1
|
Bonecka J, Turek B, Jankowski K, Borowska M, Jasiński T, Smyth G, Domino M. Relationship between Feline Knee Joint Osteoarthritis and Bone Mineral Density Quantified Using Computed Tomography and Computed Digital Absorptiometry. Animals (Basel) 2024; 14:2615. [PMID: 39272400 PMCID: PMC11394321 DOI: 10.3390/ani14172615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoarthritis (OA), including knee joint OA, is a common chronic condition in cats. In both cats and humans, knee joint OA is characterized radiographically by the presence of osteophytes, enthesiophytes, subchondral sclerosis, and joint space narrowing. However, only in humans have these radiographic signs been reported to increase bone mineral density (BMD). Therefore, this study aims to quantify the volumetric (vBMD) and relative (rBMD) BMD measures of the feline knee joint and compare BMD measures between various severities of OA to test the hypothesized OA-BMD relationship in the knee joint in cats. The 46 feline knee joints were imaged using computed tomography (CT) and conventional radiography supported by the computed digital absorptiometry (CDA) method to obtain vBMD and rBMD, respectively. Both BMD measures were assessed in three regions of interest (ROIs): the distal femur (ROI 1), patella (ROI 2), and proximal tibia (ROI 3). In all locations, vBMD and rBMD showed moderate (ROI 2: r = 0.67, p < 0.0001) to strong (ROI 1: ρ = 0.96, p < 0.0001; ROI 3: r = 0.89, p < 0.0001) positive correlations. Due to differences (p < 0.0001) in the width of the distal femur (17.9 ± 1.21 mm), patella (8.2 ± 0.82 mm), and proximal tibia (19.3 ± 1.16 mm), the rBMD was corrected (corr rBMD) using the thickness coefficient of 0.46 ± 0.04 for ROI 2 and 1.08 ± 0.03 for ROI 3. Regardless of the quantification method used, BMD measures increased linearly from a normal knee joint to severe OA, with differences in BMD between normal and mild to severe knee joint OA. The OA-BMD relationship in the feline knee joint can be preliminarily confirmed.
Collapse
Affiliation(s)
- Joanna Bonecka
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Bernard Turek
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Krzysztof Jankowski
- Institute of Mechanics and Printing, Warsaw University of Technology, 02-524 Warsaw, Poland
| | - Marta Borowska
- Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Białystok University of Technology, 15-351 Bialystok, Poland
| | - Tomasz Jasiński
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Graham Smyth
- Menzies Health Institute Queensland, Griffith University School of Medicine, Southport, QLD 4222, Australia
| | - Małgorzata Domino
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| |
Collapse
|
2
|
Umoh IO, dos Reis HJ, de Oliveira ACP. Molecular Mechanisms Linking Osteoarthritis and Alzheimer's Disease: Shared Pathways, Mechanisms and Breakthrough Prospects. Int J Mol Sci 2024; 25:3044. [PMID: 38474288 PMCID: PMC10931612 DOI: 10.3390/ijms25053044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease mostly affecting the elderly population. It is characterized by cognitive decline that occurs due to impaired neurotransmission and neuronal death. Even though deposition of amyloid beta (Aβ) peptides and aggregation of hyperphosphorylated TAU have been established as major pathological hallmarks of the disease, other factors such as the interaction of genetic and environmental factors are believed to contribute to the development and progression of AD. In general, patients initially present mild forgetfulness and difficulty in forming new memories. As it progresses, there are significant impairments in problem solving, social interaction, speech and overall cognitive function of the affected individual. Osteoarthritis (OA) is the most recurrent form of arthritis and widely acknowledged as a whole-joint disease, distinguished by progressive degeneration and erosion of joint cartilage accompanying synovitis and subchondral bone changes that can prompt peripheral inflammatory responses. Also predominantly affecting the elderly, OA frequently embroils weight-bearing joints such as the knees, spine and hips leading to pains, stiffness and diminished joint mobility, which in turn significantly impacts the patient's standard of life. Both infirmities can co-occur in older adults as a result of independent factors, as multiple health conditions are common in old age. Additionally, risk factors such as genetics, lifestyle changes, age and chronic inflammation may contribute to both conditions in some individuals. Besides localized peripheral low-grade inflammation, it is notable that low-grade systemic inflammation prompted by OA can play a role in AD pathogenesis. Studies have explored relationships between systemic inflammatory-associated diseases like obesity, hypertension, dyslipidemia, diabetes mellitus and AD. Given that AD is the most common form of dementia and shares similar risk factors with OA-both being age-related and low-grade inflammatory-associated diseases, OA may indeed serve as a risk factor for AD. This work aims to review literature on molecular mechanisms linking OA and AD pathologies, and explore potential connections between these conditions alongside future prospects and innovative treatments.
Collapse
Affiliation(s)
| | - Helton Jose dos Reis
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil;
| | - Antonio Carlos Pinheiro de Oliveira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil;
| |
Collapse
|
3
|
Motta F, Barone E, Sica A, Selmi C. Inflammaging and Osteoarthritis. Clin Rev Allergy Immunol 2023; 64:222-238. [PMID: 35716253 DOI: 10.1007/s12016-022-08941-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 12/15/2022]
Abstract
Osteoarthritis is a highly prevalent disease particularly in subjects over 65 years of age worldwide. While in the past it was considered a mere consequence of cartilage degradation leading to anatomical and functional joint impairment, in recent decades, there has been a more dynamic view with the synovium, the cartilage, and the subchondral bone producing inflammatory mediators which ultimately lead to cartilage damage. Inflammaging is defined as a chronic, sterile, low-grade inflammation state driven by endogenous signals in the absence of infections, occurring with aging. This chronic status is linked to the production of reactive oxygen species and molecules involved in the development of age-related disease such as cancer, diabetes, and cardiovascular and neurodegenerative diseases. Inflammaging contributes to osteoarthritis development where both the innate and the adaptive immune response are involved. Elevated systemic and local inflammatory cytokines and senescent molecules promote cartilage degradation, and antigens derived from damaged joints further trigger inflammation through inflammasome activation. B and T lymphocyte populations also change with inflammaging and OA, with reduced regulatory functions, thus implicating self-reactivity as an additional mechanism of joint damage. The discovery of the underlying pathogenic pathways may help to identify potential therapeutic targets for the management or the prevention of osteoarthritis. We will provide a comprehensive evaluation of the current literature on the role of inflammaging in osteoarthritis and discuss the emerging therapeutic strategies.
Collapse
Affiliation(s)
- Francesca Motta
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy
| | - Elisa Barone
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy
| | - Antonio Sica
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.,Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy. .,Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy.
| |
Collapse
|
4
|
Ball HC, Alejo AL, Samson TK, Alejo AM, Safadi FF. Epigenetic Regulation of Chondrocytes and Subchondral Bone in Osteoarthritis. Life (Basel) 2022; 12:582. [PMID: 35455072 PMCID: PMC9030470 DOI: 10.3390/life12040582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this review is to provide an updated review of the epigenetic factors involved in the onset and development of osteoarthritis (OA). OA is a prevalent degenerative joint disease characterized by chronic inflammation, ectopic bone formation within the joint, and physical and proteolytic cartilage degradation which result in chronic pain and loss of mobility. At present, no disease-modifying therapeutics exist for the prevention or treatment of the disease. Research has identified several OA risk factors including mechanical stressors, physical activity, obesity, traumatic joint injury, genetic predisposition, and age. Recently, there has been increased interest in identifying epigenetic factors involved in the pathogenesis of OA. In this review, we detail several of these epigenetic modifications with known functions in the onset and progression of the disease. We also review current therapeutics targeting aberrant epigenetic regulation as potential options for preventive or therapeutic treatment.
Collapse
Affiliation(s)
- Hope C. Ball
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.S.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Andrew L. Alejo
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.S.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Trinity K. Samson
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.S.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
- GPN Therapeutics, Inc., REDI Zone, Rootstown, OH 44272, USA
| | - Amanda M. Alejo
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.S.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Fayez F. Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.S.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
- Department of Orthopaedic Surgery, Akron Children’s Hospital, Akron, OH 44308, USA
| |
Collapse
|
5
|
Wei Z, Li F, Pi G. Association Between Gut Microbiota and Osteoarthritis: A Review of Evidence for Potential Mechanisms and Therapeutics. Front Cell Infect Microbiol 2022; 12:812596. [PMID: 35372125 PMCID: PMC8966131 DOI: 10.3389/fcimb.2022.812596] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a multifactorial joint disease characterized by degeneration of articular cartilage, which leads to joints pain, disability and reduced quality of life in patients with OA. Interpreting the potential mechanisms underlying OA pathogenesis is crucial to the development of new disease modifying treatments. Although multiple factors contribute to the initiation and progression of OA, gut microbiota has gradually been regarded as an important pathogenic factor in the development of OA. Gut microbiota can be regarded as a multifunctional “organ”, closely related to a series of immune, metabolic and neurological functions. This review summarized research evidences supporting the correlation between gut microbiota and OA, and interpreted the potential mechanisms underlying the correlation from four aspects: immune system, metabolism, gut-brain axis and gut microbiota modulation. Future research should focus on whether there are specific gut microbiota composition or even specific pathogens and the corresponding signaling pathways that contribute to the initiation and progression of OA, and validate the potential of targeting gut microbiota for the treatment of patients with OA.
Collapse
Affiliation(s)
| | - Feng Li
- *Correspondence: Feng Li, ; Guofu Pi,
| | - Guofu Pi
- *Correspondence: Feng Li, ; Guofu Pi,
| |
Collapse
|
6
|
Housman G, Briscoe E, Gilad Y. Evolutionary insights into primate skeletal gene regulation using a comparative cell culture model. PLoS Genet 2022; 18:e1010073. [PMID: 35263340 PMCID: PMC8936463 DOI: 10.1371/journal.pgen.1010073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/21/2022] [Accepted: 02/02/2022] [Indexed: 01/10/2023] Open
Abstract
The evolution of complex skeletal traits in primates was likely influenced by both genetic and environmental factors. Because skeletal tissues are notoriously challenging to study using functional genomic approaches, they remain poorly characterized even in humans, let alone across multiple species. The challenges involved in obtaining functional genomic data from the skeleton, combined with the difficulty of obtaining such tissues from nonhuman apes, motivated us to consider an alternative in vitro system with which to comparatively study gene regulation in skeletal cell types. Specifically, we differentiated six human (Homo sapiens) and six chimpanzee (Pan troglodytes) induced pluripotent stem cell lines (iPSCs) into mesenchymal stem cells (MSCs) and subsequently into osteogenic cells (bone cells). We validated differentiation using standard methods and collected single-cell RNA sequencing data from over 100,000 cells across multiple samples and replicates at each stage of differentiation. While most genes that we examined display conserved patterns of expression across species, hundreds of genes are differentially expressed (DE) between humans and chimpanzees within and across stages of osteogenic differentiation. Some of these interspecific DE genes show functional enrichments relevant in skeletal tissue trait development. Moreover, topic modeling indicates that interspecific gene programs become more pronounced as cells mature. Overall, we propose that this in vitro model can be used to identify interspecific regulatory differences that may have contributed to skeletal trait differences between species. Primates display a range of skeletal morphologies and susceptibilities to skeletal diseases, but the molecular basis of these phenotypic differences is unclear. Studies of gene expression variation in primate skeletal tissues are extremely restricted due to the ethical and practical challenges associated with collecting samples. Nevertheless, the ability to study gene regulation in primate skeletal tissues is crucial for understanding how the primate skeleton has evolved. We therefore developed a comparative primate skeletal cell culture model that allows us to access a spectrum of human and chimpanzee cell types as they differentiate from stem cells into bone cells. While most gene expression patterns are conserved across species, we also identified hundreds of differentially expressed genes between humans and chimpanzees within and across stages of differentiation. We also classified cells by osteogenic stage and identified additional interspecific differentially expressed genes which may contribute to skeletal trait differences. We anticipate that this model will be extremely useful for exploring questions related to gene regulation variation in primate bone biology and development.
