1
|
Zhang J, Weng Y, Liu Y, Wang N, Feng S, Qiu S, Lin D. Molecular separation-assisted label-free SERS combined with machine learning for nasopharyngeal cancer screening and radiotherapy resistance prediction. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112968. [PMID: 38955080 DOI: 10.1016/j.jphotobiol.2024.112968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/30/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Nasopharyngeal cancer (NPC) is a malignant tumor with high prevalence in Southeast Asia and highly invasive and metastatic characteristics. Radiotherapy is the primary strategy for NPC treatment, however there is still lack of effect method for predicting the radioresistance that is the main reason for treatment failure. Herein, the molecular profiles of patient plasma from NPC with radiotherapy sensitivity and resistance groups as well as healthy group, respectively, were explored by label-free surface enhanced Raman spectroscopy (SERS) based on surface plasmon resonance for the first time. Especially, the components with different molecular weight sizes were analyzed via the separation process, helping to avoid the possible missing of diagnostic information due to the competitive adsorption. Following that, robust machine learning algorithm based on principal component analysis and linear discriminant analysis (PCA-LDA) was employed to extract the feature of blood-SERS data and establish an effective predictive model with the accuracy of 96.7% for identifying the radiotherapy resistance subjects from sensitivity ones, and 100% for identifying the NPC subjects from healthy ones. This work demonstrates the potential of molecular separation-assisted label-free SERS combined with machine learning for NPC screening and treatment strategy guidance in clinical scenario.
Collapse
Affiliation(s)
- Jun Zhang
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Youliang Weng
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Branch of Fudan University Shanghai Cancer Center, Fuzhou 350014, PR China
| | - Yi Liu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Nan Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Branch of Fudan University Shanghai Cancer Center, Fuzhou 350014, PR China.
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China.
| |
Collapse
|
2
|
Shi W, Dong J, Zhong B, Hu X, Zhao C. Predicting the Prognosis of Bladder Cancer Patients Through Integrated Multi-omics Exploration of Chemotherapy-Related Hypoxia Genes. Mol Biotechnol 2024:10.1007/s12033-024-01203-9. [PMID: 38806990 DOI: 10.1007/s12033-024-01203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Bladder cancer is a prevalent malignancy with high mortality rates worldwide. Hypoxia is a critical factor in the development and progression of cancers. However, whether and how hypoxia-related genes (HRGs) could affect the development and the chemotherapy response of bladder cancer is still largely unexplored. This study comprehensively explored the complex molecular landscape associated with hypoxia in bladder cancer by analyzing 260 hypoxia genes based on transcriptomic and genomic data in 411 samples. Employing the 109 dysregulated hypoxia genes for consensus clustering, we delineated two distinct bladder cancer clusters characterized by disparate survival outcomes and distinct oncogenic roles. We defined a HPscore that was correlated with a variety of clinical features, including TNM stages and pathologic grades. Tumor immune landscape analysis identified three immune clusters and close interactions between hypoxia genes and the various immune cells. Utilizing a network-based method, we defined 129 HRGs exerting influence on apoptotic processes and critical signaling pathways in cancer. Further analysis of chemotherapy drug sensitivity identified potential drug-target HRGs. We developed a Risk Score model that was related to the overall survival of bladder cancer patients based on doxorubicin-target HRGs: ACTG2, MYC, PDGFRB, DHRS2, and KLRD1. This study not only enhanced our understanding of bladder cancer at the molecular level but also provided promising avenues for the development of targeted therapies, representing a significant step toward the identification of effective treatments and addressing the urgent need for advancements in bladder cancer management.
Collapse
Affiliation(s)
- Wensheng Shi
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410008, Hunan, China
- Furong Laboratory, Changsha, 410008, Hunan, China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jiaming Dong
- Department of Radiation, Cangzhou Central Hospital, Hebei, 061000, China
| | - Bowen Zhong
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410008, Hunan, China
- Furong Laboratory, Changsha, 410008, Hunan, China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiheng Hu
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410008, Hunan, China
- Furong Laboratory, Changsha, 410008, Hunan, China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Chunguang Zhao
- Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
3
|
Liu S, Wang X, Sun X, Wei B, Jiang Z, Ouyang Y, Ozaki T, Yu M, Liu Y, Zhang R, Zhu Y. Oridonin inhibits bladder cancer survival and immune escape by covalently targeting HK1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155426. [PMID: 38367425 DOI: 10.1016/j.phymed.2024.155426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Hexokinase I (HK1) is highly expressed in a variety of malignancies, regulates glycolytic pathway in cancer cells, and thus considered to be one of the promising molecular targets for cancer therapy. Nonetheless, the development of a specific inhibitor against HK1 remains elusive. PURPOSE This study aims to elucidate the mechanism by which oridonin inhibits the proliferation and immune evasion of bladder cancer cells, specifically through the suppression of HK1. METHODS To examine the mechanisms by which oridonin directly binds to cysteines of HK1 and inhibits bladder cancer growth, this study utilized a variety of methods. These included the Human Proteome Microarray, Streptavidin-agarose affinity assay, Biolayer Interferometry (BLI) ainding analysis, Mass Spectrometry, Cellular Thermal Shift Assay, Extracellular Acidification Rate measurement, and Xenotransplant mouse models. RESULTS As indicated by our current findings, oridonin forms a covalent bond with Cys-813, located adjacently to glucose-binding domain of HK1. This suppresses the enzymatic activity of HK1, leading to an effective reduction of glycolysis, which triggers cell death via apoptosis in cells derived from human bladder cancer. Significantly, oridonin also inhibits lactate-induced PD-L1 expression in bladder cancer. Furthermore, pairing oridonin with a PD-L1 inhibitor amplifies the cytotoxicity of CD8+ T cells against bladder cancer. CONCLUSION This research strongly suggests that oridonin serves as a covalent inhibitor of HK1. Moreover, it indicates that functional cysteine residue of HK1 could operate as viable targets for selective inhibition. Consequently, oridonin exhibits substantial potential for the evolution of anti-cancer agents targeting the potential therapeutic target HK1 via metabolism immunomodulation.
Collapse
Affiliation(s)
- Shuangjie Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China; Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China; Department of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaojie Sun
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Baojun Wei
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhaowei Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yongze Ouyang
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Meng Yu
- Department of Laboratory Animal Science, China Medical University. Key Laboratory of Transgenetic Animal Research. No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Yongxiang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Rong Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
4
|
Luo G, Li H, Lu Q, Cao J, Lv H, Jiang Y. Effects of protoscoleces excretory-secretory products of Echinococcus granulosus on hepatocyte growth, function, and glucose metabolism. Acta Trop 2024; 249:107066. [PMID: 37944837 DOI: 10.1016/j.actatropica.2023.107066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/21/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Cystic echinococcosis (CE) is one of the most widespread and harmful zoonotic parasitic diseases, which most commonly affects the liver. In this study, we characterized multiple changes in mouse hepatocytes following treatment with excretory-secretory products (ESPs) of Echinococcus granulosus protoscoleces (Eg-PSCs) by a factorial experiment. The cell counting kit-8 assay (CCK-8), the 5-ethynyl-2'-deoxyuridine (EdU) assay, and flow cytometry were used to detect the growth of hepatocytes. Inverted microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to observe the morphology and ultrastructure of hepatocytes. An automatic biochemical analyzer and an ELISA detection kit were used to determine six conventional hepatocyte enzymatic indices, the levels of five hepatocyte-synthesized substances, and the contents of glucose and lactate. Western blot analysis was conducted to analyze the protein expression of three apoptosis-related proteins, Bax, Bcl-2, cleaved caspase-3, and six glucose metabolism pathways rate-limiting enzymes in hepatocytes. The results showed that ESPs inhibited hepatocyte proliferation and promoted hepatocyte apoptosis. The cell membrane and microvilli of hepatocytes changed, and the nucleus, mitochondria and rough endoplasmic reticulum were damaged to varying degrees. The contents of iron, albumin (ALB), uric acid (UA) and urea were increased, and the activities of six enzymes in hepatocytes were increased except for the decrease of transferrin (TRF). The expression levels of all six key enzymes in the glucose metabolism pathway in hepatocytes were reduced. Our characterization provides a basis for further research on the pathogenesis, prevention and treatment of CE.
