1
|
Wu Z, Wang Z, Chen T, Wang D, Zhou F, Zhang G, Wei S, Wu Y. Dermal white adipose tissue: A new modulator in wound healing and regeneration. Regen Ther 2025; 28:115-125. [PMID: 39717110 PMCID: PMC11665542 DOI: 10.1016/j.reth.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
Dermal white adipose tissue (dWAT), distinguished by its origin from cells within the dermis and independence from subcutaneous fat tissue, has garnered significant attention for its non-metabolic functions. Characterized by strong communication with other components of the skin, dWAT mediates the proliferation and recruitment of various cell types by releasing adipogenic and inflammatory factors. Here, we focus on the modulatory role of dWAT at different stages during wound healing, highlighting its ability to mediate the adipocyte-to-myofibroblast transition which plays a pivotal role in the physiology and pathology processes of skin fibrosis, scarring, and aging. This review highlights the regulatory potential of dWAT in modulating wound healing processes and presents it as a target for developing therapeutic strategies aimed at reducing scarring and enhancing regenerative outcomes in skin-related disorders.
Collapse
Affiliation(s)
- Zhongyu Wu
- Department of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Zhanqi Wang
- Department of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Tao Chen
- Department of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Dongyang Wang
- Department of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Feng Zhou
- Department of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Guorui Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Shan Wei
- Huizhou Health Sciences Polytechnic, Huizhou 516025, Guangdong, PR China
| | - Yingying Wu
- Department of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| |
Collapse
|
2
|
Ziadlou R, Pandian GN, Hafner J, Akdis CA, Stingl G, Maverakis E, Brüggen M. Subcutaneous adipose tissue: Implications in dermatological diseases and beyond. Allergy 2024; 79:3310-3325. [PMID: 39206504 PMCID: PMC11657049 DOI: 10.1111/all.16295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Subcutaneous adipose tissue (SAT) is the deepest component of the three-layered cutaneous integument. While mesenteric adipose tissue-based immune processes have gained recognition in the context of the metabolic syndrome, SAT has been traditionally considered primarily for energy storage, with less attention to its immune functions. SAT harbors a reservoir of immune and stromal cells that significantly impact metabolic and immunologic processes not only in the skin, but even on a systemic level. These processes include wound healing, cutaneous and systemic infections, immunometabolic, and autoimmune diseases, inflammatory skin diseases, as well as neoplastic conditions. A better understanding of SAT immune functions in different processes, could open avenues for novel therapeutic interventions. Targeting SAT may not only address SAT-specific diseases but also offer potential treatments for cutaneous or even systemic conditions. This review aims to provide a comprehensive overview on SAT's structure and functions, highlight recent advancements in understanding its role in both homeostatic and pathological conditions within and beyond the skin, and discuss the main questions for future research in the field.
Collapse
Affiliation(s)
- Reihane Ziadlou
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Christine Kühne Center for Allergy Research and Education CK‐CAREDavosSwitzerland
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichZurichSwitzerland
| | - Ganesh N. Pandian
- Institute for Integrated Cell‐Material Science (WPI‐iCeMS)Kyoto UniversityKyotoJapan
| | - Jürg Hafner
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
| | - Cezmi A. Akdis
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Christine Kühne Center for Allergy Research and Education CK‐CAREDavosSwitzerland
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichZurichSwitzerland
| | - Georg Stingl
- Department of DermatologyMedical University of ViennaViennaAustria
| | | | - Marie‐Charlotte Brüggen
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Christine Kühne Center for Allergy Research and Education CK‐CAREDavosSwitzerland
| |
Collapse
|
3
|
Wyetzner RH, Segal EX, Jussila AR, Atit RP. Topographical changes in extracellular matrix during skin fibrosis and recovery can be evaluated using automated image analysis algorithms. FEBS Lett 2024; 598:2995-3004. [PMID: 39054263 PMCID: PMC11665952 DOI: 10.1002/1873-3468.14987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Skin fibrosis is characterized by fibroblast activation and intradermal fat loss, resulting in excess deposition and remodeling of dermal extracellular matrix (ECM). The topography of the dominant ECM proteins, such as collagens, can indicate skin stiffness and remains understudied in evaluating fibrotic skin. Here, we adapted two different unbiased image analysis algorithms to define collagen topography and alignment in a genetically inducible and reversible Wnt activation fibrosis model. We demonstrated that Wnt-activated fibrotic skin has altered collagen fiber characteristics and a loss of collagen alignment, which were restored in the reversible model. This study highlights how unbiased algorithms can be used to analyze ECM topography, providing novel avenues to evaluate fibrotic skin onset, recovery, and treatment.
Collapse
Affiliation(s)
| | - Ella X. Segal
- Department of BiologyCase Western Reserve UniversityClevelandOHUSA
| | - Anna R. Jussila
- Department of BiologyCase Western Reserve UniversityClevelandOHUSA
| | - Radhika P. Atit
- Department of BiologyCase Western Reserve UniversityClevelandOHUSA
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA
- Department of DermatologyCase Western Reserve UniversityClevelandOHUSA
| |
Collapse
|
4
|
Tang B, Yu J, Tang R, He X, Liu J, Liu L, Song Z, Shi Y, Zeng Z, Zhan Y, Qiu X, Xiao Y, Ding Y, Xiao R. MiR-4769-3p suppresses adipogenesis in systemic sclerosis by negatively regulating the USP18/VDAC2 pathway. iScience 2024; 27:110483. [PMID: 39156653 PMCID: PMC11326926 DOI: 10.1016/j.isci.2024.110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease affecting multiple tissues. The underlying causes and mechanisms of subcutaneous adipose tissue (SAT) loss in SSc remain unclear. Recent studies have highlighted the role of microRNAs in adipogenesis. Our study found that miR-4769-3p was upregulated in SSc patients and its silencing promoted SAT recovery in bleomycin-induced SSc mice, suggesting that miR-4769-3p might affect adipogenesis in SSc. Manipulating miR-4769-3p expression in 3T3-L1 cells revealed that its inhibition enhanced adipogenesis, while its overexpression weakened it. Further investigations showed that miR-4769-3p bound to 3'UTR of ubiquitin-specific protease-18 (USP18), inhibiting its expression, while USP18 interacted with voltage-dependent anion channel-2 (VDAC2), both of which were reduced in SSc. Silencing either USP18 or VDAC2 attenuated adipogenesis. Notably, USP18 inhibited VDAC2 ubiquitination and degradation, whereas miR-4769-3p reversed the VDAC2-induced elevation of adipogenesis, suggesting that miR-4769-3p inhibited adipogenesis by negatively regulating the USP18/VDAC2 pathway, providing a potential therapeutic target for SSc.
Collapse
Affiliation(s)
- Bingsi Tang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
| | - Jiangfan Yu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
| | - Rui Tang
- Department of Rheumatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
| | - Xinglan He
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
| | - Jiani Liu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
| | - Licong Liu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
| | - Zehong Song
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
| | - Yaqian Shi
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
| | - Yi Zhan
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
| | - Xiangning Qiu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
| | - Yan Ding
- Department of Dermatology, Hainan Provincial Hospital of Skin Disease, Haikou, Hainan 570100, China
- Department of Dermatology, Affiliated Dermatology Hospital of Hainan Medical College, Haikou, Hainan 570100, China
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, China
| |
Collapse
|
5
|
Conti G, Zingaretti N, Busato A, Quintero Sierra L, Amuso D, Scarano A, Iorio EL, Amore R, Ossanna R, Negri A, Conti A, Veronese S, De Francesco F, Riccio M, Parodi PC, Sbarbati A. Gluteal femoral subcutaneous and dermal adipose tissue in female. J Cosmet Dermatol 2024; 23:2726-2735. [PMID: 38638000 DOI: 10.1111/jocd.16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND During the sexual maturation, gluteal femoral adipose tissue is subjected to numerous modifications, not observable in other regions, in particular in women and less in men. Other authors described this region, but they used imaging techniques having lower resolution, than MRI proposed in this study. High resolution imaging techniques might provide important and more detailed information about the anatomy of gluteal femoral region. METHODS This study has been performed using 7 T-magnetic resonance imaging and ultrastructural analysis in order to provide accurate description of the subcutaneous adipose tissue and dermis of gluteal femoral region. In this study specimens harvested from cadavers and form living patients have been analyzed. RESULTS The results showed the presence of three layers: superficial, middle, and deep, characterized by different organization of fat lobules. High resolution imaging showed the adipose papilla that originates from dermis and protrude in subcutaneous adipose tissue. Adipose papilla is characterized by a peculiar morphology with a basement, a neck and a head and these elements represent the functional subunits of adipose papilla. Moreover, ultrastructural study evidenced the relationship between adipocytes and sweat glands, regulated by lipid vesicles. CONCLUSIONS This study provides important information about subcutaneous and dermal fat anatomy of gluteal femoral region, improving the past knowledge, and move toward a better understanding of the cellulite physiopathology.