Collapse
Affiliation(s)
- Genevieve Housman
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Emilie Briscoe
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Yoav Gilad
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
7
|
Boer CG, Hatzikotoulas K, Southam L, Stefánsdóttir L, Zhang Y, Coutinho de Almeida R, Wu TT, Zheng J, Hartley A, Teder-Laving M, Skogholt AH, Terao C, Zengini E, Alexiadis G, Barysenka A, Bjornsdottir G, Gabrielsen ME, Gilly A, Ingvarsson T, Johnsen MB, Jonsson H, Kloppenburg M, Luetge A, Lund SH, Mägi R, Mangino M, Nelissen RRGHH, Shivakumar M, Steinberg J, Takuwa H, Thomas LF, Tuerlings M, Babis GC, Cheung JPY, Kang JH, Kraft P, Lietman SA, Samartzis D, Slagboom PE, Stefansson K, Thorsteinsdottir U, Tobias JH, Uitterlinden AG, Winsvold B, Zwart JA, Davey Smith G, Sham PC, Thorleifsson G, Gaunt TR, Morris AP, Valdes AM, Tsezou A, Cheah KSE, Ikegawa S, Hveem K, Esko T, Wilkinson JM, Meulenbelt I, Lee MTM, van Meurs JBJ, Styrkársdóttir U, Zeggini E. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 2021; 184:4784-4818.e17. [PMID: 34450027 PMCID: PMC8459317 DOI: 10.1016/j.cell.2021.07.038] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/26/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Osteoarthritis affects over 300 million people worldwide. Here, we conduct a genome-wide association study meta-analysis across 826,690 individuals (177,517 with osteoarthritis) and identify 100 independently associated risk variants across 11 osteoarthritis phenotypes, 52 of which have not been associated with the disease before. We report thumb and spine osteoarthritis risk variants and identify differences in genetic effects between weight-bearing and non-weight-bearing joints. We identify sex-specific and early age-at-onset osteoarthritis risk loci. We integrate functional genomics data from primary patient tissues (including articular cartilage, subchondral bone, and osteophytic cartilage) and identify high-confidence effector genes. We provide evidence for genetic correlation with phenotypes related to pain, the main disease symptom, and identify likely causal genes linked to neuronal processes. Our results provide insights into key molecular players in disease processes and highlight attractive drug targets to accelerate translation.
Collapse
Affiliation(s)
- Cindy G Boer
- Department of Internal Medicine, Erasmus MC, Medical Center, 3015CN Rotterdam, the Netherlands
| | - Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Yanfei Zhang
- Genomic Medicine Institute, Geisinger Health System, Danville, PA 17822, USA
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - Tian T Wu
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - April Hartley
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Musculoskeletal Research Unit, Translation Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK
| | - Maris Teder-Laving
- Estonian Genome Center, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Anne Heidi Skogholt
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Eleni Zengini
- 4(th) Psychiatric Department, Dromokaiteio Psychiatric Hospital, 12461 Athens, Greece
| | - George Alexiadis
- 1(st) Department of Orthopaedics, KAT General Hospital, 14561 Athens, Greece
| | - Andrei Barysenka
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Arthur Gilly
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Thorvaldur Ingvarsson
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland; Department of Orthopedic Surgery, Akureyri Hospital, 600 Akureyri, Iceland
| | - Marianne B Johnsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway; Research and Communication Unit for Musculoskeletal Health (FORMI), Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0424 Oslo, Norway
| | - Helgi Jonsson
- Department of Medicine, Landspitali The National University Hospital of Iceland, 108 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Margreet Kloppenburg
- Departments of Rheumatology and Clinical Epidemiology, Leiden University Medical Center, 9600, 23OORC Leiden, the Netherlands
| | - Almut Luetge
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, UK
| | - Rob R G H H Nelissen
- Department of Orthopaedics, Leiden University Medical Center, 9600, 23OORC Leiden, the Netherlands
| | - Manu Shivakumar
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia Steinberg
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 1340, Australia
| | - Hiroshi Takuwa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan; Department of Orthopedic Surgery, Shimane University, Shimane 693-8501, Japan
| | - Laurent F Thomas
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; BioCore-Bioinformatics Core Facility, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Margo Tuerlings
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - George C Babis
- 2(nd) Department of Orthopaedics, National and Kapodistrian University of Athens, Medical School, Nea Ionia General Hospital Konstantopouleio, 14233 Athens, Greece
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jae Hee Kang
- Department of Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA 02115, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Steven A Lietman
- Musculoskeletal Institute, Geisinger Health System, Danville, PA 17822, USA
| | - Dino Samartzis
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - P Eline Slagboom
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - Kari Stefansson
- deCODE Genetics/Amgen Inc., 102 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen Inc., 102 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Jonathan H Tobias
- Musculoskeletal Research Unit, Translation Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK; MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Medical Center, 3015CN Rotterdam, the Netherlands
| | - Bendik Winsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - John-Anker Zwart
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Pak Chung Sham
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Tom R Gaunt
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester M13 9LJ, UK
| | - Ana M Valdes
- Faculty of Medicine and Health Sciences, School of Medicine, University of Nottingham, Nottingham, Nottinghamshire NG5 1PB, UK
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa 411 10, Greece
| | - Kathryn S E Cheah
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7600 Levanger, Norway
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - J Mark Wilkinson
- Department of Oncology and Metabolism and Healthy Lifespan Institute, University of Sheffield, Sheffield S10 2RX, UK
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - Ming Ta Michael Lee
- Genomic Medicine Institute, Geisinger Health System, Danville, PA 17822, USA; Institute of Biomedical Sciences, Academia Sinica, 115 Taipei, Taiwan
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC, Medical Center, 3015CN Rotterdam, the Netherlands
| | | | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, 81675 Munich, Germany.
| |
Collapse
|
8
|
Boer CG, Yau MS, Rice SJ, Coutinho de Almeida R, Cheung K, Styrkarsdottir U, Southam L, Broer L, Wilkinson JM, Uitterlinden AG, Zeggini E, Felson D, Loughlin J, Young M, Capellini TD, Meulenbelt I, van Meurs JB. Genome-wide association of phenotypes based on clustering patterns of hand osteoarthritis identify WNT9A as novel osteoarthritis gene. Ann Rheum Dis 2021; 80:367-375. [PMID: 33055079 PMCID: PMC7892373 DOI: 10.1136/annrheumdis-2020-217834] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Despite recent advances in the understanding of the genetic architecture of osteoarthritis (OA), only two genetic loci have been identified for OA of the hand, in part explained by the complexity of the different hand joints and heterogeneity of OA pathology. METHODS We used data from the Rotterdam Study (RSI, RSII and RSIII) to create three hand OA phenotypes based on clustering patterns of radiographic OA severity to increase power in our modest discovery genome-wide association studies in the RS (n=8700), and sought replication in an independent cohort, the Framingham Heart Study (n=1203). We used multiple approaches that leverage different levels of information and functional data to further investigate the underlying biological mechanisms and candidate genes for replicated loci. We also attempted to replicate known OA loci at other joint sites, including the hips and knees. RESULTS We found two novel genome-wide significant loci for OA in the thumb joints. We identified WNT9A as a possible novel causal gene involved in OA pathogenesis. Furthermore, several previously identified genetic loci for OA seem to confer risk for OA across multiple joints: TGFa, RUNX2, COL27A1, ASTN2, IL11 and GDF5 loci. CONCLUSIONS We identified a robust novel genetic locus for hand OA on chromosome 1, of which WNT9A is the most likely causal gene. In addition, multiple genetic loci were identified to be associated with OA across multiple joints. Our study confirms the potential for novel insight into the genetic architecture of OA by using biologically meaningful stratified phenotypes.
Collapse
Affiliation(s)
- Cindy Germaine Boer
- Department of Internal Medicine, Genetic Laboratories, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Michelle S Yau
- Hebrew SeniorLife, Beth Israel Deaconess Medical Center. Harvard Medical School, Hinda and Arthur Marcus Institute for Aging Research, Boston, Massachusetts, USA
- Department of Rheumatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sarah J Rice
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kathleen Cheung
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle University, Bioinformatics Support Unit, Newcastle upon Tyne, UK
| | | | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Linda Broer
- Department of Internal Medicine, Genetic Laboratories, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - André G Uitterlinden
- Department of Internal Medicine, Genetic Laboratories, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - David Felson
- Arthritis Research UK Epidemiology Unit, The University of Manchester, Manchester, UK
| | - John Loughlin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mariel Young
- Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joyce Bj van Meurs
- Department of Internal Medicine, Genetic Laboratories, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Pathogenesis of Osteoarthritis: Risk Factors, Regulatory Pathways in Chondrocytes, and Experimental Models. BIOLOGY 2020; 9:biology9080194. [PMID: 32751156 PMCID: PMC7464998 DOI: 10.3390/biology9080194] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022]
Abstract
As the most common chronic degenerative joint disease, osteoarthritis (OA) is the leading cause of pain and physical disability, affecting millions of people worldwide. Mainly characterized by articular cartilage degradation, osteophyte formation, subchondral bone remodeling, and synovial inflammation, OA is a heterogeneous disease that impacts all component tissues of the articular joint organ. Pathological changes, and thus symptoms, vary from person to person, underscoring the critical need of personalized therapies. However, there has only been limited progress towards the prevention and treatment of OA, and there are no approved effective disease-modifying osteoarthritis drugs (DMOADs). Conventional treatments, including non-steroidal anti-inflammatory drugs (NSAIDs) and physical therapy, are still the major remedies to manage the symptoms until the need for total joint replacement. In this review, we provide an update of the known OA risk factors and relevant mechanisms of action. In addition, given that the lack of biologically relevant models to recapitulate human OA pathogenesis represents one of the major roadblocks in developing DMOADs, we discuss current in vivo and in vitro experimental OA models, with special emphasis on recent development and application potential of human cell-derived microphysiological tissue chip platforms.
Collapse
|
10
|
Liu L, Wang S, Wen Y, Li P, Cheng S, Ma M, Zhang L, Cheng B, Qi X, Liang C, Zhang F. Assessing the genetic relationships between osteoarthritis and human plasma proteins: a large scale genetic correlation scan. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:677. [PMID: 32617297 PMCID: PMC7327363 DOI: 10.21037/atm-19-4643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Osteoarthritis (OA) is a multifactorial complex disease. The impact of plasma proteins on OA remains elusive now. Methods The UK Biobank genome-wide association study data of OA was used here. Genome-wide SNP genotyping was performed using the Affymetrix UK BiLEVE Axiom or UK Biobank Axiom array. Equally, the GWAS summary data of 3,622 plasma proteins was derived from a recently published study. Consequently, linkage disequilibrium score regression (LD score regression) analysis was performed to evaluate the genetic correlation between each plasma protein and different sites of OA. Results Several suggestive plasma proteins were identified for OA. For hand OA, evidence of genetic correlation was observed for inter-alpha-trypsin inhibitor heavy chain H1 (coefficient =−0.3854, P value =0.0198), multiple inositol polyphosphate phosphatase 1 (coefficient =−1.1721, P value =0.0303). For hip OA, 7 suggestive genetic correlation signals were observed, such as Transmembrane glycoprotein NMB (coefficient =0.6944, P value =0.0098), Endothelial cell-specific molecule 1 (coefficient =0.6337, P value =0.03). For Knee OA, 12 suggestive genetic correlation signals were identified, including Elafin (coefficient =−0.5562, P value =0.0092), Interleukin-16 (coefficient =0.3949, P value =0.0435). Conclusions We investigated the genetic correlations between plasma proteins and different sites of OA in a systematic way. Our results provide novel evidence that OA is a heterogeneous disease.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sen Wang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xin Qi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Chen G, Tang Q, Yu S, Xie Y, Sun J, Li S, Chen L. The biological function of BMAL1 in skeleton development and disorders. Life Sci 2020; 253:117636. [DOI: 10.1016/j.lfs.2020.117636] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
|
12
|
Duan ZX, Li YS, Tu C, Xie P, Li YH, Qi L, Li ZH. Identification of a potential gene target for osteoarthritis based on bioinformatics analyses. J Orthop Surg Res 2020; 15:228. [PMID: 32571421 PMCID: PMC7310002 DOI: 10.1186/s13018-020-01756-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/16/2020] [Indexed: 12/27/2022] Open
Abstract
Background Osteoarthritis (OA) is the most common chronic joint disease worldwide. It is characterized by pain and limited mobility in the affected joints and may even cause disability. Effective clinical options for its prevention and treatment are still unavailable. This study aimed to identify differences in gene signatures between tissue samples from OA and normal knee joints and to explore potential gene targets for OA. Methods Five gene datasets, namely GSE55457, GSE55235, GSE12021, GSE10575, and GSE1919, were selected from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using the R programming software. The functions of these DEGs were analyzed, and a protein–protein interaction (PPI) network was constructed. Subsequently, the most relevant biomarker genes were screened using a receiver operating characteristic (ROC) curve analysis. Finally, the expression of the protein encoded by the core gene PTHLH was evaluated in clinical samples. Results Eleven upregulated and 9 downregulated DEGs were shared between the five gene expression datasets. Based on the PPI network and the ROC curves of upregulated genes, PTHLH was identified as the most relevant gene for OA and was selected for further validation. Immunohistochemistry confirmed significantly higher PTHLH expression in OA tissues than in normal tissues. Moreover, similar PTHLH levels were detected in the plasma and knee synovial fluid of OA patients. Conclusion The bioinformatics analysis and preliminary experimental verification performed in this study identified PTHLH as a potential target for the treatment of OA.
