1
|
Phan NM, Nguyen TL, Min DK, Kim J. Mesoporous polydopamine nanoparticle-based tolerogenic vaccine induces antigen-specific immune tolerance to prevent and treat autoimmune multiple sclerosis. Biomaterials 2025; 316:122997. [PMID: 39662275 DOI: 10.1016/j.biomaterials.2024.122997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Multiple sclerosis (MS) is a chronic neurological disorder derived from autoreactive immune system attacking the protective myelin sheath that surrounds nerves in the central nervous system (CNS). Here, a tolerogenic nanovaccine for generating an antigen-specific immune tolerance for treating MS is proposed. It consisted of a mesoporous polydopamine (mPDA) nanoparticle, characterized by high reactive oxygen species (ROS)-scavenging property, loaded with MS-derived autoantigen. Intravenous vaccination of autoantigen-loaded mPDA could induce tolerogenic dendritic cells (DCs) with low expression of co-stimulatory molecules while presenting peptide epitopes. The tolerogenic DCs induced peripheral regulatory T-cells (Tregs), thereby reducing infiltration of autoreactive CD4+ T-cells and inflammatory antigen-presenting cells (APCs) into the CNS. In MS-mimicking mouse model, the tolerogenic nanovaccine prevented MS development in the early therapeutic setup and exhibited an enhanced recovery from complete paralysis in the late therapeutic model. The current platform could be exploited to treat other autoimmune diseases where disease-dependent autoantigen peptides are delivered.
Collapse
Affiliation(s)
- Ngoc Man Phan
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Thanh Loc Nguyen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Dong Kwang Min
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Kornberg MD, Calabresi PA. Multiple Sclerosis and Other Acquired Demyelinating Diseases of the Central Nervous System. Cold Spring Harb Perspect Biol 2025; 17:a041374. [PMID: 38806240 PMCID: PMC11875095 DOI: 10.1101/cshperspect.a041374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Acquired demyelinating diseases of the central nervous system (CNS) comprise inflammatory conditions, including multiple sclerosis (MS) and related diseases, as well as noninflammatory conditions caused by toxic, metabolic, infectious, traumatic, and neurodegenerative insults. Here, we review the spectrum of diseases producing acquired CNS demyelination before focusing on the prototypical example of MS, exploring the pathologic mechanisms leading to myelin injury in relapsing and progressive MS and summarizing the mechanisms and modulators of remyelination. We highlight the complex interplay between the immune system, oligodendrocytes and oligodendrocyte progenitor cells (OPCs), and other CNS glia cells such as microglia and astrocytes in the pathogenesis and clinical course of MS. Finally, we review emerging therapeutic strategies that exploit our growing understanding of disease mechanisms to limit progression and promote remyelination.
Collapse
Affiliation(s)
- Michael D Kornberg
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
3
|
Das S, Shaw AK, Das Sarma S, Koval M, Das Sarma J, Maulik M. Neurotropic Murine β-Coronavirus Infection Causes Differential Expression of Connexin 47 in Oligodendrocyte Subpopulations Associated with Demyelination. Mol Neurobiol 2025; 62:3428-3445. [PMID: 39292341 PMCID: PMC11790745 DOI: 10.1007/s12035-024-04482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Gap junctions (GJs) play a crucial role in the survival of oligodendrocytes and myelination of the central nervous system (CNS). In this study, we investigated the spatiotemporal changes in the expression of oligodendroglial GJ protein connexin 47 (Cx47), its primary astroglial coupling partner, Cx43, and their association with demyelination following intracerebral infection with mouse hepatitis virus (MHV). Neurotropic strains of MHV, a β-coronavirus, induce an acute encephalomyelitis followed by a chronic demyelinating disease that shares similarities with the human disease multiple sclerosis (MS). Our results reveal that Cx47 GJs are persistently lost in mature oligodendrocytes, not only in demyelinating lesions but also in surrounding normal appearing white and gray matter areas, following an initial loss of astroglial Cx43 GJs during acute infection. At later stages after viral clearance, astroglial Cx43 GJs re-emerge but mature oligodendrocytes fail to fully re-establish GJs with astrocytes due to lack of Cx47 GJ expression. In contrast, at this later demyelinating stage, the increased oligodendrocyte precursor cells appear to exhibit Cx47 GJs. Our findings further highlight varying degrees of demyelination in distinct spinal cord regions, with the thoracic cord showing the most pronounced demyelination. The regional difference in demyelination correlates well with dynamic changes in the proportion of different oligodendrocyte lineage cells exhibiting differential Cx47 GJ expression, suggesting an important mechanism of progressive demyelination even after viral clearance.
Collapse
Affiliation(s)
- Soubhik Das
- Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, 741251, West Bengal, India
| | - Archana Kumari Shaw
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Subhajit Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Michael Koval
- Departments of Medicine and Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Mahua Maulik
- Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, 741251, West Bengal, India.
| |
Collapse
|
4
|
Orian JM. A New Perspective on Mechanisms of Neurodegeneration in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis: the Early and Critical Role of Platelets in Neuro/Axonal Loss. J Neuroimmune Pharmacol 2025; 20:14. [PMID: 39904925 PMCID: PMC11794395 DOI: 10.1007/s11481-025-10182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/26/2025] [Indexed: 02/06/2025]
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) autoimmune disorder, with limited treatment options. This disease is characterized by differential pathophysiology between grey matter (GM) and white matter (WM). The predominant WM hallmark is the perivascular plaque, associated with blood brain barrier (BBB) loss of function, lymphocytic infiltration, microglial reactivity, demyelination and axonal injury and is adequately addressed with immunomodulatory drugs. By contrast, mechanisms underlying GM damage remain obscure, with consequences for neuroprotective strategies. Cortical GM pathology is already significant in early MS and characterized by reduced BBB disruption and lymphocytic infiltration relative to WM, but a highly inflammatory environment, microglial reactivity, demyelination and neuro/axonal loss. There is no satisfactory explanation for the occurrence of neurodegeneration without large-scale inflammatory cell influx in cortical GM. A candidate mechanism suggests that it results from soluble factors originating from meningeal inflammatory cell aggregates, which diffuse into the underlying cortical tissue and trigger microglial activation. However, the recent literature highlights the central role of platelets in inflammation, together with the relationship between coagulation factors, particularly fibrinogen, and tissue damage in MS. Using the experimental autoimmune encephalomyelitis (EAE) model, we identified platelets as drivers of neuroinflammation and platelet-neuron associations from the pre-symptomatic stage. We propose that fibrinogen leakage across the BBB is a signal for platelet infiltration and that platelets represent a major and early participant in neurodegeneration. This concept is compatible with the new appreciation of platelets as immune cells and of neuronal damage driven by inflammatory cells sequestered in the meninges.
Collapse
Affiliation(s)
- Jacqueline Monique Orian
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Vic. 3086, Australia.
| |
Collapse
|
5
|
Li Y, Zhu M, Yang P, Chen D, Zhou D, Ren Y, Zhang Z, Ruan C, Da Y, Zhang R. Sp3 ameliorated experimental autoimmune encephalomyelitis by triggering Socs3 in Th17 cells. J Adv Res 2025:S2090-1232(25)00070-0. [PMID: 39884649 DOI: 10.1016/j.jare.2025.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/06/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025] Open
Abstract
INTRODUCTION Although it is believed that chronic inflammatory and degenerative diseases of the central nervous system are mediated by autoimmune Th17 cells, the underlying mechanisms remain largely unexplored. Recent studies and our research have revealed that Sp3 was blocked in multiple sclerosis (MS) patients and experimental autoimmune encephalomyelitis (EAE). However, it remained unclear why it is silent and how it regulates Th17 cell differentiation in MS. OBJECTIVES This study aimed to explore the impact of Sp3 on Th17 cell-mediated EAE and the underlying mechanism. METHODS The effect of Sp3 on the clinical symptoms of EAE was evaluated by scoring, histochemistry, and fast blue (FB) techniques, scRNA-seq data analysis, flow cytometry, ELISA, PCR, WB, immunofluorescence and reporter gene techniques were used to explore the molecular mechanism of Sp3 regulating Th17 cell differentiation. RESULTS Injection of overexpression Sp3 lentivirus could significantly ameliorate the EAE progress and clinical symptoms and prevent the polarization of Th1 and Th17 cells both in vivo and in vitro. We confirmed the occurrence of EAE in Sp3+/+CD4Cre mice and Sp3+/- knockout mice. Furthermore, we identified Sp3 as a target of miR-223, which is found to be upregulated in the blood of MS patients, as well as in EAE and Th17 cells. Moreover, knockdown of miR-223 led to a marked improvement in EAE symptoms and a suppression of Th1 and Th17 cell polarization in vivo and in vitro. Mechanistically, Sp3 significantly suppressed RORγt expression and the phosphorylation of Stat3 and Smad2/3 by directly upregulating Socs3. Interestingly, Socs3 was found to regulate Sp3 expression in response to TGF-β1 via a feedback loop. Moreover, Socs3 modulated phospho-Smad2/3 by binding to and degrading the transforming growth factor-β receptor II (TβRII). CONCLUSION Thus, our study suggests a novel mechanism involving miR-223/Sp3/Socs3/TGF-β signaling as a potential therapeutic strategy for targeting Th17 cells in immunotherapy.
Collapse
Affiliation(s)
- Yan Li
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Mengyi Zhu
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Penghui Yang
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Daoyang Chen
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dongmei Zhou
- Department of Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Yinghui Ren
- Department of Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Zimu Zhang
- Department of Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Chuangdong Ruan
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yurong Da
- Department of Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Rongxin Zhang
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Lowinski A, Dabringhaus A, Kraemer M, Doshi H, Weier A, Hintze M, Chunder R, Kuerten S. MRI-based morphometric structural changes correlate with histopathology in experimental autoimmune encephalomyelitis. J Neurol Sci 2025; 468:123358. [PMID: 39729930 DOI: 10.1016/j.jns.2024.123358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND AND OBJECTIVES Magnetic resonance imaging (MRI) and neurohistopathology are important correlates for evaluation of disease progression in multiple sclerosis (MS). Here we used experimental autoimmune encephalomyelitis (EAE) as an animal model of MS to determine the correlation between clinical EAE severity, MRI and histopathological parameters. METHODS N = 11 female C57BL/6J mice were immunized with human myelin oligodendrocyte glycoprotein 1-125, while N = 9 remained non-immunized. Mice were scanned longitudinally over a period of 13 weeks using a 11.7 Tesla (T) Bruker BioSpec® preclinical MRI instrument, and regional volume changes of the lumbar spinal cord were analyzed using Voxel-Guided Morphometry (VGM). Following the final in vivo T1-weighted MRI scan, the lumbar spinal cord of each mouse was subjected to an ex vivo MRI scan using T1-, T2*- and diffusion tensor imaging (DTI)-weighted sequences. Tissue sections were then stained for immune cell infiltration, demyelination, astrogliosis, and axonal damage using hematoxylin-eosin staining and immunohistochemistry. RESULTS While in vivo MRI VGM detected an overall increase in volume over time, no differences were observed between EAE animals and controls. Ex vivo MRI showed a generalized atrophy of the spinal cord, which was pronounced in the anterolateral tract. The most striking correlation was observed between EAE score, white matter atrophy in ex vivo T1-weighted scans and histological parameters. DISCUSSION The data demonstrate that ex vivo MRI is a valuable tool to assess white matter atrophy in EAE, which was shown to be directly linked to the severity of EAE and spinal cord histopathology.
Collapse
Affiliation(s)
- Anna Lowinski
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Nussallee 10, 53115 Bonn, Germany
| | | | - Matthias Kraemer
- VGMorph GmbH, Waterloostr. 32, 45472 Mülheim an der Ruhr, Germany; NeuroCentrum, Am Ziegelkamp 1f, 41515 Grevenbroich, Germany
| | - Hardik Doshi
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alicia Weier
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Nussallee 10, 53115 Bonn, Germany
| | - Maik Hintze
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Nussallee 10, 53115 Bonn, Germany
| | - Rittika Chunder
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Nussallee 10, 53115 Bonn, Germany
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Nussallee 10, 53115 Bonn, Germany.
| |
Collapse
|
7
|
Hua X, Jin L, Fang Z, Weng Y, Zhang Y, Zhang J, Xie D, Tang Y, Guo S, Huang Y, Dai Y, Li J, Huang Z, Zhang X. TIA1-Mediated Stress Granules Promote the Neuroinflammation and Demyelination in Experimental Autoimmune Encephalomyelitis through Upregulating IL-31RA Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2409086. [PMID: 39804990 DOI: 10.1002/advs.202409086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/18/2024] [Indexed: 01/16/2025]
Abstract
The dysfunction of stress granules (SGs) plays a crucial role in the pathogenesis of various neurological disorders, with T cell intracellular antigen 1 (TIA1) being a key component of SGs. However, the role and mechanism of TIA1-mediated SGs in experimental autoimmune encephalomyelitis (EAE) remain unclear. In this study, upregulation of TIA1, its translocation from the nucleus to the cytoplasm, and co-localization with G3BP1 (a marker of SGs) are observed in the spinal cord neurons of EAE mice. Deletion of TIA1 in the CNS alleviates neuroinflammation, suppresses demyelination and axonal damage, and reduces neuronal loss in EAE mice. Furthermore, alleviation of autophagy dysfunction and reduction of chronic persistent SGs are observed in Tia1Nestin-CKO EAE mice. Mechanistically, IL-31RA levels are decreased in Tia1Nestin-CKO EAE mice, which inhibit the downstream PI3K/AKT signaling pathway associated with IL-31RA, thereby enhancing autophagy and suppressing the NF-κB signaling pathway, further alleviating EAE symptoms. Knockdown of TIA1 in primary neurons and N2a cells treated with sodium arsenite also reduces the formation of SGs. These findings reveal an unrecognized role of TIA1-mediated SGs in promoting neuroinflammation and demyelination, offering novel therapeutic targets for MS.
