and their downstream signaling effects. Optical tools more directly alter depolarization or hyperpolarization of neurons, but biological sex and gonadal hormones modulate synaptic inputs and intrinsic excitability. We review studies demonstrating that optogenetic manipulations are sometimes consistent across the rodent estrous cycle but within certain circuits; manipulations can vary across the ovarian cycle. Finally, calcium-imaging methods utilize genetically encoded calcium indicators to measure neuronal activity. Testosterone and estradiol can directly modulate calcium influx, and we consider these implications for interpreting the results of calcium-imaging studies. Together, our findings suggest that these neuroscientific tools may sometimes work differently in males and females and that users should be aware of these differences when applying these methods.
Collapse
Affiliation(s)
| | - Melvin D Perez
- Department of Physiology, University of California, Davis, CA 95616, USA
| | - A J Robison
- Department of Psychology, University of California, Davis, CA 95616, USA
| | - Brian C Trainor
- Neuroscience Graduate Group, University of California, Davis, CA 95616, USA; Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
32
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
33
|
Joy MSH, Nall DL, Emon B, Lee KY, Barishman A, Ahmed M, Rahman S, Selvin PR, Saif MTA. Synapses without tension fail to fire in an in vitro network of hippocampal neurons. Proc Natl Acad Sci U S A 2023; 120:e2311995120. [PMID: 38113266 PMCID: PMC10756289 DOI: 10.1073/pnas.2311995120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/02/2023] [Indexed: 12/21/2023] Open
Abstract
Neurons in the brain communicate with each other at their synapses. It has long been understood that this communication occurs through biochemical processes. Here, we reveal that mechanical tension in neurons is essential for communication. Using in vitro rat hippocampal neurons, we find that 1) neurons become tout/tensed after forming synapses resulting in a contractile neural network, and 2) without this contractility, neurons fail to fire. To measure time evolution of network contractility in 3D (not 2D) extracellular matrix, we developed an ultrasensitive force sensor with 1 nN resolution. We employed Multi-Electrode Array and iGluSnFR, a glutamate sensor, to quantify neuronal firing at the network and at the single synapse scale, respectively. When neuron contractility is relaxed, both techniques show significantly reduced firing. Firing resumes when contractility is restored. This finding highlights the essential contribution of neural contractility in fundamental brain functions and has implications for our understanding of neural physiology.
Collapse
Affiliation(s)
- Md Saddam Hossain Joy
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Duncan L. Nall
- Department of Physics and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Bashar Emon
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Ki Yun Lee
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Alexandra Barishman
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Movviz Ahmed
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Saeedur Rahman
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Paul R. Selvin
- Department of Physics and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - M. Taher A. Saif
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
34
|
Vasu SO, Kaphzan H. Direct Current Stimulation Modulates Synaptic Facilitation via Distinct Presynaptic Calcium Channels. Int J Mol Sci 2023; 24:16866. [PMID: 38069188 PMCID: PMC10706473 DOI: 10.3390/ijms242316866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a subthreshold neurostimulation technique known for ameliorating neuropsychiatric conditions. The principal mechanism of tDCS is the differential polarization of subcellular neuronal compartments, particularly the axon terminals that are sensitive to external electrical fields. Yet, the underlying mechanism of tDCS is not fully clear. Here, we hypothesized that direct current stimulation (DCS)-induced modulation of presynaptic calcium channel conductance alters axon terminal dynamics with regard to synaptic vesicle release. To examine the involvement of calcium-channel subtypes in tDCS, we recorded spontaneous excitatory postsynaptic currents (sEPSCs) from cortical layer-V pyramidal neurons under DCS while selectively inhibiting distinct subtypes of voltage-dependent calcium channels. Blocking P/Q or N-type calcium channels occluded the effects of DCS on sEPSCs, demonstrating their critical role in the process of DCS-induced modulation of spontaneous vesicle release. However, inhibiting T-type calcium channels did not occlude DCS-induced modulation of sEPSCs, suggesting that despite being active in the subthreshold range, T-type calcium channels are not involved in the axonal effects of DCS. DCS modulates synaptic facilitation by regulating calcium channels in axon terminals, primarily via controlling P/Q and N-type calcium channels, while T-type calcium channels are not involved in this mechanism.