Collapse
Affiliation(s)
- Zhi-Xi Duan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Peng Xie
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Yi-Han Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Zhi-Hong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
13
|
Brophy RH, Schmidt EJ, Cai L, Rai MF. Duration of symptoms prior to partial meniscectomy is not associated with the expression of osteoarthritis genes in the injured meniscus. J Orthop Res 2020; 38:1268-1278. [PMID: 31876303 PMCID: PMC7225063 DOI: 10.1002/jor.24574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/21/2019] [Indexed: 02/04/2023]
Abstract
While there is emerging data on how duration of symptoms prior to surgery relates to outcomes of patients undergoing arthroscopic partial meniscectomy, little is known about how duration of symptoms relates to the biology of the knee in these patients. The purpose of this study was to test the hypothesis that duration of symptoms prior to arthroscopic partial meniscectomy is associated with expression of osteoarthritis (OA)-related genes in the meniscus. We collected resected meniscus from patients (N = 76) undergoing clinically indicated arthroscopic partial meniscectomy from knees without advanced degenerative changes. RNA from 64 patients was analyzed for 28 candidate OA transcripts by real-time polymerase chain reaction (PCR). RNA was also probed for identification of novel genes by RNA microarray in 12 patients followed by validation of selected candidates by real-time PCR. The association of gene expression with duration of symptoms prior to surgery was tested. Additional screening was performed with known OA genetic risk alleles assembled from published literature and with gene transcripts differentially expressed between non-OA and OA cartilage and menisci. Our data revealed that duration of symptoms did not predict expression of OA genes in the meniscus, other than limited association with CXCL3, BMP2, and HLA-DQA1. Microarray identified new genes and pathways with unknown role(s) in meniscus injury and OA and validation of a subset of genes by real-time PCR showed expression pattern highly concordant with the microarray data. While duration of symptoms prior to arthroscopic partial meniscectomy does not significantly alter the expression of OA related genes, the association with novel genes and pathways deserves further investigation.
Collapse
Affiliation(s)
- Robert H. Brophy
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Eric J. Schmidt
- School of Physician Assistant Medicine, College of Health Sciences, University of Lynchburg College, Lynchburg, VA, USA
| | - Lei Cai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Muhammad Farooq Rai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA,Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
14
|
Osteoarthritis year in review 2019: genetics, genomics and epigenetics. Osteoarthritis Cartilage 2020; 28:275-284. [PMID: 31874234 DOI: 10.1016/j.joca.2019.11.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 02/02/2023]
Abstract
Although osteoarthritis (OA) aetiology is complex, genetic, genomic and epigenetic studies published within the last decade have advanced our understanding of the molecular processes underlying this common musculoskeletal disease. The purpose of this narrative review is to highlight the key research articles within the OA genetics, genomics and epigenetics fields that were published between April 2018 and April 2019. The review focuses on the identification of new OA genetic risk loci, genomics techniques that have been used for the first time in human cartilage and new publicly available databases, and datasets that will aid OA functional studies. Fifty-six new OA susceptibility loci were identified by two large scale genome wide association study meta-analyses, increasing the number of genome-wide significant risk loci to 90. OA risk variants are enriched near genes involved in skeletal development and morphology, and show genetic overlap with height, hip shape, bone area and developmental dysplasia of the hip. Several functional studies of OA loci were published, including a genome-wide analysis of genetic variation on cartilage gene expression. A specialised data portal for exploring cross-species skeletal transcriptomic datasets has been developed, and the first use of cartilage single cell RNAseq analysis reported. This year also saw the systematic identification of all microRNAs, long non-coding RNAs and circular RNAs expressed in human OA cartilage. Putative transcriptional regulatory regions have been mapped in human chondrocytes genome-wide, providing a dataset that will facilitate the prioritisation and characterisation of OA genetic and epigenetic loci.
Collapse
|
15
|
Shen J, Wang C, Ying J, Xu T, McAlinden A, O’Keefe RJ. Inhibition of 4-aminobutyrate aminotransferase protects against injury-induced osteoarthritis in mice. JCI Insight 2019; 4:128568. [PMID: 31534049 PMCID: PMC6795381 DOI: 10.1172/jci.insight.128568] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/08/2019] [Indexed: 11/17/2022] Open
Abstract
Recently we demonstrated that ablation of the DNA methyltransferase enzyme, Dnmt3b, resulted in catabolism and progression of osteoarthritis (OA) in murine articular cartilage through a mechanism involving increased mitochondrial respiration. In this study, we identify 4-aminobutyrate aminotransferase (Abat) as a downstream target of Dnmt3b. Abat is an enzyme that metabolizes γ-aminobutyric acid to succinate, a key intermediate in the tricarboxylic acid cycle. We show that Dnmt3b binds to the Abat promoter, increases methylation of a conserved CpG sequence just upstream of the transcriptional start site, and inhibits Abat expression. Dnmt3b deletion in articular chondrocytes results in reduced methylation of the CpG sequence in the Abat promoter, which subsequently increases expression of Abat. Increased Abat expression in chondrocytes leads to enhanced mitochondrial respiration and elevated expression of catabolic genes. Overexpression of Abat in murine knee joints via lentiviral injection results in accelerated cartilage degradation following surgical induction of OA. In contrast, lentiviral-based knockdown of Abat attenuates the expression of IL-1β-induced catabolic genes in primary murine articular chondrocytes in vitro and also protects against murine articular cartilage degradation in vivo. Strikingly, treatment with the FDA-approved small-molecule Abat inhibitor, vigabatrin, significantly prevents the development of injury-induced OA in mice. In summary, these studies establish Abat as an important new target for therapies to prevent OA.
Collapse
MESH Headings
- 4-Aminobutyrate Transaminase/antagonists & inhibitors
- 4-Aminobutyrate Transaminase/genetics
- 4-Aminobutyrate Transaminase/metabolism
- Animals
- Cartilage, Articular/cytology
- Cartilage, Articular/drug effects
- Cartilage, Articular/injuries
- Cartilage, Articular/pathology
- Cells, Cultured
- Chondrocytes/cytology
- Chondrocytes/drug effects
- Chondrocytes/immunology
- Chondrocytes/pathology
- CpG Islands/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation/genetics
- Disease Models, Animal
- Gene Knockdown Techniques
- Humans
- Interleukin-1beta/immunology
- Interleukin-1beta/metabolism
- Male
- Mice
- Mitochondria/metabolism
- Osteoarthritis, Knee/drug therapy
- Osteoarthritis, Knee/etiology
- Osteoarthritis, Knee/pathology
- Oxidative Phosphorylation/drug effects
- Primary Cell Culture
- Promoter Regions, Genetic/genetics
- Transcription Initiation Site
- Transcription, Genetic
- Vigabatrin/pharmacology
- Vigabatrin/therapeutic use
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Jie Shen
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cuicui Wang
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jun Ying
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Taotao Xu
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Regis J. O’Keefe
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
16
|
Madzuki IN, Lau SF, Mohamad Shalan NAA, Mohd Ishak NI, Mohamed S. Does cartilage ERα overexpression correlate with osteoarthritic chondrosenescence? Indications from Labisia pumila OA mitigation. J Biosci 2019. [DOI: 10.1007/s12038-019-9907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Alteration of the Total Cellular Glycome during Late Differentiation of Chondrocytes. Int J Mol Sci 2019; 20:ijms20143546. [PMID: 31331074 PMCID: PMC6678350 DOI: 10.3390/ijms20143546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022] Open
Abstract
In normal articular cartilage, chondrocytes do not readily proliferate or terminally differentiate, and exhibit a low level of metabolism. Hypertrophy-like changes of chondrocytes have been proposed to play a role in the pathogenesis of osteoarthritis by inducing protease-mediated cartilage degradation and calcification; however, the molecular mechanisms underlying these changes are unclear. Glycans are located on the outermost cell surface. Dynamic cellular differentiation can be monitored and quantitatively characterized by profiling the glycan structures of total cellular glycoproteins. This study aimed to clarify the alterations in glycans upon late differentiation of chondrocytes, during which hypertrophy-like changes occur. Primary mouse chondrocytes were differentiated using an insulin-induced chondro-osteogenic differentiation model. Comprehensive glycomics, including N-glycans, O-glycans, free oligosaccharides, glycosaminoglycan, and glycosphingolipid, were analyzed for the chondrocytes after 0-, 10- and 20-days cultivation. The comparison and clustering of the alteration of glycans upon hypertrophy-like changes of primary chondrocytes were performed. Comprehensive glycomic analyses provided complementary alterations in the levels of various glycans derived from glycoconjugates during hypertrophic differentiation. In addition, expression of genes related to glycan biosynthesis and metabolic processes was significantly correlated with glycan alterations. Our results indicate that total cellular glycan alterations are closely associated with chondrocyte hypertrophy and help to describe the glycophenotype by chondrocytes and their hypertrophic differentiation. our results will assist the identification of diagnostic and differentiation biomarkers in the future.
Collapse
|
18
|
Sanjurjo-Rodriguez C, Baboolal TG, Burska AN, Ponchel F, El-Jawhari JJ, Pandit H, McGonagle D, Jones E. Gene expression and functional comparison between multipotential stromal cells from lateral and medial condyles of knee osteoarthritis patients. Sci Rep 2019; 9:9321. [PMID: 31249374 PMCID: PMC6597541 DOI: 10.1038/s41598-019-45820-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disorder. Multipotential stromal cells (MSCs) have a crucial role in joint repair, but how OA severity affects their characteristics remains unknown. Knee OA provides a good model to study this, as osteochondral damage is commonly more severe in the medial weight-bearing compartment compared to lateral side of the joint. This study utilised in vitro functional assays, cell sorting, gene expression and immunohistochemistry to compare MSCs from medial and lateral OA femoral condyles. Despite greater cartilage loss and bone sclerosis in medial condyles, there was no significant differences in MSC numbers, growth rates or surface phenotype. Culture-expanded and freshly-purified medial-condyle MSCs expressed higher levels of several ossification-related genes. Using CD271-staining to identify MSCs, their presence and co-localisation with TRAP-positive chondroclasts was noted in the vascular channels breaching the osteochondral junction in lateral condyles. In medial condyles, MSCs were additionally found in small cavities within the sclerotic plate. These data indicate subchondral MSCs may be involved in OA progression by participating in cartilage destruction, calcification and sclerotic plate formation and that they remain abundant in severe disease. Biological or biomechanical modulation of these MSCs may be a new strategy towards cartilage and bone restoration in knee OA.