Collapse
Affiliation(s)
- Xin Hua
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Lingting Jin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zheyu Fang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yiyun Weng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuan Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jingjing Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Dewei Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yang Tang
- Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Siyu Guo
- Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yingying Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yilin Dai
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jia Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhihui Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xu Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
8
|
Hernandez ME, Motl RW, Foley FW, Izzetoglu M, Wagshul M, Holtzer R. Comparison of practice-related changes in dual task walking performance and neural efficiency between older adults with progressive and relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 2025; 93:106224. [PMID: 39693703 DOI: 10.1016/j.msard.2024.106224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/18/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND There is limited research comparing both performance and brain control of walking between older adults with progressive and relapsing-remitting MS. OBJECTIVE This study compared older adults with progressive and relapsing-remitting MS for differences in prefrontal cortex (PFC) activation in single- and dual-task-walking and practice-related effects on neural efficiency, walking, and cognitive performances. METHODS Older adults with progressive (n = 32, age=65±6ys) and relapsing-remitting (n = 63, age=65±4ys) MS completed three conditions (single-task walk, single-task-alpha, i.e., cognitive interference task, and dual-task-walk) with three repeated trials wherein we measured PFC oxygenated hemoglobin (HbO2), stride velocity and letter generation rate. Task, trial, and group effects and interactions were analyzed using linear mixed effects models. RESULTS The task-related (i.e. single-to-dual task walking) increase in PFC HbO2 was greater in progressive than in relapsing-remitting MS (p < 0.001), while the practice-related decrease in dual-task PFC HbO2 was smaller in progressive than in relapsing-remitting MS (p < 0.001). Progressive MS was associated with slower stride velocity overall, but repeated trials resulted in faster stride velocity and correct letter generation rate for both groups. CONCLUSIONS Practice-related improvements in cognitive and motor performances coupled with reduced PFC HbO2 over dual-task walking trials suggest attenuated improvements of efficiency in brain control of attention-demanding locomotion in progressive MS.
Collapse
Affiliation(s)
- Manuel E Hernandez
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Robert W Motl
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Frederick W Foley
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA; Multiple Sclerosis Center, Holy Name Medical Center, Teaneck, NJ, USA
| | - Meltem Izzetoglu
- Villanova University, Electrical and Computer Engineering, Villanova, PA, USA
| | - Mark Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
9
|
Feng F, Li X, Wang W, Dou M, Li S, Jin X, Chu Y, Zhu L. Matrine protects against experimental autoimmune encephalomyelitis through modulating microglial ferroptosis. Biochem Biophys Res Commun 2024; 735:150651. [PMID: 39260333 DOI: 10.1016/j.bbrc.2024.150651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelination neurodegenerative disease of the central nervous system (CNS). Ferroptosis has been implicated in a range of brain disorders, and iron-loaded microglia are frequently found in affected brain regions. However, the molecular mechanisms linking ferroptosis with MS have not been well-defined. The present study seeks to bridge this gap and investigate the impact of matrine (MAT), a herbal medicine with immunomodulatory capacities, on the regulation of oxidative stress and ferroptosis in the CNS of mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. CNS of EAE mice contained elevated levels of ferroptosis-related molecules, e.g., MDA, LPCAT3 and PTGS2, but decreased expression of antioxidant molecules, including GSH and SOD, GPX4 and SLC7A11. This pathogenic process was reversed by MAT treatment, together with significant reduction of disease severity and CNS inflammatory demyelination. Furthermore, the expression of PTGS2 and LOX was largely increased in microglia of EAE mice, accompanied with increased production of IL-6 and TNF-α, indicating a proinflammatory phenotype of microglia that undergo oxidative stress/ferroptosis, and their expression was significantly reduced after MAT treatment. Together, our results indicate that ferroptosis/inflammation plays an important role in the pathogenesis of CNS autoimmunity, and inhibiting ferroptosis-induced microglial activation/inflammation could be a novel mechanism underlying the therapeutic effects of MAT on CNS inflammatory demyelination in EAE.
Collapse
Affiliation(s)
- Furui Feng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinyu Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenbin Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Mengmeng Dou
- Department of Integrated Traditional and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Silu Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xin Jin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yaojuan Chu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Lin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
10
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
11
|
Guo H, Li Z, Wang Y. BCL3, GBP1, IFI16, and CCR1 as potential brain-derived biomarkers for parietal grey matter lesions in multiple sclerosis. Sci Rep 2024; 14:28543. [PMID: 39557900 PMCID: PMC11574279 DOI: 10.1038/s41598-024-76949-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune disease of the central nervous system, progressing from Relapsing-Remitting MS (RRMS) to Secondary Progressive MS (SPMS) in many cases. The transition involves complex biological changes. Our study aims to identify potential biomarkers for distinguishing SPMS by analyzing gene expression differences between normal-appearing and lesioned parietal grey matter, which may also contribute to understand the pathogenesis of SPMS. We utilized public datasets from the Gene Expression Omnibus (GEO), applying bioinformatics and machine learning techniques including Weighted Gene Co-expression Network Analysis (WGCNA), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO) enrichment analysis, protein-protein interaction (PPI) networks, the Least Absolute Shrinkage and Selection Operator (LASSO), and Random Forest (RF) for predictive model construction. Our study also included analyses of immune cell infiltration. The study identified 359 DEGs, with 105 up-regulated and 254 down-regulated. WGCNA identified 264 common genes, which were subjected to KEGG and GO enrichment analyses, highlighting their role in immune response and viral infection pathways. Four genes (BCL3, GBP1, IFI16, and CCR1) were identified as key biomarkers for SPMS, supported by LASSO regression and RF analyses. These genes were further validated through receiver operating characteristic (ROC) curves, demonstrating significant predictive potential for SPMS. Our study provides a novel set of biomarkers for SPMS from lesioned grey matter of SPMS cases, offering potential for diagnosis and targeted therapeutic strategies. The identified biomarkers link closely with SPMS pathology, especially regarding immune system modulation.
Collapse
Affiliation(s)
- Hua Guo
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhaocheng Li
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanqing Wang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
12
|
Ciubotaru A, Alexa D, Grosu C, Böckels L, Păvăleanu I, Maștaleru A, Leon MM, Covali R, Roman EM, Bistriceanu CE, Ghiciuc CM, Azoicăi D, Ignat EB. Validation of a Set of Clinical Criteria for the Diagnosis of Secondary Progressive Multiple Sclerosis. Brain Sci 2024; 14:1141. [PMID: 39595904 PMCID: PMC11591908 DOI: 10.3390/brainsci14111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by progressive impairment of neuronal transmission due to focal demyelination. The most common form is RRMS (relapsing-remitting multiple sclerosis), which, under the influence of certain factors, can progress to SPMS (secondary progressive multiple sclerosis). Our study aimed to validate the criteria proposed by a working group of the Romanian Society of Neurology versus the criteria proposed by a group of experts from Spain, Karolinska, and Croatia concerning the progression from RRMS to SPMS. Methods: This was done by gathering epidemiological data (age, gender) and by applying clinical tests such as the 9HPT (9-hole peg test), 25FWT (25-foot walk test), and EDSS (expanded disability status scale) tests and the SDMT test (symbol digit modalities test). The present research is a cohort study that included a number of 120 patients diagnosed with MS according to the McDonald Diagnostic Criteria 2017. The study was carried out between January 2023 and April 2024, including patients hospitalized in the Neurology Clinic of the Clinical Rehabilitation Hospital from Iasi, Romania. The data were collected at baseline (T0) and at a 12-month interval (T1). Results: The statistical analysis was conducted using Kaiser-Meyer-Olkin analysis, which indicated a value of 0.683, thus validating the clinical tests used. The correlation matrix and the linear regression for all the tests showed highly significant statistical results. Furthermore, the ROC curve analysis of the criteria suggested by the working group of the Romanian Society of Neurology demonstrated that the EDSS, 9HPT, and 25FWT are highly sensitive in diagnosing SPMS, an opinion that is shared with the Spanish experts, but not with the Karolinska expert panel. Using the criteria given by the Croatian expert group in the ROC curve analysis showed that only the EDSS was strongly significant for the progression to the SPMS phase. Conclusions: In conclusion, all clinical methods used demonstrated that they are valid and can contribute to identifying patients with an increased risk of progression. The model proposed by the Romanian Society of Neurology working group is similar to other countries' expert opinions and can be used to detect the risk of disease progression and establish a more tailored therapeutic management of SPMS.
Collapse
Affiliation(s)
- Alin Ciubotaru
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.C.); (D.A.); (C.G.); (C.E.B.); (E.B.I.)
- Department of Neurology, Rehabilitation Hospital, 700661 Iași, Romania;
| | - Daniel Alexa
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.C.); (D.A.); (C.G.); (C.E.B.); (E.B.I.)
- Department of Neurology, Rehabilitation Hospital, 700661 Iași, Romania;
| | - Cristina Grosu
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.C.); (D.A.); (C.G.); (C.E.B.); (E.B.I.)
- Department of Neurology, Rehabilitation Hospital, 700661 Iași, Romania;
| | - Lilia Böckels
- Department of Neurology, Rehabilitation Hospital, 700661 Iași, Romania;
| | - Ioana Păvăleanu
- Mother and Child Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Alexandra Maștaleru
- Department of Medical Specialities I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Maria Magdalena Leon
- Department of Medical Specialities I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Roxana Covali
- Department of Radiology, Biomedical Engineering Faculty, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| | | | - Cătălina Elena Bistriceanu
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.C.); (D.A.); (C.G.); (C.E.B.); (E.B.I.)
- Elytis Hospital Hope, 43A Gheorghe Saulescu Street, 700010 Iași, Romania
| | - Cristina Mihaela Ghiciuc
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Doina Azoicăi
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Emilian Bogdan Ignat
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.C.); (D.A.); (C.G.); (C.E.B.); (E.B.I.)
- Department of Neurology, Rehabilitation Hospital, 700661 Iași, Romania;
| |
Collapse
|
13
|
Clayton BLL, Barbar L, Sapar M, Kalpana K, Rao C, Migliori B, Rusielewicz T, Paull D, Brenner K, Moroziewicz D, Sand IK, Casaccia P, Tesar PJ, Fossati V. Patient iPSC models reveal glia-intrinsic phenotypes in multiple sclerosis. Cell Stem Cell 2024; 31:1701-1713.e8. [PMID: 39191254 PMCID: PMC11560525 DOI: 10.1016/j.stem.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS), resulting in neurological disability that worsens over time. While progress has been made in defining the immune system's role in MS pathophysiology, the contribution of intrinsic CNS cell dysfunction remains unclear. Here, we generated a collection of induced pluripotent stem cell (iPSC) lines from people with MS spanning diverse clinical subtypes and differentiated them into glia-enriched cultures. Using single-cell transcriptomic profiling and orthogonal analyses, we observed several distinguishing characteristics of MS cultures pointing to glia-intrinsic disease mechanisms. We found that primary progressive MS-derived cultures contained fewer oligodendrocytes. Moreover, MS-derived oligodendrocyte lineage cells and astrocytes showed increased expression of immune and inflammatory genes, matching those of glia from MS postmortem brains. Thus, iPSC-derived MS models provide a unique platform for dissecting glial contributions to disease phenotypes independent of the peripheral immune system and identify potential glia-specific targets for therapeutic intervention.
Collapse
Affiliation(s)
- Benjamin L L Clayton
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Lilianne Barbar
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Maria Sapar
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Kriti Kalpana
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Chandrika Rao
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Bianca Migliori
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Tomasz Rusielewicz
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Katie Brenner
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Dorota Moroziewicz
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Ilana Katz Sand
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center at CUNY, New York, NY 10031, USA
| | - Paul J Tesar
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA.
| |
Collapse
|
14
|
Baduini IR, Castro Vildosola JE, Kavehmoghaddam S, Kiliç F, Nadeem SA, Nizama JJ, Rowand MA, Annapureddy D, Bryan CA, Do LH, Hsiao S, Jonnalagadda SA, Kasturi A, Mandava N, Muppavaram S, Ramirez B, Siner A, Suoto CN, Tamajal N, Scoma ER, Da Costa RT, Solesio ME. Type 2 diabetes mellitus and neurodegenerative disorders: The mitochondrial connection. Pharmacol Res 2024; 209:107439. [PMID: 39357690 DOI: 10.1016/j.phrs.2024.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
The incidence of type 2 diabetes mellitus (T2DM) has increased in our society in recent decades as the population ages, and this trend is not expected to revert. This is the same for the incidence of the main neurodegenerative disorders, including the two most common ones, which are, Alzheimer's and Parkinson's disease. Currently, no pharmacological therapies have been developed to revert or cure any of these pathologies. Interestingly, in recent years, an increased number of studies have shown a high co-morbidity between T2DM and neurodegeneration, as well as some common molecular pathways that are affected in both types of diseases. For example, while the etiopathology of T2DM and neurodegenerative disorders is highly complex, mitochondrial dysfunction has been broadly described in the early steps of both diseases; accordingly, this dysfunction has emerged as a plausible molecular link between them. In fact, the prominent role played by mitochondria in the mammalian metabolism of glucose places the physiology of the organelle in a central position to regulate many cellular processes that are affected in both T2DM and neurodegenerative disorders. In this collaborative review, we critically describe the relationship between T2DM and neurodegeneration; making a special emphasis on the mitochondrial mechanisms that could link these diseases. A better understanding of the role of mitochondria on the etiopathology of T2DM and neurodegeneration could pave the way for the development of new pharmacological therapies focused on the regulation of the physiology of the organelle. These therapies could, ultimately, contribute to increase healthspan.
Collapse
Affiliation(s)
- Isabella R Baduini
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Jose E Castro Vildosola
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Sheida Kavehmoghaddam
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Fatmanur Kiliç
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - S Aiman Nadeem
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Juan J Nizama
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Marietta A Rowand
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Dileep Annapureddy
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Chris-Ann Bryan
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Lisa H Do
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Samuel Hsiao
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Sai A Jonnalagadda
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Akhila Kasturi
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Nikhila Mandava
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Sachin Muppavaram
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Bryan Ramirez
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Aleece Siner
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Christina N Suoto
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Nasira Tamajal
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Ernest R Scoma
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Renata T Da Costa
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Maria E Solesio
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA.
| |
Collapse
|
15
|
Zheng Y, Yan F, He S, Luo L. Targeting ferroptosis in autoimmune diseases: Mechanisms and therapeutic prospects. Autoimmun Rev 2024; 23:103640. [PMID: 39278299 DOI: 10.1016/j.autrev.2024.103640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Ferroptosis is a form of regulated cell death that relies on iron and exhibits unique characteristics, including disrupted iron balance, reduced antioxidant defenses, and abnormal lipid peroxidation. Recent research suggests that ferroptosis is associated with the onset and progression of autoimmune disorders such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), inflammatory bowel disease (IBD), and multiple sclerosis (MS). However, the precise effects and molecular mechanisms remain incompletely understood. This article presents an overview of how ferroptosis mechanisms contribute to the development and advancement of autoimmune diseases, as well as the involvement of various immune cells in linking ferroptosis to autoimmune conditions. It also explores potential drug targets within the ferroptosis pathway and recent advancements in therapeutic approaches aimed at preventing and treating autoimmune diseases by targeting ferroptosis. Lastly, the article discusses the challenges and opportunities in utilizing ferroptosis as a potential therapeutic avenue for autoimmune disorders.