Collapse
Affiliation(s)
- Giamaica Conti
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, School of Medicine, University of Verona, Verona, Italy
- Accademia del Lipofilling, Research and Training Center in Regenerative Surgery, Jesi, Italy
| | - Nicola Zingaretti
- Accademia del Lipofilling, Research and Training Center in Regenerative Surgery, Jesi, Italy
- Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, Department of Medicine (DMED), University of Udine, Udine, 33100, Italy
| | - Alice Busato
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, School of Medicine, University of Verona, Verona, Italy
| | - Lindsey Quintero Sierra
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, School of Medicine, University of Verona, Verona, Italy
| | - Domenico Amuso
- Neuroscience Biomedicine and Movement Sciences Department, University of Verona, Verona, Italy
| | - Antonio Scarano
- Department of Medical, Dean of Master course in Aesthetic Medicine, Oral and Biotechnological Sciences, University of Chieti-Pescara, Pescara, Italy
| | - Eugenio Luigi Iorio
- Neuroscience Biomedicine and Movement Sciences Department, University of Verona, Verona, Italy
| | - Roberto Amore
- Neuroscience Biomedicine and Movement Sciences Department, University of Verona, Verona, Italy
| | - Riccardo Ossanna
- Neuroscience Biomedicine and Movement Sciences Department, University of Verona, Verona, Italy
| | - Alessandro Negri
- Neuroscience Biomedicine and Movement Sciences Department, University of Verona, Verona, Italy
| | - Anita Conti
- Neuroscience Biomedicine and Movement Sciences Department, University of Verona, Verona, Italy
| | - Sheila Veronese
- Neuroscience Biomedicine and Movement Sciences Department, University of Verona, Verona, Italy
| | - Francesco De Francesco
- Accademia del Lipofilling, Research and Training Center in Regenerative Surgery, Jesi, Italy
- Department of Reconstructive Surgery and Hand Surgery, AOU "Ospedali Riuniti", Ancona, Italy
| | - Michele Riccio
- Accademia del Lipofilling, Research and Training Center in Regenerative Surgery, Jesi, Italy
- Department of Reconstructive Surgery and Hand Surgery, AOU "Ospedali Riuniti", Ancona, Italy
| | - Pier Camillo Parodi
- Accademia del Lipofilling, Research and Training Center in Regenerative Surgery, Jesi, Italy
- Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, Department of Medicine (DMED), University of Udine, Udine, 33100, Italy
| | - Andrea Sbarbati
- Accademia del Lipofilling, Research and Training Center in Regenerative Surgery, Jesi, Italy
- Neuroscience Biomedicine and Movement Sciences Department, University of Verona, Verona, Italy
| |
Collapse
|
6
|
Wareing N, Mills TW, Collum S, Wu M, Revercomb L, Girard R, Lyons M, Skaug B, Bi W, Ali MA, Koochak H, Flores AR, Yang Y, Zheng WJ, Swindell WR, Assassi S, Karmouty-Quintana H. Deletion of adipocyte Sine Oculis Homeobox Homolog 1 prevents lipolysis and attenuates skin fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595271. [PMID: 38826482 PMCID: PMC11142148 DOI: 10.1101/2024.05.22.595271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Dermal fibrosis is a cardinal feature of systemic sclerosis (SSc) for which there are limited treatment strategies. This is in part due to our fragmented understanding of how dermal white adipose tissue (DWAT) contributes to skin fibrosis. We identified elevated sine oculis homeobox homolog 1 (SIX1) expression in SSc skin samples from the GENISOS and PRESS cohorts, the expression of which correlated with adipose-associated genes and molecular pathways. SIX1 localization studies identified increased signals in the DWAT area in SSc and in experimental models of skin fibrosis. Global and adipocyte specific Six1 deletion abrogated end-stage fibrotic gene expression and dermal adipocyte shrinkage induced by SQ bleomycin treatment. Further studies revealed a link between elevated SIX1 and increased expression of SERPINE1 and its protein PAI-1 which are known pro-fibrotic mediators. However, SIX1 deletion did not appear to affect cellular trans differentiation. Taken together these results point at SIX1 as a potential target for dermal fibrosis in SSc.
Collapse
Affiliation(s)
- Nancy Wareing
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth Houston), TX, USA
- Division of Rheumatology, Department of Internal Medicine, McGovern Medical School, UTHealth Houston, Houston TX, USA
| | - Tingting W Mills
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth Houston), TX, USA
| | - Scott Collum
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth Houston), TX, USA
| | - Minghua Wu
- Division of Rheumatology, Department of Internal Medicine, McGovern Medical School, UTHealth Houston, Houston TX, USA
| | | | - Rene Girard
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth Houston), TX, USA
| | - Marka Lyons
- Division of Rheumatology, Department of Internal Medicine, McGovern Medical School, UTHealth Houston, Houston TX, USA
| | - Brian Skaug
- Division of Rheumatology, Department of Internal Medicine, McGovern Medical School, UTHealth Houston, Houston TX, USA
| | - Weizhen Bi
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth Houston), TX, USA
| | - Meer A. Ali
- D Bradley McWilliams School of Biomedical Informatics, Department of Internal Medicine, McGovern Medical School, UTHealth Houston, Houston TX, USA
| | - Haniyeh Koochak
- Department of Pediatrics, McGovern Medical School, UTHealth Houston, Houston TX, USA
| | - Anthony R Flores
- Department of Pediatrics, McGovern Medical School, UTHealth Houston, Houston TX, USA
| | - Yuntao Yang
- D Bradley McWilliams School of Biomedical Informatics, Department of Internal Medicine, McGovern Medical School, UTHealth Houston, Houston TX, USA
| | - W Jim Zheng
- D Bradley McWilliams School of Biomedical Informatics, Department of Internal Medicine, McGovern Medical School, UTHealth Houston, Houston TX, USA
| | - William R Swindell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Shervin Assassi
- Division of Rheumatology, Department of Internal Medicine, McGovern Medical School, UTHealth Houston, Houston TX, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth Houston), TX, USA
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, UTHealth Houston, Houston TX, USA
| |
Collapse
|
7
|
Lee B, Roh JS, Jeong H, Kim Y, Lee J, Yun C, Park J, Kim DS, Lee J, So MW, Kim A, Sohn DH, Lee SG. Ginkgo biloba extract ameliorates skin fibrosis in a bleomycin-induced mouse model of systemic sclerosis. Anim Cells Syst (Seoul) 2024; 28:152-160. [PMID: 38645438 PMCID: PMC11028018 DOI: 10.1080/19768354.2024.2337761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/24/2024] [Indexed: 04/23/2024] Open
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by skin and internal organ fibrosis and obliterative vasculopathy. Few effective treatments are currently available for fibrosis in SSc, therefore, demand persists for novel therapies. Although use of Ginkgo biloba extract (GBE) has been reported to improve blood circulation and alleviate liver and lung fibrosis, its effect on skin fibrosis in SSc remains unclear. In this study, the effects and underlying mechanisms of GBE on skin fibrosis in bleomycin (BLM)-induced mouse model of SSc was investigated. GBE significantly reduced dermal thickness and protein levels of profibrotic factors in the BLM-induced SSc mouse model. Moreover, GBE inhibited the gene expression of profibrotic factors, such as COL1A1, α-SMA, and connective tissue growth factor (CTGF), in fibroblasts by suppressing transforming growth factor (TGF)-β signaling. Furthermore, GBE inhibited the transdifferentiation of adipocytes into myofibroblasts. Thus, our findings suggest that GBE is a promising therapeutic candidate for the treatment of SSc.
Collapse
Affiliation(s)
- Beomgu Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jong Seong Roh
- Department of Herbal Prescription, College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Hoim Jeong
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Yerin Kim
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jihyeon Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Changun Yun
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jiyoung Park
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Da-sol Kim
- Department of Dermatology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Jungsoo Lee
- Department of Dermatology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Min Wook So
- Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Aran Kim
- Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Seung-Geun Lee
- Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
8
|
Jussila A, Zhang B, Kirti S, Atit R. Tissue fibrosis associated depletion of lipid-filled cells. Exp Dermatol 2024; 33:e15054. [PMID: 38519432 PMCID: PMC10977660 DOI: 10.1111/exd.15054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/24/2024]
Abstract
Fibrosis is primarily described as the deposition of excessive extracellular matrix, but in many tissues it also involves a loss of lipid or lipid-filled cells. Lipid-filled cells are critical to tissue function and integrity in many tissues including the skin and lungs. Thus, loss or depletion of lipid-filled cells during fibrogenesis, has implications for tissue function. In some contexts, lipid-filled cells can impact ECM composition and stability, highlighting their importance in fibrotic transformation. Recent papers in fibrosis address this newly recognized fibrotic lipodystrophy phenomenon. Even in disparate tissues, common mechanisms are emerging to explain fibrotic lipodystrophy. These findings have implications for fibrosis in tissues composed of fibroblast and lipid-filled cell populations such as skin, lung, and liver. In this review, we will discuss the roles of lipid-containing cells, their reduction/loss during fibrotic transformation, and the mechanisms of that loss in the skin and lungs.
Collapse
Affiliation(s)
- Anna Jussila
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brian Zhang
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sakin Kirti
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Radhika Atit
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Satzinger S, Willenborg S, Ding X, Klose CSN, Radtke D, Voehringer D, Eming SA. Type 2 Immunity Regulates Dermal White Adipose Tissue Function. J Invest Dermatol 2023; 143:2456-2467.e5. [PMID: 37295491 DOI: 10.1016/j.jid.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023]
Abstract
Type 2 immune responses have been increasingly linked with tissue maintenance, regeneration, and metabolic homeostasis. The molecular basis of regulator and effector mechanisms of type 2 immunity in skin regeneration and homeostasis is still lacking. In this study, we analyzed the role of IL-4Rα signaling in the regeneration of diverse cellular compartments in the skin. Mutants with global IL-4Rα deficiency showed two major phenotypes: first, a pronounced atrophy of the interfollicular epidermis, and second, a significant increase in dermal white adipose tissue thickness in mice aged 3 weeks (postnatal day 21) compared with littermate controls. Notably, IL-4Rα deficiency decreased the activation of hormone-sensitive lipase, a rate-limiting step in lipolysis. Immunohistochemical and FACS analysis in IL-4/enhanced GFP reporter mice showed that IL-4 expression peaked on postnatal day 21 and that eosinophils are the predominant IL-4-expressing cells. Eosinophil-deficient mice recapitulated the lipolytic-defective dermal white adipose tissue phenotype of Il4ra-deficient mice, showing that eosinophils are necessary for dermal white adipose tissue lipolysis. Collectively, we provide mechanistic insights into the regulation of interfollicular epidermis and hormone-sensitive lipase-mediated lipolysis in dermal white adipose tissue in early life by IL-4Rα, and our findings show that eosinophils play a critical role in this process.