Collapse
Affiliation(s)
- Clara Sanjurjo-Rodriguez
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,University of A Coruña, Cell Therapy and Regenerative Medicine group, Biomedical Sciences, Medicine and Physiotherapy department; CIBER-BBN, Institute of Biomedical Research of A Coruña (INIBIC)-Centre of Advanced Scientific Researches (CICA), A Coruña, Spain
| | - Thomas G Baboolal
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds, United Kingdom
| | - Agata N Burska
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Frederique Ponchel
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Jehan J El-Jawhari
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Clinical Pathology department, Mansoura University, Mansoura, Egypt
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds, United Kingdom.,Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds, United Kingdom.,Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
19
|
Rai MF, Tycksen ED, Cai L, Yu J, Wright RW, Brophy RH. Distinct degenerative phenotype of articular cartilage from knees with meniscus tear compared to knees with osteoarthritis. Osteoarthritis Cartilage 2019; 27:945-955. [PMID: 30797944 PMCID: PMC6536326 DOI: 10.1016/j.joca.2019.02.792] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare the transcriptome of articular cartilage from knees with meniscus tears to knees with end-stage osteoarthritis (OA). DESIGN Articular cartilage was collected from the non-weight bearing medial intercondylar notch of knees undergoing arthroscopic partial meniscectomy (APM; N = 10, 49.7 ± 10.8 years, 50% females) for isolated medial meniscus tears and knees undergoing total knee arthroplasty (TKA; N = 10, 66.0 ± 7.6 years, 70% females) due to end-stage OA. Ribonucleic acid (RNA) preparation was subjected to SurePrint G3 human 8 × 60K RNA microarrays to probe differentially expressed transcripts followed by computational exploration of underlying biological processes. Real-time polymerase chain reaction amplification was performed on selected transcripts to validate microarray data. RESULTS We observed that 81 transcripts were significantly differentially expressed (45 elevated, 36 repressed) between APM and TKA samples (≥ 2 fold) at a false discovery rate of ≤ 0.05. Among these, CFD, CSN1S1, TSPAN11, CSF1R and CD14 were elevated in the TKA group, while CHI3L2, HILPDA, COL3A1, COL27A1 and FGF2 were highly expressed in APM group. A few long intergenic non-coding RNAs (lincRNAs), small nuclear RNAs (snoRNAs) and antisense RNAs were also differentially expressed between the two groups. Transcripts up-regulated in TKA cartilage were enriched for protein localization and activation, chemical stimulus, immune response, and toll-like receptor signaling pathway. Transcripts up-regulated in APM cartilage were enriched for mesenchymal cell apoptosis, epithelial morphogenesis, canonical glycolysis, extracellular matrix organization, cartilage development, and glucose catabolic process. CONCLUSIONS This study suggests that APM and TKA cartilage express distinct sets of OA transcripts. The gene profile in cartilage from TKA knees represents an end-stage OA whereas in APM knees it is clearly earlier in the degenerative process.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Eric D. Tycksen
- Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Lei Cai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Jinsheng Yu
- Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Rick W. Wright
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Robert H. Brophy
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| |
Collapse
|
20
|
Fisher M, Ackley T, Richard K, Oei B, Dealy CN. Osteoarthritis at the Cellular Level: Mechanisms, Clinical Perspectives, and Insights From Development. ENCYCLOPEDIA OF BIOMEDICAL ENGINEERING 2019:660-676. [DOI: 10.1016/b978-0-12-801238-3.64119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Gao F, Peng C, Zheng C, Zhang S, Wu M. miRNA-101 promotes chondrogenic differentiation in rat bone marrow mesenchymal stem cells. Exp Ther Med 2018; 17:175-180. [PMID: 30651779 PMCID: PMC6307415 DOI: 10.3892/etm.2018.6959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/23/2018] [Indexed: 01/27/2023] Open
Abstract
Effect and related mechanisms of miR-101 on the chondrogenic differentiation of rat bone marrow mesenchymal stem cells (MSCs) were investigated. The expression level of miR-101 was detected during chondrogenic differentiation. Three groups were established to study the potential function between miR-101 and chondrogenic differentiation: miR-NC group (negative control), miR-101 mimics (BMSCs transfected by miR-101 mimics) and mimics + inhibitor (BMSCs transfected by miR-101 mimics and inhibitor), after the induction of chondrogenic differentiation, the cell viability of MSCs and chondrogenic markers were determined, further, the expression level of Sox9 and Runx2 were detected. In our present research, miR-101 was found upregulated during chondrogenic differentiation of MSCs. Compared with the miR-NC group, the cell viability of MSCs was enhanced and the expression level of chondrogenic markers were respectively gained. The expression level of Sox9 was increased but the expression level of Runx2 was decreased by treatment of miR-101 mimics after induction of chondrogenic differentiation. However, these variations of the indicators were reversed by the intervention using the miR-101 inhibitor. Collectively, our research revealed promotion function of miR-101 on chondrogenic differentiation of MSCs, indicating that miR-101 could be a potential therapeutic strategy for the treatment of osteoarthritis (OA).
Collapse
Affiliation(s)
- Feng Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Chuangang Peng
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Changjun Zheng
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Shanyong Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
22
|
Abstract
Osteochondral (OC) lesions are a major cause of chronic musculoskeletal pain and functional disability, which reduces the quality of life of the patients and entails high costs to the society. Currently, there are no effective treatments, so in vitro and in vivo disease models are critically important to obtain knowledge about the causes and to develop effective treatments for OC injuries. In vitro models are essential to clarify the causes of the disease and the subsequent design of the first barrier to test potential therapeutics. On the other hand, in vivo models are anatomically more similar to humans allowing to reproduce the pattern and progression of the lesion in a controlled scene and offering the opportunity to study the symptoms and responses to new treatments. Moreover, in vivo models are the most suitable preclinical model, being a fundamental and a mandatory step to ensure the successful transfer to clinical trials. Both in vitro and in vitro models have a number of advantages and limitation, and the choice of the most appropriate model for each study depends on many factors, such as the purpose of the study, handling or the ease to obtain, and cost, among others. In this chapter, we present the main in vitro and in vivo OC disease models that have been used over the years in the study of origin, progress, and treatment approaches of OC defects.
Collapse
|
23
|
Bortoluzzi A, Furini F, Scirè CA. Osteoarthritis and its management - Epidemiology, nutritional aspects and environmental factors. Autoimmun Rev 2018; 17:1097-1104. [DOI: 10.1016/j.autrev.2018.06.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/03/2018] [Indexed: 02/06/2023]
|
24
|
Cornelis FMF, Monteagudo S, Guns LAKA, den Hollander W, Nelissen RGHH, Storms L, Peeters T, Jonkers I, Meulenbelt I, Lories RJ. ANP32A regulates ATM expression and prevents oxidative stress in cartilage, brain, and bone. Sci Transl Med 2018; 10:10/458/eaar8426. [DOI: 10.1126/scitranslmed.aar8426] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/12/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
Osteoarthritis is the most common joint disorder with increasing global prevalence due to aging of the population. Current therapy is limited to symptom relief, yet there is no cure. Its multifactorial etiology includes oxidative stress and overproduction of reactive oxygen species, but the regulation of these processes in the joint is insufficiently understood. We report that ANP32A protects the cartilage against oxidative stress, preventing osteoarthritis development and disease progression. ANP32A is down-regulated in human and mouse osteoarthritic cartilage. Microarray profiling revealed that ANP32A protects the joint by promoting the expression of ATM, a key regulator of the cellular oxidative defense. Antioxidant treatment reduced the severity of osteoarthritis, osteopenia, and cerebellar ataxia features in Anp32a-deficient mice, revealing that the ANP32A/ATM axis discovered in cartilage is also present in brain and bone. Our findings indicate that modulating ANP32A signaling could help manage oxidative stress in cartilage, brain, and bone with therapeutic implications for osteoarthritis, neurological disease, and osteoporosis.
Collapse
Affiliation(s)
- Frederique M. F. Cornelis
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Silvia Monteagudo
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Laura-An K. A. Guns
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Wouter den Hollander
- Department of Medical Statistics and Bioinformatics, Section Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, Netherlands
- Integrated research on Developmental determinants of Ageing and Longevity (IDEAL), 2300 RC Leiden, Netherlands
| | - Rob G. H. H. Nelissen
- Department of Orthopaedics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Lies Storms
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Tine Peeters
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Ilse Jonkers
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Human Movement Biomechanics, Department of Kinesiology, KU Leuven, 3000 Leuven, Belgium
| | - Ingrid Meulenbelt
- Department of Medical Statistics and Bioinformatics, Section Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, Netherlands
- Integrated research on Developmental determinants of Ageing and Longevity (IDEAL), 2300 RC Leiden, Netherlands
| | - Rik J. Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Division of Rheumatology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
25
|
Shepherd C, Zhu D, Skelton AJ, Combe J, Threadgold H, Zhu L, Vincent TL, Stuart P, Reynard LN, Loughlin J. Functional Characterization of the Osteoarthritis Genetic Risk Residing at ALDH1A2 Identifies rs12915901 as a Key Target Variant. Arthritis Rheumatol 2018; 70:1577-1587. [PMID: 29732726 PMCID: PMC6175168 DOI: 10.1002/art.40545] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/26/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To identify the functional single-nucleotide polymorphisms (SNPs) and mechanisms conferring increased risk of hand osteoarthritis (OA) at the ALDH1A2 locus, which is a retinoic acid regulatory gene. METHODS Tissue samples from 247 patients with knee, hip, or hand OA who had undergone joint surgery were included. RNA-sequencing analysis was used to investigate differential expression of ALDH1A2 and other retinoic acid signaling pathway genes in cartilage. Expression of ALDH1A2 in joint tissues obtained from multiple sites was quantified using quantitative reverse transcription-polymerase chain reaction. Allelic expression imbalance (AEI) was measured by pyrosequencing. The consequences of ALDH1A2 depletion by RNA interference were assessed in primary human chondrocytes. In silico and in vitro analyses were used to pinpoint which, among 62 highly correlated SNPs, could account for the association at the locus. RESULTS ALDH1A2 expression was observed across multiple joint tissue samples, including osteochondral tissue from the hand. The expression of ALDH1A2 and of several retinoic acid signaling genes was different in diseased cartilage compared to non-diseased cartilage, with ALDH1A2 showing lower levels in OA cartilage. Experimental depletion of ALDH1A2 resulted in changes in the expression levels of a number of chondrogenic markers, including SOX9. In addition, reduced expression of the OA risk-conferring allele was witnessed in a number of joint tissues, with the strongest effect in cartilage. The intronic SNP rs12915901 recapitulated the AEI observed in patient tissues, while the Ets transcription factors were identified as potential mediators of this effect. CONCLUSION The ALDH1A2 locus seems to increase the risk of hand OA through decreased expression of ALDH1A2 in joint tissues, with the effect dependent on rs12915901. These findings indicate a mechanism that may now be targeted to modulate OA risk.
Collapse
Affiliation(s)
| | - Dongxing Zhu
- Newcastle University, Newcastle upon Tyne, UK, and Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, and Guangzhou Medical University, Guangzhou, China
| | | | | | | | - Linyi Zhu
- Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, Oxford, UK
| | - Tonia L Vincent
- Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, Oxford, UK
| | - Paul Stuart
- Newcastle University Teaching Hospitals NHS Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
26
|
Zhou X, Cheung CL, Karasugi T, Karppinen J, Samartzis D, Hsu YH, Mak TSH, Song YQ, Chiba K, Kawaguchi Y, Li Y, Chan D, Cheung KMC, Ikegawa S, Cheah KSE, Sham PC. Trans-Ethnic Polygenic Analysis Supports Genetic Overlaps of Lumbar Disc Degeneration With Height, Body Mass Index, and Bone Mineral Density. Front Genet 2018; 9:267. [PMID: 30127800 PMCID: PMC6088183 DOI: 10.3389/fgene.2018.00267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/02/2018] [Indexed: 01/08/2023] Open
Abstract
Lumbar disc degeneration (LDD) is age-related break-down in the fibrocartilaginous joints between lumbar vertebrae. It is a major cause of low back pain and is conventionally assessed by magnetic resonance imaging (MRI). Like most other complex traits, LDD is likely polygenic and influenced by both genetic and environmental factors. However, genome-wide association studies (GWASs) of LDD have uncovered few susceptibility loci due to the limited sample size. Previous epidemiology studies of LDD also reported multiple heritable risk factors, including height, body mass index (BMI), bone mineral density (BMD), lipid levels, etc. Genetics can help elucidate causality between traits and suggest loci with pleiotropic effects. One such approach is polygenic score (PGS) which summarizes the effect of multiple variants by the summation of alleles weighted by estimated effects from GWAS. To investigate genetic overlaps of LDD and related heritable risk factors, we calculated the PGS of height, BMI, BMD and lipid levels in a Chinese population-based cohort with spine MRI examination and a Japanese case-control cohort of lumbar disc herniation (LDH) requiring surgery. Because most large-scale GWASs were done in European populations, PGS of corresponding traits were created using weights from European GWASs. We calibrated their prediction performance in independent Chinese samples, then tested associations with MRI-derived LDD scores and LDH affection status. The PGS of height, BMI, BMD and lipid levels were strongly associated with respective phenotypes in Chinese, but phenotype variances explained were lower than in Europeans which would reduce the power to detect genetic overlaps. Despite of this, the PGS of BMI and lumbar spine BMD were significantly associated with LDD scores; and the PGS of height was associated with the increased the liability of LDH. Furthermore, linkage disequilibrium score regression suggested that, osteoarthritis, another degenerative disorder that shares common features with LDD, also showed genetic correlations with height, BMI and BMD. The findings suggest a common key contribution of biomechanical stress to the pathogenesis of LDD and will direct the future search for pleiotropic genes.