Collapse
Affiliation(s)
- Yingzi Zheng
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Fangfang Yan
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China.
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
16
|
Takewaki D, Kiguchi Y, Masuoka H, Manu MS, Raveney BJE, Narushima S, Kurokawa R, Ogata Y, Kimura Y, Sato N, Ozawa Y, Yagishita S, Araki T, Miyake S, Sato W, Suda W, Yamamura T. Tyzzerella nexilis strains enriched in mobile genetic elements are involved in progressive multiple sclerosis. Cell Rep 2024; 43:114785. [PMID: 39341204 DOI: 10.1016/j.celrep.2024.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune-demyelinating disease with an inflammatory pathology formed by self-reactive lymphocytes with activated glial cells. Progressive MS, characterized by resistance to medications, significantly differs from the non-progressive form in gut microbiome profiles. After confirming an increased abundance of "Tyzzerella nexilis" in various cohorts of progressive MS, we identified a distinct cluster of T. nexilis strains enriched in progressive MS based on long-read metagenomics. The distinct T. nexilis cluster is characterized by a large number of mobile genetic elements (MGEs) and a lack of defense systems against MGEs. Microbial genes for sulfate reduction and flagella formation with pathogenic implications are specific to this cluster. Moreover, these flagellar genes are encoded on MGEs. Mono-colonization with MGE-enriched T. nexilis made germ-free mice more susceptible to experimental autoimmune encephalomyelitis. These results indicate that the progression of MS may be promoted by MGE-enriched T. nexilis with potentially pathogenic properties.
Collapse
Affiliation(s)
- Daiki Takewaki
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Multiple Sclerosis Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Laboratory for Symbiotic Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yuya Kiguchi
- Laboratory for Symbiotic Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8568, Japan
| | - Hiroaki Masuoka
- Laboratory for Symbiotic Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mallahalli S Manu
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Multiple Sclerosis Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Ben J E Raveney
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Multiple Sclerosis Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Laboratory for Symbiotic Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Seiko Narushima
- Laboratory for Mucosal Immunity, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Rina Kurokawa
- Laboratory for Symbiotic Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Ogata
- Laboratory for Symbiotic Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yukio Kimura
- Multiple Sclerosis Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Department of Radiology, National Center of Neurology and Psychiatry Hospital, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Noriko Sato
- Multiple Sclerosis Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Department of Radiology, National Center of Neurology and Psychiatry Hospital, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Yusuke Ozawa
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Sosuke Yagishita
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Wakiro Sato
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Multiple Sclerosis Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Wataru Suda
- Laboratory for Symbiotic Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Multiple Sclerosis Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
17
|
Sanabria-Diaz G, Cagol A, Lu PJ, Barakovic M, Ocampo-Pineda M, Chen X, Weigel M, Ruberte E, Siebenborn NDOS, Galbusera R, Schädelin S, Benkert P, Kuhle J, Kappos L, Melie-Garcia L, Granziera C. Advanced MRI Measures of Myelin and Axon Volume Identify Repair in Multiple Sclerosis. Ann Neurol 2024. [PMID: 39390658 DOI: 10.1002/ana.27102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024]
Abstract
OBJECTIVE Pathological studies suggest that multiple sclerosis (MS) lesions endure multiple waves of damage and repair; however, the dynamics and characteristics of these processes are poorly understood in patients living with MS. METHODS We studied 128 MS patients (75 relapsing-remitting, 53 progressive) and 72 healthy controls who underwent advanced magnetic resonance imaging and clinical examination at baseline and 2 years later. Magnetization transfer saturation and multi-shell diffusion imaging were used to quantify longitudinal changes in myelin and axon volumes within MS lesions. Lesions were grouped into 4 classes (repair, damage, mixed repair damage, and stable). The frequency of each class was correlated to clinical measures, demographic characteristics, and levels of serum neurofilament light chain (sNfL). RESULTS Stable lesions were the most frequent (n = 2,276; 44%), followed by lesions with patterns of "repair" (n = 1,352; 26.2%) and damage (n = 1,214; 23.5%). The frequency of "repair" lesion was negatively associated with disability (β = -0.04; p < 0.001) and sNfL (β = -0.16; p < 0.001) at follow-up. The frequency of the "damage" class was higher in progressive than relapsing-remitting patients (p < 0.05) and was related to disability (baseline: β = -0.078; follow-up: β = -0.076; p < 0.001) and age (baseline: β = -0.078; p < 0.001). Stable lesions were more frequent in relapsing-remitting than in progressive patients (p < 0.05), and in younger patients versus older (β = -0.07; p < 0.001) at baseline. Further, "mixed" lesions were most frequent in older patients (β = 0.004; p < 0.001) at baseline. INTERPRETATION These findings show that repair and damage processes within MS lesions occur across the entire disease spectrum and that their frequency correlates with patients disability, age, disease duration, and extent of neuroaxonal damage. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Gretel Sanabria-Diaz
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Alessandro Cagol
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Health Sciences, University of Genova, Genoa, Italy
| | - Po-Jui Lu
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Muhamed Barakovic
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mario Ocampo-Pineda
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Xinjie Chen
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Esther Ruberte
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Medical Image Analysis Center (MIAC), Basel, Switzerland
| | - Nina de Oliveira S Siebenborn
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Medical Image Analysis Center (MIAC), Basel, Switzerland
| | - Riccardo Galbusera
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sabine Schädelin
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre, Department of Neurology, Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Lester Melie-Garcia
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Cristina Granziera
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Dalla Costa G, Leocani L, Rodegher M, Chiveri L, Gradassi A, Comi G. An overview on disease modifying and symptomatic drug treatments for multiple sclerosis. Expert Rev Clin Pharmacol 2024:1-21. [PMID: 39376160 DOI: 10.1080/17512433.2024.2410393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION Multiple sclerosis (MS) is an inflammatory and degenerative autoimmune condition, resulting frequently in a disabling condition. Significant improvements of long-term prognosis have been recently achieved with an early and more aggressive use of disease modifying therapies (DMTs). Addressing the complexity of managing its progressive forms remains a significant challenge. AREAS COVERED This review provides an update on DMTs for relapsing-remitting MS (RRMS) and progressive MS and their efficacy, safety, and mechanism of action, emphasizing the critical role of biomarkers in optimizing treatment decisions. Moreover, some key information on drugs used to manage symptoms such as pain, fatigue, spasticity and urinary problems will be provided. The literature search was conducted using PubMed, Embase, and Cochrane Library databases covering the period from January 2000 to January 2024. EXPERT OPINION Major advances have been achieved in the treatment of RRMS. Treatment should start immediately as soon as the neurologist is confident with the diagnosis and its choice should be based on the prognostic profile and on the patient's propensity to accept drug-related risks. The therapeutic landscape for progressive MS is quite disappointing and necessitates further innovation. Personalized medicine, leveraging biomarker insights, holds promise for refining treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
| | - Letizia Leocani
- Vita Salute San Raffaele University, Milan, Italy
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Mariaemma Rodegher
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Luca Chiveri
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | | | - Giancarlo Comi
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| |
Collapse
|
19
|
Hu Y, Frisell T, Alping P, Song H, Pawitan Y, Fang F, Piehl F. Hospital-Treated Infections and Risk of Disability Worsening in Multiple Sclerosis. Ann Neurol 2024; 96:694-703. [PMID: 38984615 DOI: 10.1002/ana.27026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE To investigate the association between infections and disability worsening in people with multiple sclerosis (MS) treated with either B-cell depleting therapy (rituximab) or interferon-beta/glatiramer acetate (IFN/GA). METHODS This cohort study spanned from 2000 to 2021, using data from the Swedish MS Registry linked to national health care registries, comprising 8,759 rituximab and 7,561 IFN/GA treatment episodes. The risk of hospital-treated infection was estimated using multivariable Cox models. The association between infections and increase in Expanded Disability Status Scale (EDSS) scores was assessed using a doubly robust generalized estimating equations model. Additionally, a piece-wise exponential model analyzed events of increased disability beyond defined cut-off values, controlling for relapses, and MRI activity. RESULTS Compared with IFN/GA, rituximab displayed increased risk of both inpatient- and outpatient-treated infections (hazard ratio [HR], 2.08; 95% confidence interval [CI], 1.50-2.90 and HR, 1.37; 95% CI, 1.13-1.67, respectively). An inpatient-treated infection was associated with a 0.19-unit increase in EDSS (95% CI, 0.12-0.26). Degree of worsening was greatest for progressive MS, and under IFN/GA treatment, which unlike rituximab, was more commonly associated with MRI activity. After controlling for relapses and MRI activity, inpatient-treated infections were associated with disability worsening in people with relapsing-remitting MS treated with IFN/GA (HR, 2.01; 95% CI, 1.59-2.53), but not in those treated with rituximab. INTERPRETATION Compared to IFN/GA, rituximab doubled the infection risk, but reduced the risk of subsequent disability worsening. Further, the risk of worsening after hospital-treated infection was greater with progressive MS than with relapsing-remitting MS. Infection risk should be considered to improve long term outcomes. ANN NEUROL 2024;96:694-703.
Collapse
Affiliation(s)
- Yihan Hu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Frisell
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Peter Alping
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Huan Song
- Med-X Center for Informatics, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yudi Pawitan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden
| |
Collapse
|
20
|
Emeršič A, Karikari TK, Kac PR, Gonzalez-Ortiz F, Dulewicz M, Ashton NJ, Brecl Jakob G, Horvat Ledinek A, Hanrieder J, Zetterberg H, Rot U, Čučnik S, Blennow K. Biomarkers of tau phosphorylation state are associated with the clinical course of multiple sclerosis. Mult Scler Relat Disord 2024; 90:105801. [PMID: 39153429 DOI: 10.1016/j.msard.2024.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Mechanisms underlying neurodegeneration in multiple sclerosis (MS) remain poorly understood but mostly implicate molecular pathways that are not unique to MS. Recently detected tau seeding activity in MS brain tissues corroborates previous neuropathological reports of hyperphosphorylated tau (p-tau) accumulation in secondary and primary progressive MS (PPMS). We aimed to investigate whether aberrant tau phosphorylation can be detected in the cerebrospinal fluid (CSF) of MS patients by using novel ultrasensitive immunoassays for different p-tau biomarkers. METHODS CSF samples of patients with MS (n = 55) and non-inflammatory neurological disorders (NIND, n = 31) were analysed with in-house Single molecule array (Simoa) assays targeting different tau phosphorylation sites (p-tau181, p-tau212, p-tau217 and p-tau231). Additionally, neurofilament light (NFL) and glial fibrillary acidic protein (GFAP) were measured with a multiplexed Simoa assay. Patients were diagnosed with clinically isolated syndrome (CIS, n = 10), relapsing-remitting MS (RRMS, n = 21) and PPMS (n = 24) according to the 2017 McDonald criteria and had MRI, EDSS and basic CSF analysis performed at the time of diagnosis. RESULTS Patients with progressive disease course had between 1.4-fold (p-tau217) and 2.2-fold (p-tau212) higher p-tau levels than relapsing MS patients (PPMS compared with CIS + RRMS, p < 0.001 for p-tau181, p-tau212, p-tau231 and p = 0.042 for p-tau217). P-tau biomarkers were associated with disease duration (ρ=0.466-0.622, p < 0.0001), age (ρ=0.318-0.485, p < 0.02, all but p-tau217) and EDSS at diagnosis and follow-up (ρ=0.309-0.440, p < 0.02). In addition, p-tau biomarkers correlated with GFAP (ρ=0.517-0.719, p ≤ 0.0001) but not with the albumin quotient, CSF cell count or NFL. Patients with higher MRI lesion load also had higher p-tau levels p ≤ 0.01 (<10 vs. ≥ 10 lesions, all p ≤ 0.01). CONCLUSION CSF concentrations of novel p-tau biomarkers point to a higher degree of tau phosphorylation in PPMS than in RRMS. Associations with age, disease duration and EDSS suggest this process increases with disease severity; however, replication of these results in larger cohorts is needed to further clarify the relevance of altered tau phosphorylation throughout the disease course in MS.
Collapse
Affiliation(s)
- Andreja Emeršič
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia; Faculty of Pharmacy, University of Ljubljana, Ljubljana 1000, Slovenia.