Collapse
Affiliation(s)
- Guangyi Luo
- Section for Hepatopancreatobiliary Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China; Department of Hepatopancreatobiliary Surgery, Anyue County People's Hospital, Ziyang, 642350, Sichuan, China
| | - Haiwen Li
- School of Basic Medicine, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Qiong Lu
- Department of Infectious Diseases, Anyue County People's Hospital, Ziyang, 642350, Sichuan, China
| | - Jiangtao Cao
- School of Basic Medicine, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Hailong Lv
- Section for Hepatopancreatobiliary Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Yufeng Jiang
- School of Basic Medicine, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| |
Collapse
|
5
|
Peng M, Chu X, Peng Y, Li D, Zhang Z, Wang W, Zhou X, Xiao D, Yang X. Targeted therapies in bladder cancer: signaling pathways, applications, and challenges. MedComm (Beijing) 2023; 4:e455. [PMID: 38107059 PMCID: PMC10724512 DOI: 10.1002/mco2.455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
Bladder cancer (BC) is one of the most prevalent malignancies in men. Understanding molecular characteristics via studying signaling pathways has made tremendous breakthroughs in BC therapies. Thus, targeted therapies including immune checkpoint inhibitors (ICIs), antibody-drug conjugates (ADCs), and tyrosine kinase inhibitor (TKI) have markedly improved advanced BC outcomes over the last few years. However, the considerable patients still progress after a period of treatment with current therapeutic regimens. Therefore, it is crucial to guide future drug development to improve BC survival, based on the molecular characteristics of BC and clinical outcomes of existing drugs. In this perspective, we summarize the applications and benefits of these targeted drugs and highlight our understanding of mechanisms of low response rates and immune escape of ICIs, ADCs toxicity, and TKI resistance. We also discuss potential solutions to these problems. In addition, we underscore the future drug development of targeting metabolic reprogramming and cancer stem cells (CSCs) with a deep understanding of their signaling pathways features. We expect that finding biomarkers, developing novo drugs and designing clinical trials with precisely selected patients and rationalized drugs will dramatically improve the quality of life and survival of patients with advanced BC.
Collapse
Affiliation(s)
- Mei Peng
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Xuetong Chu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Yan Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Duo Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Zhirong Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Weifan Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Xiaochen Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| |
Collapse
|
6
|
Arruebarrena MA, Hawe CT, Lee YM, Branco RC. Mechanisms of Cadmium Neurotoxicity. Int J Mol Sci 2023; 24:16558. [PMID: 38068881 PMCID: PMC10706630 DOI: 10.3390/ijms242316558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Cadmium is a heavy metal that increasingly contaminates food and drink products. Once ingested, cadmium exerts toxic effects that pose a significant threat to human health. The nervous system is particularly vulnerable to prolonged, low-dose cadmium exposure. This review article provides an overview of cadmium's primary mechanisms of neurotoxicity. Cadmium gains entry into the nervous system via zinc and calcium transporters, altering the homeostasis for these metal ions. Once within the nervous system, cadmium disrupts mitochondrial respiration by decreasing ATP synthesis and increasing the production of reactive oxygen species. Cadmium also impairs normal neurotransmission by increasing neurotransmitter release asynchronicity and disrupting neurotransmitter signaling proteins. Cadmium furthermore impairs the blood-brain barrier and alters the regulation of glycogen metabolism. Together, these mechanisms represent multiple sites of biochemical perturbation that result in cumulative nervous system damage which can increase the risk for neurological and neurodegenerative disorders. Understanding the way by which cadmium exerts its effects is critical for developing effective treatment and prevention strategies against cadmium-induced neurotoxic insult.
Collapse
Affiliation(s)
- Madelyn A. Arruebarrena
- Neuroscience and Behavior Program, University of Notre Dame, Notre Dame, IN 46556, USA; (M.A.A.); (Y.M.L.)
| | - Calvin T. Hawe
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Young Min Lee
- Neuroscience and Behavior Program, University of Notre Dame, Notre Dame, IN 46556, USA; (M.A.A.); (Y.M.L.)
| | - Rachel C. Branco
- Neuroscience and Behavior Program, University of Notre Dame, Notre Dame, IN 46556, USA; (M.A.A.); (Y.M.L.)
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA;
| |
Collapse
|
7
|
Dou J, Dawuti W, Li J, Zhao H, Zhou R, Zhou J, Lin R, Lü G. Rapid detection of serological biomarkers in gallbladder carcinoma using fourier transform infrared spectroscopy combined with machine learning. Talanta 2023; 259:124457. [PMID: 36989965 DOI: 10.1016/j.talanta.2023.124457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023]
Abstract
Gallbladder cancer (GBC) is the most common malignant tumour of the biliary tract. GBC is difficult to diagnose and treat at an early stage because of the lack of effective serum markers and typical symptoms, resulting in low survival rates. This study aimed to investigate the applicability of dried serum Fourier-transform infrared (FTIR) spectroscopy combined with machine learning algorithms to correctly differentiate patients with GBC from patients with gallbladder disease (GBD), cholangiocarcinoma (CCA), hepatocellular carcinoma (HCC) and healthy individuals. The differentiation between healthy individuals and GBC serum was better using principal component analysis (PCA) and linear discriminant analysis (LDA) for six spectral regions, especially in the protein (1710-1475 cm-1) and combined (1710-1475 + 1354-980 cm-1) region. However, the PCA-LDA model poorly differentiated GBC from GBD, CCA, and HCC in serum spectra. We evaluated the PCA- LDA, PCA-support vector machine (SVM), and radial basis kernel function support vector machine (RBF-SVM) models for GBC diagnosis and found that the RBF-SVM model performed the best, with 88.24-95% accuracy, 95.83% sensitivity, and 78.38-94.44% specificity in the 1710-1475 + 1354-980 cm-1 region. This study demonstrated that serum FTIR spectroscopy combined with the RBF-SVM algorithm has great clinical potential for GBC screening.
Collapse
|
8
|
de Heer EC, Zois CE, Bridges E, van der Vegt B, Sheldon H, Veldman WA, Zwager MC, van der Sluis T, Haider S, Morita T, Baba O, Schröder CP, de Jong S, Harris AL, Jalving M. Glycogen synthase 1 targeting reveals a metabolic vulnerability in triple-negative breast cancer. J Exp Clin Cancer Res 2023; 42:143. [PMID: 37280675 PMCID: PMC10242793 DOI: 10.1186/s13046-023-02715-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Hypoxia-induced glycogen turnover is implicated in cancer proliferation and therapy resistance. Triple-negative breast cancers (TNBCs), characterized by a hypoxic tumor microenvironment, respond poorly to therapy. We studied the expression of glycogen synthase 1 (GYS1), the key regulator of glycogenesis, and other glycogen-related enzymes in primary tumors of patients with breast cancer and evaluated the impact of GYS1 downregulation in preclinical models. METHODS mRNA expression of GYS1 and other glycogen-related enzymes in primary breast tumors and the correlation with patient survival were studied in the METABRIC dataset (n = 1904). Immunohistochemical staining of GYS1 and glycogen was performed on a tissue microarray of primary breast cancers (n = 337). In four breast cancer cell lines and a mouse xenograft model of triple-negative breast cancer, GYS1 was downregulated using small-interfering or stably expressed short-hairpin RNAs to study the effect of downregulation on breast cancer cell proliferation, glycogen content and sensitivity to various metabolically targeted drugs. RESULTS High GYS1 mRNA expression was associated with poor patient overall survival (HR 1.20, P = 0.009), especially in the TNBC subgroup (HR 1.52, P = 0.014). Immunohistochemical GYS1 expression in primary breast tumors was highest in TNBCs (median H-score 80, IQR 53-121) and other Ki67-high tumors (median H-score 85, IQR 57-124) (P < 0.0001). Knockdown of GYS1 impaired proliferation of breast cancer cells, depleted glycogen stores and delayed growth of MDA-MB-231 xenografts. Knockdown of GYS1 made breast cancer cells more vulnerable to inhibition of mitochondrial proteostasis. CONCLUSIONS Our findings highlight GYS1 as potential therapeutic target in breast cancer, especially in TNBC and other highly proliferative subsets.
Collapse
Affiliation(s)
- E C de Heer
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - C E Zois
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Oxford, OX3 9DS, UK.
- Department of Radiotherapy and Oncology, School of Health, Democritus University of Thrace, Alexandroupolis, Greece.