Collapse
Affiliation(s)
- Xueya Zhou
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Department of Systems Biology, Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Li Ka Shing Faculty of Medicine, Center for Genomic Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Tatsuki Karasugi
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto City, Japan
| | - Jaro Karppinen
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Dino Samartzis
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yi-Hsiang Hsu
- Hebrew SeniorLife, Institute for Aging Research, Roslindale, MA, United States.,Harvard Medical School, Boston, MA, United States.,Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, United States
| | - Timothy Shin-Heng Mak
- Li Ka Shing Faculty of Medicine, Center for Genomic Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - You-Qiang Song
- Li Ka Shing Faculty of Medicine, Center for Genomic Sciences, The University of Hong Kong, Hong Kong, Hong Kong.,Li Ka Shing Faculty of Medicine, School of Biomedical Science, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yoshiharu Kawaguchi
- Department of Orthopaedic Surgery, Toyama University, Toyama Prefecture, Japan
| | - Yan Li
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Danny Chan
- Li Ka Shing Faculty of Medicine, School of Biomedical Science, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kenneth Man-Chee Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Kathryn Song-Eng Cheah
- Li Ka Shing Faculty of Medicine, School of Biomedical Science, The University of Hong Kong, Hong Kong, Hong Kong
| | - Pak Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Li Ka Shing Faculty of Medicine, Center for Genomic Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
27
|
Guan YJ, Li J, Yang X, Du S, Ding J, Gao Y, Zhang Y, Yang K, Chen Q. Evidence that miR-146a attenuates aging- and trauma-induced osteoarthritis by inhibiting Notch1, IL-6, and IL-1 mediated catabolism. Aging Cell 2018; 17:e12752. [PMID: 29575548 PMCID: PMC5946074 DOI: 10.1111/acel.12752] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2018] [Indexed: 12/26/2022] Open
Abstract
Primary osteoarthritis (OA) is associated with aging, while post-traumatic OA (PTOA) is associated with mechanical injury and inflammation. It is not clear whether the two types of osteoarthritis share common mechanisms. We found that miR-146a, a microRNA-associated with inflammation, is activated by cyclic load in the physiological range but suppressed by mechanical overload in human articular chondrocytes. Furthermore, miR-146a expression is decreased in the OA lesions of human articular cartilage. To understand the role of miR-146a in osteoarthritis, we systemically characterized mice in which miR-146a is either deficient in whole body or overexpressed in chondrogenic cells specifically. miR-146a-deficient mice develop early onset of OA characterized by cartilage degeneration, synovitis, and osteophytes. Conversely, miR-146a chondrogenic overexpressing mice are resistant to aging-associated OA. Loss of miR-146a exacerbates articular cartilage degeneration during PTOA, while chondrogenic overexpression of miR-146a inhibits PTOA. Thus, miR-146a inhibits both OA and PTOA in mice, suggesting a common protective mechanism initiated by miR-146a. miR-146a suppresses IL-1β of catabolic factors, and we provide evidence that miR-146a directly inhibits Notch1 expression. Therefore, such inhibition of Notch1 may explain suppression of inflammatory mediators by miR-146a. Chondrogenic overexpression of miR-146a or intra-articular administration of a Notch1 inhibitor alleviates IL-1β-induced catabolism and rescues joint degeneration in miR-146a-deficient mice, suggesting that miR-146a is sufficient to protect OA pathogenesis by inhibiting Notch signaling in the joint. Thus, miR-146a may be used to counter both aging-associated OA and mechanical injury-/inflammation-induced PTOA.
Collapse
Affiliation(s)
- Ying-Jie Guan
- Bone and Joint Research Center; The First Affiliated Hospital and Frontier Institute of Science and Technology; Xi'an JiaoTong University; Xi'an China
- Cell and Molecular Biology Laboratory; Department of Orthopaedics; Alpert Medical School of Brown University/Rhode Island Hospital; Providence RI USA
| | - Jing Li
- Bone and Joint Research Center; The First Affiliated Hospital and Frontier Institute of Science and Technology; Xi'an JiaoTong University; Xi'an China
| | - Xu Yang
- Department of Orthopaedics; Affiliated Hospital of Medical College of Qingdao University; Qingdao China
| | - Shaohua Du
- Cell and Molecular Biology Laboratory; Department of Orthopaedics; Alpert Medical School of Brown University/Rhode Island Hospital; Providence RI USA
| | - Jing Ding
- Cell and Molecular Biology Laboratory; Department of Orthopaedics; Alpert Medical School of Brown University/Rhode Island Hospital; Providence RI USA
| | - Yun Gao
- Cell and Molecular Biology Laboratory; Department of Orthopaedics; Alpert Medical School of Brown University/Rhode Island Hospital; Providence RI USA
| | - Ying Zhang
- Cell and Molecular Biology Laboratory; Department of Orthopaedics; Alpert Medical School of Brown University/Rhode Island Hospital; Providence RI USA
| | - Kun Yang
- Cell and Molecular Biology Laboratory; Department of Orthopaedics; Alpert Medical School of Brown University/Rhode Island Hospital; Providence RI USA
| | - Qian Chen
- Bone and Joint Research Center; The First Affiliated Hospital and Frontier Institute of Science and Technology; Xi'an JiaoTong University; Xi'an China
- Cell and Molecular Biology Laboratory; Department of Orthopaedics; Alpert Medical School of Brown University/Rhode Island Hospital; Providence RI USA
| |
Collapse
|
28
|
Arthroprotective Effects of Cf-02 Sharing Structural Similarity with Quercetin. Int J Mol Sci 2018; 19:ijms19051453. [PMID: 29757957 PMCID: PMC5983747 DOI: 10.3390/ijms19051453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 12/29/2022] Open
Abstract
In this study, we synthesized hundreds of analogues based on the structure of small-molecule inhibitors (SMIs) that were previously identified in our laboratory with the aim of identifying potent yet safe compounds for arthritis therapeutics. One of the analogues was shown to share structural similarity with quercetin, a potent anti-inflammatory flavonoid present in many different fruits and vegetables. We investigated the immunomodulatory effects of this compound, namely 6-(2,4-difluorophenyl)-3-(3-(trifluoromethyl)phenyl)-2H-benzo[e][1,3]oxazine-2,4(3H)-dione (Cf-02), in a side-by-side comparison with quercetin. Chondrocytes were isolated from pig joints or the joints of patients with osteoarthritis that had undergone total knee replacement surgery. Several measures were used to assess the immunomodulatory potency of these compounds in tumor necrosis factor (TNF-α)-stimulated chondrocytes. Characterization included the protein and mRNA levels of molecules associated with arthritis pathogenesis as well as the inducible nitric oxide synthase (iNOS)–nitric oxide (NO) system and matrix metalloproteinases (MMPs) in cultured chondrocytes and proteoglycan, and aggrecan degradation in cartilage explants. We also examined the activation of several important transcription factors, including nuclear factor-kappaB (NF-κB), interferon regulatory factor-1 (IRF-1), signal transducer and activator of transcription-3 (STAT-3), and activator protein-1 (AP-1). Our overall results indicate that the immunomodulatory potency of Cf-02 is fifty-fold more efficient than that of quercetin without any indication of cytotoxicity. When tested in vivo using the induced edema method, Cf-02 was shown to suppress inflammation and cartilage damage. The proposed method shows considerable promise for the identification of candidate disease-modifying immunomodulatory drugs and leads compounds for arthritis therapeutics.
Collapse
|
29
|
An approach towards accountability: suggestions for increased reproducibility in surgical destabilization of medial meniscus (DMM) models. Osteoarthritis Cartilage 2017; 25:1747-1750. [PMID: 28760350 DOI: 10.1016/j.joca.2017.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 02/02/2023]
|
30
|
Liu R, Yuan X, Yu J, Quan Q, Meng H, Wang C, Wang A, Guo Q, Peng J, Lu S. An updated meta-analysis of the asporin gene D-repeat in knee osteoarthritis: effects of gender and ethnicity. J Orthop Surg Res 2017; 12:148. [PMID: 29020967 PMCID: PMC5637337 DOI: 10.1186/s13018-017-0647-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/23/2017] [Indexed: 02/06/2023] Open
Abstract
Background Knee osteoarthritis (KOA) is the most prevalent form of knee joint disease and characterized by the progressive degeneration of articular cartilage. Although pathology of KOA remains unknown, genetic factors are considered to be the major cause. Asporin is a group of biologically active components of extracellular matrix (ECM) in articular cartilage, and asporin gene (ASPN) D-repeat polymorphism was reported to be associated with KOA. Thus, our meta-analysis is aimed at investigation of the association between asporin D-repeat polymorphism and susceptibility of KOA. Methods We gathered data from MEDLINE, Embase, OVID, and ScienceDirect to search relevant published epidemiological studies through April 2017. Compared with previous studies, our meta-analysis is the first study to investigate the association of ASPN D15, D16, and D17 alleles and KOA susceptibility by ethnic- and sex-stratified subgroup analysis. Results We found no significant association between D15 allele and susceptibility to KOA (OR = 1.05, 95% CI 0.95–1.17) in overall population. The same results were observed in the analysis of D16 (OR = 1.01, 95% CI 0.80–1.28) and D17 alleles (OR = 1.28, 95% CI 0.91–1.80). The ethnic- and sex-subgroup analyses did not alter the ORs. However, significant association was detected in the sensitivity analysis of D17 in overall population (OR = 1.05, 95% CI 0.95–1.17) and Asian population (OR = 1.78, 95% CI 1.02–3.11, P < 0.05). Conclusion Our results indicated that D-repeat polymorphism of ASPN may not play a major role in susceptibility of KOA in ethnic- and sex-specific analysis. Because of the limitations of the present meta-analysis, firm conclusions could not be drawn based on the current evidence, and further studies are required to detect genuine role of ASPN.
Collapse
Affiliation(s)
- Ruoxi Liu
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, FuXing Road 28th, Beijing, 100853, China
| | - Xueling Yuan
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, FuXing Road 28th, Beijing, 100853, China
| | - Jing Yu
- Department of Kampo Medicine, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama-shi, Kanagawa-ken, 245-0066, Japan
| | - Qi Quan
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, FuXing Road 28th, Beijing, 100853, China
| | - Haoye Meng
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, FuXing Road 28th, Beijing, 100853, China
| | - Cheng Wang
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, FuXing Road 28th, Beijing, 100853, China
| | - Aiyuan Wang
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, FuXing Road 28th, Beijing, 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, FuXing Road 28th, Beijing, 100853, China
| | - Jiang Peng
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, FuXing Road 28th, Beijing, 100853, China.
| | - Shibi Lu
- Institute of Orthopedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, FuXing Road 28th, Beijing, 100853, China.
| |
Collapse
|
31
|
Bonato L, Quinelato V, Borojevic R, Vieira A, Modesto A, Granjeiro J, Tesch R, Casado P. Haplotypes of the RANK and OPG genes are associated with chronic arthralgia in individuals with and without temporomandibular disorders. Int J Oral Maxillofac Surg 2017; 46:1121-1129. [DOI: 10.1016/j.ijom.2017.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/15/2017] [Accepted: 03/30/2017] [Indexed: 01/15/2023]
|
32
|
Shen J, Wang C, Li D, Xu T, Myers J, Ashton JM, Wang T, Zuscik MJ, McAlinden A, O'Keefe RJ. DNA methyltransferase 3b regulates articular cartilage homeostasis by altering metabolism. JCI Insight 2017; 2:93612. [PMID: 28614801 DOI: 10.1172/jci.insight.93612] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/10/2017] [Indexed: 01/05/2023] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis worldwide. It is a complex disease affecting the whole joint but is generally characterized by progressive degradation of articular cartilage. Recent genome-wide association screens have implicated distinct DNA methylation signatures in OA patients. We show that the de novo DNA methyltransferase (Dnmt) 3b, but not Dnmt3a, is present in healthy murine and human articular chondrocytes and its expression decreases in OA mouse models and in chondrocytes from human OA patients. Targeted deletion of Dnmt3b in murine articular chondrocytes results in an early-onset and progressive postnatal OA-like pathology. RNA-Seq and methylC-Seq analyses of Dnmt3b loss-of-function chondrocytes show that cellular metabolic processes are affected. Specifically, TCA metabolites and mitochondrial respiration are elevated. Importantly, a chondroprotective effect was found following Dnmt3b gain of function in murine articular chondrocytes in vitro and in vivo. This study shows that Dnmt3b plays a significant role in regulating postnatal articular cartilage homeostasis. Cellular pathways regulated by Dnmt3b in chondrocytes may provide novel targets for therapeutic approaches to treat OA.