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg 413 45, Sweden; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15215, USA
| | - Przemysław R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg 413 45, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg 413 45, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg 405 30, Sweden; Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London SE5 8AF, UK; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London SE5 8AF, UK
| | - Gregor Brecl Jakob
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Alenka Horvat Ledinek
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg 413 45, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg 413 45, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; UK Dementia Research Institute at UCL, London WC1N 3AR, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong 518172, China; School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Uroš Rot
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Saša Čučnik
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia; Faculty of Pharmacy, University of Ljubljana, Ljubljana 1000, Slovenia; Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg 413 45, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden; Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris 75013, France; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei 230001, PR China
| |
Collapse
|
21
|
Smoot K, Gervasi-Follmar T, Marginean H, Chen C, Cohan S. Impact of oral melatonin supplementation on urine and serum melatonin concentrations and quality-of-life measures in persons with relapsing multiple sclerosis. Mult Scler Relat Disord 2024; 90:105799. [PMID: 39126937 DOI: 10.1016/j.msard.2024.105799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Melatonin is an antioxidant and anti-inflammatory agent that modulates the immune system by scavenging free radicals, reducing the upregulation of pro-inflammatory cytokines, and reducing transendothelial cell migration. Therefore, melatonin may play a role in regulating multiple sclerosis (MS) disease activity. However, little is known about how melatonin supplementation effects individuals with MS. OBJECTIVE Determine if there was a dose-dependent elevation in urine and serum melatonin concentrations. Determine if melatonin supplementation had an impact on patient reported outcomes. METHODS This was a randomized, dose-blinded exploratory study. Adults (age 18-65) with relapsing forms of multiple sclerosis (RMS) treated with a stable dose of oral disease modifying therapy for at least 6 months were randomized into melatonin 3 mg or 5 mg daily. Urinary and serum melatonin levels and modified fatigue impact scale (MFIS), multiple sclerosis impact scale (MSIS-29), and Pittsburgh sleep quality index (PSQI), patient determined disease steps (PDDS) and performance scales (PS) were measured at baseline, 3, 6, and 12 months. Urinary and serum melatonin analyses was performed to estimate mean concentrations and their differences between treatment arms over time by a repeated measures linear mixed model. The model included treatment, assessment time, and treatment × time interaction. RESULTS Thirty patients, randomized 1:1, were analyzed in an intent to treat population. Twenty-three completed the study. The repeated measures linear mixed model analysis of all timepoints revealed higher melatonin concentrations in patients on 5 mg compared to 3 mg melatonin for both urinary 6-SMT (p = 0.03) and serum melatonin (p = 0.04). MFIS, MSIS-29, PSQI, and PDSS-PS scores did not significantly change from baseline to month 12. No significant differences in these measures were seen between the two doses. Five patients stopped melatonin (three on 5 mg and two on 3 mg) due to adverse events, including one patient who developed focal spongiotic dermatitis. One patient experienced three consecutive serious adverse events that were unrelated to melatonin supplementation. CONCLUSIONS The 5 mg melatonin supplementation group had higher concentrations of urinary 6-SMT and serum melatonin compared to the 3 mg group over 12 months of treatment. There was a correlation between 6-SMT and serum melatonin concentrations. This suggests that measuring serum melatonin is a reliable alternative to measuring urinary 6-SMT. However, no differences in clinical benefit between the two dosage groups were demonstrated in the patient reported outcomes. TRIAL REGISTRATION NUMBER NCT03498131.
Collapse
Affiliation(s)
- Kyle Smoot
- Providence Brain and Spine Institute, Providence Saint Vincent Medical Center, Portland, OR, United States.
| | - Tiffany Gervasi-Follmar
- Providence Brain and Spine Institute, Providence Saint Vincent Medical Center, Portland, OR, United States
| | - Horia Marginean
- Providence Brain and Spine Institute, Providence Saint Vincent Medical Center, Portland, OR, United States
| | - Chiayi Chen
- Providence Brain and Spine Institute, Providence Saint Vincent Medical Center, Portland, OR, United States
| | - Stanley Cohan
- Providence Brain and Spine Institute, Providence Saint Vincent Medical Center, Portland, OR, United States
| |
Collapse
|
22
|
Zhu X, Xu Z, Liu Y, Yang J, Bai L, Li X, Sun Q, Li H, Chen G. Unveiling microglia heterogeneity in intracerebral hemorrhage. Neuroscience 2024; 555:167-177. [PMID: 39067680 DOI: 10.1016/j.neuroscience.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Microglia are important innate immune cells in the brain, and a rich diversity of subtypes has recently been discovered that expand beyond the traditional classification of traditional M1 (pro-inflammatory) and M2 (anti-inflammatory) classifications. Intracerebral hemorrhage (ICH) is a devastating form of stroke, and the understanding of its later-stage pathological mechanisms remains incomplete. In this study, through the analysis of single-cell transcripts from mice brains 14 days post-ICH, three disease-associated expression patterns of microglia were identified. These include a lipid metabolism and phagocytosis phenotype reminiscent of Disease-Associated Microglia (DAM) initially discovered in Alzheimer's disease models, a phenotype associated with angiogenesis, and a relatively independent phenotype similar to the pro-inflammatory M1 state. These findings were further validated through immunofluorescence in both mouse and human specimens. In addition, analysis of single-cell transcripts from mice brains 3 days post-ICH suggested that microglia involved in lipid metabolism and phagocytosis likely emerge from early proliferating populations. Given the distinct origins and phenotypic characteristics of pro-inflammatory and reparative microglia, interventions targeting these cells hold the potential to modulate the delicate balance between injury and repair during the pathophysiological process of ICH, highlighting a pivotal direction for future therapeutic strategies.
Collapse
Affiliation(s)
- Xunan Zhu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhongmou Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yangyang Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jian Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Lei Bai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qing Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
23
|
Ridley B, Minozzi S, Gonzalez-Lorenzo M, Del Giovane C, Piggott T, Filippini G, Peryer G, Foschi M, Tramacere I, Baldin E, Nonino F. Immunomodulators and immunosuppressants for progressive multiple sclerosis: a network meta-analysis. Cochrane Database Syst Rev 2024; 9:CD015443. [PMID: 39254048 PMCID: PMC11384553 DOI: 10.1002/14651858.cd015443.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
BACKGROUND In recent years a broader range of immunomodulatory and immunosuppressive treatment options have emerged for people with progressive forms of multiple sclerosis (PMS). While consensus supports these options as reducing relapses, their relative benefit and safety profiles remain unclear due to a lack of direct comparison trials. OBJECTIVES To compare through network meta-analysis the efficacy and safety of alemtuzumab, azathioprine, cladribine, cyclophosphamide, daclizumab, dimethylfumarate, diroximel fumarate, fingolimod, fludarabine, glatiramer acetate, immunoglobulins, interferon beta 1-a and beta 1-b, interferon beta-1b (Betaferon), interferon beta-1a (Avonex, Rebif), laquinimod, leflunomide, methotrexate, minocycline, mitoxantrone, mycophenolate mofetil, natalizumab, ocrelizumab, ofatumumab, ozanimod, pegylated interferon beta-1a, ponesimod, rituximab, siponimod, corticosteroids, and teriflunomide for PMS. SEARCH METHODS We searched CENTRAL, MEDLINE, and Embase up to August 2022, as well as ClinicalTrials.gov and the WHO ICTRP. SELECTION CRITERIA Randomised controlled trials (RCTs) that studied one or more treatments as monotherapy, compared to placebo or to another active agent, for use in adults with PMS. DATA COLLECTION AND ANALYSIS Two review authors independently selected studies and extracted data. We performed data synthesis by pair-wise and network meta-analysis. We assessed the certainty of the body of evidence according to GRADE. MAIN RESULTS We included 23 studies involving a total of 10,167 participants. The most frequent (39% of studies) reason for a rating of high risk of bias was sponsor role in study authorship and data management and analysis. Other concerns were performance, attrition, and selective reporting bias, with 8.7% of studies at high risk of bias for all three of these domains. The common comparator for network analysis was placebo. Relapses over 12 months: assessed in one study (318 participants). None of the treatments assessed showed moderate or high certainty evidence compared to placebo. Relapses over 24 months: assessed in six studies (1622 participants). The number of people with clinical relapses is probably trivially reduced with rituximab (risk ratio (RR) 0.60, 95% confidence interval (CI) 0.19 to 1.95; moderate certainty evidence). None of the remaining treatments assessed showed moderate or high certainty evidence compared to placebo. Relapses over 36 months: assessed in four studies (2095 participants). The number of people with clinical relapses is probably trivially reduced with interferon beta-1b (RR 0.82, 95% CI 0.73 to 0.93; moderate certainty evidence). None of the remaining treatments assessed showed moderate or high certainty evidence compared to placebo. Disability worsening over 24 months: assessed in 11 studies (5284 participants). None of the treatments assessed showed moderate or high certainty evidence compared to placebo. Disability worsening over 36 months: assessed in five studies (2827 participants). None of the treatments assessed showed moderate or high certainty evidence compared to placebo. Serious adverse events: assessed in 15 studies (8019 participants). None of the treatments assessed showed moderate or high certainty evidence compared to placebo. Discontinuation due to adverse events: assessed in 21 studies (9981 participants). The number of people who discontinued treatment due to adverse events is trivially increased with interferon beta-1a (odds ratio (OR) 2.93, 95% CI 1.64 to 5.26; high certainty evidence). The number of people who discontinued treatment due to adverse events is probably trivially increased with rituximab (OR 4.00, 95% CI 0.84 to 19.12; moderate certainty evidence); interferon beta-1b (OR 2.98, 95% CI 1.92 to 4.61; moderate certainty evidence); immunoglobulins (OR 1.95, 95% CI 0.99 to 3.84; moderate certainty evidence); glatiramer acetate (OR 3.98, 95% CI 1.48 to 10.72; moderate certainty evidence); natalizumab (OR 1.02, 95% CI 0.55 to 1.90; moderate certainty evidence); siponimod (OR 1.53, 95% CI 0.98 to 2.38; moderate certainty evidence); fingolimod (OR 2.29, 95% CI 1.46 to 3.60; moderate certainty evidence), and ocrelizumab (OR 1.24, 95% CI 0.54 to 2.86; moderate certainty evidence). None of the remaining treatments assessed showed moderate or high certainty evidence compared to placebo. AUTHORS' CONCLUSIONS The number of people with PMS with relapses is probably slightly reduced with rituximab at two years, and interferon beta-1b at three years, compared to placebo. Both drugs are also probably associated with a slightly higher proportion of withdrawals due to adverse events, as are immunoglobulins, glatiramer acetate, natalizumab, fingolimod, siponimod, and ocrelizumab; we have high confidence that this is the case with interferon beta-1a. We found only low or very low certainty evidence relating to disability progression for the included disease-modifying treatments compared to placebo, largely due to imprecision. We are also uncertain about the effect of interventions on serious adverse events, also because of imprecision. These findings are due in part to the short follow-up of the included RCTs, which lacked detection of less common severe adverse events. Moreover, the funding source of many included studies may have introduced bias into the results. Future research on PMS should include head-to-head rather than placebo-controlled trials, with a longer follow-up of at least three years. Given the relative rarity of PMS, controlled, non-randomised studies on large samples may usefully integrate data from pivotal RCTs. Outcomes valuable and meaningful to people with PMS should be consistently adopted and measured to permit the evaluation of relative effectiveness among treatments.
Collapse
Affiliation(s)
- Ben Ridley
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Silvia Minozzi
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Marien Gonzalez-Lorenzo
- Laboratorio di Metodologia delle revisioni sistematiche e produzione di Linee Guida, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Cinzia Del Giovane
- Institute of Primary Health Care (BIHAM), Bern, Switzerland
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Thomas Piggott
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Family Medicine, Queens University, Kingston, Ontario, Canada
| | - Graziella Filippini
- Scientific Director's Office, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milan, Italy
| | - Guy Peryer
- School of Health Sciences, University of East Anglia, Norwich, UK
| | - Matteo Foschi
- Department of Neuroscience, Multiple Sclerosis Center - Neurology Unit, S.Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Irene Tramacere
- Department of Research and Clinical Development, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elisa Baldin
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Francesco Nonino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
24
|
Niedziela N, Nowak-Kiczmer M, Malciene L, Stasiołek M, Zalejska-Fiolka J, Czuba ZP, Niedziela JT, Szczygieł J, Lubczyński M, Adamczyk-Sowa M. Can Selected Parameters of Brain Injury Reflect Neuronal Damage in Smoldering Multiple Sclerosis? Diagnostics (Basel) 2024; 14:1993. [PMID: 39272777 PMCID: PMC11394557 DOI: 10.3390/diagnostics14171993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/31/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Inflammatory demyelination and impaired recovery processes result in permanent neurodegeneration and neurological disability in patients with multiple sclerosis (MS). In terms of smoldering MS, chronic neuroinflammation develops in the early period of the disease and leads to confirmed disability accumulation. There is a great need to identify biomarkers of neurodegeneration and disease progression. METHODS A single-center prospective observational study was performed. The median age of the patients was 40 (31-52) years. Women comprised 64% of the study population. We evaluated the concentrations of the parameters of brain injury (NF-H, GFAP, S100B and UCHL1) in the cerebrospinal fluid (CSF) and the selected interleukins (ILs) in serum of 123 relapsing-remitting MS (RRMS) and 88 progressive MS (PMS) patients. RESULTS The levels of GFAP, S100B and UCHL were higher in the PMS group than the RRMS group, in contrast to the levels of NF-H. We observed a positive correlation between the selected pro-inflammatory cytokines and the parameters of brain injury. The Expanded Disability Status Scale (EDSS) score increased with GFAP and NF-H levels and was correlated with the selected ILs. The concentrations of S100B, UCHL1 and NF-H reflected the duration of MS symptoms. CONCLUSIONS The levels of brain injury parameters in the CSF and the selected serum ILs in MS patients seem to be promising biomarkers to determine neurodegeneration and neuroinflammation in smoldering MS. Further studies are warranted in this respect.
Collapse
Affiliation(s)
- Natalia Niedziela
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Ul. 3-go Maja 13-15, 41-800 Zabrze, Poland
| | - Maria Nowak-Kiczmer
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Ul. 3-go Maja 13-15, 41-800 Zabrze, Poland
| | - Lina Malciene
- Klaipeda University Hospital, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Mariusz Stasiołek
- Department of Neurology, Medical University of Lodz, Ul. Kopcińskiego 22, 90-419 Łódź, Poland
| | - Jolanta Zalejska-Fiolka
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Ul, Jordana 19, 41-808 Zabrze, Poland
| | - Zenon P Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Ul. Jordana 19, 41-808 Zabrze, Poland
| | - Jacek T Niedziela
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Silesian Centre for Heart Disease, Ul. M.C. Sklodowskiej 9, 41-800 Zabrze, Poland
| | - Jarosław Szczygieł
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Ul. 3-go Maja 13-15, 41-800 Zabrze, Poland
| | - Michał Lubczyński
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Ul. 3-go Maja 13-15, 41-800 Zabrze, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Ul. 3-go Maja 13-15, 41-800 Zabrze, Poland
| |
Collapse
|
25
|
Gross RH, Corboy J. De-escalation and Discontinuation of Disease-Modifying Therapies in Multiple Sclerosis. Curr Neurol Neurosci Rep 2024; 24:341-353. [PMID: 38995483 DOI: 10.1007/s11910-024-01355-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE OF REVIEW Long-term use of multiple sclerosis (MS) disease-modifying therapies (DMTs) is standard practice to prevent accumulation of disability. Immunosenescence and other age-related changes lead to an altered risk-benefit ratio for older patients on DMTs. This article reviews recent research on the topic of de-escalation and discontinuation of MS DMTs. RECENT FINDINGS Observational and interventional studies have shed light on what happens to patients who de-escalate or discontinue DMTs and the factors, such as age, treatment type, and presence of recent disease activity, that influence outcomes. Though many questions remain, recent findings have been valuable for the development of an evidence-based approach to making de-escalation and discontinuation decisions in MS.