Collapse
Affiliation(s)
| | | | - Xiaolei Ding
- Department of Dermatology, University of Cologne, Cologne, Germany; Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
| | - Christoph S N Klose
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Radtke
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sabine A Eming
- Department of Dermatology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany.
| |
Collapse
|
10
|
Xu B, Yu Y, Liang J, Xu G, Chen W, Lin J, Hu S. Efficacy of adjunctive ambrisentan treatment for digital ulcers in patients with systemic sclerosis: a case series study Ambrisentan for digital ulcers. J DERMATOL TREAT 2023; 34:2276046. [PMID: 38073230 DOI: 10.1080/09546634.2023.2276046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/20/2023] [Indexed: 12/18/2023]
Abstract
Purpose: The efficacy of adjunctive ambrisentan treatment in patients with systemic sclerosis (SSc) suffering from digital ulcers (DUs) was investigated.Material and methods: Patients (4 males, 7 females) diagnosed with SSc at our hospital between 2017 and 2022 were enrolled. Ten of them had diffuse SSc, while one had limited SSc. These patients received daily 5 mg doses of ambrisentan in addition to their regular SSc treatment for 16 weeks. Parameters including the total number and size of existing and new DUs, Visual Analog Score (VAS), frequency of Raynaud's phenomenon (RP) attacks, and any adverse effects were assessed.Results: At baseline, the median number and size of DUs was 3.0 (interquartile range (IQR): 2.0-4.0 cm) and 0.4 cm (IQR: 0.3-0.5 cm), respectively. Following the intervention, seven patients with a median of 2.0 DUs and a size of 0.35 cm (IQR: 0.15-0.45 cm) at baseline achieved complete healing. Significant improvements were also observed in other patients. VAS scores decreased from a baseline median of 5.0-0.0 (IQR: 0.0-1.0), and both the frequency and duration of RP attacks notably reduced.Conclusion: Adjunctive ambrisentan therapy proved effective in promoting DU healing and preventing new DUs in SSc patients.
Collapse
Affiliation(s)
- Bei Xu
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | - Ye Yu
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | - Junyu Liang
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | - Guanhua Xu
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | - Weiqian Chen
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | - Jin Lin
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | - Shenjiang Hu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P. R. China
| |
Collapse
|
11
|
Löfdahl A, Nybom A, Wigén J, Dellgren G, Brunnström H, Wenglén C, Westergren-Thorsson G. Pulmonary 5-HT 2B receptor expression in fibrotic interstitial lung diseases. Acta Histochem 2023; 125:152024. [PMID: 36958084 DOI: 10.1016/j.acthis.2023.152024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/17/2023] [Accepted: 03/10/2023] [Indexed: 03/25/2023]
Abstract
Pulmonary fibrosis is a severe condition in interstitial lung diseases (ILD) such as idiopathic pulmonary fibrosis (IPF) and systemic sclerosis-ILD, where the underlying mechanism is not well defined and with no curative treatments available. Serotonin (5-HT) signaling via the 5-HT2B receptor has been recognized as a promising preclinical target for fibrosis. Despite this, the involvement of the 5-HT2B receptor in fibrotic ILD is widely unexplored. This work highlights the spatial pulmonary distribution of the 5-HT2B receptor in patients with IPF and systemic sclerosis-ILD. We show that the 5-HT2B receptor is located in typical pathological structures e.g. honeycomb cysts and weakly in fibroblast foci. Together with immunohistochemistry and immunofluorescence stainings of patient derived distal lung tissues, we identified cell targets for 5-HT2B receptor interference in type II alveolar epithelial cells, endothelial cells and M2 macrophages. Our results emphasize the role of 5-HT2B receptor as a target in lung fibrosis, warranting further consideration in targeting fibrotic ILDs.
Collapse
Affiliation(s)
- Anna Löfdahl
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Annika Nybom
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jenny Wigén
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Göran Dellgren
- Department of Cardiothoracic Surgery and Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hans Brunnström
- Lund University, Laboratory Medicine Region Skåne, Department of Clinical Sciences Lund, Pathology, Lund, Sweden
| | | | | |
Collapse
|
12
|
Zhang KW, Jia Y, Li YY, Guo DY, Li XX, Hu K, Qian XX, Chen ZH, Wu JJ, Yuan ZD, Yuan FL. LEP and LEPR are possibly a double-edged sword for wound healing. J Cell Physiol 2023; 238:355-365. [PMID: 36571294 DOI: 10.1002/jcp.30936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Wound healing is a complex and error-prone process. Wound healing in adults often leads to the formation of scars, a type of fibrotic tissue that lacks skin appendages. Hypertrophic scars and keloids can also form when the wound-healing process goes wrong. Leptin (Lep) and leptin receptors (LepRs) have recently been shown to affect multiple stages of wound healing. This effect, however, is paradoxical for scarless wound healing. On the one hand, Lep exerts pro-inflammatory and profibrotic effects; on the other hand, Lep can regulate hair follicle growth. This paper summarises the role of Lep and LepRs on cells in different stages of wound healing, briefly introduces the process of wound healing and Lep and LepRs, and examines the possibility of promoting scarless wound healing through spatiotemporal, systemic, and local regulation of Lep levels and the binding of Lep and LepRs.
Collapse
Affiliation(s)
- Kai-Wen Zhang
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Yuan Jia
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Yue-Yue Li
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Dan-Yang Guo
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao-Xiao Li
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Kai Hu
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Xiao-Xi Qian
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Zhong-Hua Chen
- Department of Medicine, The Nantong University, Nantong, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China.,Affiliated Hospital of Jiangnan University, Wuxi, China.,Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
MiR-27a as a diagnostic biomarker and potential therapeutic target in systemic sclerosis. Sci Rep 2022; 12:18932. [PMID: 36344812 PMCID: PMC9640682 DOI: 10.1038/s41598-022-23723-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Systemic sclerosis (SSc) or scleroderma is a multiorgan rheumatoid disease characterized by skin tightening or organ dysfunction due to fibrosis, vascular damage, and autoimmunity. No specific cause has been discovered for this illness, and hence no effective treatment exists for it. On the other hand, due to the lack of diagnostic biomarkers capable of effectively and specifically differentiating the patients, early diagnosis has not been possible. Due to their potent regulatory roles in molecular pathways, microRNAs are among the novel candidates for the diagnosis and treatment of diseases like SSc. MiR-27a is a microRNA known for its role in the pathogenesis of fibrosis and cancer, both of which employ similar signaling pathways; hence we hypothesized that Mir-27a could be dysregulated in the blood of individuals affected by SSc and it might be useful in the diagnosis or treatment of this disease. Blood was collected from 60 SSc patients (30 limited and 30 diffuse) diagnosed by a rheumatologist according to ACR/AULAR criteria; following RNA isolation and cDNA synthesis; real-time qPCR was performed on the samples using Taq-Man probes and data were analyzed by the ΔΔCT method. Also, potential targets of miR-27a were evaluated using bioinformatics. It was revealed that miR-27a was significantly down-regulated in SSc patients in comparison to healthy individuals, but there was no difference in miR-27 expression between limited and diffused SSc patients. Besides, miR-27a was found to target several contributing factors to SSc. It seems that miR-27a has a protective role in SSc, and its downregulation could result in the disease's onset. Based on bioinformatics analyses, it is speculated that miR-27a likely targets factors contributing to the pathogenesis of SSc, which are elevated upon the downregulation of miR-27a; hence, miR-27a mimics could be considered as potential therapeutic agents for the treatment of SSc in future studies. Since no difference was observed between limited and diffuse patient groups, it is unlikely that this microRNA has a role in disease progression. According to ROC analysis of qPCR data, miR-27a could be employed as a valuable diagnostic biomarker for SSc.
Collapse
|
14
|
Wang J, Cai J, Zhang Q, Wen J, Liao Y, Lu F. Fat transplantation induces dermal adipose regeneration and reverses skin fibrosis through dedifferentiation and redifferentiation of adipocytes. Stem Cell Res Ther 2022; 13:499. [PMID: 36210466 PMCID: PMC9549649 DOI: 10.1186/s13287-022-03127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background Localized scleroderma causes cosmetic disfigurement, joint contractures, and other functional impairment, but no currently available medications can reverse the resulting skin lesions. Fat grafting is beneficial for reversing skin fibrosis; however, the mechanism by which adipose tissue transplantation contributes to lesion improvement has not been fully clarified. The purpose of our study was to verify the therapeutic effect of fat grafts in reversing skin fibrosis. Methods Inguinal fat pads from AdipoqCreER+;mT/mG mice, which were treated with tamoxifen, were transplanted to the skin lesion in bleomycin-treated wild-type C57 mice. Tdtomato transgenic mice-derived adipocytes, adipose-derived stem cells (ASCs), dedifferentiated adipocytes (DAs) were embedded in matrigel and transplanted beneath the skin lesion of bleomycin-treated wild-type C57 mice. A transwell co‐culture system was used to verify the effect of ASCs, adipocytes or DAs on scleroderma fibroblasts or monocytes. Results Adipocytes from the fat grafts could undergo dedifferentiation and redifferentiation for dermal adipose tissue re-accumulation within the skin lesion. Moreover, compared with ASCs and adipocytes, DAs show greater potency of inducing adipogenesis. ASCs and DAs showed comparable effect on inducing angiogenesis and suppressing macrophage infiltration in fibrotic skin. Co-culture assay showed that DAs and ASCs were able to reduce fibrosis-related genes in human scleroderma fibroblasts and drive M2 macrophage polarization. Conclusion Our results indicated that adipocytes would transform into a more functional and dedifferentiated state and reverse dermal fibrosis, by promoting dermal adipose tissue regeneration, improving angiogenesis, suppressing macrophage-mediated inflammation and myofibroblast accumulation.
Collapse
|
15
|
Hajam EY, Panikulam P, Chu CC, Jayaprakash H, Majumdar A, Jamora C. The expanding impact of T-regs in the skin. Front Immunol 2022; 13:983700. [PMID: 36189219 PMCID: PMC9521603 DOI: 10.3389/fimmu.2022.983700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
As the interface between the body and the environment, the skin functions as the physical barrier against external pathogens and toxic agents. In addition, the skin is an immunologically active organ with a plethora of resident adaptive and innate immune cells, as well as effector molecules that provide another layer of protection in the form of an immune barrier. A major subpopulation of these immune cells are the Foxp3 expressing CD4 T cells or regulatory T cells (T-regs). The canonical function of T-regs is to keep other immune cells in check during homeostasis or to dissipate a robust inflammatory response following pathogen clearance or wound healing. Interestingly, recent data has uncovered unconventional roles that vary between different tissues and we will highlight the emerging non-lymphoid functions of cutaneous T-regs. In light of the novel functions of other immune cells that are routinely being discovered in the skin, their regulation by T-regs implies that T-regs have executive control over a broad swath of biological activities in both homeostasis and disease. The blossoming list of non-inflammatory functions, whether direct or indirect, suggests that the role of T-regs in a regenerative organ such as the skin will be a field ripe for discovery for decades to come.