Collapse
Affiliation(s)
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
| |
Collapse
|
35
|
Xie RG, Xu GY, Wu SX, Luo C. Presynaptic glutamate receptors in nociception. Pharmacol Ther 2023; 251:108539. [PMID: 37783347 DOI: 10.1016/j.pharmthera.2023.108539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/19/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Chronic pain is a frequent, distressing and poorly understood health problem. Plasticity of synaptic transmission in the nociceptive pathways after inflammation or injury is assumed to be an important cellular basis for chronic, pathological pain. Glutamate serves as the main excitatory neurotransmitter at key synapses in the somatosensory nociceptive pathways, in which it acts on both ionotropic and metabotropic glutamate receptors. Although conventionally postsynaptic, compelling anatomical and physiological evidence demonstrates the presence of presynaptic glutamate receptors in the nociceptive pathways. Presynaptic glutamate receptors play crucial roles in nociceptive synaptic transmission and plasticity. They modulate presynaptic neurotransmitter release and synaptic plasticity, which in turn regulates pain sensitization. In this review, we summarize the latest understanding of the expression of presynaptic glutamate receptors in the nociceptive pathways, and how they contribute to nociceptive information processing and pain hypersensitivity associated with inflammation / injury. We uncover the cellular and molecular mechanisms of presynaptic glutamate receptors in shaping synaptic transmission and plasticity to mediate pain chronicity, which may provide therapeutic approaches for treatment of chronic pain.
Collapse
Affiliation(s)
- Rou-Gang Xie
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Sheng-Xi Wu
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Ceng Luo
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
36
|
Wang CS, Monteggia LM, Kavalali ET. Spatially non-overlapping Ca 2+ signals drive distinct forms of neurotransmission. Cell Rep 2023; 42:113201. [PMID: 37777959 PMCID: PMC10842353 DOI: 10.1016/j.celrep.2023.113201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/23/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023] Open
Abstract
Calcium (Ca2+) signaling is tightly regulated within a presynaptic bouton. Here, we visualize Ca2+ signals within hippocampal presynaptic boutons using GCaMP8s tagged to synaptobrevin, a synaptic vesicle protein. We identify evoked presynaptic Ca2+ transients (ePreCTs) that derive from synchronized voltage-gated Ca2+ channel openings, spontaneous presynaptic Ca2+ transients (sPreCTs) that originate from ryanodine sensitive Ca2+ stores, and a baseline Ca2+ signal that arises from stochastic voltage-gated Ca2+ channel openings. We find that baseline Ca2+, but not sPreCTs, contributes to spontaneous glutamate release. We employ photobleaching as a use-dependent tool to probe nano-organization of Ca2+ signals and observe that all three occur in non-overlapping domains within the synapse at near-resting conditions. However, increased depolarization induces intermixing of these Ca2+ domains via both local and non-local synaptic vesicle turnover. Our findings reveal nanosegregation of Ca2+ signals within a presynaptic terminal that derive from multiple sources and in turn drive specific modes of neurotransmission.
Collapse
Affiliation(s)
- Camille S Wang
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 3729-7933, USA
| | - Lisa M Monteggia
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 3729-7933, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Ege T Kavalali
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 3729-7933, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA.
| |
Collapse
|
37
|
Weichard I, Taschenberger H, Gsell F, Bornschein G, Ritzau-Jost A, Schmidt H, Kittel RJ, Eilers J, Neher E, Hallermann S, Nerlich J. Fully-primed slowly-recovering vesicles mediate presynaptic LTP at neocortical neurons. Proc Natl Acad Sci U S A 2023; 120:e2305460120. [PMID: 37856547 PMCID: PMC10614622 DOI: 10.1073/pnas.2305460120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/26/2023] [Indexed: 10/21/2023] Open
Abstract
Pre- and postsynaptic forms of long-term potentiation (LTP) are candidate synaptic mechanisms underlying learning and memory. At layer 5 pyramidal neurons, LTP increases the initial synaptic strength but also short-term depression during high-frequency transmission. This classical form of presynaptic LTP has been referred to as redistribution of synaptic efficacy. However, the underlying mechanisms remain unclear. We therefore performed whole-cell recordings from layer 5 pyramidal neurons in acute cortical slices of rats and analyzed presynaptic function before and after LTP induction by paired pre- and postsynaptic neuronal activity. LTP was successfully induced in about half of the synaptic connections tested and resulted in increased synaptic short-term depression during high-frequency transmission and a decelerated recovery from short-term depression due to an increased fraction of a slow recovery component. Analysis with a recently established sequential two-step vesicle priming model indicates an increase in the abundance of fully-primed and slowly-recovering vesicles. A systematic analysis of short-term plasticity and synapse-to-synapse variability of synaptic strength at various types of synapses revealed that stronger synapses generally recover more slowly from synaptic short-term depression. Finally, pharmacological stimulation of the cyclic adenosine monophosphate and diacylglycerol signaling pathways, which are both known to promote synaptic vesicle priming, mimicked LTP and slowed the recovery from short-term depression. Our data thus demonstrate that LTP at layer 5 pyramidal neurons increases synaptic strength primarily by enlarging a subpool of fully-primed slowly-recovering vesicles.