Collapse
Affiliation(s)
- Jie Shen
- Department of Orthopaedic Surgery and
| | | | - Daofeng Li
- Department of Genetics, Center for Genome Sciences and Systems Biology, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Taotao Xu
- Department of Orthopaedic Surgery and.,Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jason Myers
- Genomics Research Center, School of Medicine and Dentistry, and
| | - John M Ashton
- Genomics Research Center, School of Medicine and Dentistry, and.,Department of Microbiology and Immunology, School of Medicine and Dentistry, and
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Michael J Zuscik
- Department of Orthopaedics, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Audrey McAlinden
- Department of Orthopaedic Surgery and.,Department of Cell Biology & Physiology, School of Medicine, Washington University, St. Louis, Missouri, USA
| | | |
Collapse
|
33
|
Eyre S, Orozco G, Worthington J. The genetics revolution in rheumatology: large scale genomic arrays and genetic mapping. Nat Rev Rheumatol 2017; 13:421-432. [PMID: 28569263 DOI: 10.1038/nrrheum.2017.80] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Susceptibility to rheumatic diseases, such as osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, systemic lupus erythematosus, juvenile idiopathic arthritis and psoriatic arthritis, includes a large genetic component. Understanding how an individual's genetic background influences disease onset and outcome can lead to a better understanding of disease biology, improved diagnosis and treatment, and, ultimately, to disease prevention or cure. The past decade has seen great progress in the identification of genetic variants that influence the risk of rheumatic diseases. The challenging task of unravelling the function of these variants is ongoing. In this Review, the major insights from genetic studies, gained from advances in technology, bioinformatics and study design, are discussed in the context of rheumatic disease. In addition, pivotal genetic studies in the main rheumatic diseases are highlighted, with insights into how these studies have changed the way we view these conditions in terms of disease overlap, pathways of disease and potential new therapeutic targets. Finally, the limitations of genetic studies, gaps in our knowledge and ways in which current genetic knowledge can be fully translated into clinical benefit are examined.
Collapse
Affiliation(s)
- Stephen Eyre
- Arthritis Research UK Centre for Genetics and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Gisela Orozco
- Arthritis Research UK Centre for Genetics and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Jane Worthington
- Arthritis Research UK Centre for Genetics and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK.,NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester Academic Health Sciences Centre, Central Manchester Foundation Trust, Grafton Street. Manchester M13 9NT, UK
| |
Collapse
|
34
|
Gregson CL, Hardcastle SA, Murphy A, Faber B, Fraser WD, Williams M, Davey Smith G, Tobias JH. High Bone Mass is associated with bone-forming features of osteoarthritis in non-weight bearing joints independent of body mass index. Bone 2017; 97:306-313. [PMID: 28082078 PMCID: PMC5378151 DOI: 10.1016/j.bone.2017.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/05/2016] [Accepted: 01/06/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVES High Bone Mass (HBM) is associated with (a) radiographic knee osteoarthritis (OA), partly mediated by increased BMI, and (b) pelvic enthesophytes and hip osteophytes, suggestive of a bone-forming phenotype. We aimed to establish whether HBM is associated with radiographic features of OA in non-weight-bearing (hand) joints, and whether such OA demonstrates a bone-forming phenotype. METHODS HBM cases (BMD Z-scores≥+3.2) were compared with family controls. A blinded assessor graded all PA hand radiographs for: osteophytes (0-3), joint space narrowing (JSN) (0-3), subchondral sclerosis (0-1), at the index Distal Interphalangeal Joint (DIPJ) and 1st Carpometacarpal Joint (CMCJ), using an established atlas. Analyses used a random effects logistic regression model, adjusting a priori for age and gender. Mediating roles of BMI and bone turnover markers (BTMs) were explored by further adjustment. RESULTS 314 HBM cases (mean age 61.1years, 74% female) and 183 controls (54.3years, 46% female) were included. Osteophytes (grade≥1) were more common in HBM (DIPJ: 67% vs. 45%, CMCJ: 69% vs. 50%), with adjusted OR [95% CI] 1.82 [1.11, 2.97], p=0.017 and 1.89 [1.19, 3.01], p=0.007 respectively; no differences were seen in JSN. Further adjustment for BMI failed to attenuate ORs for osteophytes in HBM cases vs. controls; DIPJ 1.72 [1.05, 2.83], p=0.032, CMCJ 1.76 [1.00, 3.06], p=0.049. Adjustment for BTMs (concentrations lower amongst HBM cases) did not attenuate ORs. CONCLUSIONS HBM is positively associated with OA in non-weight-bearing joints, independent of BMI. HBM-associated OA is characterised by osteophytes, consistent with a bone-forming phenotype, rather than JSN reflecting cartilage loss. Systemic factors (e.g. genetic architecture) which govern HBM may also increase bone-forming OA risk.
Collapse
Affiliation(s)
- C L Gregson
- Musculoskeletal Research Unit, School of Clinical Sciences, University of Bristol, UK.
| | - S A Hardcastle
- Musculoskeletal Research Unit, School of Clinical Sciences, University of Bristol, UK; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - A Murphy
- Musculoskeletal Research Unit, School of Clinical Sciences, University of Bristol, UK
| | - B Faber
- Musculoskeletal Research Unit, School of Clinical Sciences, University of Bristol, UK
| | - W D Fraser
- Department of Medicine, Norwich Medical School, University of East Anglia, Norwich, UK
| | - M Williams
- Department of Radiology, North Bristol NHS Trust, Bristol, UK
| | - G Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - J H Tobias
- Musculoskeletal Research Unit, School of Clinical Sciences, University of Bristol, UK
| |
Collapse
|
35
|
Meulenbelt IM, Bhutani N, den Hollander W, Gay S, Oppermann U, Reynard LN, Skelton AJ, Young DA, Beier F, Loughlin J. The first international workshop on the epigenetics of osteoarthritis. Connect Tissue Res 2017; 58:37-48. [PMID: 27028588 DOI: 10.3109/03008207.2016.1168409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Osteoarthritis (OA) is a major clinical problem across the world, in part due to the lack of disease-modifying drugs resulting, to a significant degree, from our incomplete understanding of the underlying molecular mechanisms of the disease. Emerging evidence points to a role of epigenetics in the pathogenesis of OA, but research in this area is still in its early stages. In order to summarize current knowledge and to facilitate the potential coordination of future research activities, the first international workshop on the epigenetics of OA was held in Amsterdam in October 2015. Recent findings on DNA methylation and hydroxymethylation, histone modifications, noncoding RNAs, and other epigenetic mechanisms were presented and discussed. The workshop demonstrated the advantage of bringing together those working in this nascent field and highlights from the event are summarized in this report in the form of summaries from invited speakers and organizers.
Collapse
Affiliation(s)
- Ingrid M Meulenbelt
- a Department of Medical Statistics and Bioinformatics, Section of Molecular Epidemiology , Leiden University Medical Center , Leiden , The Netherlands
| | - Nidhi Bhutani
- b Department of Orthopaedic Surgery , Stanford University School of Medicine , Stanford , CA , USA
| | - Wouter den Hollander
- a Department of Medical Statistics and Bioinformatics, Section of Molecular Epidemiology , Leiden University Medical Center , Leiden , The Netherlands
| | - Steffen Gay
- c Department of Rheumatology , Center of Experimental Rheumatology, University Hospital Zurich , Zurich , Switzerland
| | - Udo Oppermann
- d Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics , Rheumatology and Musculoskeletal Sciences, University of Oxford , Oxford , UK.,e Structural Genomics Consortium , University of Oxford , Oxford , UK
| | - Louise N Reynard
- f Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University , Newcastle-upon-Tyne , UK
| | - Andrew J Skelton
- f Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University , Newcastle-upon-Tyne , UK.,g Faculty of Medical Sciences, Bioinformatics Support Unit , Newcastle University , Newcastle-upon-Tyne , UK
| | - David A Young
- f Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University , Newcastle-upon-Tyne , UK
| | - Frank Beier
- h Department of Physiology and Pharmacology , Schulich School of Medicine and Dentistry, University of Western Ontario , London , ON , Canada
| | - John Loughlin
- f Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University , Newcastle-upon-Tyne , UK
| |
Collapse
|
36
|
Abstract
Osteoarthritis (OA) was once defined as a non-inflammatory arthropathy, but it is now well-recognized that there is a major inflammatory component to this disease. In addition to synovial cells, articular chondrocytes and other cells of diarthrodial joints are also known to express inflammatory mediators. It has been proposed that targeting inflammation pathways could be a promising strategy to treat OA. There have been many reports of cross-talk between inflammation and epigenetic factors in cartilage. Specifically, inflammatory mediators have been shown to regulate levels of enzymes that catalyze changes in DNA methylation and histone structure, as well as alter levels of non-coding RNAs. In addition, expression levels of a number of these epigenetic factors have been shown to be altered in OA, thereby suggesting potential interplay between inflammation and epigenetics in this disease. This review provides information on inflammatory pathways in arthritis and summarizes published research on how epigenetic regulators are affected by inflammation in chondrocytes. Furthermore, we discuss data showing how altered expression of some of these epigenetic factors can induce either catabolic or anti-catabolic effects in response to inflammatory signals. A better understanding of how inflammation affects epigenetic factors in OA may provide us with novel therapeutic strategies to treat this condition.
Collapse
Affiliation(s)
- Jie Shen
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA,Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Regis J. O'Keefe
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA,Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
37
|
Lewallen EA, Bonin CA, Li X, Smith J, Karperien M, Larson AN, Lewallen DG, Cool SM, Westendorf JJ, Krych AJ, Leontovich AA, Im HJ, van Wijnen AJ. The synovial microenvironment of osteoarthritic joints alters RNA-seq expression profiles of human primary articular chondrocytes. Gene 2016; 591:456-64. [PMID: 27378743 PMCID: PMC5989726 DOI: 10.1016/j.gene.2016.06.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 11/20/2022]
Abstract
Osteoarthritis (OA) is a disabling degenerative joint disease that prompts pain and has limited treatment options. To permit early diagnosis and treatment of OA, a high resolution mechanistic understanding of human chondrocytes in normal and diseased states is necessary. In this study, we assessed the biological effects of OA-related changes in the synovial microenvironment on chondrocytes embedded within anatomically intact cartilage from joints with different pathological grades by next generation RNA-sequencing (RNA-seq). We determined the transcriptome of primary articular chondrocytes derived from anatomically unaffected knees and ankles, as well as from joints affected by OA. The GALAXY bioinformatics platform was used to facilitate biological interpretations. Comparisons of patient samples by k-means, hierarchical clustering and principal component analyses together reveal that primary chondrocytes exhibit OA grade-related differences in gene expression, including genes involved in cell-adhesion, ECM production and immune response. We conclude that diseased synovial microenvironments in joints with different histopathological OA grades directly alter gene expression in chondrocytes. One ramification of this finding is that anatomically intact cartilage from OA joints is not an ideal source of healthy chondrocytes, nor should these specimens be used to generate a normal baseline for the molecular characterization of diseased joints.
Collapse
Affiliation(s)
- Eric A Lewallen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States.
| | - Carolina A Bonin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States.
| | - Xin Li
- Jesse Brown VA Medical Center, Chicago, IL, United States.
| | - Jay Smith
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States.
| | - Marcel Karperien
- Department of Developmental Bioengineering, University of Twente, Enschede, The Netherlands.
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States.
| | - David G Lewallen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States.
| | - Simon M Cool
- Department of Orthopedic Surgery, National University of Singapore, Singapore.
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States; Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, United States.
| | - Aaron J Krych
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States.
| | - Alexey A Leontovich
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States.
| | - Hee-Jeong Im
- Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Biochemistry, Rush University, Chicago, IL, United States; Department of Orthopedic Surgery, Rush University, Chicago, IL, United States; Department of Internal Medicine, Rush University, Chicago, IL, United States.