Collapse
Affiliation(s)
- Edries Yousaf Hajam
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
- School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology and Research Academy (SASTRA) University, Thanjavur, Tamil Nadu, India
| | - Patricia Panikulam
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | | | - Haarshadri Jayaprakash
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | | | - Colin Jamora
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| |
Collapse
|
16
|
Cacciapaglia F, Airò P, Fornaro M, Trerotoli P, De Lorenzis E, Corrado A, Lazzaroni MG, Natalello G, Montini F, Altomare A, Urso L, Verardi L, Bosello SL, Cantatore FP, Iannone F. Survival and Prognostic factors from a multicentre large cohort of unselected Italian Systemic Sclerosis patients. Rheumatology (Oxford) 2022; 62:1552-1558. [PMID: 36074979 DOI: 10.1093/rheumatology/keac512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Survival and death prognostic factors of systemic sclerosis (SSc) patients varied during the last decades. We aimed to update the 5- and 10-year survival rates and identify prognostic factors in a multicentre cohort of Italian SSc patients diagnosed after 2009. METHODS Patients who received a diagnosis of SSc after January 1st, 2009, and were longitudinally followed up in 4 Italian Rheumatologic Centres were retrospectively assessed up to December 31st, 2020. Overall survival of SSc patients was described using the Kaplan-Meier method. Predictors of mortality at 10-year follow-up were assessed by the Cox-regression model. A comparison of our cohort with the Italian general population was performed by determining the standardized mortality ratio (SMR). RESULTS A total of 912 patients (91.6% females, 20% dcSSc) were included. Overall survival rates at 5 and 10 years were 94.4%, and 89.4% respectively. The SMR was 0.96 (95% CI 0.81-1.13), like that expected in the Italian general population. Pulmonary arterial hypertension (PAH) and interstitial lung disease (ILD) associated with pulmonary hypertension (PH) significantly reduced survival (p< 0.0001). Main death predictors were male gender (HR = 2.76), diffuse cutaneous involvement (HR = 3.14), older age at diagnosis (HR = 1.08), PAH (HR = 3.21), ILD-associated PH (HR = 4.11), comorbidities (HR = 3.53), and glucocorticoid treatment (HR = 2.02). CONCLUSIONS In the last decade, SSc patients have reached similar mortality of that expected in the Italian general population. Male gender, diffuse cutaneous involvement, comorbidities, and PAH with or without ILD represent the main poor prognostic factors.
Collapse
Affiliation(s)
- Fabio Cacciapaglia
- Department of Emergency and Organ Transplantations, Rheumatology Unit, University and AOUC Policlinico of Bari, Bari, Italy
| | - Paolo Airò
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili and University, Brescia, Italy
| | - Marco Fornaro
- Department of Emergency and Organ Transplantations, Rheumatology Unit, University and AOUC Policlinico of Bari, Bari, Italy
| | - Paolo Trerotoli
- Medical Statistics, Department of Biomedical and Human Oncologic Science, University of Bari, Bari, Italy
| | - Enrico De Lorenzis
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Ph.D Program in Biomelocular Medicine, Cicle XXXV, University of Verona, Verona, Italy
| | - Addolorata Corrado
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Maria Grazia Lazzaroni
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili and University, Brescia, Italy
| | - Gerlando Natalello
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Fabio Montini
- Department of Emergency and Organ Transplantations, Rheumatology Unit, University and AOUC Policlinico of Bari, Bari, Italy
| | - Alberto Altomare
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Livio Urso
- Department of Emergency and Organ Transplantations, Rheumatology Unit, University and AOUC Policlinico of Bari, Bari, Italy
| | - Lucrezia Verardi
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Silvia Laura Bosello
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Francesco Paolo Cantatore
- Ph.D Program in Biomelocular Medicine, Cicle XXXV, University of Verona, Verona, Italy
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Florenzo Iannone
- Department of Emergency and Organ Transplantations, Rheumatology Unit, University and AOUC Policlinico of Bari, Bari, Italy
| |
Collapse
|
17
|
Kim SJ, Bale S, Verma P, Wan Q, Ma F, Gudjonsson JE, Hazen SL, Harms PW, Tsou PS, Khanna D, Tsoi LC, Gupta N, Ho KJ, Varga J. Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiation. iScience 2022; 25:104669. [PMID: 35856022 PMCID: PMC9287188 DOI: 10.1016/j.isci.2022.104669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/24/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
Intestinal dysbiosis is prominent in systemic sclerosis (SSc), but it remains unknown how it contributes to microvascular injury and fibrosis that are hallmarks of this disease. Trimethylamine (TMA) is generated by the gut microbiome and in the host converted by flavin-containing monooxygenase (FMO3) into trimethylamine N-oxide (TMAO), which has been implicated in chronic cardiovascular and metabolic diseases. Using cell culture systems and patient biopsies, we now show that TMAO reprograms skin fibroblasts, vascular endothelial cells, and adipocytic progenitor cells into myofibroblasts via the putative TMAO receptor protein R-like endoplasmic reticulum kinase (PERK). Remarkably, FMO3 was detected in skin fibroblasts and its expression stimulated by TGF-β1. Moreover, FMO3 was elevated in SSc skin biopsies and in SSc fibroblasts. A meta-organismal pathway thus might in SSc link gut microbiome to vascular remodeling and fibrosis via stromal cell reprogramming, implicating the FMO3-TMAO-PERK axis in pathogenesis, and as a promising target for therapy.
Collapse
Affiliation(s)
- Seok-Jo Kim
- Division of Rheumatology, Department of Internal Medicine, The University of Michigan, Suite 7C27, 300 North Ingalls Building, Ann Arbor, MI, USA
- SCM Lifescience Co. Ltd., Incheon, Republic of Korea
| | - Swarna Bale
- Division of Rheumatology, Department of Internal Medicine, The University of Michigan, Suite 7C27, 300 North Ingalls Building, Ann Arbor, MI, USA
| | - Priyanka Verma
- Division of Rheumatology, Department of Internal Medicine, The University of Michigan, Suite 7C27, 300 North Ingalls Building, Ann Arbor, MI, USA
| | - Qianqian Wan
- Division of Rheumatology, Department of Internal Medicine, The University of Michigan, Suite 7C27, 300 North Ingalls Building, Ann Arbor, MI, USA
| | - Feiyang Ma
- Department of Dermatology, The University of Michigan, 300 North Ingalls Building, Ann Arbor, MI, USA
- Department of Computational Medicine & Bioinformatics, The University of Michigan, Ann Arbor, MI, USA
| | - Johann E. Gudjonsson
- Division of Rheumatology, Department of Internal Medicine, The University of Michigan, Suite 7C27, 300 North Ingalls Building, Ann Arbor, MI, USA
- Department of Dermatology, The University of Michigan, 300 North Ingalls Building, Ann Arbor, MI, USA
| | - Stanley L. Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH, USA
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Paul W. Harms
- Department of Dermatology, The University of Michigan, 300 North Ingalls Building, Ann Arbor, MI, USA
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, The University of Michigan, Suite 7C27, 300 North Ingalls Building, Ann Arbor, MI, USA
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, The University of Michigan, Suite 7C27, 300 North Ingalls Building, Ann Arbor, MI, USA
- Michigan Scleroderma Program, The University of Michigan, 300 North Ingalls Building, Ann Arbor, MI, USA
| | - Lam C. Tsoi
- Department of Dermatology, The University of Michigan, 300 North Ingalls Building, Ann Arbor, MI, USA
- Department of Computational Medicine & Bioinformatics, The University of Michigan, Ann Arbor, MI, USA
| | - Nilaksh Gupta
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH, USA
| | - Karen J. Ho
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, The University of Michigan, Suite 7C27, 300 North Ingalls Building, Ann Arbor, MI, USA
- Department of Dermatology, The University of Michigan, 300 North Ingalls Building, Ann Arbor, MI, USA
- Michigan Scleroderma Program, The University of Michigan, 300 North Ingalls Building, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Adipose-derived stem cell-enriched lipotransfer reverses skin sclerosis by suppressing dermal inflammation. Plast Reconstr Surg 2022; 150:578-587. [PMID: 35759642 DOI: 10.1097/prs.0000000000009435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Scleroderma is a chronic autoimmune disease with an incidence of 2.7 per 100,000 people. Traditional lipotransfer has been used to treat atrophic sclerotic skin. Enzymatically processed cell-assisted lipotransfer (CAL) and mechanically processed stromal vascular fraction gel (SVF-gel) are fat products with abundant adipose-derived stem cells (ASCs). The present study aimed to assess whether ASC-enriched lipotransfer elicits superior therapeutic effects on scleroderma. METHODS Scleroderma was induced in nude mice by injections of bleomycin for 4 weeks. Human-derived Coleman fat (CF), CAL, or SVF-gel (0.1 mL) was injected into sclerotic lesions. Histologic examinations, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and expression analyses of inflammatory factors in skin lesions and transferred fat were performed at 4 weeks post-implantation. RESULTS Dermal thickness was lower in the CF- (339.0 ± 19.66 µm), CAL- (271.0 ± 16.15 µm), and SVF-gel- (197.8 ± 12.99 µm) injected groups than in the phosphate-buffered saline-injected group (493.3 ± 28.13 µm) (P<0.05). The numbers of TUNEL+ and Mac2+ cells in fat tissue were significantly higher in the CF-injected group than in the SVF-gel- and CAL-injected groups. Expression of monocyte chemotactic protein-1 and interleukin-6 was significantly lower in the ASC-enriched groups than in the CF group. Histologic analysis showed there were far fewer macrophages and myofibroblasts in skin lesions in the ASC-enriched groups than in the CF group. CONCLUSION Transplantation of SVF-gel and CAL, which contain abundant ASCs, reduces the levels of apoptotic cells and inflammation, significantly reverses skin sclerosis, and elicits superior anti-inflammatory and anti-fibrotic effects on scleroderma.