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Molecular Oncology Laboratories, Oxford University, Oxford, OX3 9DS, UK.
| | - E Bridges
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Oxford, OX3 9DS, UK
| | - B van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - H Sheldon
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Oxford, OX3 9DS, UK
| | - W A Veldman
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - M C Zwager
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - T van der Sluis
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - S Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - T Morita
- Tokushima University Graduate School, 3-18-15, Kuramoto-Cho, Tokushima, 770-8504, Japan
| | - O Baba
- Tokushima University Graduate School, 3-18-15, Kuramoto-Cho, Tokushima, 770-8504, Japan
| | - C P Schröder
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
- Department of Medical Oncology, Antoni Van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - S de Jong
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - A L Harris
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Oxford, OX3 9DS, UK
| | - M Jalving
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
9
|
Senda A, Kojima M, Watanabe A, Kobayashi T, Morishita K, Aiboshi J, Otomo Y. Profiles of lipid, protein and microRNA expression in exosomes derived from intestinal epithelial cells after ischemia-reperfusion injury in a cellular hypoxia model. PLoS One 2023; 18:e0283702. [PMID: 36989330 PMCID: PMC10058167 DOI: 10.1371/journal.pone.0283702] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Intestinal ischemia-reperfusion injury leads to proinflammatory responses via gut-derived mediators, and accumulating evidence suggests that exosomes secreted by intestinal epithelial cells are involved in the development of systemic inflammation. Studies have reported changes in protein, lipid, and microRNA (miRNA) expression; however, considering the different experimental conditions, information on the relationships among these biomolecules remains insufficient. The aim of this study was to elucidate the multiple changes that simultaneously occur in exosomes after ischemic stimulation. Here, differentiated human intestinal Caco-2 cells were exposed to 95% air (normoxia group) or 5% O2 (hypoxia group) for 6 h. Cells in each group were subsequently incubated for 24 h in an atmosphere of 5% CO2 plus 95% air. The conditioned medium of each group was collected for isolating intestinal epithelial cell-derived exosomes. Together with proteome analyses, lipid analyses, and miRNA quantification, biological functional assays were performed using monocytic NF-κB reporter cells. Lipid metabolism-related protein expression was upregulated, miRNA levels were slightly altered, and unsaturated fatty acid-containing lysophosphatidylcholine concentration increased after hypoxia and reoxygenation injury; this suggested that the changes in exosomal components associated with ischemia-reperfusion injury activates inflammation, including the NF-κB pathway. This study elucidated the multiple changes that co-occur in exosomes after ischemic stimulation and partially clarified the mechanism underlying exosome-mediated inflammation after intestinal ischemic recanalization.
Collapse
Affiliation(s)
- Atsushi Senda
- Department of Acute Critical Care and Disaster Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Mitsuaki Kojima
- Department of Acute Critical Care and Disaster Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Emergency and Critical Care Center, Tokyo Women's Medical University Adachi Medical Center, Adachi-ku, Tokyo, Japan
| | - Arisa Watanabe
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, Japan
| | - Tetsuyuki Kobayashi
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, Japan
| | - Koji Morishita
- Department of Acute Critical Care and Disaster Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Junichi Aiboshi
- Department of Emergency and Critical Care Medicine, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Chiba, Japan
| | - Yasuhiro Otomo
- Department of Acute Critical Care and Disaster Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
10
|
Young LEA, Conroy LR, Clarke HA, Hawkinson TR, Bolton KE, Sanders WC, Chang JE, Webb MB, Alilain WJ, Vander Kooi CW, Drake RR, Andres DA, Badgett TC, Wagner LM, Allison DB, Sun RC, Gentry MS. In situ mass spectrometry imaging reveals heterogeneous glycogen stores in human normal and cancerous tissues. EMBO Mol Med 2022; 14:e16029. [PMID: 36059248 PMCID: PMC9641418 DOI: 10.15252/emmm.202216029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 01/19/2023] Open
Abstract
Glycogen dysregulation is a hallmark of aging, and aberrant glycogen drives metabolic reprogramming and pathogenesis in multiple diseases. However, glycogen heterogeneity in healthy and diseased tissues remains largely unknown. Herein, we describe a method to define spatial glycogen architecture in mouse and human tissues using matrix-assisted laser desorption/ionization mass spectrometry imaging. This assay provides robust and sensitive spatial glycogen quantification and architecture characterization in the brain, liver, kidney, testis, lung, bladder, and even the bone. Armed with this tool, we interrogated glycogen spatial distribution and architecture in different types of human cancers. We demonstrate that glycogen stores and architecture are heterogeneous among diseases. Additionally, we observe unique hyperphosphorylated glycogen accumulation in Ewing sarcoma, a pediatric bone cancer. Using preclinical models, we correct glycogen hyperphosphorylation in Ewing sarcoma through genetic and pharmacological interventions that ablate in vivo tumor growth, demonstrating the clinical therapeutic potential of targeting glycogen in Ewing sarcoma.
Collapse
Affiliation(s)
- Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKYUSA
- Markey Cancer CenterUniversity of KentuckyLexingtonKYUSA
| | - Lindsey R Conroy
- Markey Cancer CenterUniversity of KentuckyLexingtonKYUSA
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Harrison A Clarke
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Tara R Hawkinson
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Kayli E Bolton
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - William C Sanders
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Josephine E Chang
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Madison B Webb
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Warren J Alilain
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKYUSA
- Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonKYUSA
| | - Craig W Vander Kooi
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKYUSA
- Markey Cancer CenterUniversity of KentuckyLexingtonKYUSA
| | - Richard R Drake
- Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSCUSA
| | - Douglas A Andres
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Tom C Badgett
- Pediatric Hematology‐Oncology, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Lars M Wagner
- Pediatric Hematology‐OncologyDuke UniversityDurhamNCUSA
| | - Derek B Allison
- Department of Pathology and Laboratory Medicine, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Ramon C Sun
- Markey Cancer CenterUniversity of KentuckyLexingtonKYUSA
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKYUSA
- Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonKYUSA
- Department of Biochemistry & Molecular Biology, College of MedicineUniversity of FloridaGainesvilleFLUSA
- Center for Advanced Spatial Biomolecule ResearchUniversity of FloridaGainesvilleFLUSA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKYUSA
- Markey Cancer CenterUniversity of KentuckyLexingtonKYUSA
- Department of Biochemistry & Molecular Biology, College of MedicineUniversity of FloridaGainesvilleFLUSA
- Center for Advanced Spatial Biomolecule ResearchUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
11
|
Zhang C, Quinones A, Le A. Metabolic reservoir cycles in cancer. Semin Cancer Biol 2022; 86:180-188. [PMID: 35390455 PMCID: PMC9530070 DOI: 10.1016/j.semcancer.2022.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023]
Abstract
Cancer cells possess various biological processes to ensure survival and proliferation even under unfavorable conditions such as hypoxia, nutrient deprivation, and oxidative stress. One of the defining hallmarks of cancer cells is their ability to reprogram their metabolism to suit their needs. Building on over a decade of research in the field of cancer metabolism, numerous unique metabolic capabilities are still being discovered in the present day. One recent discovery in the field of cancer metabolism that was hitherto unexpected is the ability of cancer cells to store vital metabolites in forms that can be readily converted to glucose and glutamine for later use. We called these forms "metabolic reservoirs." While many studies have been conducted on storage molecules such as glycogen, triglyceride, and phosphocreatine (PCr), few have explored the concept of "metabolic reservoirs" for cancer as a whole. In this review, we will provide an overview of this concept, the previously known reservoirs including glycogen, triglyceride, and PCr, and the new discoveries made including the newly discovered reservoirs such as N-acetyl-aspartyl-glutamate (NAAG), lactate, and γ- aminobutyric acid (GABA). We will also discuss whether disrupting these reservoir cycles may be a new avenue for cancer treatment.
Collapse
Affiliation(s)
- Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
12
|
Liu P, Fan B, Othmane B, Hu J, Li H, Cui Y, Ou Z, Chen J, Zu X. m 6A-induced lncDBET promotes the malignant progression of bladder cancer through FABP5-mediated lipid metabolism. Am J Cancer Res 2022; 12:6291-6307. [PMID: 36168624 PMCID: PMC9475447 DOI: 10.7150/thno.71456] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/13/2022] [Indexed: 12/23/2022] Open
Abstract
The limited effect of adjuvant therapy for advanced bladder cancer (BCa) leads to a poor prognosis. Increasing evidence has shown that RNA N6-methyladenosine (m6A) modification plays important functional roles in tumorigenesis. Nevertheless, the role and mechanism of m6A-modified noncoding RNAs (ncRNAs) in BCa remain largely unknown. Methods: RT-PCR, western blotting and ONCOMINE dataset were used to determine the dominant m6A-related enzyme in BCa. M6A-lncRNA epitranscriptomic microarray was used to screen candidate targets of METTL14. RT-PCR, MeRIP and TCGA dataset were carried out to confirm the downstream target of METTL14. CHIRP/MS was conducted to identify the candidate proteins binding to lncDBET. RT-PCR, western blotting, RIP and KEGG analysis were used to confirm the target of lncDBET. The levels of METTL14, lncDBET and FABP5 were tested in vitro and in vivo. CCK-8, EdU, transwell and flow cytometry assays were performed to determine the oncogenic function of METTL14, lncDBET and FABP5, and their regulatory networks. Results: We identified that the m6A level of total RNA was elevated and that METTL14 was the dominant m6A-related enzyme in BCa. m6A modification mediated by METTL14 promoted the malignant progression of BCa by promoting the expression of lncDBET. Upregulated lncDBET activated the PPAR signalling pathway to promote the lipid metabolism of cancer cells through direct interaction with FABP5, thus promoting the malignant progression of BCa in vitro and in vivo. Conclusions: Our study establishes METTL14/lncDBET/FABP5 as a critical oncogenic axis in BCa.