Collapse
Affiliation(s)
- Robert H Gross
- Department of Neurology, University of Colorado School of Medicine, 12631 East 17thAvenue, Mail Stop F727, Aurora, CO, 80045, USA.
- Department of Neurology, Rocky Mountain Regional Veterans Administration Medical Center, Aurora, CO, USA.
| | - John Corboy
- Department of Neurology, University of Colorado School of Medicine, 12631 East 17thAvenue, Mail Stop F727, Aurora, CO, 80045, USA
| |
Collapse
|
26
|
Feng H, Li J, Wang H, Wei Z, Feng S. Senescence- and Immunity-Related Changes in the Central Nervous System: A Comprehensive Review. Aging Dis 2024:AD.2024.0755. [PMID: 39325939 DOI: 10.14336/ad.2024.0755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Senescence is a cellular state characterized by an irreversible halt in the cell cycle, accompanied by alterations in cell morphology, function, and secretion. Senescent cells release a plethora of inflammatory and growth factors, extracellular matrix proteins, and other bioactive substances, collectively known as the senescence-associated secretory phenotype (SASP). These excreted substances serve as crucial mediators of senescent tissues, while the secretion of SASP by senescent neurons and glial cells in the central nervous system modulates the activity of immune cells. Senescent immune cells also influence the physiological activities of various cells in the central nervous system. Further, the interaction between cellular senescence and immune regulation collectively affects the physiological and pathological processes of the central nervous system. Herein, we explore the role of senescence in the physiological and pathological processes underlying embryonic development, aging, degeneration, and injury of the central nervous system, through the immune response. Further, we elucidate the role of senescence in the physiological and pathological processes of the central nervous system, proposing a new theoretical foundation for treating central nervous system diseases.
Collapse
Affiliation(s)
- Haiwen Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Junjin Li
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Hongda Wang
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Zhijian Wei
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shiqing Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
27
|
Yamazaki R, Ohno N. Myosin superfamily members during myelin formation and regeneration. J Neurochem 2024; 168:2264-2274. [PMID: 39136255 DOI: 10.1111/jnc.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 07/31/2024] [Indexed: 10/04/2024]
Abstract
Myelin is an insulator that forms around axons that enhance the conduction velocity of nerve fibers. Oligodendrocytes dramatically change cell morphology to produce myelin throughout the central nervous system (CNS). Cytoskeletal alterations are critical for the morphogenesis of oligodendrocytes, and actin is involved in cell differentiation and myelin wrapping via polymerization and depolymerization, respectively. Various protein members of the myosin superfamily are known to be major binding partners of actin filaments and have been intensively researched because of their involvement in various cellular functions, including differentiation, cell movement, membrane trafficking, organelle transport, signal transduction, and morphogenesis. Some members of the myosin superfamily have been found to play important roles in the differentiation of oligodendrocytes and in CNS myelination. Interestingly, each member of the myosin superfamily expressed in oligodendrocyte lineage cells also shows specific spatial and temporal expression patterns and different distributions. In this review, we summarize previous findings related to the myosin superfamily and discuss how these molecules contribute to myelin formation and regeneration by oligodendrocytes.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
28
|
Putthanbut N, Lee JY, Borlongan CV. Extracellular vesicle therapy in neurological disorders. J Biomed Sci 2024; 31:85. [PMID: 39183263 PMCID: PMC11346291 DOI: 10.1186/s12929-024-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Extracellular vesicles (EVs) are vital for cell-to-cell communication, transferring proteins, lipids, and nucleic acids in various physiological and pathological processes. They play crucial roles in immune modulation and tissue regeneration but are also involved in pathogenic conditions like inflammation and degenerative disorders. EVs have heterogeneous populations and cargo, with numerous subpopulations currently under investigations. EV therapy shows promise in stimulating tissue repair and serving as a drug delivery vehicle, offering advantages over cell therapy, such as ease of engineering and minimal risk of tumorigenesis. However, challenges remain, including inconsistent nomenclature, complex characterization, and underdeveloped large-scale production protocols. This review highlights the recent advances and significance of EVs heterogeneity, emphasizing the need for a better understanding of their roles in disease pathologies to develop tailored EV therapies for clinical applications in neurological disorders.
Collapse
Affiliation(s)
- Napasiri Putthanbut
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Jea Young Lee
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
| | - Cesario V Borlongan
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
29
|
Greselin M, Lu PJ, Melie-Garcia L, Ocampo-Pineda M, Galbusera R, Cagol A, Weigel M, de Oliveira Siebenborn N, Ruberte E, Benkert P, Müller S, Finkener S, Vehoff J, Disanto G, Findling O, Chan A, Salmen A, Pot C, Bridel C, Zecca C, Derfuss T, Lieb JM, Diepers M, Wagner F, Vargas MI, Pasquier RD, Lalive PH, Pravatà E, Weber J, Gobbi C, Leppert D, Kim OCH, Cattin PC, Hoepner R, Roth P, Kappos L, Kuhle J, Granziera C. Contrast-Enhancing Lesion Segmentation in Multiple Sclerosis: A Deep Learning Approach Validated in a Multicentric Cohort. Bioengineering (Basel) 2024; 11:858. [PMID: 39199815 PMCID: PMC11351944 DOI: 10.3390/bioengineering11080858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
The detection of contrast-enhancing lesions (CELs) is fundamental for the diagnosis and monitoring of patients with multiple sclerosis (MS). This task is time-consuming and suffers from high intra- and inter-rater variability in clinical practice. However, only a few studies proposed automatic approaches for CEL detection. This study aimed to develop a deep learning model that automatically detects and segments CELs in clinical Magnetic Resonance Imaging (MRI) scans. A 3D UNet-based network was trained with clinical MRI from the Swiss Multiple Sclerosis Cohort. The dataset comprised 372 scans from 280 MS patients: 162 showed at least one CEL, while 118 showed no CELs. The input dataset consisted of T1-weighted before and after gadolinium injection, and FLuid Attenuated Inversion Recovery images. The sampling strategy was based on a white matter lesion mask to confirm the existence of real contrast-enhancing lesions. To overcome the dataset imbalance, a weighted loss function was implemented. The Dice Score Coefficient and True Positive and False Positive Rates were 0.76, 0.93, and 0.02, respectively. Based on these results, the model developed in this study might well be considered for clinical decision support.
Collapse
Affiliation(s)
- Martina Greselin
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4123 Basel, Switzerland; (M.G.); (R.G.); (A.C.); (E.R.)
- Department of Neurology, University Hospital Basel, 4031 Basel, Switzerland;
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Po-Jui Lu
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4123 Basel, Switzerland; (M.G.); (R.G.); (A.C.); (E.R.)
- Department of Neurology, University Hospital Basel, 4031 Basel, Switzerland;
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Lester Melie-Garcia
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4123 Basel, Switzerland; (M.G.); (R.G.); (A.C.); (E.R.)
- Department of Neurology, University Hospital Basel, 4031 Basel, Switzerland;
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Mario Ocampo-Pineda
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4123 Basel, Switzerland; (M.G.); (R.G.); (A.C.); (E.R.)
- Department of Neurology, University Hospital Basel, 4031 Basel, Switzerland;
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Riccardo Galbusera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4123 Basel, Switzerland; (M.G.); (R.G.); (A.C.); (E.R.)
- Department of Neurology, University Hospital Basel, 4031 Basel, Switzerland;
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Alessandro Cagol
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4123 Basel, Switzerland; (M.G.); (R.G.); (A.C.); (E.R.)
- Department of Neurology, University Hospital Basel, 4031 Basel, Switzerland;
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
- Department of Health Sciences, University of Genova, 16132 Genova, Italy
| | - Matthias Weigel
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4123 Basel, Switzerland; (M.G.); (R.G.); (A.C.); (E.R.)
- Department of Neurology, University Hospital Basel, 4031 Basel, Switzerland;
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, 4031 Basel, Switzerland
| | - Nina de Oliveira Siebenborn
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4123 Basel, Switzerland; (M.G.); (R.G.); (A.C.); (E.R.)
- Department of Neurology, University Hospital Basel, 4031 Basel, Switzerland;
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
- Medical Image Analysis Center (MIAC), 4051 Basel, Switzerland
| | - Esther Ruberte
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4123 Basel, Switzerland; (M.G.); (R.G.); (A.C.); (E.R.)
- Department of Neurology, University Hospital Basel, 4031 Basel, Switzerland;
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
- Medical Image Analysis Center (MIAC), 4051 Basel, Switzerland
| | - Pascal Benkert
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Stefanie Müller
- Department of Neurology, Cantonal Hospital St. Gallen, 9000 St. Gallen, Switzerland
| | - Sebastian Finkener
- Department of Neurology, Cantonal Hospital Aarau, 5001 Aarau, Switzerland
| | - Jochen Vehoff
- Department of Neurology, Cantonal Hospital St. Gallen, 9000 St. Gallen, Switzerland
| | - Giulio Disanto
- Neurology Department, Neurocenter of Southern Switzerland, 6900 Lugano, Switzerland
| | - Oliver Findling
- Department of Neurology, Cantonal Hospital Aarau, 5001 Aarau, Switzerland
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Anke Salmen
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Caroline Pot
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), University of Lausanne, 1005 Lausanne, Switzerland
| | - Claire Bridel
- Division of Neurology, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Chiara Zecca
- Neurology Department, Neurocenter of Southern Switzerland, 6900 Lugano, Switzerland
- Faculty of biomedical Sciences, Università della Svizzera Italiana, 6962 Lugano, Switzerland
| | - Tobias Derfuss
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Johanna M. Lieb
- Division of Diagnostic and Interventional Neuroradiology, Clinic for Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland;
| | - Michael Diepers
- Department of Radiology, Cantonal Hospital Aarau, 5001 Aarau, Switzerland
| | - Franca Wagner
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Maria I. Vargas
- Department of Radiology, Faculty of Medicine, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Renaud Du Pasquier
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), University of Lausanne, 1005 Lausanne, Switzerland
| | - Patrice H. Lalive
- Division of Neurology, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Emanuele Pravatà
- Faculty of biomedical Sciences, Università della Svizzera Italiana, 6962 Lugano, Switzerland
- Department of Neuroradiology, Neurocenter of Southern Switzerland, 6900 Lugano, Switzerland
| | - Johannes Weber
- Department of Radiology, Cantonal Hospital St. Gallen, 9000 St. Gallen, Switzerland
| | - Claudio Gobbi
- Neurology Department, Neurocenter of Southern Switzerland, 6900 Lugano, Switzerland
- Faculty of biomedical Sciences, Università della Svizzera Italiana, 6962 Lugano, Switzerland
| | - David Leppert
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Olaf Chan-Hi Kim
- Department of Radiology, Cantonal Hospital St. Gallen, 9000 St. Gallen, Switzerland
| | - Philippe C. Cattin
- Center for medical Image Analysis & Navigation, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland;
| | - Robert Hoepner
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Patrick Roth
- Department of Neurology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Ludwig Kappos
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4123 Basel, Switzerland; (M.G.); (R.G.); (A.C.); (E.R.)
- Department of Neurology, University Hospital Basel, 4031 Basel, Switzerland;
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Jens Kuhle
- Department of Neurology, University Hospital Basel, 4031 Basel, Switzerland;
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4123 Basel, Switzerland; (M.G.); (R.G.); (A.C.); (E.R.)
- Department of Neurology, University Hospital Basel, 4031 Basel, Switzerland;
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
30
|
De Biasi S, Ciobanu AL, Santacroce E, Lo Tartaro D, Degliesposti G, D’Angerio M, Leccese M, Cardi M, Trenti T, Cuccorese M, Gibellini L, Ferraro D, Cossarizza A. SARS-CoV-2 Vaccination Responses in Anti-CD20-Treated Progressive Multiple Sclerosis Patients Show Immunosenescence in Antigen-Specific B and T Cells. Vaccines (Basel) 2024; 12:924. [PMID: 39204047 PMCID: PMC11360119 DOI: 10.3390/vaccines12080924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Clinical, pathological, and imaging evidence in multiple sclerosis (MS) shows that inflammation starts early and progresses with age. B cells play a central role in this process, contributing to cytokine production, defective regulatory functions, and abnormal immunoglobulin production, even in the central nervous system. Anti-CD20 (aCD20) therapies, which deplete CD20+ B cells, are largely used in the treatment of both relapsing remitting (RR) and progressive (PR) forms of MS. Although effective against MS symptoms and lesions detectable by magnetic resonance imaging, aCD20 therapies can reduce the immune response to COVID-19 vaccination. By using high-parameter flow cytometry, we examined the antigen-specific (Ag+) immune response six months post-third COVID-19 mRNA vaccination in MS patients with RR and PR forms on aCD20 therapy. Despite lower Ag+ B cell responses and lower levels of anti-SARS-CoV2, both total and neutralizing antibodies, RR and PR patients developed strong Ag+ T cell responses. We observed similar percentages and numbers of Ag+ CD4+ T cells and a high proportion of Ag+ CD8+ T cells, with slight differences in T cell phenotype and functionality; this, however, suggested the presence of differences in immune responses driven by age and disease severity.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Alin Liviu Ciobanu
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Gianluca Degliesposti
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Miriam D’Angerio
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Maristella Leccese
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Martina Cardi
- AOU Policlinico di Modena, Neurology Unit, Department of Biomedical, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Tommaso Trenti
- AOU Policlinico di Modena, Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, 41124 Modena, Italy
| | - Michela Cuccorese
- AOU Policlinico di Modena, Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, 41124 Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Diana Ferraro
- AOU Policlinico di Modena, Neurology Unit, Department of Biomedical, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
- National Institute for Cardiovascular Research, 40126 Bologna, Italy
| |
Collapse
|
31
|
Manna I, De Benedittis S, Porro D. A Comprehensive Examination of the Role of Epigenetic Factors in Multiple Sclerosis. Int J Mol Sci 2024; 25:8921. [PMID: 39201606 PMCID: PMC11355011 DOI: 10.3390/ijms25168921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
According to various research, the risk of multiple sclerosis (MS) is strongly influenced by genetic variations. Population, familial, and molecular studies provide strong empirical support for a polygenic pattern of inheritance, mainly due to relatively common allelic variants in the general population. The strongest MS susceptibility locus, which was unmistakably identified in tested populations, is the major histocompatibility complex on chromosome 6p21.3. However, the effect of a given predisposing variant remains modest, so there is the possibility that multiple gene-gene and/or gene-environment interactions could significantly increase the contribution of specific variants to the overall genetic risk. Furthermore, as is known, susceptibility genes can be subject to epigenetic modifications, which greatly increase the complexity of MS heritability. Investigating epigenetic and environmental factors can provide new opportunities for the molecular basis of the MS, which shows complicated pathogenesis. Although studies of epigenetic changes in MS only began in the last decade, a growing body of literature suggests that these may be involved in the development of MS. Here, we summarize recent studies regarding epigenetic changes related to MS initiation and progression. Furthermore, we discuss how current studies address important clinical questions and how future studies could be used in clinical practice.