Collapse
|
19
|
Chen L, You Q, Liu M, Li S, Wu Z, Hu J, Ma Y, Xia L, Zhou Y, Xu N, Zhang S. Remodeling of dermal adipose tissue alleviates cutaneous toxicity induced by anti-EGFR therapy. eLife 2022; 11:72443. [PMID: 35324426 PMCID: PMC8947768 DOI: 10.7554/elife.72443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Anti-epidermal growth factor receptor (EGFR) therapy–associated cutaneous toxicity is a syndrome characterized by papulopustular rash, local inflammation, folliculitis, and microbial infection, resulting in a decrease in quality of life and dose interruption. However, no effective clinical intervention is available for this adverse effect. Here, we report the atrophy of dermal white adipose tissue (dWAT), a highly plastic adipose tissue with various skin-specific functions, correlates with rash occurrence and exacerbation in a murine model of EGFR inhibitor-induced rash. The reduction in dWAT is due to the inhibition of adipogenic differentiation by defects in peroxisome proliferator-activated receptor γ (PPARγ) signaling, and increased lipolysis by the induced expression of the lipolytic cytokine IL6. The activation of PPARγ by rosiglitazone maintains adipogenic differentiation and represses the transcription of IL6, eventually improving skin functions and ameliorating the severity of rash without altering the antitumor effects. Thus, activation of PPARγ represents a promising approach to ameliorate cutaneous toxicity in patients with cancer who receive anti-EGFR therapy.
Collapse
Affiliation(s)
- Leying Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qing You
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shuaihu Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoyu Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajun Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yurui Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liangyong Xia
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Xu
- Department of Dermatology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Shiyi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Newe M, Kant TA, Hoffmann M, Rausch JSE, Winter L, Künzel K, Klapproth E, Günther C, Künzel SR. Systemic mesalazine treatment prevents spontaneous skin fibrosis in PLK2-deficient mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:2233-2244. [PMID: 34410453 PMCID: PMC8514377 DOI: 10.1007/s00210-021-02135-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 11/27/2022]
Abstract
Skin fibrosis is a complex biological remodeling process occurring in disease like systemic sclerosis, morphea, or eosinophilic fasciitis. Since the knowledge about the underlying pathomechanisms is still incomplete, there is currently no therapy, which prevents or reverses skin fibrosis sufficiently. The present study investigates the role of polo-like kinase 2 (PLK2) and the pro-fibrotic cytokine osteopontin (OPN) in the pathogenesis of cutaneous fibrosis and demonstrates the antifibrotic effects of systemic mesalazine treatment in vivo. Isolated primary dermal fibroblasts of PLK2 wild-type (WT) and knockout (KO) mice were characterized in vitro. Skin thickness and histoarchitecture were studied in paraffin-embedded skin sections. The effects of mesalazine treatment were examined in isolated fibroblasts and PLK2 KO mice, which were fed 100 µg/g mesalazine for 6 months via the drinking water. Compared to WT, PLK2 KO fibroblasts displayed higher spontaneous myofibroblast differentiation, reduced proliferation rates, and overexpression of the fibrotic cytokine OPN. In vitro, 72 h of treatment with 10 mmol/L mesalazine induced phenotype conversion in PLK2 KO fibroblasts and attenuated OPN expression by inhibiting ERK1/2. In vivo, dermal myofibroblast differentiation, collagen accumulation, and skin thickening were prevented by mesalazine in PLK2 KO. Plasma creatinine levels indicated good tolerability of systemic long-term mesalazine treatment. The current study reveals a spontaneous fibrotic skin phenotype and ERK1/2-dependent OPN overexpression in PLK2 KO mice. We provide experimental evidence for the antifibrotic effectiveness of systemic mesalazine treatment to prevent fibrosis of the skin, suggesting further investigation in experimental and clinical settings.
Collapse
Affiliation(s)
- Manja Newe
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fiedlerstraße 42, 01309, Dresden, Germany
| | - Theresa A Kant
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fiedlerstraße 42, 01309, Dresden, Germany
| | - Maximilian Hoffmann
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fiedlerstraße 42, 01309, Dresden, Germany
| | - Johanna S E Rausch
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fiedlerstraße 42, 01309, Dresden, Germany
| | - Luise Winter
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fiedlerstraße 42, 01309, Dresden, Germany
| | - Karolina Künzel
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fiedlerstraße 42, 01309, Dresden, Germany
| | - Erik Klapproth
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fiedlerstraße 42, 01309, Dresden, Germany
| | - Claudia Günther
- Department of Dermatology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stephan R Künzel
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fiedlerstraße 42, 01309, Dresden, Germany.
- Department of Dermatology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
21
|
Liu SY, Wu JJ, Chen ZH, Zou ML, Teng YY, Zhang KW, Li YY, Guo DY, Yuan FL, Li X. Insight into the role of dermal white adipose tissue loss in dermal fibrosis. J Cell Physiol 2021; 237:169-177. [PMID: 34608987 DOI: 10.1002/jcp.30552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
The loss of dermal white adipose tissue (dWAT) is vital to the formation of dermal fibrosis (DF), but the specific mechanism is not well understood. A few studies are reviewed to explore the role of dWAT in the formation of DF. Recent findings indicated that the adipocytes-to-myofibroblasts transition in dWAT reflects the direct contribution to the DF formation. While adipose-derived stem cells (ADSCs) contained in dWAT express antifibrotic cytokines, the loss of ADSCs leads to skin protection decreased, which indirectly exacerbates DF and tissue damage. Therefore, blocking or reversing the adipocytes-to-myofibroblasts transition or improving the survival of ADSCs in dWAT and the expression of antifibrotic cytokines may be an effective strategy for the treatment of DF.
Collapse
Affiliation(s)
- Si-Yu Liu
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| | - Zhong-Hua Chen
- Department of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Ming-Li Zou
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Ying-Ying Teng
- Department of Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| | - Kai-Wen Zhang
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Yue-Yue Li
- Department of Pharmacy, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| | - Dang-Yang Guo
- Department of Pharmacy, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| | - Feng-Lai Yuan
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China.,Department of Pharmacy, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| | - Xia Li
- Department of Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
22
|
Ross RL, Corinaldesi C, Migneco G, Carr IM, Antanaviciute A, Wasson CW, Carriero A, Distler JHW, Holmes S, El-Sherbiny YM, McKimmie CS, Del Galdo F. Targeting human plasmacytoid dendritic cells through BDCA2 prevents skin inflammation and fibrosis in a novel xenotransplant mouse model of scleroderma. Ann Rheum Dis 2021; 80:920-929. [PMID: 33542104 PMCID: PMC8237203 DOI: 10.1136/annrheumdis-2020-218439] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Plasmacytoid dendritic cells (pDC) have been implicated in the pathogenesis of autoimmune diseases, such as scleroderma (SSc). However, this has been derived from indirect evidence using ex vivo human samples or mouse pDC in vivo. We have developed human-specific pDC models to directly identify their role in inflammation and fibrosis, as well as attenuation of pDC function with BDCA2-targeting to determine its therapeutic application. METHODS RNAseq of human pDC with TLR9 agonist ODN2216 and humanised monoclonal BDCA2 antibody, CBS004. Organotypic skin rafts consisting of fibroblasts and keratinocytes were stimulated with supernatant from TLR9-stimulated pDC and with CBS004. Human pDC were xenotransplanted into Nonobese diabetic/severe combined immunodeficiency (NOD SCID) mice treated with Aldara (inflammatory model), or bleomycin (fibrotic model) with CBS004 or human IgG control. Skin punch biopsies were used to assess gene and protein expression. RESULTS RNAseq shows TLR9-induced activation of human pDC goes beyond type I interferon (IFN) secretion, which is functionally inactivated by BDCA2-targeting. Consistent with these findings, we show that BDCA2-targeting of pDC can completely suppress in vitro skin IFN-induced response. Most importantly, xenotransplantation of human pDC significantly increased in vivo skin IFN-induced response to TLR agonist and strongly enhanced fibrotic and immune response to bleomycin compared with controls. In these contexts, BDCA2-targeting suppressed human pDC-specific pathological responses. CONCLUSIONS Our data indicate that human pDC play a key role in inflammation and immune-driven skin fibrosis, which can be effectively blocked by BDCA2-targeting, providing direct evidence supporting the development of attenuation of pDC function as a therapeutic application for SSc.
Collapse
Affiliation(s)
- Rebecca L Ross
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Scleroderma Programme, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, UK
| | - Clarissa Corinaldesi
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Gemma Migneco
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Ian M Carr
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Agne Antanaviciute
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Christopher W Wasson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Scleroderma Programme, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, UK
| | - Antonio Carriero
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Rheumatology Department of Lucania, Rheumatology Institute of Lucania (IReL), Potenza, Italy
| | - Jörg H W Distler
- Department of Internal Medicine III, University of Erlangen, Erlangen, Germany
| | | | - Yasser M El-Sherbiny
- Department of Biosciences, Nottingham Trent University, Nottingham, Nottinghamshire, UK
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Clive S McKimmie
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Virus Host Interactions Team, Section of Infection and Immunity, University of Leeds Faculty of Medicine and Health, Leeds, UK
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Scleroderma Programme, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, UK
| |
Collapse
|
23
|
Miura S, Watanabe Y, Saigusa R, Yamashita T, Nakamura K, Hirabayashi M, Miyagawa T, Yoshizaki A, Trojanowska M, Sato S, Asano Y. Fli1 deficiency suppresses RALDH1 activity of dermal dendritic cells and related induction of regulatory T cells: a possible role in scleroderma. Arthritis Res Ther 2021; 23:137. [PMID: 33964960 PMCID: PMC8106158 DOI: 10.1186/s13075-021-02520-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/26/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenase 1 family member A1 (RALDH1)-producing dermal dendritic cells (DCs), a conventional DC subset regulating skin fibrosis, are decreased in the involved skin of patients with systemic sclerosis (SSc). In this study, we investigated the contribution of Fli1 deficiency, a potential predisposing factor of SSc, to the phenotypical alteration of RALDH1-producing dermal DCs by using SSc model mice and SSc skin samples. METHODS Bleomycin (BLM)-induced skin fibrosis was generated with Fli1+/- and wild-type mice. The proportions of DC and CD4+ T cell subsets were determined by flow cytometry in the dermis of BLM-treated mice. Fli1 expression in dermal DCs was evaluated by immunofluorescence with skin samples of SSc and healthy control subjects. RESULTS RALDH activity of dermal DCs was significantly decreased in BLM-treated Fli1+/- mice compared with BLM-treated wild-type mice, whereas the proportion of CD103-CD11b- dermal DCs, a major DC subset producing RALDH1 in response to BLM injection, was comparable between groups. Relevant to this finding, the proportion of regulatory T cells (Tregs) in the dermis was decreased in BLM-treated Fli1+/- mice relative to BLM-treated wild-type mice, while the proportions of Th1, Th2 and Th17 cells were unaltered. In the involved skin of SSc patients, Fli1 was downregulated in CD11c+ cells, including dermal DCs. CONCLUSIONS Fli1 deficiency inhibits RALDH1 activity of CD103-CD11b- dermal DCs and related induction of Tregs in BLM-treated mice. Considering Fli1 reduction in SSc dermal DCs, Fli1deficiency may impair the dermal DC-Treg system, contributing to the development of skin fibrosis in SSc.