Collapse
Affiliation(s)
- Peihua Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Benyi Fan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Belaydi Othmane
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yu Cui
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhenyu Ou
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| |
Collapse
|
13
|
Identification of the Differentially Expressed Genes in the leg muscles of Zhedong White Geese (Anser cygnoides) reared under different photoperiods. Poult Sci 2022; 101:102193. [PMID: 36257072 PMCID: PMC9579406 DOI: 10.1016/j.psj.2022.102193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Light is a factor affecting muscle development and meat quality in poultry production. However, few studies have reported on the role of light in muscle development and meat quality in geese. In this experiment, 10 healthy 220-day-old Zhedong white geese were reared for 60 d under a long photoperiod (15L:9D, LL) and short photoperiod (9L:15D, SL). The gastrocnemius muscles were collected after slaughter to evaluate muscle fiber characteristics and meat color, and RNA-seq analysis. The results showed that compared to the LL group, the SL group had large muscle fiber diameter and cross-sectional area, few muscle fibers per unit area, high meat color a* value, and low L* value at 24 h postmortem. On comparing the 2 groups, 70 differentially expressed genes (DEGs) were identified. Compared to the SL group, the LL group had 25 upregulated and 45 downregulated genes. Gene Ontology (GO) enrichment analysis showed that these DEGs were mainly involved in cell, cell part, binding, cellular processes, and single-organism processes. Several significantly enriched athways were identified in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, such as the calcium and PI3k-Akt signaling pathways. The expression of five randomly selected DEGs was verified using quantitative real-time PCR, and the results were consistent with the RNA-seq data. This study provides a theoretical basis for studying the molecular mechanisms by which light affects muscle development and meat color in geese.
Collapse
|
14
|
Liang W, Zhang Q. Glycogen accumulation drives hepatocarcinogenesis by targeting the Hippo signaling pathway. LIVER RESEARCH 2022. [DOI: 10.1016/j.livres.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
A Proteomic Platform Unveils the Brain Glycogen Phosphorylase as a Potential Therapeutic Target for Glioblastoma Multiforme. Int J Mol Sci 2022; 23:ijms23158200. [PMID: 35897773 PMCID: PMC9331883 DOI: 10.3390/ijms23158200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
In the last few years, several efforts have been made to identify original strategies against glioblastoma multiforme (GBM): this requires a more detailed investigation of the molecular mechanism of GBM so that novel targets can be identified for new possible therapeutic agents. Here, using a combined biochemical and proteomic approach, we evaluated the ability of a blood–brain barrier-permeable 2,3-benzodiazepin-4-one, called 1g, to interfere with the activity and the expression of brain glycogen phosphorylase (PYGB) on U87MG cell line in parallel with the capability of this compound to inhibit the cell growth and cycle. Thus, our results highlighted PYGB as a potential therapeutic target in GBM prompting 1g as a capable anticancer drug thanks to its ability to negatively modulate the uptake and metabolism of glucose, the so-called “Warburg effect”, whose increase is considered a common feature of cancer cells in respect of their normal counterparts.
Collapse
|
16
|
Analysis of the expression, function and signaling of glycogen phosphorylase isoforms in hepatocellular carcinoma. Oncol Lett 2022; 24:244. [PMID: 35761940 PMCID: PMC9214699 DOI: 10.3892/ol.2022.13364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
Glycogen phosphorylase (GP) is an essential enzyme for glycolysis via the glycogen degradation pathway. It consists of three isoforms: PYGB (brain form), PYGL (liver form) and PYGM (muscle form). Although the abnormal expression of GP is associated with a variety of tumors, its relationship with hepatocellular carcinoma (HCC) and whether it can be used as a prognostic marker of HCC remains unclear. In the present study, the expression levels of PYGB, PYGL and PYGM were analyzed. It was found that the expression levels of PYGB in tumor tissues were higher than those in normal tissues, particularly in HCC. The high expression of PYGB (hazard ratios=1.801; 95% confidence interval: 1.266-2.562) could predict the poor prognosis of HCC patients but not PYGL and PYGM. Inhibition of PYGB with GP inhibitor CP91149 significantly suppressed the HCC cell proliferation in the HCC cell model. In addition, combination treatment with sorafenib, a standard treatment for HCC, showed a great inhibition on tumor growth and angiogenesis. These findings suggested that PYGB may be used as a therapeutic and prognostic indicator for HCC.
Collapse
|
17
|
Fan H, He Y, Xiang J, Zhou J, Wan X, You J, Du K, Li Y, Cui L, Wang Y, Zhang C, Bu Y, Lei Y. ROS generation attenuates the anti-cancer effect of CPX on cervical cancer cells by inducing autophagy and inhibiting glycophagy. Redox Biol 2022; 53:102339. [PMID: 35636017 PMCID: PMC9144037 DOI: 10.1016/j.redox.2022.102339] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 01/07/2023] Open
Abstract
Cervical cancer is one of the most common gynecological malignancies with poor prognosis due to constant chemoresistance and repeated relapse. Ciclopirox olamine (CPX), a synthetic antifungal agent, has recently been identified to be a promising anti-cancer candidate. However, the detailed mechanisms related to its anti-cancer effects remain unclear and need to be further elucidated. In this study, we found that CPX could induce proliferation inhibition in cervical cancer cells by targeting PARK7. Further results demonstrated that CPX could induce cytoprotective autophagy by downregulating the expression of PARK7 to activate PRKAA1 or by PARK7-independent accumulation of ROS to inhibit mTOR signaling. Meanwhile, CPX treatment increased the glycogen clustering and glycophagy in cervical cancer cells. The presence of N-acetyl-l-cysteine (NAC), a ROS scavenger, led to further clustering of glycogen in cells by reducing autophagy and enhancing glycophagy, which promoted CPX-induced inhibition of cervical cancer cell proliferation. Together, our study provides new insights into the molecular mechanisms of CPX in the anti-cancer therapy and opens new avenues for the glycophagy in cancer therapeutics. CPX induces cytoprotective autophagy and inhibits proliferation of cervical cancer cells by targeting PARK7. ROS generation attenuates the anticancer effect of CPX by inducing cytoprotective autophagy and inhibiting glycophagy. ROS-triggered glycogen clustering and inactivation of YAP1 are involved in the anti-cancer effects of CPX.
Collapse
Affiliation(s)
- Hui Fan
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yujia He
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Junqi Xiang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Xinyan Wan
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jiawei You
- Department of Basic Medicine, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Kailong Du
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Li
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Lin Cui
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
18
|
Jung M, Lee C, Han D, Kim K, Yang S, Nikas IP, Moon KC, Kim H, Song MJ, Kim B, Lee H, Ryu HS. Proteomic-Based Machine Learning Analysis Reveals PYGB as a Novel Immunohistochemical Biomarker to Distinguish Inverted Urothelial Papilloma From Low-Grade Papillary Urothelial Carcinoma With Inverted Growth. Front Oncol 2022; 12:841398. [PMID: 35402263 PMCID: PMC8987228 DOI: 10.3389/fonc.2022.841398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background The molecular biology of inverted urothelial papilloma (IUP) as a precursor disease of urothelial carcinoma is poorly understood. Furthermore, the overlapping histology between IUP and papillary urothelial carcinoma (PUC) with inverted growth is a diagnostic pitfall leading to frequent misdiagnoses. Methods To identify the oncologic significance of IUP and discover a novel biomarker for its diagnosis, we employed mass spectrometry-based proteomic analysis of IUP, PUC, and normal urothelium (NU). Machine learning analysis shortlisted candidate proteins, while subsequent immunohistochemical validation was performed in an independent sample cohort. Results From the overall proteomic landscape, we found divergent 'NU-like' (low-risk) and 'PUC-like' (high-risk) signatures in IUP. The latter were characterized by altered metabolism, biosynthesis, and cell-cell interaction functions, indicating oncologic significance. Further machine learning-based analysis revealed SERPINH1, PKP2, and PYGB as potential diagnostic biomarkers discriminating IUP from PUC. The immunohistochemical validation confirmed PYGB as a specific biomarker to distinguish between IUP and PUC with inverted growth. Conclusion In conclusion, we suggest PYGB as a promising immunohistochemical marker for IUP diagnosis in routine practice.