Collapse
Affiliation(s)
- Ida Manna
- Institute of Bioimaging and Complex Biological Systems (IBSBC), National Research Council (CNR), Section of Catanzaro, 88100 Catanzaro, Italy
| | - Selene De Benedittis
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR) Cosenza, 88100 Catanzaro, Italy
| | - Danilo Porro
- Institute of Bioimaging and Complex Biological Systems (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy
| |
Collapse
|
32
|
van den Bosch AMR, Wever D, Schonewille P, Schuller SL, Smolders J, Hamann J, Huitinga I. Cortical CD200-CD200R and CD47-SIRPα expression is associated with multiple sclerosis pathology. Brain Commun 2024; 6:fcae264. [PMID: 39175944 PMCID: PMC11339711 DOI: 10.1093/braincomms/fcae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/18/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Control of microglia activity through CD200-CD200R and CD47-SIRPα interactions has been implicated in brain homeostasis. Here, we assessed CD200, CD47, CD200R and SIRPα expression with qPCR and immunohistochemistry in multiple sclerosis (MS) normal-appearing cortical grey matter (NAGM), normal-appearing white matter (NAWM), cortical grey matter (GM) lesions and perilesional GM, and compared this to control GM and white matter (WM), to investigate possible altered control of microglia in MS. In MS NAGM, CD200 expression is lower compared with control GM, specifically in cortical layers 1 and 2, and CD200 expression in NAGM negatively correlates with the cortical lesion rate. Interestingly, NAGM and NAWM CD200 expression is positively correlated, and NAGM CD200 expression negatively correlates with the proportion of active and mixed WM lesions. In GM lesions, CD200 and CD47 expressions are lower compared with NAGM and perilesional GM. CD200R expression is lower in MS NAGM, whereas SIRPα was increased in and around GM lesions. Taken together, our data indicate that CD200 and CD47 play a role in GM MS lesion formation and progression, respectively, and that targeting CD200 pathways may offer therapeutic avenues to mitigate MS pathology in both WM and GM.
Collapse
Affiliation(s)
- Aletta M R van den Bosch
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, 1105 BA, The Netherlands
| | - Dennis Wever
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, 1105 BA, The Netherlands
| | - Pleun Schonewille
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, 1105 BA, The Netherlands
| | - Sabine L Schuller
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, 1105 BA, The Netherlands
| | - Joost Smolders
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, 1105 BA, The Netherlands
- Department of Neurology, MS Center ErasMS, Erasmus Medical Center, Rotterdam, 3015 GD, The Netherlands
- Department of Immunology, MS Center ErasMS, Erasmus Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, 1105 BA, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, 1105 BA, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1054 BE, The Netherlands
| |
Collapse
|
33
|
Rad EY, Saboori S, Tektonidis TG, Simpson-Yap S, Reece J, Hebert JR, Nicholas R, Middleton R, Tammam J, Black L, Coe S. A systematic review and meta-analysis of Dietary Inflammatory Index and the likelihood of multiple sclerosis/ demyelinating autoimmune disease. Clin Nutr ESPEN 2024; 62:108-114. [PMID: 38901931 DOI: 10.1016/j.clnesp.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 06/22/2024]
Abstract
Diet and inflammation may contribute to the development of multiple sclerosis (MS). The aim of this systematic review and meta-analysis was to assess the association between proinflammatory diet, as estimated by the Dietary Inflammatory Index (DII®), and the likelihood of developing MS or other demyelinating autoimmune diseases. A systematic search was performed of search engines and databases (PubMed, ISI Web of Sciences, Scopus, and Embase) to identify relevant studies before 10th June 2023. The search identified 182 potential studies, from which 39 full-text articles were screened for relevance. Five articles with case-control design (n = 4,322, intervention group: 1714; control group: 2608) met the study inclusion criteria. The exposure variable was DII, with studies using two distinct models: quartile-based comparisons of DII and assessment of continuous DII. The meta-analysis of high versus low quartiles of DII with four effect sizes showed a significant association with MS/demyelinating autoimmune disease likelihood, with an odds ratio (OR) of 3.26 (95% confidence interval (CI) 1.16, 9.10). The meta-analysis of four studies with DII fit as a continuous variable showed a 31% increased likelihood of MS per unit increment; which was not statistically significant at the nominal alpha equals 0.05 (OR 1.31; 95% CI 0.95, 1.81). In conclusion, this systematic review and meta-analysis provides evidence of a positive association between higher DII scores with the likelihood of developing MS, highlighting that diet-induced inflammation could play a role in MS or other demyelinating autoimmune diseases risk.
Collapse
Affiliation(s)
- Esmaeil Yousefi Rad
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Somayeh Saboori
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Thanasis G Tektonidis
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Steve Simpson-Yap
- Neuroepidemiology Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population & Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jeanette Reece
- Neuroepidemiology Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population & Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - James R Hebert
- Cancer Prevention and Control Program and Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA; Department of Nutrition, Connecting Health Innovations LLC (CHI), Columbia, SC, USA
| | - Richard Nicholas
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Rod Middleton
- Population Data Science, Swansea University Medical School, Swansea, UK
| | - Jonathan Tammam
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | | | - Shelly Coe
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
34
|
Pfeuffer S, Wolff S, Aslan D, Rolfes L, Korsen M, Pawlitzki M, Albrecht P, Havla J, Huttner HB, Kleinschnitz C, Meuth SG, Pul R, Ruck T. Association of Clinical Relapses With Disease Outcomes in Multiple Sclerosis Patients Older Than 50 Years. Neurology 2024; 103:e209574. [PMID: 38870471 PMCID: PMC11244741 DOI: 10.1212/wnl.0000000000209574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Relapse and MRI activity usually decline with aging but are replaced by progression independent of relapse activity (PIRA) in patients with multiple sclerosis (PwMS). However, several older PwMS continue to experience clinical relapses, and the impact on their disease remains undetermined. We aimed to determine the impact of an index relapse on disease outcomes in patients older than 50 years and to identify risk factors of disadvantageous outcomes. METHODS We performed a secondary analysis from 3 prospective cohorts in Germany. We evaluated all PwMS 50 years and older with a relapse ≤60 days before a baseline visit and at least 18 months of follow-up compared with a control cohort of PwMS without a relapse. Patients were stratified according to age ("50-54" vs "55-59" vs "60+") or disease outcomes ("stable" vs "active" vs "progressive," according to the Lublin criteria). We analyzed relapses, MRI activity, relapse-associated worsening, and PIRA. Regression analysis was performed to evaluate the association of specific baseline risk factors and treatment regimen changes with disease outcomes at month 18. RESULTS A total of 681 patients were included in the "relapse cohort" (50+: 361; 55+: 220; 60+: 100). The "control cohort" comprised 232 patients (50+: 117; 55+: 71; 60+: 44). Baseline epidemiologic parameters were balanced among cohorts and subgroups. We observed increased abundance of inflammatory activity and relapse-independent disability progression in the "relapse" vs "control" cohort. In the "relapse" cohort, we identified 273 patients as "stable" (59.7%), 114 patients as "active" (24.9%), and 70 patients as "progressive" (15.3%) during follow-up. Cardiovascular risk factors (CVRFs) and older age at baseline were identified as risk factors of progressive, whereas disease-modifying treatment (DMT) administration at baseline favored stable disease. DMT during follow-up was associated with stable over active, but not over progressive disease. DISCUSSION A relapse-suggesting underlying active disease-in PwMS older than 50 years was associated with continued disease activity and increased risk of PIRA. Presence of CVRF and absence of DMT at baseline appeared as risk factors of disadvantageous disease courses. An escalation of DMT switch was associated with stable over active but not progressive disease.
Collapse
Affiliation(s)
- Steffen Pfeuffer
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Stephanie Wolff
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Derya Aslan
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Leoni Rolfes
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Melanie Korsen
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Marc Pawlitzki
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Philipp Albrecht
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Joachim Havla
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Hagen B Huttner
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Christoph Kleinschnitz
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Sven G Meuth
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Refik Pul
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| | - Tobias Ruck
- From the Department of Neurology (S.P., S.W., H.B.H.), University Hospital Giessen, Justus-Liebig-University Giessen; Department of Neurology (D.A., C.K., R.P.), University Hospital Essen, University Duisburg-Essen; Department of Neurology (L.R., M.K., M.P., S.G.M., T.R.), Medical Faculty, Heinrich Heine University Düsseldorf; Department of Neurology (P.A.), Medical Faculty, Heinrich Department of Neurology, Maria-Hilf-Clinic, Mönchengladbach; and Institute of Clinical Neuroimmunology (J.H.), LMU Hospital, Ludwig-Maximilians University Munich, Germany
| |
Collapse
|
35
|
Ghallab YK, Elassal OS, Mina RG. Coffee and multiple sclerosis (MS). PROGRESS IN BRAIN RESEARCH 2024; 289:57-79. [PMID: 39168582 DOI: 10.1016/bs.pbr.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Multiple Sclerosis (MS) is a long-term autoimmune disorder affecting the central nervous system, marked by inflammation, demyelination, and neurodegeneration. While the exact cause of MS remains unknown, recent research indicates that environmental factors, particularly diet, may influence the disease's risk and progression. As a result, the potential neuroprotective effects of coffee, one of the most popular beverages worldwide, have garnered significant attention due to its rich content of bioactive compounds. This chapter explores the impact of coffee consumption on patients with Multiple Sclerosis, highlighting how coffee compounds like caffeine, polyphenols, and diterpenes can reduce inflammation and oxidative stress while enhancing neural function. It highlights caffeine's effect in regulating adenosine receptors, specifically A1R and A2AR, which play important roles in neuroinflammation and neuroprotection in MS. The dual role of microglial cells, which promote inflammation while also aiding neuroprotection, is also highlighted concerning caffeine's effects. Furthermore, the potential of A2AR as a therapeutic target in MS and the non-A2AR-dependent neuroprotective benefits of coffee. In this chapter we suggest that the consumption of coffee has no harmful effect on an MS patient and to a larger extent on public health, and informs future research directions and clinical practice, ultimately improving outcomes for individuals living with MS.
Collapse
Affiliation(s)
- Youssef K Ghallab
- New Programs, Biotechnology Program, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, Cairo, Egypt.
| | - Omnia S Elassal
- School of Information Technology and Computer Science, Major of Biomedical Informatics, Nile University, Giza, Egypt
| | - Ruth G Mina
- International Euro-Mediterranean Programs, Neuroscience and Biotechnology Program, Faculty of Science, Alexandria University, El-Shatby, Alexandria, Egypt
| |
Collapse
|
36
|
Zveik O, Rechtman A, Ganz T, Vaknin-Dembinsky A. The interplay of inflammation and remyelination: rethinking MS treatment with a focus on oligodendrocyte progenitor cells. Mol Neurodegener 2024; 19:53. [PMID: 38997755 PMCID: PMC11245841 DOI: 10.1186/s13024-024-00742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) therapeutic goals have traditionally been dichotomized into two distinct avenues: immune-modulatory-centric interventions and pro-regenerative strategies. Oligodendrocyte progenitor cells (OPCs) were regarded for many years solely in concern to their potential to generate oligodendrocytes and myelin in the central nervous system (CNS). However, accumulating data elucidate the multifaceted roles of OPCs, including their immunomodulatory functions, positioning them as cardinal constituents of the CNS's immune landscape. MAIN BODY In this review, we will discuss how the two therapeutic approaches converge. We present a model by which (1) an inflammation is required for the appropriate pro-myelinating immune function of OPCs in the chronically inflamed CNS, and (2) the immune function of OPCs is crucial for their ability to differentiate and promote remyelination. This model highlights the reciprocal interactions between OPCs' pro-myelinating and immune-modulating functions. Additionally, we review the specific effects of anti- and pro-inflammatory interventions on OPCs, suggesting that immunosuppression adversely affects OPCs' differentiation and immune functions. CONCLUSION We suggest a multi-systemic therapeutic approach, which necessitates not a unidimensional focus but a harmonious balance between OPCs' pro-myelinating and immune-modulatory functions.
Collapse
Affiliation(s)
- Omri Zveik
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel
- The Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem P.O.B. 12000, Jerusalem, 91120, Israel
| | - Ariel Rechtman
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel
- The Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem P.O.B. 12000, Jerusalem, 91120, Israel
| | - Tal Ganz
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel
- The Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem P.O.B. 12000, Jerusalem, 91120, Israel
| | - Adi Vaknin-Dembinsky
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
- The Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem P.O.B. 12000, Jerusalem, 91120, Israel.
| |
Collapse
|
37
|
Wątroba M, Grabowska AD, Szukiewicz D. Chemokine CX3CL1 (Fractalkine) Signaling and Diabetic Encephalopathy. Int J Mol Sci 2024; 25:7527. [PMID: 39062768 PMCID: PMC11277241 DOI: 10.3390/ijms25147527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus (DM) is the most common metabolic disease in humans, and its prevalence is increasing worldwide in parallel with the obesity pandemic. A lack of insulin or insulin resistance, and consequently hyperglycemia, leads to many systemic disorders, among which diabetic encephalopathy (DE) is a long-term complication of the central nervous system (CNS), characterized by cognitive impairment and motor dysfunctions. The role of oxidative stress and neuroinflammation in the pathomechanism of DE has been proven. Fractalkine (CX3CL1) has unique properties as an adhesion molecule and chemoattractant, and by acting on its only receptor, CX3CR1, it regulates the activity of microglia in physiological states and neuroinflammation. Depending on the clinical context, CX3CL1-CX3CR1 signaling may have neuroprotective effects by inhibiting the inflammatory process in microglia or, conversely, maintaining/intensifying inflammation and neurotoxicity. This review discusses the evidence supporting that the CX3CL1-CX3CR1 pair is neuroprotective and other evidence that it is neurotoxic. Therefore, interrupting the vicious cycle within neuron-microglia interactions by promoting neuroprotective effects or inhibiting the neurotoxic effects of the CX3CL1-CX3CR1 signaling axis may be a therapeutic goal in DE by limiting the inflammatory response. However, the optimal approach to prevent DE is simply tight glycemic control, because the elimination of dysglycemic states in the CNS abolishes the fundamental mechanisms that induce this vicious cycle.