Collapse
Affiliation(s)
- Shunsuke Miura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yusuke Watanabe
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ryosuke Saigusa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kouki Nakamura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Megumi Hirabayashi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takuya Miyagawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Maria Trojanowska
- Arthritis Center, Boston University School of Medicine, Boston, MA, USA
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
24
|
Rosa I, Romano E, Fioretto BS, Matucci-Cerinic M, Manetti M. Adipose-derived stem cells: Pathophysiologic implications vs therapeutic potential in systemic sclerosis. World J Stem Cells 2021; 13:30-48. [PMID: 33584978 PMCID: PMC7859990 DOI: 10.4252/wjsc.v13.i1.30] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) residing in the stromal vascular fraction (SVF) of white adipose tissue are recently emerging as an alternative tool for stem cell-based therapy in systemic sclerosis (SSc), a complex connective tissue disorder affecting the skin and internal organs with fibrotic and vascular lesions. Several preclinical and clinical studies have reported promising therapeutic effects of fat grafting and autologous SVF/ADSC-based local treatment for facial and hand cutaneous manifestations of SSc patients. However, currently available data indicate that ADSCs may represent a double-edged sword in SSc, as they may exhibit a pro-fibrotic and anti-adipogenic phenotype, possibly behaving as an additional pathogenic source of pro-fibrotic myofibroblasts through the adipocyte-to-myofibroblast transition process. Thus, in the perspective of a larger employ of SSc-ADSCs for further therapeutic applications, it is important to definitely unravel whether these cells present a comparable phenotype and similar immunosuppressive, anti-inflammatory, anti-fibrotic and pro-angiogenic properties in respect to healthy ADSCs. In light of the dual role that ADSCs seem to play in SSc, this review will provide a summary of the most recent insights into the preclinical and clinical studies employing SVF and ADSCs for the treatment of the disease and, at the same time, will focus on the main findings highlighting the possible involvement of these stem cells in SSc-related fibrosis pathogenesis.
Collapse
Affiliation(s)
- Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence 50134, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence 50134, Italy.
| |
Collapse
|
25
|
Stochmal A, Czuwara J, Zaremba M, Rudnicka L. Epoprostenol up-regulates serum adiponectin level in patients with systemic sclerosis: therapeutic implications. Arch Dermatol Res 2021; 313:783-791. [PMID: 33433715 DOI: 10.1007/s00403-020-02172-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/09/2020] [Accepted: 12/07/2020] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Adiponectin, resistin and leptin belong to adipokines, a group of molecules secreted mainly by the adipose tissue, which impaired expression may be a missing link between various manifestations of systemic sclerosis. Adiponectin, which is also released in small amounts by the endothelium, possesses anti-inflammatory, anti-fibrotic and protective against endothelial injury properties. Both leptin and resistin exhibit features which are contradictory to adiponectin, as they trigger inflammation and the activation of skin fibroblasts. Epoprostenol is a prostaglandin analogue with powerful vasodilator activity and inhibitory effect on platelet aggregation. The aim of the study was to evaluate whether epoprostenol may have an effect on serum adipokine levels in patients with systemic sclerosis. METHODS A total of 27 patients were included in the study and received epoprostenol intravenously (25 µg of per day for 3 consecutive days). Serum concentrations of total adiponectin, resistin and leptin were assessed with enzyme-linked immunosorbent essay (R&D Systems, Minneapolis, MN, USA). RESULTS In all SSc patients, the basal level of adiponectin was significantly lower compared to healthy controls (mean 6.00 [Formula: see text] 2.81 μg/ml vs. 8.8 [Formula: see text] 4.3 μg/ml, p = 0.02) and basal level of resistin (mean 11.12 [Formula: see text] 3.36 ng/ml vs. 8.54 [Formula: see text] 3.07 ng/ml p = 0.02) was significantly higher than in the control group. The serum concentration of adiponectin increased significantly after treatment with epoprostenol (6.00 [Formula: see text] 2.81 μg/ml vs 9.29 [Formula: see text] 6.05 μg/ml; P = 0.002). The level of resistin and leptin remained unchanged. CONCLUSION Epoprostenol infusions up-regulate the serum concentration of adiponectin in patients with systemic sclerosis. In our opinion, future studies on treatments in systemic sclerosis should address the issue of their effect on adipokine metabolism.
Collapse
Affiliation(s)
- Anna Stochmal
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Czuwara
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Michał Zaremba
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
26
|
Löfdahl A, Tornling G, Wigén J, Larsson-Callerfelt AK, Wenglén C, Westergren-Thorsson G. Pathological Insight into 5-HT 2B Receptor Activation in Fibrosing Interstitial Lung Diseases. Int J Mol Sci 2020; 22:ijms22010225. [PMID: 33379351 PMCID: PMC7796180 DOI: 10.3390/ijms22010225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 11/29/2022] Open
Abstract
Interstitial lung disease (ILD) encompasses a heterogeneous group of more than 200 conditions, of which primarily idiopathic pulmonary fibrosis (IPF), idiopathic nonspecific interstitial pneumonia, hypersensitivity pneumonitis, ILD associated with autoimmune diseases and sarcoidosis may present a progressive fibrosing (PF) phenotype. Despite different aetiology and histopathological patterns, the PF-ILDs have similarities regarding disease mechanisms with self-sustaining fibrosis, which suggests that the diseases may share common pathogenetic pathways. Previous studies show an enhanced activation of serotonergic signaling in pulmonary fibrosis, and the serotonin (5-HT)2 receptors have been implicated to have important roles in observed profibrotic actions. Our research findings in support by others, demonstrate antifibrotic effects with 5-HT2B receptor antagonists, alleviating several key events common for the fibrotic diseases such as myofibroblast differentiation and connective tissue deposition. In this review, we will address the potential role of 5-HT and in particular the 5-HT2B receptors in three PF-ILDs: ILD associated with systemic sclerosis (SSc-ILD), ILD associated with rheumatoid arthritis (RA-ILD) and IPF. Highlighting the converging pathways in these diseases discloses the 5-HT2B receptor as a potential disease target for PF-ILDs, which today have an urgent unmet need for therapeutic strategies.
Collapse
Affiliation(s)
- Anna Löfdahl
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184 Lund, Sweden; (J.W.); (A.-K.L.-C.); (G.W.-T.)
- Correspondence:
| | - Göran Tornling
- AnaMar AB, Medicon Village, Scheeletorget 1, 22381 Lund, Sweden; (C.W.); (G.T.)
- Respiratory Medicine Division, Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jenny Wigén
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184 Lund, Sweden; (J.W.); (A.-K.L.-C.); (G.W.-T.)
| | - Anna-Karin Larsson-Callerfelt
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184 Lund, Sweden; (J.W.); (A.-K.L.-C.); (G.W.-T.)
| | - Christina Wenglén
- AnaMar AB, Medicon Village, Scheeletorget 1, 22381 Lund, Sweden; (C.W.); (G.T.)
| | - Gunilla Westergren-Thorsson
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184 Lund, Sweden; (J.W.); (A.-K.L.-C.); (G.W.-T.)
| |
Collapse
|
27
|
Walendzik K, Bukowska J, Kopcewicz M, Machcinska S, Gimble JM, Gawronska-Kozak B. Age, Diet and Epidermal Signaling Modulate Dermal Fibroblasts' Adipogenic Potential. Int J Mol Sci 2020; 21:ijms21238955. [PMID: 33255750 PMCID: PMC7728337 DOI: 10.3390/ijms21238955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
The recognition of a distinct fat depot, the dermal white adipose tissue (dWAT), points out the complexity of the interaction among skin resident cells: keratinocytes, dermal fibroblasts (DFs) and adipocytes in response to physiological (diet, age) and pathological (injury) stimulations. dWAT has been recognized as a significant contributor to thermoregulation, hair cycle, immune response, wound healing and scarring. In this study, we examined age- and diet-related changes in dWAT modulation and DFs' adipogenic potential. The data showed that diet modulates dWAT expansion predominantly by hypertrophy, whereas age affects the pool of adipocyte progenitor cells in the skin indicating its role in dWAT hyperplasia. Analysis of DFs' migratory abilities in the model of skin explants isolated from the skin of young, old, low (LFD)- or high (HFD)-fat diet C56BL/6 mice revealed that HFD, regardless of animal age has the most profound stimulatory impact of DF migration. We determined that the adipogenic potential of DFs is comparable to stromal vascular fraction (SVF) of inguinal fat depot and ear mesenchymal stem cells (EMSC). We also showed the stimulatory role of epidermally expressed transcription factor Foxn1 on adipogenic signaling: bone morphogenetic protein 2 (Bmp2) and insulin-like growth factor 2 (Igf2) in keratinocytes.
Collapse
Affiliation(s)
- Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (J.B.); (M.K.); (S.M.)
| | - Joanna Bukowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (J.B.); (M.K.); (S.M.)