Collapse
Affiliation(s)
- Iron Weichard
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Felix Gsell
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Grit Bornschein
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Andreas Ritzau-Jost
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Hartmut Schmidt
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Robert J. Kittel
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig04103, Germany
| | - Jens Eilers
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Erwin Neher
- Emeritus Laboratory of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37070, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Göttingen, Göttingen37073, Germany
| | - Stefan Hallermann
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Jana Nerlich
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| |
Collapse
|
38
|
Xu H, Oses-Prieto JA, Khvotchev M, Jain S, Liang J, Burlingame A, Edwards RH. Adaptor protein AP-3 produces synaptic vesicles that release at high frequency by recruiting phospholipid flippase ATP8A1. Nat Neurosci 2023; 26:1685-1700. [PMID: 37723322 DOI: 10.1038/s41593-023-01434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/14/2023] [Indexed: 09/20/2023]
Abstract
Neural systems encode information in the frequency of action potentials, which is then decoded by synaptic transmission. However, the rapid, synchronous release of neurotransmitters depletes synaptic vesicles (SVs), limiting release at high firing rates. How then do synapses convey information about frequency? Here, we show in mouse hippocampal neurons and slices that the adaptor protein AP-3 makes a subset of SVs that respond specifically to high-frequency stimulation. Neurotransmitter transporters slot onto these SVs in different proportions, contributing to the distinct properties of release observed at different excitatory synapses. Proteomics reveals that AP-3 targets the phospholipid flippase ATP8A1 to SVs; loss of ATP8A1 recapitulates the defect in SV mobilization at high frequency observed with loss of AP-3. The mechanism involves recruitment of synapsin by the cytoplasmically oriented phosphatidylserine translocated by ATP8A1. Thus, ATP8A1 enables the subset of SVs made by AP-3 to release at high frequency.
Collapse
Affiliation(s)
- Hongfei Xu
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Mikhail Khvotchev
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Shweta Jain
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Jocelyn Liang
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Robert H Edwards
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
39
|
Somach RT, Jean ID, Farrugia AM, Cohen AS. Mild Traumatic Brain Injury Affects Orexin/Hypocretin Physiology Differently in Male and Female Mice. J Neurotrauma 2023; 40:2146-2163. [PMID: 37476962 PMCID: PMC10701510 DOI: 10.1089/neu.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Traumatic brain injury (TBI) is known to affect the physiology of neural circuits in several brain regions, which can contribute to behavioral changes after injury. Disordered sleep is a behavior that is often seen after TBI, but there is little research into how injury affects the circuitry that contributes to disrupted sleep regulation. Orexin/hypocretin neurons (hereafter referred to as orexin neurons) located in the lateral hypothalamus normally stabilize wakefulness in healthy animals and have been suggested as a source of dysregulated sleep behavior. Despite this, few studies have examined how TBI affects orexin neuron circuitry. Further, almost no animal studies of orexin neurons after TBI have included female animals. Here, we address these gaps by studying changes to orexin physiology using ex vivo acute brain slices and whole-cell patch clamp recording. We hypothesized that orexin neurons would have reduced afferent excitatory activity after injury. Ultimately, this hypothesis was supported but there were additional physiological changes that occurred that we did not originally hypothesize. We studied physiological properties in orexin neurons approximately 1 week after mild traumatic brain injury (mTBI) in 6-8-week-old male and female mice. mTBI was performed with a lateral fluid percussion injury between 1.4 and 1.6 atmospheres. Mild TBI increased the size of action potential afterhyperpolarization in orexin neurons from female mice, but not male mice and reduced the action potential threshold in male mice, but not in female mice. Mild TBI reduced afferent excitatory activity and increased afferent inhibitory activity onto orexin neurons. Alterations in afferent excitatory activity occurred in different parameters in male and female animals. The increased afferent inhibitory activity after injury is more pronounced in recordings from female animals. Our results indicate that mTBI changes the physiology of orexin neuron circuitry and that these changes are not the same in male and female animals.
Collapse
Affiliation(s)
- Rebecca T. Somach
- Department of Anesthesiology and Critical Care Medicine, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian D. Jean
- Department of Anesthesiology and Critical Care Medicine, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anthony M. Farrugia
- Department of Anesthesiology and Critical Care Medicine, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akiva S. Cohen
- Department of Anesthesiology and Critical Care Medicine, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
Subekin A, Alieva R, Kukushkin V, Oleynikov I, Zavyalova E. Rapid SERS Detection of Botulinum Neurotoxin Type A. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2531. [PMID: 37764560 PMCID: PMC10535226 DOI: 10.3390/nano13182531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful technique for decoding of 2-5-component mixes of analytes. Low concentrations of analytes and complex biological media are usually non-decodable with SERS. Recognition molecules, such as antibodies and aptamers, provide an opportunity for a specific binding of ultra-low contents of analyte dissolved in complex biological media. Different approaches have been proposed to provide changes in SERS intensity of an external label upon binding of ultra-low contents of the analytes. In this paper, we propose a SERS-based sensor for the rapid and sensitive detection of botulinum toxin type A. The silver nanoisland SERS substrate was functionalized using an aptamer conjugated with a Raman label. The binding of the target affects the orientation of the label, providing changes in an analytical signal. This trick allowed detecting botulinum toxin type A in a one-stage manner without additional staining with a monotonous dose dependence and a limit of detection of 2.4 ng/mL. The proposed sensor architecture is consistent with the multiarray detection systems for multiplex analyses.