Collapse
Affiliation(s)
| | | | - Dariusz Szukiewicz
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubińskiego 5, 02-400 Warsaw, Poland; (M.W.); (A.D.G.)
| |
Collapse
|
38
|
Herranz E, Treaba CA, Barletta VT, Mehndiratta A, Ouellette R, Sloane JA, Ionete C, Babu S, Mastantuono M, Magon S, Loggia ML, Makary MM, Hooker JM, Catana C, Kinkel RP, Nicholas R, Klawiter EC, Magliozzi R, Mainero C. Characterization of cortico-meningeal translocator protein expression in multiple sclerosis. Brain 2024; 147:2566-2578. [PMID: 38289855 PMCID: PMC11224595 DOI: 10.1093/brain/awae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
Compartmentalized meningeal inflammation is thought to represent one of the key players in the pathogenesis of cortical demyelination in multiple sclerosis. PET targeting the 18 kDa mitochondrial translocator protein (TSPO) is a molecular-specific approach to quantifying immune cell-mediated density in the cortico-meningeal tissue compartment in vivo. This study aimed to characterize cortical and meningeal TSPO expression in a heterogeneous cohort of multiple sclerosis cases using in vivo simultaneous MR-PET with 11C-PBR28, a second-generation TSPO radioligand, and ex vivo immunohistochemistry. Forty-nine multiple sclerosis patients (21 with secondary progressive and 28 with relapsing-remitting multiple sclerosis) with mixed or high affinity binding for 11C-PBR28 underwent 90-min 11C-PBR28 simultaneous MR-PET. Tracer binding was measured using 60-90 min normalized standardized uptake value ratios sampled at mid-cortical depth and ∼3 mm above the pial surface. Data in multiple sclerosis patients were compared to 21 age-matched healthy controls. To characterize the nature of 11C-PBR28 PET uptake, the meningeal and cortical lesion cellular expression of TSPO was further described in post-mortem brain tissue from 20 cases with secondary progressive multiple sclerosis and five age-matched healthy donors. Relative to healthy controls, patients with multiple sclerosis exhibited abnormally increased TSPO signal in the cortex and meningeal tissue, diffusively in progressive disease and more localized in relapsing-remitting multiple sclerosis. In multiple sclerosis, increased meningeal TSPO levels were associated with increased Expanded Disability Status Scale scores (P = 0.007, by linear regression). Immunohistochemistry, validated using in situ sequencing analysis, revealed increased TSPO expression in the meninges and adjacent subpial cortical lesions of post-mortem secondary progressive multiple sclerosis cases relative to control tissue. In these cases, increased TSPO expression was related to meningeal inflammation. Translocator protein immunostaining was detected on meningeal MHC-class II+ macrophages and cortical-activated MHC-class II+ TMEM119+ microglia. In vivo arterial blood data and neuropathology showed that endothelial binding did not significantly account for increased TSPO cortico-meningeal expression in multiple sclerosis. Our findings support the use of TSPO-PET in multiple sclerosis for imaging in vivo inflammation in the cortico-meningeal brain tissue compartment and provide in vivo evidence implicating meningeal inflammation in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Constantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Valeria T Barletta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ambica Mehndiratta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Russell Ouellette
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Clinical Neuroscience, Karolinska Institutet, 141 86 Stockholm, Sweden
- Department of Radiology, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Jacob A Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Carolina Ionete
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Suma Babu
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marina Mastantuono
- Neurology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona 53593, Italy
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel 4058, Switzerland
| | - Stefano Magon
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel 4058, Switzerland
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Meena M Makary
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Revere P Kinkel
- University of California San Diego, Department of Neuroscience, San Diego, CA 92093, USA
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London SW7 2BX, UK
| | - Eric C Klawiter
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Roberta Magliozzi
- Neurology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona 53593, Italy
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London SW7 2BX, UK
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
39
|
Ma H, Ou ZL, Alaeiilkhchi N, Cheng YQ, Chen K, Chen JY, Guo RQ, He MY, Tang SY, Zhang X, Huang ZP, Liu J, Liu J, Zhu QA, Huang ZC, Jiang H. MiR-223 enhances lipophagy by suppressing CTSB in microglia following lysolecithin-induced demyelination in mice. Lipids Health Dis 2024; 23:194. [PMID: 38909243 PMCID: PMC11193262 DOI: 10.1186/s12944-024-02185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Lipid droplet (LD)-laden microglia is a key pathological hallmark of multiple sclerosis. The recent discovery of this novel microglial subtype, lipid-droplet-accumulating microglia (LDAM), is notable for increased inflammatory factor secretion and diminished phagocytic capability. Lipophagy, the autophagy-mediated selective degradation of LDs, plays a critical role in this context. This study investigated the involvement of microRNAs (miRNAs) in lipophagy during demyelinating diseases, assessed their capacity to modulate LDAM subtypes, and elucidated the potential underlying mechanisms involved. METHODS C57BL/6 mice were used for in vivo experiments. Two weeks post demyelination induction at cervical level 4 (C4), histological assessments and confocal imaging were performed to examine LD accumulation in microglia within the lesion site. Autophagic changes were observed using transmission electron microscopy. miRNA and mRNA multi-omics analyses identified differentially expressed miRNAs and mRNAs under demyelinating conditions and the related autophagy target genes. The role of miR-223 in lipophagy under these conditions was specifically explored. In vitro studies, including miR-223 upregulation in BV2 cells via lentiviral infection, validated the bioinformatics findings. Immunofluorescence staining was used to measure LD accumulation, autophagy levels, target gene expression, and inflammatory mediator levels to elucidate the mechanisms of action of miR-223 in LDAM. RESULTS Oil Red O staining and confocal imaging revealed substantial LD accumulation in the demyelinated spinal cord. Transmission electron microscopy revealed increased numbers of autophagic vacuoles at the injury site. Multi-omics analysis revealed miR-223 as a crucial regulatory gene in lipophagy during demyelination. It was identified that cathepsin B (CTSB) targets miR-223 in autophagy to integrate miRNA, mRNA, and autophagy gene databases. In vitro, miR-223 upregulation suppressed CTSB expression in BV2 cells, augmented autophagy, alleviated LD accumulation, and decreased the expression of the inflammatory mediator IL-1β. CONCLUSION These findings indicate that miR-223 plays a pivotal role in lipophagy under demyelinating conditions. By inhibiting CTSB, miR-223 promotes selective LD degradation, thereby reducing the lipid burden and inflammatory phenotype in LDAM. This study broadens the understanding of the molecular mechanisms of lipophagy and proposes lipophagy induction as a potential therapeutic approach to mitigate inflammatory responses in demyelinating diseases.
Collapse
Grants
- No.81902217 National Natural Science Foundation of China
- No.81902217 National Natural Science Foundation of China
- No.81902217 National Natural Science Foundation of China
- No.81902217 National Natural Science Foundation of China
- No.81902217 National Natural Science Foundation of China
- No.81902217 National Natural Science Foundation of China
- No.81902217 National Natural Science Foundation of China
- No.81902217 National Natural Science Foundation of China
- No.81902217 National Natural Science Foundation of China
- No.81902217 National Natural Science Foundation of China
- No.81902217 National Natural Science Foundation of China
- No.81902217 National Natural Science Foundation of China
- No.81902217 National Natural Science Foundation of China
- No.81902217 National Natural Science Foundation of China
- No. 81972064 National Natural Science Foundation of China
- 2023A1515010565 Natural Science Foundation of Guangdong Province
- 2023A1515010565 Natural Science Foundation of Guangdong Province
- 2023A1515010565 Natural Science Foundation of Guangdong Province
- 2023A1515010565 Natural Science Foundation of Guangdong Province
- 2023A1515010565 Natural Science Foundation of Guangdong Province
- 2023A1515010565 Natural Science Foundation of Guangdong Province
- 2023A1515010565 Natural Science Foundation of Guangdong Province
- 2023A1515010565 Natural Science Foundation of Guangdong Province
- 2023A1515010565 Natural Science Foundation of Guangdong Province
- 2023A1515010565 Natural Science Foundation of Guangdong Province
- 2023A1515010565 Natural Science Foundation of Guangdong Province
- 2023A1515010565 Natural Science Foundation of Guangdong Province
- 2023A1515010565 Natural Science Foundation of Guangdong Province
- 2020A1515011415 Natural Science Foundation of Guangdong Province
- 2023A1515010565 Natural Science Foundation of Guangdong Province
- No.2023A024 President Foundation of Nanfang Hospital, Southern Medical University
- No.2023A024 President Foundation of Nanfang Hospital, Southern Medical University
- No.2023A024 President Foundation of Nanfang Hospital, Southern Medical University
- No.2023A024 President Foundation of Nanfang Hospital, Southern Medical University
- No.2023A024 President Foundation of Nanfang Hospital, Southern Medical University
- No.2023A024 President Foundation of Nanfang Hospital, Southern Medical University
- No.2023A024 President Foundation of Nanfang Hospital, Southern Medical University
- No.2023A024 President Foundation of Nanfang Hospital, Southern Medical University
- No.2023A024 President Foundation of Nanfang Hospital, Southern Medical University
- No.2023A024 President Foundation of Nanfang Hospital, Southern Medical University
- No.2023A024 President Foundation of Nanfang Hospital, Southern Medical University
- No.2023A024 President Foundation of Nanfang Hospital, Southern Medical University
- No.2023A024 President Foundation of Nanfang Hospital, Southern Medical University
- No.2023A024 President Foundation of Nanfang Hospital, Southern Medical University
- 202102021244 Guangzhou Science and Technology Plan Project
Collapse
Affiliation(s)
- Hao Ma
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhi-Lin Ou
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Nima Alaeiilkhchi
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, Vancouver, Canada
| | - Yong-Quan Cheng
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Kai Chen
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jia-Yu Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ru-Qin Guo
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Min-Yue He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shi-Yi Tang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xin Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhi-Ping Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Junhao Liu
- Division of Spine Surgery, Department of Orthopaedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 51000, China
| | - Jie Liu
- The 3rd Affiliated Hospital of Xinxiang Medical University, Henan, China
| | - Qing-An Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zu-Cheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Hui Jiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
40
|
Manna I, De Benedittis S, Porro D. Extracellular Vesicles in Multiple Sclerosis: Their Significance in the Development and Possible Applications as Therapeutic Agents and Biomarkers. Genes (Basel) 2024; 15:772. [PMID: 38927708 PMCID: PMC11203165 DOI: 10.3390/genes15060772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Extracellular vesicles (EVs) are "micro-shuttles" that play a role as mediators of intercellular communication. Cells release EVs into the extracellular environment in both physiological and pathological conditions and are involved in intercellular communication, due to their ability to transfer proteins, lipids, and nucleic acids, and in the modulation of the immune system and neuroinflammation. Because EVs can penetrate the blood-brain barrier and move from the central nervous system to the peripheral circulation, and vice versa, recent studies have shown a substantial role for EVs in several neurological diseases, including multiple sclerosis (MS). MS is a demyelinating disease where the main event is caused by T and B cells triggering an autoimmune reaction against myelin constituents. Recent research has elucidate the potential involvement of extracellular vesicles (EVs) in the pathophysiology of MS, although, to date, their potential role both as agents and therapeutic targets in MS is not fully defined. We present in this review a summary and comprehensive examination of EVs' involvement in the pathophysiology of multiple sclerosis, exploring their potential applications as biomarkers and indicators of therapy response.
Collapse
Affiliation(s)
- Ida Manna
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Section of Catanzaro, 88100 Catanzaro, Italy
| | - Selene De Benedittis
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 87050 Cosenza, Italy
| | - Danilo Porro
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, 20054 Milan, Italy
| |
Collapse
|
41
|
Beliën J, Swinnen S, D'hondt R, Verdú de Juan L, Dedoncker N, Matthys P, Bauer J, Vens C, Moylett S, Dubois B. CHIT1 at diagnosis predicts faster disability progression and reflects early microglial activation in multiple sclerosis. Nat Commun 2024; 15:5013. [PMID: 38866782 PMCID: PMC11169395 DOI: 10.1038/s41467-024-49312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
Multiple sclerosis (MS) is characterized by heterogeneity in disease course and prediction of long-term outcome remains a major challenge. Here, we investigate five myeloid markers - CHIT1, CHI3L1, sTREM2, GPNMB and CCL18 - in the cerebrospinal fluid (CSF) at diagnostic lumbar puncture in a longitudinal cohort of 192 MS patients. Through mixed-effects and machine learning models, we show that CHIT1 is a robust predictor for faster disability progression. Integrative analysis of 11 CSF and 26 central nervous system (CNS) parenchyma single-cell/nucleus RNA sequencing samples reveals CHIT1 to be predominantly expressed by microglia located in active MS lesions and enriched for lipid metabolism pathways. Furthermore, we find CHIT1 expression to accompany the transition from a homeostatic towards a more activated, MS-associated cell state in microglia. Neuropathological evaluation in post-mortem tissue from 12 MS patients confirms CHIT1 production by lipid-laden phagocytes in actively demyelinating lesions, already in early disease stages. Altogether, we provide a rationale for CHIT1 as an early biomarker for faster disability progression in MS.