Collapse
Affiliation(s)
- Minsun Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University Hospital, Seoul, South Korea
| | - Dohyun Han
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Kwangsoo Kim
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea
| | - Sunah Yang
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea
| | - Ilias P. Nikas
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pathology, Seoul National University Hospital, Seoul, South Korea
- Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyeyoon Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Min Ji Song
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Bohyun Kim
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea
| | - Hyebin Lee
- Department of Radiation Oncology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pathology, Seoul National University Hospital, Seoul, South Korea
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
19
|
Zhu YZ, Liao XW, Yin W, Wei HM. Protein Phosphatase 1 Regulatory Subunit 3: A Prognostic Biomarker in Stomach Adenocarcinoma. Int J Gen Med 2022; 15:1131-1146. [PMID: 35153505 PMCID: PMC8824296 DOI: 10.2147/ijgm.s345978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose This study aimed to determine the potential application of the protein phosphatase 1 regulatory subunit 3 (PPP1R3B) gene as a prognostic marker in stomach adenocarcinoma (STAD), as well as its potential mediating biological processes and pathways. Materials and Methods Differential expression analyses were performed using the TIMER2.0 and UALCAN databases. Complete RNA-seq data and other relevant clinical and survival data were acquired from The Cancer Genome Atlas (TCGA). Univariate survival analyses, Cox regression modelling, and Kaplan–Meier curves were implemented to investigate the associations between PPP1R3B gene expression and clinical pathologic features. A genome wide gene set enrichment analysis (GSEA) was conducted to define the underlying molecular mechanisms mediating the observed associations between the PPP1R3B gene and STAD development. Results We found that PPP1R3B was overexpressed in STAD tissues, and that higher PPP1R3B expression correlated with worse prognoses in patients with STAD. Comprehensive survival analyses suggested that PPP1R3B might be an independent predictive factor for survival time in patients with STAD. The prognostic relationship between PPP1R3B and STAD was also verified using Kaplan–Meier curves. Patients with higher PPP1R3B levels had a shorter clinical survival time on average. Additionally, a GSEA demonstrated that PPP1R3B might be involved in multiple biological processes and pathways. Conclusion Our findings demonstrate that the PPP1R3B gene has utility as a potential molecular marker for STAD prognoses.
Collapse
Affiliation(s)
- Ya-Zhen Zhu
- Department of Pathology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, People’s Republic of China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Wu Yin
- Department of Pathology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, People’s Republic of China
| | - Hai-Ming Wei
- Department of Pathology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, People’s Republic of China
- Correspondence: Hai-Ming Wei, Department of Pathology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China, Email
| |
Collapse
|
20
|
Liu Q, Li J, Zhang W, Xiao C, Zhang S, Nian C, Li J, Su D, Chen L, Zhao Q, Shao H, Zhao H, Chen Q, Li Y, Geng J, Hong L, Lin S, Wu Q, Deng X, Ke R, Ding J, Johnson RL, Liu X, Chen L, Zhou D. Glycogen accumulation and phase separation drives liver tumor initiation. Cell 2021; 184:5559-5576.e19. [PMID: 34678143 DOI: 10.1016/j.cell.2021.10.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/31/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022]
Abstract
Glucose consumption is generally increased in tumor cells to support tumor growth. Interestingly, we report that glycogen accumulation is a key initiating oncogenic event during liver malignant transformation. We found that glucose-6-phosphatase (G6PC) catalyzing the last step of glycogenolysis is frequently downregulated to augment glucose storage in pre-malignant cells. Accumulated glycogen undergoes liquid-liquid phase separation, which results in the assembly of the Laforin-Mst1/2 complex and consequently sequesters Hippo kinases Mst1/2 in glycogen liquid droplets to relieve their inhibition on Yap. Moreover, G6PC or another glycogenolysis enzyme-liver glycogen phosphorylase (PYGL) deficiency in both human and mice results in glycogen storage disease along with liver enlargement and tumorigenesis in a Yap-dependent manner. Consistently, elimination of glycogen accumulation abrogates liver growth and cancer incidence, whereas increasing glycogen storage accelerates tumorigenesis. Thus, we concluded that cancer-initiating cells adapt a glycogen storing mode, which blocks Hippo signaling through glycogen phase separation to augment tumor incidence.
Collapse
Affiliation(s)
- Qingxu Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiaxin Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Weiji Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chen Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shihao Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Cheng Nian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Junhong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Dongxue Su
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lihong Chen
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Qian Zhao
- Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China
| | - Hui Shao
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, China
| | - Hao Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qinghua Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuxi Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jing Geng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lixin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuhai Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiao Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Rongqin Ke
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, China
| | - Jin Ding
- Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China
| | - Randy L Johnson
- Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, The Liver Center of Fujian Province, Fuzhou 350025, P.R. China
| | - Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
21
|
Yang YF, Chuang HW, Kuo WT, Lin BS, Chang YC. Current Development and Application of Anaerobic Glycolytic Enzymes in Urothelial Cancer. Int J Mol Sci 2021; 22:ijms221910612. [PMID: 34638949 PMCID: PMC8508954 DOI: 10.3390/ijms221910612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Urothelial cancer is a malignant tumor with metastatic ability and high mortality. Malignant tumors of the urinary system include upper tract urothelial cancer and bladder cancer. In addition to typical genetic alterations and epigenetic modifications, metabolism-related events also occur in urothelial cancer. This metabolic reprogramming includes aberrant expression levels of genes, metabolites, and associated networks and pathways. In this review, we summarize the dysfunctions of glycolytic enzymes in urothelial cancer and discuss the relevant phenotype and signal transduction. Moreover, we describe potential prognostic factors and risks to the survival of clinical cancer patients. More importantly, based on several available databases, we explore relationships between glycolytic enzymes and genetic changes or drug responses in urothelial cancer cells. Current advances in glycolysis-based inhibitors and their combinations are also discussed. Combining all of the evidence, we indicate their potential value for further research in basic science and clinical applications.
Collapse
Affiliation(s)
- Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
| | - Hao-Wen Chuang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Wei-Ting Kuo
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Bo-Syuan Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Correspondence: ; Tel.: +886-2-2826-7064
| |
Collapse
|
22
|
Zheng Z, Lai C, Li W, Zhang C, Ma K, Yao Y. Identification of a Novel Glycolysis-Related LncRNA Signature for Predicting Overall Survival in Patients With Bladder Cancer. Front Genet 2021; 12:720421. [PMID: 34490046 PMCID: PMC8417422 DOI: 10.3389/fgene.2021.720421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022] Open
Abstract
Background Both lncRNAs and glycolysis are considered to be key influencing factors in the progression of bladder cancer (BCa). Studies have shown that glycolysis-related lncRNAs are an important factor affecting the overall survival and prognosis of patients with bladder cancer. In this study, a prognostic model of BCa patients was constructed based on glycolysis-related lncRNAs to provide a point of reference for clinical diagnosis and treatment decisions. Methods The transcriptome, clinical data, and glycolysis-related pathway gene sets of BCa patients were obtained from The Cancer Genome Atlas (TCGA) database and the Gene Set Enrichment Analysis (GSEA) official website. Next, differentially expressed glycolysis-related lncRNAs were screened out, glycolysis-related lncRNAs with prognostic significance were identified through LASSO regression analysis, and a risk scoring model was constructed through multivariate Cox regression analysis. Then, based on the median of the risk scores, all BCa patients were divided into either a high-risk or low-risk group. Kaplan-Meier (KM) survival analysis and the receiver operating characteristic (ROC) curve were used to evaluate the predictive power of the model. A nomogram prognostic model was then constructed based on clinical indicators and risk scores. A calibration chart, clinical decision curve, and ROC curve analysis were used to evaluate the predictive performance of the model, and the risk score of the prognostic model was verified using the TCGA data set. Finally, Gene Set Enrichment Analysis (GSEA) was performed on glycolysis-related lncRNAs. Results A total of 59 differentially expressed glycolysis-related lncRNAs were obtained from 411 bladder tumor tissues and 19 pericarcinomatous tissues, and 9 of those glycolysis-related lncRNAs (AC099850.3, AL589843.1, MAFG-DT, AC011503.2, NR2F1-AS1, AC078778.1, ZNF667-AS1, MNX1-AS1, and AC105942.1) were found to have prognostic significance. A signature was then constructed for predicting survival in BCa based on those 9 glycolysis-related lncRNAs. ROC curve analysis and a nomogram verified the accuracy of the signature. Conclusion Through this study, a novel prognostic prediction model for BCa was established based on 9 glycolysis-related lncRNAs that could effectively distinguish high-risk and low-risk BCa patients, and also provide a new point of reference for clinicians to make individualized treatment and review plans for patients with different levels of risk.