Collapse
Affiliation(s)
- Alexei Subekin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.S.); (R.A.)
| | - Rugiya Alieva
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.S.); (R.A.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir Kukushkin
- Osipyan Institute of Solid State Physics of the Russian Academy of Science, 142432 Chernogolovka, Russia;
| | - Ilya Oleynikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Elena Zavyalova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.S.); (R.A.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
41
|
Machamer JB, Vazquez-Cintron EJ, Stenslik MJ, Pagarigan KT, Bradford AB, Ondeck CA, McNutt PM. Neuromuscular recovery from botulism involves multiple forms of compensatory plasticity. Front Cell Neurosci 2023; 17:1226194. [PMID: 37650071 PMCID: PMC10463753 DOI: 10.3389/fncel.2023.1226194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Botulinum neurotoxin (BoNT) causes neuroparalytic disease and death by blocking neuromuscular transmission. There are no specific therapies for clinical botulism and the only treatment option is supportive care until neuromuscular function spontaneously recovers, which can take weeks or months after exposure. The highly specialized neuromuscular junction (NMJ) between phrenic motor neurons and diaphragm muscle fibers is the main clinical target of BoNT. Due to the difficulty in eliciting respiratory paralysis without a high mortality rate, few studies have characterized the neurophysiological mechanisms involved in diaphragm recovery from intoxication. Here, we develop a mouse model of botulism that involves partial paralysis of respiratory muscles with low mortality rates, allowing for longitudinal analysis of recovery. Methods and results Mice challenged by systemic administration of 0.7 LD50 BoNT/A developed physiological signs of botulism, such as respiratory depression and reduced voluntary running activity, that persisted for an average of 8-12 d. Studies in isolated hemidiaphragm preparations from intoxicated mice revealed profound reductions in nerve-elicited, tetanic and twitch muscle contraction strengths that recovered to baseline 21 d after intoxication. Despite apparent functional recovery, neurophysiological parameters remained depressed for 28 d, including end plate potential (EPP) amplitude, EPP success rate, quantal content (QC), and miniature EPP (mEPP) frequency. However, QC recovered more quickly than mEPP frequency, which could explain the discrepancy between muscle function studies and neurophysiological recordings. Hypothesizing that differential modulation of voltage-gated calcium channels (VGCC) contributed to the uncoupling of QC from mEPP frequency, pharmacological inhibition studies were used to study the contributions of different VGCCs to neurophysiological function. We found that N-type VGCC and P/Q-type VGCC partially restored QC but not mEPP frequency during recovery from paralysis, potentially explaining the accelerated recovery of evoked release versus spontaneous release. We identified additional changes that presumably compensate for reduced acetylcholine release during recovery, including increased depolarization of muscle fiber resting membrane potential and increased quantal size. Discussion In addition to identifying multiple forms of compensatory plasticity that occur in response to reduced NMJ function, it is expected that insights into the molecular mechanisms involved in recovery from neuromuscular paralysis will support new host-targeted treatments for multiple neuromuscular diseases.
Collapse
Affiliation(s)
- James B. Machamer
- BASF, Research Triangle Park, NC, United States
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | | | - Mallory J. Stenslik
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | - Kathleen T. Pagarigan
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | - Aaron B. Bradford
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | - Celinia A. Ondeck
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Patrick M. McNutt
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
42
|
Wang H, Peng K, Curry RJ, Li D, Wang Y, Wang X, Lu Y. Group I metabotropic glutamate receptor-triggered temporally patterned action potential-dependent spontaneous synaptic transmission in mouse MNTB neurons. Hear Res 2023; 435:108822. [PMID: 37285615 PMCID: PMC10330867 DOI: 10.1016/j.heares.2023.108822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Rhythmic action potentials (AP) are generated via intrinsic ionic mechanisms in pacemaking neurons, producing synaptic responses of regular inter-event intervals (IEIs) in their targets. In auditory processing, evoked temporally patterned activities are induced when neural responses timely lock to a certain phase of the sound stimuli. Spontaneous spike activity, however, is a stochastic process, rendering the prediction of the exact timing of the next event completely based on probability. Furthermore, neuromodulation mediated by metabotropic glutamate receptors (mGluRs) is not commonly associated with patterned neural activities. Here, we report an intriguing phenomenon. In a subpopulation of medial nucleus of the trapezoid body (MNTB) neurons recorded under whole-cell voltage-clamp mode in acute mouse brain slices, temporally patterned AP-dependent glycinergic sIPSCs and glutamatergic sEPSCs were elicited by activation of group I mGluRs with 3,5-DHPG (200 µM). Auto-correlation analyses revealed rhythmogenesis in these synaptic responses. Knockout of mGluR5 largely eliminated the effects of 3,5-DHPG. Cell-attached recordings showed temporally patterned spikes evoked by 3,5-DHPG in potential presynaptic VNTB cells for synaptic inhibition onto MNTB. The amplitudes of sEPSCs enhanced by 3,5-DHPG were larger than quantal size but smaller than spike-driven calyceal inputs, suggesting that non-calyceal inputs to MNTB might be responsible for the temporally patterned sEPSCs. Finally, immunocytochemical studies identified expression and localization of mGluR5 and mGluR1 in the VNTB-MNTB inhibitory pathway. Our results imply a potential central mechanism underlying the generation of patterned spontaneous spike activity in the brainstem sound localization circuit.