Collapse
Affiliation(s)
- Jarne Beliën
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Stijn Swinnen
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Robbe D'hondt
- Department of Public Health and Primary Care, KU Leuven, Kortrijk, Belgium
- Imec research group itec, KU Leuven, Kortrijk, Belgium
| | - Laia Verdú de Juan
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Nina Dedoncker
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Celine Vens
- Department of Public Health and Primary Care, KU Leuven, Kortrijk, Belgium
- Imec research group itec, KU Leuven, Kortrijk, Belgium
| | - Sinéad Moylett
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bénédicte Dubois
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
42
|
Zuroff LR, Green AJ. The Study of Remyelinating Therapies in Multiple Sclerosis: Visual Outcomes as a Window Into Repair. J Neuroophthalmol 2024; 44:143-156. [PMID: 38654413 DOI: 10.1097/wno.0000000000002149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Amelioration of disability in multiple sclerosis requires the development of complementary therapies that target neurodegeneration and promote repair. Remyelination is a promising neuroprotective strategy that may protect axons from damage and subsequent neurodegeneration. METHODS A review of key literature plus additional targeted search of PubMed and Google Scholar was conducted. RESULTS There has been a rapid expansion of clinical trials studying putative remyelinating candidates, but further growth of the field is limited by the lack of consensus on key aspects of trial design. We have not yet defined the ideal study population, duration of therapy, or the appropriate outcome measures to detect remyelination in humans. The varied natural history of multiple sclerosis, coupled with the short time frame of phase II clinical trials, requires that we develop and validate biomarkers of remyelination that can serve as surrogate endpoints in clinical trials. CONCLUSIONS We propose that the visual system may be the most well-suited and validated model for the study potential remyelinating agents. In this review, we discuss the pathophysiology of demyelination and summarize the current clinical trial landscape of remyelinating agents. We present some of the challenges in the study of remyelinating agents and discuss current potential biomarkers of remyelination and repair, emphasizing both established and emerging visual outcome measures.
Collapse
Affiliation(s)
- Leah R Zuroff
- Department of Neurology (LZ), Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; and Department of Neurology (AJG), University of California San Francisco, San Francisco, California
| | | |
Collapse
|
43
|
Foolad F, Samadi-Bahrami Z, Khodagholi F, Nabavi SM, Moore GRW, Javan M. Sirtuins and Metabolism Biomarkers in Relapsing-Remitting and Secondary Progressive Multiple Sclerosis: a Correlation Study with Clinical Outcomes and Cognitive Impairments. Mol Neurobiol 2024; 61:3442-3460. [PMID: 37995076 DOI: 10.1007/s12035-023-03778-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
Multiple sclerosis (MS) is a primary inflammatory demyelinating disease with different clinical courses and subtypes. The present study aimed to determine whether mitochondrial dysfunction and sirtuins 1 and 3, as metabolism and epigenetic modifying factors, might contribute to MS disease progression measured by physical disability and cognitive impairment.The volunteers (n = 20 controls, n = 59 MS) were recruited and assessed for cognitive function and disability scores; then, patients were clinically classified as relapsing-remitting (RR) in remission phase, RR in relapse phase, and secondary progressive MS. We measured sirtuin (SIRT) 1 and 3 levels, mitochondrial complex I, IV, aconitase, and α-ketoglutarate dehydrogenase (α-KGD) activity in the peripheral blood mononuclear cells (PBMCs). Furthermore, SIRT1, pyruvate, lactate, and cytochrome c (Cyt c) were determined in plasma. Finally, we performed postmortem tissue immunohistochemistry to assess the level of SIRT1 and SIRT3 in the brain lesions of patients with MS.Increased disability and cognitive impairment in patients were correlated. Plasma level of lactate showed a correlation with the disability in MS patients; moreover, a trend toward increased Cyt c plasma level was observed. Investigation of PBMCs exhibited decreased SIRT1 during the relapse phase along with a reduced complex IV activity in all MS subgroups. α-KGD activity was significantly increased in the RR-remission, and SIRT3 was elevated in RR-relapse group. This elevation correlated with disability and cognitive impairment. Finally, immunohistochemistry demonstrated increased levels of SIRT1 and 3 in the brain active lesion of patients with MS.Our data suggest that mitochondrial dysfunction and alteration in some epigenetics and metabolism modifying factors in the CNS and peripheral blood cells may contribute or correlate with MS progression.
Collapse
Affiliation(s)
- Forough Foolad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Zahra Samadi-Bahrami
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Massood Nabavi
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - G R Wayne Moore
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran.
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada.
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
44
|
Saadat M, Dahmardeh N, Sheikhbahaei F, Mokhtari T. Therapeutic potential of thymoquinone and its nanoformulations in neuropsychological disorders: a comprehensive review on molecular mechanisms in preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3541-3564. [PMID: 38010395 DOI: 10.1007/s00210-023-02832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Thymoquinone (THQ) and its nanoformulation (NFs) have emerged as promising candidates for the treatment of neurological diseases due to their diverse pharmacological properties, which include anti-inflammatory, antioxidant, and neuroprotective effects. In this study, we conducted an extensive search across reputable scientific websites such as PubMed, ScienceDirect, Scopus, and Google Scholar to gather relevant information. The antioxidant and anti-inflammatory properties of THQ have been observed to enhance the survival of neurons in affected areas of the brain, leading to significant improvements in behavioral and motor dysfunctions. Moreover, THQ and its NFs have demonstrated the capacity to restore antioxidant enzymes and mitigate oxidative stress. The primary mechanism underlying THQ's antioxidant effects involves the regulation of the Nrf2/HO-1 signaling pathway. Furthermore, THQ has been found to modulate key components of inflammatory signaling pathways, including toll-like receptors (TLRs), nuclear factor-κB (NF-κB), interleukin 6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα), thereby exerting anti-inflammatory effects. This comprehensive review explores the various beneficial effects of THQ and its NFs on neurological disorders and provides insights into the underlying mechanisms involved.
Collapse
Affiliation(s)
- Maryam Saadat
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Narjes Dahmardeh
- Department of Anatomical Sciences, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Fatemeh Sheikhbahaei
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Tahmineh Mokhtari
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| |
Collapse
|
45
|
Zhang W, Zhao X, Bhuiyan P, Liu H, Wei H. Neuroprotective effects of dantrolene in neurodegenerative disease: Role of inhibition of pathological inflammation. JOURNAL OF ANESTHESIA AND TRANSLATIONAL MEDICINE 2024; 3:27-35. [PMID: 38826587 PMCID: PMC11138240 DOI: 10.1016/j.jatmed.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Neurodegenerative diseases (NDs) refer to a group of diseases in which slow, continuous cell death is the main pathogenic event in the nervous system. Most NDs are characterized by cognitive dysfunction or progressive motor dysfunction. Treatments of NDs mainly target alleviating symptoms, and most NDs do not have disease-modifying drugs. The pathogenesis of NDs involves inflammation and apoptosis mediated by mitochondrial dysfunction. Dantrolene, approved by the US Food and Drug Administration, acts as a RyRs antagonist for the treatment of malignant hyperthermia, spasticity, neuroleptic syndrome, ecstasy intoxication and exertional heat stroke with tolerable side effects. Recently, dantrolene has also shown therapeutic effects in some NDs. Its neuroprotective mechanisms include the reduction of excitotoxicity, apoptosis and neuroinflammation. In summary, dantrolene can be considered as a potential therapeutic candidate for NDs.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xu Zhao
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong 250021, China
| | - Piplu Bhuiyan
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Henry Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
46
|
Cong Y, Zhang Y, Han Y, Wu Y, Wang D, Zhang B. Recommendations for nutritional supplements for dry eye disease: current advances. Front Pharmacol 2024; 15:1388787. [PMID: 38873421 PMCID: PMC11169594 DOI: 10.3389/fphar.2024.1388787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/17/2024] [Indexed: 06/15/2024] Open
Abstract
Dry eye disease (DED) represents a prevalent ocular surface disease. The development of effective nutritional management strategies for DED is crucial due to its association with various factors such as inflammation, oxidative stress, deficiencies in polyunsaturated fatty acids (PUFAs), imbalanced PUFA ratios, and vitamin insufficiencies. Extensive research has explored the impact of oral nutritional supplements, varying in composition and dosage, on the symptoms of DED. The main components of these supplements include fish oils (Omega-3 fatty acids), vitamins, trace elements, and phytochemical extracts. Beyond these well-known nutrients, it is necessary to explore whether novel nutrients might contribute to more effective DED management. This review provides a comprehensive update on the therapeutic potential of nutrients and presents new perspectives for combination supplements in DED treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Bingjie Zhang
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
47
|
Elendu C, Amaechi DC, Elendu TC, Ozigis MO, Adegbola MO, Adebayo MA, Afolabi OG. Renal disease associated with multiple sclerosis: A narrative review. Medicine (Baltimore) 2024; 103:e38222. [PMID: 38758897 PMCID: PMC11098179 DOI: 10.1097/md.0000000000038222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/14/2024] [Indexed: 05/19/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune neurological disorder characterized by central nervous system demyelination, leading to various neurological impairments. While the primary focus of research and clinical management has centered on the neurological aspects of MS, emerging evidence suggests a complex interplay between MS and renal disease. This narrative review endeavors to elucidate the intriguing association between MS and renal disease, providing a comprehensive overview of the current knowledge on this topic. Our review begins by outlining the pathophysiology of MS and the diverse mechanisms contributing to its progression. We then delve into renal disease, categorizing the various types and their clinical presentations. This review focuses on exploring the intricate relationship between these seemingly distinct conditions. We analyze existing literature to uncover shared risk factors, potential pathophysiological links, and the impact of MS on renal function. Furthermore, we discuss the clinical presentation and diagnostic challenges in identifying renal disease in MS patients. Importantly, we examine available treatment options and their efficacy in managing renal complications in this unique patient population. The consequences of renal disease on the overall quality of life (QOL) for individuals living with MS are also examined, shedding light on the multifaceted burden of these coexisting conditions.
Collapse
|
48
|
Sen E. The redox status and inflammatory cytokine landscape: Potential therapeutic targets in the modulation of inflammation. Cytokine 2024; 177:156539. [PMID: 38365563 DOI: 10.1016/j.cyto.2024.156539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Affiliation(s)
- Ellora Sen
- National Brain Research Centre, Nainwal Mode, Manesar, Haryana 122052, India.
| |
Collapse
|
49
|
Dicks LMT. Gut Bacteria Provide Genetic and Molecular Reporter Systems to Identify Specific Diseases. Int J Mol Sci 2024; 25:4431. [PMID: 38674014 PMCID: PMC11050607 DOI: 10.3390/ijms25084431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
With genetic information gained from next-generation sequencing (NGS) and genome-wide association studies (GWAS), it is now possible to select for genes that encode reporter molecules that may be used to detect abnormalities such as alcohol-related liver disease (ARLD), cancer, cognitive impairment, multiple sclerosis (MS), diabesity, and ischemic stroke (IS). This, however, requires a thorough understanding of the gut-brain axis (GBA), the effect diets have on the selection of gut microbiota, conditions that influence the expression of microbial genes, and human physiology. Bacterial metabolites such as short-chain fatty acids (SCFAs) play a major role in gut homeostasis, maintain intestinal epithelial cells (IECs), and regulate the immune system, neurological, and endocrine functions. Changes in butyrate levels may serve as an early warning of colon cancer. Other cancer-reporting molecules are colibactin, a genotoxin produced by polyketide synthetase-positive Escherichia coli strains, and spermine oxidase (SMO). Increased butyrate levels are also associated with inflammation and impaired cognition. Dysbiosis may lead to increased production of oxidized low-density lipoproteins (OX-LDLs), known to restrict blood vessels and cause hypertension. Sudden changes in SCFA levels may also serve as a warning of IS. Early signs of ARLD may be detected by an increase in regenerating islet-derived 3 gamma (REG3G), which is associated with changes in the secretion of mucin-2 (Muc2). Pro-inflammatory molecules such as cytokines, interferons, and TNF may serve as early reporters of MS. Other examples of microbial enzymes and metabolites that may be used as reporters in the early detection of life-threatening diseases are reviewed.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
50
|
Bogoje Raspopović A, Balta V, Vodopić M, Drobac M, Boroš A, Đikić D, Demarin V. The possible role of oxidative stress marker glutathione in the assessment of cognitive impairment in multiple sclerosis. Open Med (Wars) 2024; 19:20240952. [PMID: 38623459 PMCID: PMC11017180 DOI: 10.1515/med-2024-0952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Oxidative stress markers have a distinct role in the process of demyelination in multiple sclerosis. This study investigated the potential correlation of markers of oxidative stress (glutathione [GSH], catalase) with the number of demyelinating lesions and the degree of disability, cognitive deficit, and depression in patients with relapsing-remitting multiple sclerosis (RRMS). Sixty subjects meeting the criteria for RRMS (19 men and 41 women), and 66 healthy controls (24 men, 42 women) were included. In this study, GSH significantly negatively correlated with the degree of cognitive impairment. This is the first study of subjects with RRMS that performed the mentioned research of serum GSH levels on the degree of cognitive damage examined by the Montreal Scale of Cognitive Assessment (MoCA) test. The development of cognitive changes, verified by the MoCA test, was statistically significantly influenced by the positive number of magnetic resonance lesions, degree of depression, expanded disability status scale (EDSS), age, and GSH values. Based on these results, it can be concluded that it is necessary to monitor cognitive status early in RRMS patients, especially in those with a larger number of demyelinating lesions and a higher EDSS level and in older subjects. Also, the serum level of GSH is a potential biomarker of disease progression, which could be used more widely in RRMS.
Collapse
Affiliation(s)
- Andrijana Bogoje Raspopović
- Department of Neurology, General Hospital Dubrovnik, Dubrovnik, Croatia
- Department of Animal Physiology, Biology Division, Faculty of Science, University of Zagreb, 10000Zagreb, Croatia
| | - Vedran Balta
- Department of Animal Physiology, Biology Division, Faculty of Science, University of Zagreb, 10000Zagreb, Croatia
| | - Maro Vodopić
- Department of Neurology, General Hospital Dubrovnik, Dubrovnik, Croatia
| | - Marina Drobac
- Department of Neurology, General Hospital Dubrovnik, Dubrovnik, Croatia
| | - Almoš Boroš
- Czech Academy of Science, Institute of Physiology, Prague, Czechia
| | - Domagoj Đikić
- Department of Animal Physiology, Biology Division, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000Zagreb, Croatia
| | - Vida Demarin
- Croatian Academy of Sciences and Arts, Zagreb, Croatia
| |
Collapse
|