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (J.B.); (M.K.); (S.M.)
| | - Sylwia Machcinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (J.B.); (M.K.); (S.M.)
| | - Jeffrey M. Gimble
- LaCell LLC, New Orleans, LA 70112, USA;
- Obatala Sciences Inc., 2000 Lakeshore Drive, #4020, New Orleans, LA 70148, USA
- Departments of Medicine, Structural and Cellular Biology, and Surgery and Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70118, USA
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (J.B.); (M.K.); (S.M.)
- Correspondence: ; Tel.: +48-89-5234634; Fax: +48-89-5240124
| |
Collapse
|
28
|
Omatsu J, Saigusa R, Miyagawa T, Fukui Y, Toyama S, Awaji K, Ikawa T, Norimatsu Y, Yoshizaki A, Sato S, Asano Y. Serum S100A12 levels: Possible association with skin sclerosis and interstitial lung disease in systemic sclerosis. Exp Dermatol 2020; 30:409-415. [PMID: 33068321 DOI: 10.1111/exd.14218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/20/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
Damage-associated molecular patterns (DAMPs) have drawn much attention as a member of disease-associated molecules in systemic sclerosis (SSc). In this study, we investigated the potential contribution of S100A12, a member of DAMPs, to the development of SSc by evaluating S100A12 expression in the lesional skin and the clinical correlation of serum S100A12 levels. S100A12 expression was markedly elevated in the epidermis of SSc-involved skin at protein levels and in the bulk skin at mRNA levels. The deficiency of transcription factor Fli1, a predisposing factor of SSc, enhanced S100A12 expression and Fli1 occupied the S100A12 promoter in normal human keratinocytes. Serum S100A12 levels were higher in SSc patients, especially in those with diffuse cutaneous involvement, than in healthy controls and positively correlated with skin score. Furthermore, the presence of interstitial lung disease significantly augmented serum levels of S100A12. Importantly, serum S100A12 levels correlated inversely with both per cent forced vital capacity and per cent diffusing capacity for carbon monoxide and positively with serum levels of KL-6 and surfactant protein-D. Collectively, these results indicate a possible contribution of S100A12 to skin sclerosis and interstitial lung disease associated with SSc, further supporting the critical roles of DAMPs in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Jun Omatsu
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ryosuke Saigusa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takuya Miyagawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yuki Fukui
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Toyama
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kentaro Awaji
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuya Ikawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yuta Norimatsu
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Adipocytic Progenitor Cells Give Rise to Pathogenic Myofibroblasts: Adipocyte-to-Mesenchymal Transition and Its Emerging Role in Fibrosis in Multiple Organs. Curr Rheumatol Rep 2020; 22:79. [PMID: 32978695 PMCID: PMC7518402 DOI: 10.1007/s11926-020-00957-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose of Review Adipocytes have recently been shown to be able to reprogram to a myofibroblastic phenotype in a process termed adipocyte mesenchymal transition (AMT). This review seeks to discuss the relevance of this process to disease and explore its mechanisms. Recent Findings AMT occurs in multiple organs and diseases, transdifferentiation goes through a precursor cell and there is a reversible process that can be influenced by metabolic stress, myeloid cells, immune dysregulation, and pharmacological intervention. Summary AMT is a newly appreciated and highly relevant process in multiple forms of fibrosis. Targeting AMT may serve as a novel method of treating fibrosis.
Collapse
|
30
|
Understanding Fibrosis in Systemic Sclerosis: Novel and Emerging Treatment Approaches. Curr Rheumatol Rep 2020; 22:77. [DOI: 10.1007/s11926-020-00953-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
|
31
|
Zhang Z, Kruglikov I, Zhao S, Zi Z, Gliniak CM, Li N, Wang M, Zhu Q, Kusminski CM, Scherer PE. Dermal adipocytes contribute to the metabolic regulation of dermal fibroblasts. Exp Dermatol 2020; 30:102-111. [DOI: 10.1111/exd.14181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Zhuzhen Zhang
- Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas TX USA
| | | | - Shangang Zhao
- Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas TX USA
| | - Zhenzhen Zi
- Department of Biochemistry University of Texas Southwestern Medical Center Dallas TX USA
| | - Christy M. Gliniak
- Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas TX USA
| | - Na Li
- Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas TX USA
| | - May‐yun Wang
- Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas TX USA
| | - Qingzhang Zhu
- Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas TX USA
| | - Christine M. Kusminski
- Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas TX USA
| | - Philipp E. Scherer
- Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas TX USA
| |
Collapse
|
32
|
The Pathogenesis of Systemic Sclerosis: An Understanding Based on a Common Pathologic Cascade across Multiple Organs and Additional Organ-Specific Pathologies. J Clin Med 2020; 9:jcm9092687. [PMID: 32825112 PMCID: PMC7565034 DOI: 10.3390/jcm9092687] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/08/2023] Open
Abstract
Systemic sclerosis (SSc) is a multisystem autoimmune and vascular disease resulting in fibrosis of various organs with unknown etiology. Accumulating evidence suggests that a common pathologic cascade across multiple organs and additional organ-specific pathologies underpin SSc development. The common pathologic cascade starts with vascular injury due to autoimmune attacks and unknown environmental factors. After that, dysregulated angiogenesis and defective vasculogenesis promote vascular structural abnormalities, such as capillary loss and arteriolar stenosis, while aberrantly activated endothelial cells facilitate the infiltration of circulating immune cells into perivascular areas of various organs. Arteriolar stenosis directly causes pulmonary arterial hypertension, scleroderma renal crisis and digital ulcers. Chronic inflammation persistently activates interstitial fibroblasts, leading to the irreversible fibrosis of multiple organs. The common pathologic cascade interacts with a variety of modifying factors in each organ, such as keratinocytes and adipocytes in the skin, esophageal stratified squamous epithelia and myenteric nerve system in gastrointestinal tract, vasospasm of arterioles in the heart and kidney, and microaspiration of gastric content in the lung. To better understand SSc pathogenesis and develop new disease-modifying therapies, it is quite important to understand the complex pathogenesis of SSc from the two distinct perspectives, namely the common pathologic cascade and additional organ-specific pathologies.
Collapse
|
33
|
Zhang Z, Shao M, Hepler C, Zi Z, Zhao S, An YA, Zhu Y, Ghaben AL, Wang MY, Li N, Onodera T, Joffin N, Crewe C, Zhu Q, Vishvanath L, Kumar A, Xing C, Wang QA, Gautron L, Deng Y, Gordillo R, Kruglikov I, Kusminski CM, Gupta RK, Scherer PE. Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. J Clin Invest 2020; 129:5327-5342. [PMID: 31503545 DOI: 10.1172/jci130239] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
Dermal adipose tissue (also known as dermal white adipose tissue and herein referred to as dWAT) has been the focus of much discussion in recent years. However, dWAT remains poorly characterized. The fate of the mature dermal adipocytes and the origin of the rapidly reappearing dermal adipocytes at different stages remain unclear. Here, we isolated dermal adipocytes and characterized dermal fat at the cellular and molecular level. Together with dWAT's dynamic responses to external stimuli, we established that dermal adipocytes are a distinct class of white adipocytes with high plasticity. By combining pulse-chase lineage tracing and single-cell RNA sequencing, we observed that mature dermal adipocytes undergo dedifferentiation and redifferentiation under physiological and pathophysiological conditions. Upon various challenges, the dedifferentiated cells proliferate and redifferentiate into adipocytes. In addition, manipulation of dWAT highlighted an important role for mature dermal adipocytes for hair cycling and wound healing. Altogether, these observations unravel a surprising plasticity of dermal adipocytes and provide an explanation for the dynamic changes in dWAT mass that occur under physiological and pathophysiological conditions, and highlight the important contributions of dWAT toward maintaining skin homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Zhu
- Touchstone Diabetes Center
| | | | | | - Na Li
- Touchstone Diabetes Center
| | | | | | | | | | | | - Ashwani Kumar
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qiong A Wang
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope/Beckman Research Institute, Duarte, California, USA
| | - Laurent Gautron
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - Ilja Kruglikov
- Scientific Department, Wellcomet GmbH, Karlsruhe, Germany
| | | | | | | |
Collapse
|
34
|
Asano Y, Varga J. Rationally-based therapeutic disease modification in systemic sclerosis: Novel strategies. Semin Cell Dev Biol 2019; 101:146-160. [PMID: 31859147 DOI: 10.1016/j.semcdb.2019.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
Systemic sclerosis (SSc) is a highly challenging chronic condition that is dominated by the pathogenetic triad of vascular damage, immune dysregulation/autoimmunity and fibrosis in multiple organs. A hallmark of SSc is the remarkable degree of molecular and phenotypic disease heterogeneity, which surpasses that of other complex rheumatic diseases. Disease trajectories in SSc are unpredictable and variable from patient to patient. Disease-modifying therapies for SSc are lacking, long-term morbidity is considerable and mortality remains unacceptably high. Currently-used empirical approaches to disease modification have modest and variable clinical efficacy and impact on survival, are expensive and frequently associated with unfavorable side effects, and none can be considered curative. However, research during the past several years is yielding significant advances with therapeutic potential. In particular, the application of unbiased omics-based discovery technologies to large and well-characterized SSc patient cohorts, coupled with hypothesis-testing experimental research using a variety of model systems is revealing new insights into SSc that allow formulation of a more nuanced appreciation of disease heterogeneity, and a deepening understanding of pathogenesis. Indeed, we are now presented with numerous novel and rationally-based strategies for targeted SSc therapy, several of which are currently, or expected to be shortly, undergoing clinical evaluation. In this review, we discuss promising novel therapeutic targets and rationally-based approaches to disease modification that have the potential to improve long-term outcomes in SSc.
Collapse
Affiliation(s)
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Northwestern University, Chicago, United States.
| |
Collapse
|
35
|
Kruglikov IL, Scherer PE. Caveolin-1 as a target in prevention and treatment of hypertrophic scarring. NPJ Regen Med 2019; 4:9. [PMID: 31044089 PMCID: PMC6486604 DOI: 10.1038/s41536-019-0071-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Reduced expression of caveolin-1 (Cav-1) is an important pathogenic factor in hypertrophic scarring (HTS). Such a reduction can be found in connection with the main known risk factors for HTS, including dark skin, female gender, young age, burn site and severity of the injury. The degree of overexpression of Cav-1 associated with different therapeutic options for HTS correlates with clinical improvements in HTS. This makes endo- or exogenous induction of Cav-1 not only an important therapeutic target for HTS, but also highlights its use as a preventive target to reduce or avoid HTS formation.