Collapse
Affiliation(s)
- Huimei Wang
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Kang Peng
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Rebecca J Curry
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA; School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA
| | - Dong Li
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Yuan Wang
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Xiaoyu Wang
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Yong Lu
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA; School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA.
| |
Collapse
|
43
|
Beccano-Kelly DA, Cherubini M, Mousba Y, Cramb KM, Giussani S, Caiazza MC, Rai P, Vingill S, Bengoa-Vergniory N, Ng B, Corda G, Banerjee A, Vowles J, Cowley S, Wade-Martins R. Calcium dysregulation combined with mitochondrial failure and electrophysiological maturity converge in Parkinson's iPSC-dopamine neurons. iScience 2023; 26:107044. [PMID: 37426342 PMCID: PMC10329047 DOI: 10.1016/j.isci.2023.107044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/30/2022] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Parkinson's disease (PD) is characterized by a progressive deterioration of motor and cognitive functions. Although death of dopamine neurons is the hallmark pathology of PD, this is a late-stage disease process preceded by neuronal dysfunction. Here we describe early physiological perturbations in patient-derived induced pluripotent stem cell (iPSC)-dopamine neurons carrying the GBA-N370S mutation, a strong genetic risk factor for PD. GBA-N370S iPSC-dopamine neurons show an early and persistent calcium dysregulation notably at the mitochondria, followed by reduced mitochondrial membrane potential and oxygen consumption rate, indicating mitochondrial failure. With increased neuronal maturity, we observed decreased synaptic function in PD iPSC-dopamine neurons, consistent with the requirement for ATP and calcium to support the increase in electrophysiological activity over time. Our work demonstrates that calcium dyshomeostasis and mitochondrial failure impair the higher electrophysiological activity of mature neurons and may underlie the vulnerability of dopamine neurons in PD.
Collapse
Affiliation(s)
- Dayne A. Beccano-Kelly
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Marta Cherubini
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Yassine Mousba
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Kaitlyn M.L. Cramb
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Stefania Giussani
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Maria Claudia Caiazza
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Pavandeep Rai
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Siv Vingill
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Nora Bengoa-Vergniory
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Bryan Ng
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Gabriele Corda
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Abhirup Banerjee
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 9DU, UK
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Jane Vowles
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- The James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sally Cowley
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- The James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Richard Wade-Martins
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
44
|
Wu L, Liu X, Zong S, Wang Z, Cui Y. A SERS Composite Hydrogel Device for Point-of-Care Analysis of Neurotransmitter in Whole Blood. BIOSENSORS 2023; 13:611. [PMID: 37366976 DOI: 10.3390/bios13060611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Point-of-care analysis of neurotransmitters in body fluids plays a significant role in healthcare improvement. Conventional approaches are limited by time-consuming procedures and usually require laboratory instruments for sample preparation. Herein, we developed a surface enhanced Raman spectroscopy (SERS) composite hydrogel device for the rapid analysis of neurotransmitters in whole blood samples. The PEGDA/SA composite hydrogel enabled fast separation of small molecules from the complex blood matrix, while the plasmonic SERS substrate allowed for the sensitive detection of target molecules. 3D printing was employed to integrate the hydrogel membrane and the SERS substrate into a systematic device. The sensor achieved highly sensitive detection of dopamine in whole blood samples with a limit of detection down to 1 nM. The whole detection process from sample preparation to SERS readout can be finished within 5 min. Due to the simple operation and rapid response, the device shows great potential in point-of-care diagnosis and the monitoring of neurological and cardiovascular diseases and disorders.