Collapse
Affiliation(s)
- Zhenming Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Cong Lai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Wenshuang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Caixia Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Kaiqun Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Yousheng Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| |
Collapse
|
23
|
Zou J, Huang R, Chen Y, Huang X, Li H, Liang P, Chen S. Dihydropyrimidinase Like 2 Promotes Bladder Cancer Progression via Pyruvate Kinase M2-Induced Aerobic Glycolysis and Epithelial-Mesenchymal Transition. Front Cell Dev Biol 2021; 9:641432. [PMID: 34295887 PMCID: PMC8291048 DOI: 10.3389/fcell.2021.641432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/06/2021] [Indexed: 01/06/2023] Open
Abstract
Background Aerobic glycolysis and epidermal–mesenchymal transition (EMT) play key roles in the development of bladder cancer. This study aimed to investigate the function and the underlying mechanism of dihydropyrimidinase like 2 (DPYSL2) in bladder cancer progression. Methods The expression pattern of DPYSL2 in bladder cancer and the correlation of DPYSL2 expression with clinicopathological characteristics of bladder cancer patients were analyzed using the data from different databases and tissue microarray. Gain- and loss-of-function assays were performed to explore the role of DPYSL2 in bladder cancer progression in vitro and in mice. Proteomic analysis was performed to identify the interacting partner of DPYSL2 in bladder cancer cells. Findings The results showed that DPYSL2 expression was upregulated in bladder cancer tissue compared with adjacent normal bladder tissue and in more aggressive cancer stages compared with lower stages. DPYSL2 promoted malignant behavior of bladder cancer cells in vitro, as well as tumor growth and distant metastasis in mice. Mechanistically, DPYSL2 interacted with pyruvate kinase M2 (PKM2) and promoted the conversion of PKM2 tetramers to PKM2 dimers. Knockdown of PKM2 completely blocked DPYSL2-induced enhancement of the malignant behavior, glucose uptake, lactic acid production, and epithelial–mesenchymal transition in bladder cancer cells. Interpretation In conclusion, the results suggest that DPYSL2 promotes aerobic glycolysis and EMT in bladder cancer via PKM2, serving as a potential therapeutic target for bladder cancer treatment.
Collapse
Affiliation(s)
- Jun Zou
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruiyan Huang
- State Key Laboratory of Oncology in South China, Department of Ultrasonography and Electrocardiograms, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanfei Chen
- Department of Urology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Huang
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huajun Li
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peng Liang
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shan Chen
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
24
|
Loras A, Segovia C, Ruiz-Cerdá JL. Epigenomic and Metabolomic Integration Reveals Dynamic Metabolic Regulation in Bladder Cancer. Cancers (Basel) 2021; 13:2719. [PMID: 34072826 PMCID: PMC8198168 DOI: 10.3390/cancers13112719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) represents a clinical, social, and economic challenge due to tumor-intrinsic characteristics, limitations of diagnostic techniques and a lack of personalized treatments. In the last decade, the use of liquid biopsy has grown as a non-invasive approach to characterize tumors. Moreover, the emergence of omics has increased our knowledge of cancer biology and identified critical BC biomarkers. The rewiring between epigenetics and metabolism has been closely linked to tumor phenotype. Chromatin remodelers interact with each other to control gene silencing in BC, but also with stress-inducible factors or oncogenic signaling cascades to regulate metabolic reprogramming towards glycolysis, the pentose phosphate pathway, and lipogenesis. Concurrently, one-carbon metabolism supplies methyl groups to histone and DNA methyltransferases, leading to the hypermethylation and silencing of suppressor genes in BC. Conversely, α-KG and acetyl-CoA enhance the activity of histone demethylases and acetyl transferases, increasing gene expression, while succinate and fumarate have an inhibitory role. This review is the first to analyze the interplay between epigenome, metabolome and cell signaling pathways in BC, and shows how their regulation contributes to tumor development and progression. Moreover, it summarizes non-invasive biomarkers that could be applied in clinical practice to improve diagnosis, monitoring, prognosis and the therapeutic options in BC.
Collapse
Affiliation(s)
- Alba Loras
- Unidad Mixta de Investigación en TICs Aplicadas a la Reingeniería de Procesos Socio-Sanitarios (eRPSS), Universitat Politècnica de València-Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Cristina Segovia
- Epithelial Carcinogenesis Group, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - José Luis Ruiz-Cerdá
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València-Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
- Servicio de Urología, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Departamento de Cirugía, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|
25
|
Nie Z, Chen M, Wen X, Gao Y, Huang D, Cao H, Peng Y, Guo N, Ni J, Zhang S. Endoplasmic Reticulum Stress and Tumor Microenvironment in Bladder Cancer: The Missing Link. Front Cell Dev Biol 2021; 9:683940. [PMID: 34136492 PMCID: PMC8201605 DOI: 10.3389/fcell.2021.683940] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer is a common malignant tumor of the urinary system. Despite recent advances in treatments such as local or systemic immunotherapy, chemotherapy, and radiotherapy, the high metastasis and recurrence rates, especially in muscle-invasive bladder cancer (MIBC), have led to the evaluation of more targeted and personalized approaches. A fundamental understanding of the tumorigenesis of bladder cancer along with the development of therapeutics to target processes and pathways implicated in bladder cancer has provided new avenues for the management of this disease. Accumulating evidence supports that the tumor microenvironment (TME) can be shaped by and reciprocally act on tumor cells, which reprograms and regulates tumor development, metastasis, and therapeutic responses. A hostile TME, caused by intrinsic tumor attributes (e.g., hypoxia, oxidative stress, and nutrient deprivation) or external stressors (e.g., chemotherapy and radiation), disrupts the normal synthesis and folding process of proteins in the endoplasmic reticulum (ER), culminating in a harmful situation called ER stress (ERS). ERS is a series of adaptive changes mediated by unfolded protein response (UPR), which is interwoven into a network that can ultimately mediate cell proliferation, apoptosis, and autophagy, thereby endowing tumor cells with more aggressive behaviors. Moreover, recent studies revealed that ERS could also impede the efficacy of anti-cancer treatment including immunotherapy by manipulating the TME. In this review, we discuss the relationship among bladder cancer, ERS, and TME; summarize the current research progress and challenges in overcoming therapeutic resistance; and explore the concept of targeting ERS to improve bladder cancer treatment outcomes.
Collapse
Affiliation(s)
- Zhenyu Nie
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Mei Chen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Xiaohong Wen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yuanhui Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Denggao Huang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Hui Cao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yanling Peng
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Na Guo
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Jie Ni
- Cancer Care Center, St. George Hospital, Sydney, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Shufang Zhang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| |
Collapse
|
26
|
Zhang D, Tian J, Xia Q, Yang Z, Gu B. Significance and Mechanisms Analyses of RB1 Mutation in Bladder Cancer Disease Progression and Drug Selection by Bioinformatics Analysis. Bladder Cancer 2021; 7:133-142. [PMID: 38994537 PMCID: PMC11181786 DOI: 10.3233/blc-200368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/22/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND Bladder cancer is still a disease of significant morbidity and mortality. In bladder cancer, RB1 is one of the most common mutant genes. METHODS In this study, we explored the Genomics of Drug Sensitivity in Cancer (GDSC) database for drug sensitivity. The latest TCGA data were downloaded for analysis. To deal with functional enrichment analysis, GSEA, KEGG and GO were used. Prognostic analyses have been carried out using the GEPIA online tool. RESULTS Results from the GDSC database showed that bladder cancer cells with RB1 mutation are more resistant to Dactolisib, MK-2206 and GNE-317. RB1 mutation was found in 25%bladder cancer patients. Patients with RB1 mutation often had lower RB1 mRNA expression level and higher histologic grade. In addition, we identified 999 differentially expressed genes in both groups. Functional enrichment analysis suggested that DEGs were primarily enriched in multiple metabolic progressions, cell proliferation and cancer related pathways. There were strong correlations between WT1, GPR37, CHRM2 and EZH2 expression levels and the prognosis. CONCLUSIONS In all, the significance of RB1 mutation in disease progression and drug selection in bladder cancer was suggested by our results, and multiple genes and pathways related to such a program were identified.