Collapse
Affiliation(s)
| | - Philipp E. Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549 USA
| |
Collapse
|
36
|
Zhu H, Chen W, Liu D, Luo H. The role of metabolism in the pathogenesis of systemic sclerosis. Metabolism 2019; 93:44-51. [PMID: 30586574 DOI: 10.1016/j.metabol.2018.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/09/2018] [Accepted: 12/14/2018] [Indexed: 12/31/2022]
Abstract
Systemic sclerosis (SSc) is an immune-mediated autoimmune disease characterized by fibrosis and vascular abnormalities. The cellular and molecular mechanisms remain unclear, and current therapies are limited. Cell metabolism has been shown to play an essential role in cancer survival and tumour invasion as well as in rheumatic diseases such as systemic lupus erythematosus, rheumatoid arthritis and osteoarthritis. Although little is known about SSc, cell metabolism may provide new clues for understanding its pathogenesis. In this review, we summarize recent studies of metabolism in SSc and fibrotic disease, specifically focusing on glycolysis, fatty acid metabolism and oxidative stress. We highlight the role of metabolism in fibroblast differentiation and emphasize its potential therapeutic prospects in SSc.
Collapse
Affiliation(s)
- Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Weilin Chen
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Di Liu
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Hui Luo
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China.
| |
Collapse
|
37
|
Maria ATJ, Toupet K, Maumus M, Rozier P, Vozenin MC, Le Quellec A, Jorgensen C, Noël D, Guilpain P. Fibrosis Development in HOCl-Induced Systemic Sclerosis: A Multistage Process Hampered by Mesenchymal Stem Cells. Front Immunol 2018; 9:2571. [PMID: 30455706 PMCID: PMC6230680 DOI: 10.3389/fimmu.2018.02571] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/18/2018] [Indexed: 11/23/2022] Open
Abstract
Objectives: Skin fibrosis is the hallmark of systemic sclerosis (SSc) a rare intractable disease with unmet medical need. We previously reported the anti-fibrotic potential of mesenchymal stem cells (MSCs) in a murine model of SSc. This model, based on daily intra-dermal injections of hypochlorite (HOCl) during 6 weeks, is an inducible model of the disease. Herein, we aimed at characterizing the development of skin fibrosis in HOCl-induced SSc (HOCl-SSc), and evaluating the impact of MSC infusion during the fibrogenesis process. Methods: After HOCl-SSc induction in BALB/c mice, clinical, histological and biological parameters were measured after 3 weeks (d21) and 6 weeks (d42) of HOCl challenge, and 3 weeks after HOCl discontinuation (d63). Treated-mice received infusions of 2.5 × 105 MSCs 3 weeks before sacrifice (d0, d21, d42). Results: HOCl injections induced a two-step process of fibrosis development: first, an ‘early inflammatory phase’, characterized at d21 by highly proliferative infiltrates of myofibroblasts, T-lymphocytes and macrophages. Second, a phase of ‘established matrix fibrosis’, characterized at d42 by less inflammation, but strong collagen deposition and followed by a third phase of ‘spontaneous tissue remodeling’ after HOCl discontinuation. This phase was characterized by partial fibrosis receding, due to enhanced MMP1/TIMP1 balance. MSC treatment reduced skin thickness in the three phases of fibrogenesis, exerting more specialized mechanisms: immunosuppression, abrogation of myofibroblast activation, or further enhancing tissue remodeling, depending on the injection time-point. Conclusion: HOCl-SSc mimics three fibrotic phenotypes of scleroderma, all positively impacted by MSC therapy, demonstrating the great plasticity of MSC, a promising cure for SSc.
Collapse
Affiliation(s)
- Alexandre T J Maria
- IRMB, Montpellier University, INSERM, CHU Montpellier, Montpellier, France.,Department of Internal Medicine-Multi-Organic Diseases, Saint-Eloi Hospital, Montpellier, France
| | - Karine Toupet
- IRMB, Montpellier University, INSERM, CHU Montpellier, Montpellier, France
| | - Marie Maumus
- IRMB, Montpellier University, INSERM, CHU Montpellier, Montpellier, France
| | - Pauline Rozier
- IRMB, Montpellier University, INSERM, CHU Montpellier, Montpellier, France.,Department of Internal Medicine-Multi-Organic Diseases, Saint-Eloi Hospital, Montpellier, France
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology Department, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Alain Le Quellec
- Department of Internal Medicine-Multi-Organic Diseases, Saint-Eloi Hospital, Montpellier, France
| | - Christian Jorgensen
- IRMB, Montpellier University, INSERM, CHU Montpellier, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Lapeyronie Hospital, Montpellier, France
| | - Danièle Noël
- IRMB, Montpellier University, INSERM, CHU Montpellier, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Lapeyronie Hospital, Montpellier, France
| | - Philippe Guilpain
- IRMB, Montpellier University, INSERM, CHU Montpellier, Montpellier, France.,Department of Internal Medicine-Multi-Organic Diseases, Saint-Eloi Hospital, Montpellier, France
| |
Collapse
|
38
|
Wei J, Marangoni RG, Fang F, Wang W, Huang J, Distler JH, Varga J. The non-neuronal cyclin-dependent kinase 5 is a fibrotic mediator potentially implicated in systemic sclerosis and a novel therapeutic target. Oncotarget 2018; 9:10294-10306. [PMID: 29535807 PMCID: PMC5828185 DOI: 10.18632/oncotarget.23516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022] Open
Abstract
The mechanisms underlying persistent fibroblast activation and myofibroblast phenoconversion in underlying multi-organ fibrosis in systemic sclerosis (SSc) remain incompletely understood, hindering effective therapies to slow or reverse the process. Cyclin-dependent kinase 5 (CDK5) is a pleiotropic member of the CDK family originally identified in neuronal cells. In contrast to other CDKs, CDK5 activity depends on its CDK5R1 subunit p35. Here we demonstrate that expression of p35 and CDK5 activity are induced by TGF-ß in fibroblasts and adipocytic cell types. Levels of p35 are markedly elevated in both SSc skin biopsies and explanted SSc fibroblasts, as well as in fibrotic skin in mice. Ectopic p35 and CDK5 suppressed adipogenic markers while stimulating collagen production and myofibroblast markers, whereas RNAi-mediated CDK5 knockdown abrogated TGF-β fibrotic responses in a Smad-independent manner. Pharmacological inhibitors of CDK5 likewise prevented and reversed TGF-β responses in fibroblast monolayers and in ex vivo human skin organ cultures, ameliorated collagen overproduction in SSc fibroblasts, and prevented and reversed skin fibrosis in two distinct mouse models of SSc. Together, these results reveal a previously unrecognized key function for p35/CDK5 as a mediator of mesenchymal cell fibrotic responses. The results suggest a potential pathogenic role for elevated p35 expression and CDK5 activity in SSc, and raise the possibility that their selective pharmacological targeting might represent a novel treatment approach in fibrosis.
Collapse
Affiliation(s)
- Jun Wei
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Roberta G. Marangoni
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Feng Fang
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Wenxia Wang
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Jingang Huang
- Department of Internal Medicine, University of Erlangen-Nuremberg and University Hospital Erlangen, Erlangen, Germany
| | - Joerg H.W. Distler
- Department of Internal Medicine, University of Erlangen-Nuremberg and University Hospital Erlangen, Erlangen, Germany
| | - John Varga
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
39
|
Wollina U, Wetzker R, Abdel-Naser MB, Kruglikov IL. Role of adipose tissue in facial aging. Clin Interv Aging 2017; 12:2069-2076. [PMID: 29255352 PMCID: PMC5723114 DOI: 10.2147/cia.s151599] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Age-dependent modification of the facial subcutaneous white adipose tissue (sWAT) connected with reduction of its volume, modification of collagen content and adhesion between dermal and adipose layers can significantly influence mechanical stability of the skin and cause the development of aging symptoms such as wrinkles. Typical aging appearance in facial skin is at least partly connected with special phenotypical features of facial preadipocytes and mature adipocytes. In this paper, we have discussed the possible roles of local inflammation, compartmental structure of facial sWAT and trans-differentiation processes such as beiging of white adipocytes and adipocyte-myofibroblast transition in facial skin aging.
Collapse
Affiliation(s)
- Uwe Wollina
- Department of Dermatology and Allergology, Academic Teaching Hospital Dresden-Friedrichstadt, Dresden
| | - Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, and Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | | | | |
Collapse
|
40
|
Marangoni RG, Lu TT. The roles of dermal white adipose tissue loss in scleroderma skin fibrosis. Curr Opin Rheumatol 2017; 29:585-590. [PMID: 28800024 DOI: 10.1097/bor.0000000000000437] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW Dermal white adipose tissue (DWAT) is distinct from subcutaneous white adipose tissue and is lost in scleroderma skin fibrosis. The roles of DWAT loss in scleroderma skin fibrosis have not been well understood, and here we discuss recent findings that begin to provide insight into the multiple mechanisms involved. RECENT FINDINGS The DWAT loss in part reflects the direct contribution of DWAT cells to the fibrotic tissue, with the reprogramming of adipocytes to myofibroblasts. The DWAT contains reparative adipose-derived stromal cells and expresses antifibrotic cytokines such as adiponectin, and the loss of these skin-protective mechanisms with DWAT loss further contributes to skin fibrosis and injury. SUMMARY Potentially, halting or reversing the transdifferentiation of adipocytes to myofibroblasts along with improving survival of reparative adipose-derived stromal cells (ADSCs) and expression of antifibrotic cytokines may be effective therapeutic avenues.
Collapse
Affiliation(s)
- Roberta G Marangoni
- aDivision of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois bAutoimmunity and Inflammation Program and Pediatric Rheumatology, Hospital for Special Surgery cMicrobiology and Immunology Department, Weill Cornell Medical School, New York, New York, USA
| | | |
Collapse
|