Collapse
Affiliation(s)
- Lei Wu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Xuefeng Liu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Shenfei Zong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Yiping Cui
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
45
|
Weidinger A, Milivojev N, Hosmann A, Duvigneau JC, Szabo C, Törö G, Rauter L, Vaglio-Garro A, Mkrtchyan GV, Trofimova L, Sharipov RR, Surin AM, Krasilnikova IA, Pinelis VG, Tretter L, Moldzio R, Bayır H, Kagan VE, Bunik VI, Kozlov AV. Oxoglutarate dehydrogenase complex controls glutamate-mediated neuronal death. Redox Biol 2023; 62:102669. [PMID: 36933393 PMCID: PMC10031542 DOI: 10.1016/j.redox.2023.102669] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Brain injury is accompanied by neuroinflammation, accumulation of extracellular glutamate and mitochondrial dysfunction, all of which cause neuronal death. The aim of this study was to investigate the impact of these mechanisms on neuronal death. Patients from the neurosurgical intensive care unit suffering aneurysmal subarachnoid hemorrhage (SAH) were recruited retrospectively from a respective database. In vitro experiments were performed in rat cortex homogenate, primary dissociated neuronal cultures, B35 and NG108-15 cell lines. We employed methods including high resolution respirometry, electron spin resonance, fluorescent microscopy, kinetic determination of enzymatic activities and immunocytochemistry. We found that elevated levels of extracellular glutamate and nitric oxide (NO) metabolites correlated with poor clinical outcome in patients with SAH. In experiments using neuronal cultures we showed that the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the glutamate-dependent segment of the tricarboxylic acid (TCA) cycle, is more susceptible to the inhibition by NO than mitochondrial respiration. Inhibition of OGDHC by NO or by succinyl phosphonate (SP), a highly specific OGDHC inhibitor, caused accumulation of extracellular glutamate and neuronal death. Extracellular nitrite did not substantially contribute to this NO action. Reactivation of OGDHC by its cofactor thiamine (TH) reduced extracellular glutamate levels, Ca2+ influx into neurons and cell death rate. Salutary effect of TH against glutamate toxicity was confirmed in three different cell lines. Our data suggest that the loss of control over extracellular glutamate, as described here, rather than commonly assumed impaired energy metabolism, is the critical pathological manifestation of insufficient OGDHC activity, leading to neuronal death.
Collapse
Affiliation(s)
- Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Nadja Milivojev
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Arthur Hosmann
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - J Catharina Duvigneau
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Csaba Szabo
- University of Fribourg, Section of Science and Medicine, Department of Oncology, Microbiology and Immunology, Section of Pharmacology, Fribourg, Switzerland; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Gabor Törö
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Laurin Rauter
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Annette Vaglio-Garro
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Garik V Mkrtchyan
- A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Lidia Trofimova
- Biological Faculty, Department of Biophysics, Lomonosov Moscow State University, Moscow, Russia
| | - Rinat R Sharipov
- Institute of General Pathology and Pathophysiology, Laboratory of Fundamental and Applied Problems of Pain, Moscow, Russia
| | - Alexander M Surin
- Institute of General Pathology and Pathophysiology, Laboratory of Fundamental and Applied Problems of Pain, Moscow, Russia; National Medical Research Center of Children's Health, Russian Ministry of Health, Laboratory of Neurobiology and Brain Development, Moscow, Russia
| | - Irina A Krasilnikova
- National Medical Research Center of Children's Health, Russian Ministry of Health, Laboratory of Neurobiology and Brain Development, Moscow, Russia
| | - Vsevolod G Pinelis
- National Medical Research Center of Children's Health, Russian Ministry of Health, Laboratory of Neurobiology and Brain Development, Moscow, Russia
| | - Laszlo Tretter
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Rudolf Moldzio
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hülya Bayır
- Departments of Environmental and Occupational Health, Pharmacology and Chemical Biology, Chemistry and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Departments of Environmental and Occupational Health, Pharmacology and Chemical Biology, Chemistry and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA
| | - Victoria I Bunik
- A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia; Department of Biochemistry, Sechenov University, Moscow, Russia
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
46
|
Aggarwal A, Liu R, Chen Y, Ralowicz AJ, Bergerson SJ, Tomaska F, Mohar B, Hanson TL, Hasseman JP, Reep D, Tsegaye G, Yao P, Ji X, Kloos M, Walpita D, Patel R, Mohr MA, Tillberg PW, Looger LL, Marvin JS, Hoppa MB, Konnerth A, Kleinfeld D, Schreiter ER, Podgorski K. Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission. Nat Methods 2023; 20:925-934. [PMID: 37142767 PMCID: PMC10250197 DOI: 10.1038/s41592-023-01863-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/21/2023] [Indexed: 05/06/2023]
Abstract
The fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit low in vivo signal-to-noise ratios, saturating activation kinetics and exclusion from postsynaptic densities. Using a multiassay screen in bacteria, soluble protein and cultured neurons, we generated variants with improved signal-to-noise ratios and kinetics. We developed surface display constructs that improve iGluSnFR's nanoscopic localization to postsynapses. The resulting indicator iGluSnFR3 exhibits rapid nonsaturating activation kinetics and reports synaptic glutamate release with decreased saturation and increased specificity versus extrasynaptic signals in cultured neurons. Simultaneous imaging and electrophysiology at individual boutons in mouse visual cortex showed that iGluSnFR3 transients report single action potentials with high specificity. In vibrissal sensory cortex layer 4, we used iGluSnFR3 to characterize distinct patterns of touch-evoked feedforward input from thalamocortical boutons and both feedforward and recurrent input onto L4 cortical neuron dendritic spines.