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States; Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, United States; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
38
|
Mueller AJ, Tew SR, Vasieva O, Clegg PD, Canty-Laird EG. A systems biology approach to defining regulatory mechanisms for cartilage and tendon cell phenotypes. Sci Rep 2016; 6:33956. [PMID: 27670352 PMCID: PMC5037390 DOI: 10.1038/srep33956] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022] Open
Abstract
Phenotypic plasticity of adult somatic cells has provided emerging avenues for the development of regenerative therapeutics. In musculoskeletal biology the mechanistic regulatory networks of genes governing the phenotypic plasticity of cartilage and tendon cells has not been considered systematically. Additionally, a lack of strategies to effectively reproduce in vitro functional models of cartilage and tendon is retarding progress in this field. De- and redifferentiation represent phenotypic transitions that may contribute to loss of function in ageing musculoskeletal tissues. Applying a systems biology network analysis approach to global gene expression profiles derived from common in vitro culture systems (monolayer and three-dimensional cultures) this study demonstrates common regulatory mechanisms governing de- and redifferentiation transitions in cartilage and tendon cells. Furthermore, evidence of convergence of gene expression profiles during monolayer expansion of cartilage and tendon cells, and the expression of key developmental markers, challenges the physiological relevance of this culture system. The study also suggests that oxidative stress and PI3K signalling pathways are key modulators of in vitro phenotypes for cells of musculoskeletal origin.
Collapse
Affiliation(s)
- A. J. Mueller
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
| | - S. R. Tew
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - O. Vasieva
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown St., Liverpool, L69 7ZB, United Kingdom
| | - P. D. Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - E. G. Canty-Laird
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| |
Collapse
|
39
|
Kerkhofs J, Leijten J, Bolander J, Luyten FP, Post JN, Geris L. A Qualitative Model of the Differentiation Network in Chondrocyte Maturation: A Holistic View of Chondrocyte Hypertrophy. PLoS One 2016; 11:e0162052. [PMID: 27579819 PMCID: PMC5007039 DOI: 10.1371/journal.pone.0162052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/18/2016] [Indexed: 01/15/2023] Open
Abstract
Differentiation of chondrocytes towards hypertrophy is a natural process whose control is essential in endochondral bone formation. It is additionally thought to play a role in several pathophysiological processes, with osteoarthritis being a prominent example. We perform a dynamic analysis of a qualitative mathematical model of the regulatory network that directs this phenotypic switch to investigate the influence of the individual factors holistically. To estimate the stability of a SOX9 positive state (associated with resting/proliferation chondrocytes) versus a RUNX2 positive one (associated with hypertrophy) we employ two measures. The robustness of the state in canalisation (size of the attractor basin) is assessed by a Monte Carlo analysis and the sensitivity to perturbations is assessed by a perturbational analysis of the attractor. Through qualitative predictions, these measures allow for an in silico screening of the effect of the modelled factors on chondrocyte maintenance and hypertrophy. We show how discrepancies between experimental data and the model’s results can be resolved by evaluating the dynamic plausibility of alternative network topologies. The findings are further supported by a literature study of proposed therapeutic targets in the case of osteoarthritis.
Collapse
Affiliation(s)
- Johan Kerkhofs
- Biomechanics Research Unit, University of Liège, Liège, Belgium
- Biomechanics section, KU Leuven, Leuven, Belgium
- Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven, Leuven, Belgium
| | - Jeroen Leijten
- Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Johanna Bolander
- Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Frank P. Luyten
- Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Janine N. Post
- Developmental BioEngineering, MIRA Institute for biomedical technology and technical medicine, University of Twente, Enschede, The Netherlands
| | - Liesbet Geris
- Biomechanics Research Unit, University of Liège, Liège, Belgium
- Biomechanics section, KU Leuven, Leuven, Belgium
- Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
40
|
Lindahl A. From gristle to chondrocyte transplantation: treatment of cartilage injuries. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140369. [PMID: 26416680 DOI: 10.1098/rstb.2014.0369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review addresses the progress in cartilage repair technology over the decades with an emphasis on cartilage regeneration with cell therapy. The most abundant cartilage is the hyaline cartilage that covers the surface of our joints and, due to avascularity, this tissue is unable to repair itself. The cartilage degeneration seen in osteoarthritis causes patient suffering and is a huge burden to society. The surgical approach to cartilage repair was non-existing until the 1950s when new surgical techniques emerged. The use of cultured cells for cell therapy started as experimental studies in the 1970s that developed over the years to a clinical application in 1994 with the introduction of the autologous chondrocyte transplantation technique (ACT). The technology is now spread worldwide and has been further refined by combining arthroscopic techniques with cells cultured on matrix (MACI technology). The non-regenerating hypothesis of cartilage has been revisited and we are now able to demonstrate cell divisions and presence of stem-cell niches in the joint. Furthermore, cartilage derived from human embryonic stem cells and induced pluripotent stem cells could be the base for new broader cell treatments for cartilage injuries and the future technology base for prevention and cure of osteoarthritis.
Collapse
Affiliation(s)
- Anders Lindahl
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, and Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, SE413 45 Gothenburg, Sweden
| |
Collapse
|
41
|
Reynard LN, Ratnayake M, Santibanez-Koref M, Loughlin J. Functional Characterization of the Osteoarthritis Susceptibility Mapping to CHST11-A Bioinformatics and Molecular Study. PLoS One 2016; 11:e0159024. [PMID: 27391021 PMCID: PMC4938163 DOI: 10.1371/journal.pone.0159024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/24/2016] [Indexed: 02/07/2023] Open
Abstract
The single nucleotide polymorphism (SNP) rs835487 is associated with hip osteoarthritis (OA) at the genome-wide significance level and is located within CHST11, which codes for carbohydrate sulfotransferase 11. This enzyme post-translationally modifies proteoglycan prior to its deposition in the cartilage extracellular matrix. Using bioinformatics and experimental analyses, our aims were to characterise the rs835487 association signal and to identify the causal functional variant/s. Database searches revealed that rs835487 resides within a linkage disequilibrium (LD) block of only 2.7 kb and is in LD (r2 ≥ 0.8) with six other SNPs. These are all located within intron 2 of CHST11, in a region that has predicted enhancer activity and which shows a high degree of conservation in primates. Luciferase reporter assays revealed that of the seven SNPs, rs835487 and rs835488, which have a pairwise r2 of 0.962, are the top functional candidates; the haplotype composed of the OA-risk conferring G allele of rs835487 and the corresponding T allele of rs835488 (the G-T haplotype) demonstrated significantly different enhancer activity relative to the haplotype composed of the non-risk A allele of rs835487 and the corresponding C allele of rs835488 (the A-C haplotype) (p < 0.001). Electrophoretic mobility shift assays and supershifts identified several transcription factors that bind more strongly to the risk-conferring G and T alleles of the two SNPs, including SP1, SP3, YY1 and SUB1. CHST11 was found to be upregulated in OA versus non-OA cartilage (p < 0.001) and was expressed dynamically during chondrogenesis. Its expression in adult cartilage did not however correlate with rs835487 genotype. Our data demonstrate that the OA susceptibility is mediated by differential protein binding to the alleles of rs835487 and rs835488, which are located within an enhancer whose target may be CHST11 during chondrogenesis or an alternative gene.
Collapse
Affiliation(s)
- Louise N. Reynard
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| | - Madhushika Ratnayake
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mauro Santibanez-Koref
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John Loughlin
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
42
|
Rai MF, Sandell LJ, Zhang B, Wright RW, Brophy RH. RNA Microarray Analysis of Macroscopically Normal Articular Cartilage from Knees Undergoing Partial Medial Meniscectomy: Potential Prediction of the Risk for Developing Osteoarthritis. PLoS One 2016; 11:e0155373. [PMID: 27171008 PMCID: PMC4865200 DOI: 10.1371/journal.pone.0155373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/27/2016] [Indexed: 11/24/2022] Open
Abstract
Objectives (i) To provide baseline knowledge of gene expression in macroscopically normal articular cartilage, (ii) to test the hypothesis that age, body-mass-index (BMI), and sex are associated with cartilage RNA transcriptome, and (iii) to predict individuals at potential risk for developing “pre-osteoarthritis” (OA) based on screening of genetic risk-alleles associated with OA and gene transcripts differentially expressed between normal and OA cartilage. Design Healthy-appearing cartilage was obtained from the medial femoral notch of 12 knees with a meniscus tear undergoing arthroscopic partial meniscectomy. Cartilage had no radiographic, magnetic-resonance-imaging or arthroscopic evidence for degeneration. RNA was subjected to Affymetrix microarrays followed by validation of selected transcripts by microfluidic digital polymerase-chain-reaction. The underlying biological processes were explored computationally. Transcriptome-wide gene expression was probed for association with known OA genetic risk-alleles assembled from published literature and for comparison with gene transcripts differentially expressed between healthy and OA cartilage from other studies. Results We generated a list of 27,641 gene transcripts in healthy cartilage. Several gene transcripts representing numerous biological processes were correlated with age and BMI and differentially expressed by sex. Based on disease-specific Ingenuity Pathways Analysis, gene transcripts associated with aging were enriched for bone/cartilage disease while the gene expression profile associated with BMI was enriched for growth-plate calcification and OA. When segregated by genetic risk-alleles, two clusters of study patients emerged, one cluster containing transcripts predicted by risk studies. When segregated by OA-associated gene transcripts, three clusters of study patients emerged, one of which is remarkably similar to gene expression pattern in OA. Conclusions Our study provides a list of gene transcripts in healthy-appearing cartilage. Preliminary analysis into groupings based on OA risk-alleles and OA-associated gene transcripts reveals a subset of patients expressing OA transcripts. Prospective studies in larger cohorts are needed to assess whether these patterns are predictive for OA.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes Jewish Hospital, St. Louis, Missouri, United States of America
- * E-mail:
| | - Linda J. Sandell
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes Jewish Hospital, St. Louis, Missouri, United States of America
- Department of Cell Biology and Physiology, Washington University School of Medicine at Barnes Jewish Hospital, St. Louis, Missouri, United States of America
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine at Barnes Jewish Hospital, St. Louis, Missouri, United States of America
| | - Rick W. Wright
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes Jewish Hospital, St. Louis, Missouri, United States of America
| | - Robert H. Brophy
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes Jewish Hospital, St. Louis, Missouri, United States of America
| |
Collapse
|
43
|
Bomer N, Cornelis FMF, Ramos YFM, den Hollander W, Lakenberg N, van der Breggen R, Storms L, Slagboom PE, Lories RJU, Meulenbelt I. Aberrant Calreticulin Expression in Articular Cartilage of Dio2 Deficient Mice. PLoS One 2016; 11:e0154999. [PMID: 27163789 PMCID: PMC4862667 DOI: 10.1371/journal.pone.0154999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/22/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To identify intrinsic differences in cartilage gene expression profiles between wild-type- and Dio2-/--mice, as a mechanism to investigate factors that contribute to prolonged healthy tissue homeostasis. METHODS Previously generated microarray-data (Illumina MouseWG-6 v2) of knee cartilage of wild-type and Dio2 -/- -mice were re-analyzed to identify differential expressed genes independent of mechanical loading conditions by forced treadmill-running. RT-qPCR and western blot analyses of overexpression and knockdown of Calr in mouse chondro-progenitor cells (ATDC5) were applied to assess the direct effect of differential Calr expression on cartilage deposition. RESULTS Differential expression analyses of articular cartilage of Dio2-/- (N = 9) and wild-type-mice (N = 11) while applying a cutoff threshold (P < 0.05 (FDR) and FC > |1,5|) resulted in 1 probe located in Calreticulin (Calr) that was found significantly downregulated in Dio2-/- mice (FC = -1.731; P = 0.044). Furthermore, overexpression of Calr during early chondrogenesis in ATDC5 cells leads to decreased proteoglycan deposition and corresponding lower Aggrecan expression, whereas knocking down Calr expression does not lead to histological differences of matrix composition. CONCLUSION We here demonstrate that the beneficial homeostatic state of articular cartilage in Dio2-/- mice is accompanied with significant lower expression of Calr. Functional analyses further showed that upregulation of Calr expression could act as an initiator of cartilage destruction. The consistent association between Calr and Dio2 expression suggests that enhanced expression of these genes facilitate detrimental effects on cartilage integrity.