Collapse
Affiliation(s)
- Dingguo Zhang
- Department of Urology, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Jinjun Tian
- Department of Urology, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Qier Xia
- Department of Urology, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Zhenyu Yang
- Department of Urology, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Bin Gu
- Department of Urology, Shanghai Pudong New Area People's Hospital, Shanghai, China
| |
Collapse
|
27
|
Zhang Z, Yang L, Li Y, Wu Y, Li X, Wu X. Four long noncoding RNAs act as biomarkers in lung adenocarcinoma. Open Med (Wars) 2021; 16:660-671. [PMID: 33981850 PMCID: PMC8082473 DOI: 10.1515/med-2021-0276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Lung adenocarcinoma (LUAD) is currently one of the most common malignant tumors worldwide. However, there is a lack of long noncoding RNA (lncRNA)-based effective markers for predicting the prognosis of LUAD patients. We identified four lncRNAs that can effectively predict the prognosis of LUAD patients. Methods We used data gene expression profile for 446 patients from The Cancer Genome Atlas database. The patients were randomly divided into a training set and a test set. Significant lncRNAs were identified by univariate regression. Then, multivariate regression was used to identify lncRNAs significantly associated with the survival rate. We constructed four-lncRNA risk formulas for LUAD patients and divided patients into high-risk and low-risk groups. Identified lncRNAs subsequently verified in the test set, and the clinical independence of the lncRNA model was evaluated by stratified analysis. Then mutated genes were identified in the high-risk and low-risk groups. Enrichment analysis was used to determine the relationships between lncRNAs and co-expressed genes. Finally, the accuracy of the model was verified using external database. Results A four-lncRNA signature (AC018629.1, AC122134.1, AC119424.1, and AL138789.1) has been verified in the training and test sets to be significantly associated with the overall survival of LUAD patients. Conclusions The present study demonstrated that identified four-lncRNA signature can be used as an independent prognostic biomarker for the prediction of survival of LUAD patients.
Collapse
Affiliation(s)
- Zhihui Zhang
- Department of Thoracic and Cardiovascular Surgery/Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, Guangdong 510515, China
| | - Liu Yang
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Yujiang Li
- Department of Thoracic and Cardiovascular Surgery/Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, Guangdong 510515, China
| | - Yunfei Wu
- Department of Thoracic and Cardiovascular Surgery/Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, Guangdong 510515, China
| | - Xiang Li
- Department of Emergency Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Wu
- Department of Thoracic and Cardiovascular Surgery/Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, Guangdong 510515, China
| |
Collapse
|
28
|
Poturnajova M, Furielova T, Balintova S, Schmidtova S, Kucerova L, Matuskova M. Molecular features and gene expression signature of metastatic colorectal cancer (Review). Oncol Rep 2021; 45:10. [PMID: 33649827 PMCID: PMC7876998 DOI: 10.3892/or.2021.7961] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
Uncontrollable metastatic outgrowth process is the leading cause of mortality worldwide, even in the case of colorectal cancer. Colorectal cancer (CRC) accounts for approximately 10% of all annually diagnosed cancers and 50% of CRC patients will develop metastases in the course of disease. Most patients with metastatic CRC have incurable disease. Even if patients undergo resection of liver metastases, the 5‑year survival rate ranges from 25 to 58%. Next‑generation sequencing of tumour specimens from large colorectal cancer patient cohorts has led to major advances in elucidating the genomic landscape of these tumours and paired metastases. The expression profiles of primary CRC and their metastatic lesions at both the gene and pathway levels were compared and led to the selection of early driver genes responsible for carcinogenesis and metastasis‑specific genes that increased the metastatic process. The genetic, transcriptional and epigenetic alteration encoded by these genes and their combination influence many pivotal signalling pathways, enabling the dissemination and outgrowth in distant organs. Therapeutic regimens affecting several different active pathways may have important implications for therapeutic efficacy.
Collapse
Affiliation(s)
- Martina Poturnajova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, University Science Park for Biomedicine, 84505 Bratislava, Slovakia
| | - Tatiana Furielova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
| | - Sona Balintova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
| | - Silvia Schmidtova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, University Science Park for Biomedicine, 84505 Bratislava, Slovakia
- Translational Research Unit, Faculty of Medicine, Comenius University, 81499 Bratislava, Slovakia
| | - Lucia Kucerova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, University Science Park for Biomedicine, 84505 Bratislava, Slovakia
| | - Miroslava Matuskova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, University Science Park for Biomedicine, 84505 Bratislava, Slovakia
| |
Collapse
|
29
|
Six Glycolysis-Related Genes as Prognostic Risk Markers Can Predict the Prognosis of Patients with Head and Neck Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8824195. [PMID: 33628816 PMCID: PMC7889344 DOI: 10.1155/2021/8824195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Objective Head and neck squamous cell carcinoma (HNSCC) is one of the worst-prognosis malignant tumors. This study used bioinformatic analysis of the transcriptome sequencing data of HNSCC and the patients' survival and clinical data to construct a prediction signature of glycolysis-related genes as the prognostic risk markers. Methods Gene expression profile data about HNSCC tissues (n = 498) and normal tissues in the head and neck (n = 44) were got from The Cancer Genome Atlas (TCGA), as well as patients' survival and clinical data. Then, we obtained core genes; their expression in head and neck squamous cell carcinoma tissues is significantly different from that in normal head and neck tissues. The predicted glycolysis-related genes are screened through univariate Cox regression analysis, and then, the prognostic risk markers were constructed through further correction of multivariate Cox regression analysis. The Kaplan-Meier curve and receiver operating characteristic curve are used to analyze the potential value of these risk markers in diagnosis and prognosis. We also evaluated that the glycolysis-related prognostic risk markers composed of 6 oncogenes are correlated with clinical features, such as age, gender, grade, and clinical stage of the tumor, by univariate and multivariate Cox regression analyses. Results Differentially expressed glycolytic genes in HNSCC tissues and normal head and neck tissues were screened from TCGA databases using the bioinformatic method. We confirmed a set of six glycolytic genes that were significantly associated with OS in the test series. According to our analysis, the prognostic risk markers composed of HPRT1, STC2, PLCB3, GPR87, PYGL, and SLC5A12 may be an independent risk factor for the prognosis of HNSCC. Conclusions Through this analysis, we constructed new prognostic risk markers related to glycolysis as a prognostic risk marker for patients with HNSCC and provided new ideas and molecular targets for the research and individualized treatment of HNSCC.
Collapse
|
30
|
Mou Z, Yang C, Zhang Z, Wu S, Xu C, Cheng Z, Dai X, Chen X, Ou Y, Jiang H. Transcriptomic Analysis of Glycolysis-Related Genes Reveals an Independent Signature of Bladder Carcinoma. Front Genet 2021; 11:566918. [PMID: 33424916 PMCID: PMC7786194 DOI: 10.3389/fgene.2020.566918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Background Bladder carcinoma (BC) is one of the most prevalent and malignant tumors. Multiple gene signatures based on BC metabolism, especially regarding glycolysis, remain unclear. Thus, we developed a glycolysis-related gene signature to be used for BC prognosis prediction. Methods Transcriptomic and clinical data were divided into a training set and a validation set after they were downloaded and analyzed from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Gene-set enrichment analysis (GSEA) and differential analysis were used to screen differentially expressed genes (DEGs), while univariate Cox regression and lasso-penalized Cox regression were employed for signature establishment. To evaluate the prognostic power of the signature, receiver operating characteristic (ROC) curve and Kaplan-Meier (KM) survival analysis were also used. Additionally, we developed a nomogram to predict patients' survival chances using the identified prognostic gene signature. Further, gene mutation and protein expression, as well as the independence of signature genes, were also analyzed. Finally, we also performed qPCR and western blot to detect the expression and potential pathways of signature genes in BC samples. Results Ten genes were selected for signature construction among 71 DEGs, including nine risk genes and one protection gene. KM survival analysis revealed that the high-risk group had poor survival and the low-risk group had increased survival. ROC curve analysis and the nomogram validated the accurate prediction of survival using a gene signature composed of 10 glycolysis-related genes. Western blot and qPCR analysis demonstrated that the expression trend of signature genes was basically consistent with previous results. These 10 glycolysis-related genes were independent and suitable for a signature. Conclusion Our current study indicated that we successfully built and validated a novel 10-gene glycolysis-related signature for BC prognosis.