Collapse
Affiliation(s)
- Abhi Aggarwal
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Rui Liu
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
| | - Yang Chen
- Institute of Neuroscience and Cluster for Systems Neurology (SyNergy), Technical University of Munich (TUM), Munich, Germany
| | - Amelia J Ralowicz
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | | | - Filip Tomaska
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Boaz Mohar
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Timothy L Hanson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jeremy P Hasseman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Daniel Reep
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Getahun Tsegaye
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Pantong Yao
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Xiang Ji
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
| | - Marinus Kloos
- Institute of Neuroscience and Cluster for Systems Neurology (SyNergy), Technical University of Munich (TUM), Munich, Germany
| | - Deepika Walpita
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ronak Patel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Manuel A Mohr
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH) Zurich, Basel, Switzerland
| | - Paul W Tillberg
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Michael B Hoppa
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Arthur Konnerth
- Institute of Neuroscience and Cluster for Systems Neurology (SyNergy), Technical University of Munich (TUM), Munich, Germany
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
- Section of Neurobiology, University of California, San Diego, La Jolla, CA, USA
| | - Eric R Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kaspar Podgorski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
- Allen Institute for Neural Dynamics, Seattle, WA, USA.
| |
Collapse
|
47
|
Tevosian M, Todorov H, Lomazzo E, Bindila L, Ueda N, Bassetti D, Warm D, Kirischuk S, Luhmann HJ, Gerber S, Lutz B. NAPE-PLD deletion in stress-TRAPed neurons results in an anxiogenic phenotype. Transl Psychiatry 2023; 13:152. [PMID: 37149657 PMCID: PMC10164145 DOI: 10.1038/s41398-023-02448-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023] Open
Abstract
Anandamide (AEA) is an endogenous ligand of the cannabinoid CB1 and CB2 receptors, being a component of the endocannabinoid signaling system, which supports the maintenance or regaining of neural homeostasis upon internal and external challenges. AEA is thought to play a protective role against the development of pathological states after prolonged stress exposure, including depression and generalized anxiety disorder. Here, we used the chronic social defeat (CSD) stress as an ethologically valid model of chronic stress in male mice. We characterized a genetically modified mouse line where AEA signaling was reduced by deletion of the gene encoding the AEA synthesizing enzyme N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD) specifically in neurons activated at the time of CSD stress. One week after the stress, the phenotype was assessed in behavioral tests and by molecular analyses. We found that NAPE-PLD deficiency in neurons activated during the last three days of CSD stress led to an increased anxiety-like behavior. Investigating the molecular mechanisms underlying this phenotype may suggest three main altered pathways to be affected: (i) desensitization of the negative feedback loop of the hypothalamic-pituitary-adrenal axis, (ii) disinhibition of the amygdala by the prefrontal cortex, and (iii) altered neuroplasticity in the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Margaryta Tevosian
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Hristo Todorov
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ermelinda Lomazzo
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan
| | - Davide Bassetti
- Department of Mathematics, Technical University of Kaiserslautern, Kaiserslautern, Germany
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Davide Warm
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany.
| |
Collapse
|
48
|
Velasco CD, Santarella-Mellwig R, Schorb M, Gao L, Thorn-Seshold O, Llobet A. Microtubule depolymerization contributes to spontaneous neurotransmitter release in vitro. Commun Biol 2023; 6:488. [PMID: 37147475 PMCID: PMC10163034 DOI: 10.1038/s42003-023-04779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 03/29/2023] [Indexed: 05/07/2023] Open
Abstract
Microtubules are key to multiple neuronal functions involving the transport of organelles, however, their relationship to neurotransmitter release is still unresolved. Here, we show that microtubules present in the presynaptic compartment of cholinergic autaptic synapses are dynamic. To investigate how the balance between microtubule growth and shrinkage affects neurotransmission we induced synchronous microtubule depolymerization by photoactivation of the chemical inhibitor SBTub3. The consequence was an increase in spontaneous neurotransmitter release. An analogous effect was obtained by dialyzing the cytosol with Kif18A, a plus-end-directed kinesin with microtubule depolymerizing activity. Kif18A also inhibited the refilling of the readily releasable pool of synaptic vesicles during high frequency stimulation. The action of Kif18A was associated to one order of magnitude increases in the numbers of exo-endocytic pits and endosomes present in the presynaptic terminal. An enhancement of spontaneous neurotransmitter release was also observed when neurons were dialyzed with stathmin-1, a protein with a widespread presence in the nervous system that induces microtubule depolymerization. Taken together, these results support that microtubules restrict spontaneous neurotransmitter release as well as promote the replenishment of the readily releasable pool of synaptic vesicles.