Collapse
Affiliation(s)
- Nils Bomer
- Department of Molecular Epidemiology, LUMC, Leiden, Netherlands
| | - Frederique M. F. Cornelis
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Belgium
| | | | | | - Nico Lakenberg
- Department of Molecular Epidemiology, LUMC, Leiden, Netherlands
| | | | - Lies Storms
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Belgium
| | | | - Rik J. U. Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Belgium
- Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
44
|
Reynard LN. Analysis of genetics and DNA methylation in osteoarthritis: What have we learnt about the disease? Semin Cell Dev Biol 2016; 62:57-66. [PMID: 27130636 DOI: 10.1016/j.semcdb.2016.04.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/25/2016] [Indexed: 01/30/2023]
Abstract
Osteoarthritis (OA) is a chronic musculoskeletal disease characterised by the destruction of articular cartilage, synovial inflammation and bone remodelling. Disease aetiology is complex and highly heritable, with genetic variation estimated to contribute to 50% of OA occurrence. Epigenetic alterations, including DNA methylation changes, have also been implicated in OA pathophysiology. This review examines what genetic and DNA methylation studies have taught us about the genes and pathways involved in OA pathology. The influence of DNA methylation on the molecular mechanisms underlying OA genetic risk and the consequence of this interaction on disease susceptibility and penetrance are also discussed.
Collapse
Affiliation(s)
- Louise N Reynard
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, NE2 4HH, UK.
| |
Collapse
|
45
|
Liu Z, Ren Y, Mirando AJ, Wang C, Zuscik MJ, O'Keefe RJ, Hilton MJ. Notch signaling in postnatal joint chondrocytes, but not subchondral osteoblasts, is required for articular cartilage and joint maintenance. Osteoarthritis Cartilage 2016; 24:740-51. [PMID: 26522700 PMCID: PMC4799757 DOI: 10.1016/j.joca.2015.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Notch signaling has been identified as a critical regulator in cartilage development and joint maintenance, and loss of Notch signaling in all joint tissues results in an early and progressive osteoarthritis (OA)-like pathology. This study investigated the targeted cell population within the knee joint in which Notch signaling is required for normal cartilage and joint integrity. METHODS Two loss-of-function mouse models were generated with tissue-specific knockout of the core Notch signaling component, RBPjκ. The AcanCre(ERT2) transgene specifically removed Rbpjκ floxed alleles in postnatal joint chondrocytes, while the Col1Cre(2.3kb) transgene deleted Rbpjκ in osteoblast populations, including subchondral osteoblasts. Mutant and control mice were analyzed via histology, immunohistochemistry (IHC), real-time quantitative polymerase chain reaction (qPCR), X-ray, and microCT imaging at multiple time-points. RESULTS Loss of Notch signaling in postnatal joint chondrocytes results in a progressive OA-like pathology, and triggered the recruitment of non-targeted fibrotic cells into the articular cartilage potentially due to mis-regulated chemokine expression from within the cartilage. Upon recruitment, these fibrotic cells produced degenerative enzymes that may lead to the observed cartilage degradation and contribute to a significant portion of the age-related OA-like pathology. On the contrary, loss of Notch signaling in subchondral osteoblasts did not affect normal cartilage development or joint maintenance. CONCLUSIONS RBPjκ-dependent Notch signaling in postnatal joint chondrocytes, but not subchondral osteoblasts, is required for articular cartilage and joint maintenance.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/genetics
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/physiopathology
- Cartilage, Articular/growth & development
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Cartilage, Articular/physiopathology
- Chondrocytes/metabolism
- Disease Progression
- Gene Expression Regulation, Developmental
- Mice
- Mice, Transgenic
- Osteoarthritis/genetics
- Osteoarthritis/metabolism
- Osteoarthritis/pathology
- Osteoarthritis/physiopathology
- Osteoblasts/metabolism
- Receptors, Notch/genetics
- Receptors, Notch/physiology
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Z Liu
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Biology, University of Rochester, Rochester, NY 14642, USA
| | - Y Ren
- Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, NC 27710, USA
| | - A J Mirando
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, NC 27710, USA
| | - C Wang
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - M J Zuscik
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - R J O'Keefe
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - M J Hilton
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, NC 27710, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
46
|
Bomer N, den Hollander W, Ramos YFM, Meulenbelt I. Translating genomics into mechanisms of disease: Osteoarthritis. Best Pract Res Clin Rheumatol 2016; 29:683-91. [PMID: 27107506 DOI: 10.1016/j.berh.2016.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is the most common age-related arthritic disorder and is characterized by aberrant extracellular matrix (ECM) content and surface disruptions that range from fibrillation, clefting and delamination, leading to articular surface erosion. Worldwide, over 20% of the population is affected with OA and 80% of these patients have limitations in movement, whereas 25% experience inhibition in major daily activities of life. OA is the most common disabling arthritic disease; nevertheless, no disease-modifying treatment is available except for the expensive total joint replacement surgery at end-stage disease. Lack of insight into the underlying pathophysiological mechanisms of OA has considerably contributed to the inability of the scientific community to develop disease-modifying drugs. To overcome this critical barrier, focus should be on translation of identified robust gene deviations towards the underlying biological mechanisms.
Collapse
Affiliation(s)
- Nils Bomer
- Dept. Medical Statistics and Bioinformatics, Section Molecular Epidemiology, Leiden University Medical Centre, LUMC Post-zone S-05-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Wouter den Hollander
- Dept. Medical Statistics and Bioinformatics, Section Molecular Epidemiology, Leiden University Medical Centre, LUMC Post-zone S-05-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Yolande F M Ramos
- Dept. Medical Statistics and Bioinformatics, Section Molecular Epidemiology, Leiden University Medical Centre, LUMC Post-zone S-05-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Ingrid Meulenbelt
- Dept. Medical Statistics and Bioinformatics, Section Molecular Epidemiology, Leiden University Medical Centre, LUMC Post-zone S-05-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
47
|
Gee F, Rushton MD, Loughlin J, Reynard LN. Correlation of the osteoarthritis susceptibility variants that map to chromosome 20q13 with an expression quantitative trait locus operating on NCOA3 and with functional variation at the polymorphism rs116855380. Arthritis Rheumatol 2016. [PMID: 26211391 PMCID: PMC4832313 DOI: 10.1002/art.39278] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective To functionally characterize the osteoarthritis (OA) susceptibility variants that map to a region of high linkage disequilibrium (LD) on chromosome 20q13 marked by the single‐nucleotide polymorphism (SNP) rs6094710 and encompassing NCOA3 and SULF2. Methods Nucleic acids were extracted from the cartilage of OA patients. Overall and allelic expression of NCOA3 and SULF2 were measured by quantitative reverse transcription–polymerase chain reaction and pyrosequencing, respectively. The functional effect of SNPs within the 20q13 locus was assessed in vitro using luciferase reporter constructs and electrophoretic mobility shift assays (EMSAs). The in vivo effect of nuclear receptor coactivator 3 (NCOA3) protein depletion on primary human OA articular cartilage chondrocytes was assessed using RNA interference. Results Expression of NCOA3 correlated with the genotype at rs6094710 (P = 0.006), and the gene demonstrated allelic expression imbalance (AEI) in individuals heterozygous for the SNP (mean AEI 1.21; P < 0.0001). In both instances, expression of the OA‐associated allele was reduced. In addition, there was reduced enhancer activity of the OA‐associated allele of rs116855380, a SNP in perfect LD with rs6094710 in luciferase assays (P < 0.001). EMSAs demonstrated a protein complex binding with reduced affinity to this allele. Depletion of NCOA3 led to significant changes (all P < 0.05) in the expression of genes involved in cartilage homeostasis. Conclusion NCOA3 is subject to a cis‐acting expression quantitative trait locus in articular cartilage, which correlates with the OA association signal and with the OA‐associated allele of the functional SNP rs116855380, a SNP that is located only 10.3 kb upstream of NCOA3. These findings elucidate the effect of the association of the 20q13 region on OA cartilage and provide compelling evidence of a potentially causal candidate SNP.
Collapse
Affiliation(s)
- Fiona Gee
- Newcastle University, Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
48
|
Aury-Landas J, Marcelli C, Leclercq S, Boumédiene K, Baugé C. Genetic Determinism of Primary Early-Onset Osteoarthritis. Trends Mol Med 2016; 22:38-52. [DOI: 10.1016/j.molmed.2015.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022]
|
49
|
Abstract
Purpose of review Powerful association studies have identified a number of genetic signals that can be confidently judged as associated with osteoarthritis. Efforts have continued to discover new loci, whilst functional studies are being applied to assess which genes are the likely targets of the risk-conferring alleles. The study of epigenetics has highlighted an interaction between osteoarthritis genetics and DNA methylation. This review will summarize some of the recent key studies in osteoarthritis genetics, including functional and epigenetic analyses. Recent findings Several novel osteoarthritis susceptibility loci have been reported recently, including the regulatory genes NCOA3 and ALDH1A2. Functional analyses of these genes and of others reported previously support earlier suggestions that osteoarthritis susceptibility is principally mediated by modulations to gene expression. DNA methylation analyses provide additional insights into the osteoarthritis disease process, at both a genome-wide level and when investigating direct interactions with risk-conferring alleles. Summary Osteoarthritis genetic risk predominantly acts by modulating gene expression, an effect typically mediated via transcriptional regulation. Effects on various pathways have been detected, including cell differentiation and cartilage homeostasis. The continued identification of risk loci, their functional study, and the unification of genetic and epigenetic analyses will be key themes in the future.
Collapse
|
50
|
Shepherd C, Skelton AJ, Rushton MD, Reynard LN, Loughlin J. Expression analysis of the osteoarthritis genetic susceptibility locus mapping to an intron of the MCF2L gene and marked by the polymorphism rs11842874. BMC MEDICAL GENETICS 2015; 16:108. [PMID: 26584642 PMCID: PMC4653905 DOI: 10.1186/s12881-015-0254-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/11/2015] [Indexed: 11/30/2022]
Abstract
Background Osteoarthritis (OA) is a painful, debilitating disease characterised by loss of articular cartilage with concurrent changes in other tissues of the synovial joint. Genetic association studies have shown that a number of common variants increase the risk of developing OA. Investigating their activity can uncover novel causal pathways and potentially highlight new treatment targets. One of the reported OA association signals is marked by the single nucleotide polymorphism (SNP) rs11842874 at chromosome 13q34. rs11842874 is positioned within a small linkage disequilibrium (LD) block within intron 4 of MCF2L, a gene encoding guanine-nucleotide exchange factor DBS. There are no non-synonymous SNPs that correlate with this association signal and we therefore set out to assess whether its effect on OA susceptibility is mediated by alteration of MCF2L expression. Methods Nucleic acid was extracted from cartilage, synovial membrane or infrapatellar fat pad tissues from OA patients. Expression of MCF2L was measured by quantitative PCR and RNA-sequencing whilst the presence of DBS was studied using immunohistochemistry. The functional effect of SNPs within the 13q34 locus was assessed using public databases and in vitro using luciferase reporter analysis. Results MCF2L gene and protein expression are detectable in joint tissues, with quantitative differences in the expression of the gene and in the transcript isoforms expressed between the tissues tested. There is an expression quantitative trait locus (eQTL) operating within synovial membrane tissue, with possession of the risk-conferring A allele of rs11842874 correlating with increased MCF2L expression. SNPs within the rs11842874 LD block reside within transcriptional regulatory elements and their direct analysis reveals that several show quantitative differences in regulatory activity at the allelic level. Conclusions MCF2L is subject to a cis-acting eQTL in synovial membrane that correlates with the OA association signal. This signal contains several functional SNPs that could account for the susceptibility and which therefore merit further investigation. As far as we are aware, this is the first example of an OA susceptibility locus operating as an eQTL in synovial membrane tissue but not in cartilage. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0254-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Colin Shepherd
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, 4th Floor Catherine Cookson Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK.
| | - Andrew J Skelton
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, 4th Floor Catherine Cookson Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK. .,Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, 2nd floor, William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK.
| | - Michael D Rushton
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, 4th Floor Catherine Cookson Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK.
| | - Louise N Reynard
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, 4th Floor Catherine Cookson Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK.
| | - John Loughlin
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, 4th Floor Catherine Cookson Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK.
| |
Collapse
|