Collapse
Affiliation(s)
- Cecilia D Velasco
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rachel Santarella-Mellwig
- Electron Microscopy Core Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Martin Schorb
- Electron Microscopy Core Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Li Gao
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich, 81377, Germany
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich, 81377, Germany
| | - Artur Llobet
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), 08907, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
49
|
McCarthy CI, Mustafá ER, Cornejo MP, Yaneff A, Rodríguez SS, Perello M, Raingo J. Chlorpromazine, an Inverse Agonist of D1R-Like, Differentially Targets Voltage-Gated Calcium Channel (Ca V) Subtypes in mPFC Neurons. Mol Neurobiol 2023; 60:2644-2660. [PMID: 36694048 DOI: 10.1007/s12035-023-03221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
The dopamine receptor type 1 (D1R) and the dopamine receptor type 5 (D5R), which are often grouped as D1R-like due to their sequence and signaling similarities, exhibit high levels of constitutive activity. The molecular basis for this agonist-independent activation has been well characterized through biochemical and mutagenesis in vitro studies. In this regard, it was reported that many antipsychotic drugs act as inverse agonists of D1R-like constitutive activity. On the other hand, D1R is highly expressed in the medial prefrontal cortex (mPFC), a brain area with important functions such as working memory. Here, we studied the impact of D1R-like constitutive activity and chlorpromazine (CPZ), an antipsychotic drug and D1R-like inverse agonist, on various neuronal CaV conductances, and we explored its effect on calcium-dependent neuronal functions in the mouse medial mPFC. Using ex vivo brain slices containing the mPFC and transfected HEK293T cells, we found that CPZ reduces CaV2.2 currents by occluding D1R-like constitutive activity, in agreement with a mechanism previously reported by our lab, whereas CPZ directly inhibits CaV1 currents in a D1R-like activity independent manner. In contrast, CPZ and D1R constitutive activity did not affect CaV2.1, CaV2.3, or CaV3 currents. Finally, we found that CPZ reduces excitatory postsynaptic responses in mPFC neurons. Our results contribute to understanding CPZ molecular targets in neurons and describe a novel physiological consequence of CPZ non-canonical action as a D1R-like inverse agonist in the mouse brain.
Collapse
Affiliation(s)
- Clara Inés McCarthy
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina
| | - Emilio Román Mustafá
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina
| | - María Paula Cornejo
- Neurophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Susana Rodríguez
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Neurophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Jesica Raingo
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology (Argentine Research Council CONICET, Scientific Research Commission of the Buenos Aires Province and National University of La Plata), La Plata, Buenos Aires, Argentina.
| |
Collapse
|
50
|
Ragozzino FJ, Peterson B, Karatsoreos IN, Peters JH. Circadian regulation of glutamate release pathways shapes synaptic throughput in the brainstem nucleus of the solitary tract (NTS). J Physiol 2023; 601:1881-1896. [PMID: 36975145 PMCID: PMC10192157 DOI: 10.1113/jp284370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Circadian regulation of autonomic reflex pathways pairs physiological function with the daily light cycle. The brainstem nucleus of the solitary tract (NTS) is a key candidate for rhythmic control of the autonomic nervous system. Here we investigated circadian regulation of NTS neurotransmission and synaptic throughput using patch-clamp electrophysiology in brainstem slices from mice. We found that spontaneous quantal glutamate release onto NTS neurons showed strong circadian rhythmicity, with the highest rate of release during the light phase and the lowest in the dark, that were sufficient to drive day/night differences in constitutive postsynaptic action potential firing. In contrast, afferent evoked action potential throughput was enhanced during the dark and diminished in the light. Afferent-driven synchronous release pathways showed a similar decrease in release probability that did not explain the enhanced synaptic throughput during the night. However, analysis of postsynaptic membrane properties revealed diurnal changes in conductance, which, when coupled with the circadian changes in glutamate release pathways, tuned synaptic throughput between the light and dark phases. These coordinated pre-/postsynaptic changes encode nuanced control over synaptic performance and pair NTS action potential firing and vagal throughput with time of day. KEY POINTS: Vagal afferent neurons relay information from peripheral organs to the brainstem nucleus of the solitary tract (NTS) to initiate autonomic reflex pathways as well as providing important controls of food intake, digestive function and energy balance. Vagally mediated reflexes and behaviours are under strong circadian regulation. Diurnal fluctuations in presynaptic vesicle release pathways and postsynaptic membrane conductances provide nuanced control over NTS action potential firing and vagal synaptic throughput. Coordinated pre-/postsynaptic changes represent a fundamental mechanism mediating daily changes in vagal afferent signalling and autonomic function.
Collapse
Affiliation(s)
- Forrest J. Ragozzino
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - BreeAnne Peterson
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Ilia N. Karatsoreos
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - James H. Peters
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|