Collapse
Affiliation(s)
- Zezhong Mou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Zheyu Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Siqi Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenyang Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhang Cheng
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiyu Dai
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| |
Collapse
|
31
|
RBMX suppresses tumorigenicity and progression of bladder cancer by interacting with the hnRNP A1 protein to regulate PKM alternative splicing. Oncogene 2021; 40:2635-2650. [PMID: 33564070 PMCID: PMC8049873 DOI: 10.1038/s41388-021-01666-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/23/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
The prognosis for patients with metastatic bladder cancer (BCa) is poor, and it is not improved by current treatments. RNA-binding motif protein X-linked (RBMX) are involved in the regulation of the malignant progression of various tumors. However, the role of RBMX in BCa tumorigenicity and progression remains unclear. In this study, we found that RBMX was significantly downregulated in BCa tissues, especially in muscle-invasive BCa tissues. RBMX expression was negatively correlated with tumor stage, histological grade and poor patient prognosis. Functional assays demonstrated that RBMX inhibited BCa cell proliferation, colony formation, migration, and invasion in vitro and suppressed tumor growth and metastasis in vivo. Mechanistic investigations revealed that hnRNP A1 was an RBMX-binding protein. RBMX competitively inhibited the combination of the RGG motif in hnRNP A1 and the sequences flanking PKM exon 9, leading to the formation of lower PKM2 and higher PKM1 levels, which attenuated the tumorigenicity and progression of BCa. Moreover, RBMX inhibited aerobic glycolysis through hnRNP A1-dependent PKM alternative splicing and counteracted the PKM2 overexpression-induced aggressive phenotype of the BCa cells. In conclusion, our findings indicate that RBMX suppresses BCa tumorigenicity and progression via an hnRNP A1-mediated PKM alternative splicing mechanism. RBMX may serve as a novel prognostic biomarker for clinical intervention in BCa.
Collapse
|
32
|
Liu C, Yin J, Hu W, Zhang H. Glycogen Phosphorylase: A Drug Target of Amino Alcohols in Echinococcus granulosus, Predicted by a Computer-Aided Method. Front Microbiol 2020; 11:557039. [PMID: 33329421 PMCID: PMC7719768 DOI: 10.3389/fmicb.2020.557039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022] Open
Abstract
Echinococcosis is an important parasitic disease that threats human health and animal husbandry worldwide. However, the low cure rate of clinical drugs for this disease is a challenge. Hence, novel compounds and specific drug targets are urgently needed. In this study, we identified drug targets of amino alcohols with effects on Echinococcus species. The drug targets were predicted with the idTarget web server. Corresponding three-dimensional structures of the drug targets were built after sequence BLAST analysis and homology modeling. After further screening by molecular docking, the activities of the candidate targets were validated in vitro. We ultimately identified glycogen phosphorylase as a potential drug target for amino alcohols. There are two genes coding glycogen phosphorylase in Echinococcus granulosus (EgGp1 and EgGp2). EgGp1 was abundant in E. granulosus PSCs, while EgGp2 was abundant in the cysts. These proteins were located at suckers and somas of E. granulosus PSCs and near the rostellum of cysts developed from PSCs. The effective compounds docked into a pocket consisting of E124, K543 and K654 and affected (either inhibited or enhanced) the activity of E. granulosus glycogen phosphorylase. In this study, we designed a method to predict drug targets for echinococcosis treatment based on inverse docking. The candidate targets found by this method can contribute not only to understanding of the modes of action of amino alcohols but also to modeling-aided drug design based on targets.
Collapse
Affiliation(s)
- Congshan Liu
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Ministry of Health (MOH), National Center for International Research on Tropical Diseases, World Health Organization (WHO) Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Jianhai Yin
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Ministry of Health (MOH), National Center for International Research on Tropical Diseases, World Health Organization (WHO) Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Wei Hu
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Ministry of Health (MOH), National Center for International Research on Tropical Diseases, World Health Organization (WHO) Collaborating Centre for Tropical Diseases, Shanghai, China.,Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Haobing Zhang
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Ministry of Health (MOH), National Center for International Research on Tropical Diseases, World Health Organization (WHO) Collaborating Centre for Tropical Diseases, Shanghai, China
| |
Collapse
|
33
|
Khan T, Sullivan MA, Gunter JH, Kryza T, Lyons N, He Y, Hooper JD. Revisiting Glycogen in Cancer: A Conspicuous and Targetable Enabler of Malignant Transformation. Front Oncol 2020; 10:592455. [PMID: 33224887 PMCID: PMC7667517 DOI: 10.3389/fonc.2020.592455] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Once thought to be exclusively a storage hub for glucose, glycogen is now known to be essential in a range of physiological processes and pathological conditions. Glycogen lies at the nexus of diverse processes that promote malignancy, including proliferation, migration, invasion, and chemoresistance of cancer cells. It is also implicated in processes associated with the tumor microenvironment such as immune cell effector function and crosstalk with cancer-associated fibroblasts to promote metastasis. The enzymes of glycogen metabolism are dysregulated in a wide variety of malignancies, including cancers of the kidney, ovary, lung, bladder, liver, blood, and breast. Understanding and targeting glycogen metabolism in cancer presents a promising but under-explored therapeutic avenue. In this review, we summarize the current literature on the role of glycogen in cancer progression and discuss its potential as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Tashbib Khan
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Mitchell A. Sullivan
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Jennifer H. Gunter
- Faculty of Health, Australian Prostate Cancer Research Centre-Queensland, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Thomas Kryza
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Nicholas Lyons
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Yaowu He
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - John D. Hooper
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
34
|
Lane AN, Higashi RM, Fan TWM. Metabolic reprogramming in tumors: Contributions of the tumor microenvironment. Genes Dis 2020; 7:185-198. [PMID: 32215288 PMCID: PMC7083762 DOI: 10.1016/j.gendis.2019.10.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/06/2019] [Accepted: 10/16/2019] [Indexed: 12/22/2022] Open
Abstract
The genetic alterations associated with cell transformation are in large measure expressed in the metabolic phenotype as cancer cells proliferate and change their local environment, and prepare for metastasis. Qualitatively, the fundamental biochemistry of cancer cells is generally the same as in the untransformed cells, but the cancer cells produce a local environment, the TME, that is hostile to the stromal cells, and compete for nutrients. In order to proliferate, cells need sufficient nutrients, either those that cannot be made by the cells themselves, or must be made from simpler precursors. However, in solid tumors, the nutrient supply is often limiting given the potential for rapid proliferation, and the poor quality of the vasculature. Thus, cancer cells may employ a variety of strategies to obtain nutrients for survival, growth and metastasis. Although much has been learned using established cell lines in standard culture conditions, it is becoming clear from in vivo metabolic studies that this can also be misleading, and which nutrients are used for energy production versus building blocks for synthesis of macromolecules can vary greatly from tumor to tumor, and even within the same tumor. Here we review the operation of metabolic networks, and how recent understanding of nutrient supply in the TME and utilization are being revealed using stable isotope tracers in vivo as well as in vitro.
Collapse
Key Words
- 2OG, 2-oxoglutarate
- ACO1,2, aconitase 1,2
- CP-MAS, Cross polarization Magic Angle Spinning
- Cancer metabolism
- DMEM, Dulbeccos Modified Eagles Medium
- ECAR, extracellular acidification rate
- ECM, extracellular matrix
- EMP, Embden-Meyerhof Pathway
- IDH1,2, isocitrate dehydrogenase 1,2 (NADP+dependent)
- IF, interstitial fluid
- ME, malic enzyme
- Metabolic flux
- Nutrient supply
- RPMI, Roswell Park Memorial Institute
- SIRM, Stable Isotope Resolved Metabolomics
- Stable isotope resolved metabolomics
- TIL, tumor infiltrating lymphocyte
- TIM/TPI, triose phosphate isomerase
- TME, Tumor Micro Environment
- Tumor microenvironment
Collapse
Affiliation(s)
- Andrew N. Lane
- Center for Environmental and Systems Biochemistry, Markey Cancer Center, Department of Toxicology and Cancer Biology, University of Kentucky, USA
| | | | | |
Collapse
|
35
|
Zhang C, Gou X, He W, Yang H, Yin H. A glycolysis-based 4-mRNA signature correlates with the prognosis and cell cycle process in patients with bladder cancer. Cancer Cell Int 2020; 20:177. [PMID: 32467671 PMCID: PMC7238531 DOI: 10.1186/s12935-020-01255-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/10/2020] [Indexed: 12/17/2022] Open
Abstract
Background Bladder cancer is one of the most prevalent malignancies worldwide. However, traditional indicators have limited predictive effects on the clinical outcomes of bladder cancer. The aim of this study was to develop and validate a glycolysis-related gene signature for predicting the prognosis of patients with bladder cancer that have limited therapeutic options. Methods mRNA expression profiling was obtained from patients with bladder cancer from The Cancer Genome Atlas (TCGA) database. Gene set enrichment analysis (GSEA) was conducted to identify glycolytic gene sets that were significantly different between bladder cancer tissues and paired normal tissues. A prognosis-related gene signature was constructed by univariate and multivariate Cox analysis. Kaplan–Meier curves and time-dependent receiver operating characteristic (ROC) curves were utilized to evaluate the signature. A nomogram combined with the gene signature and clinical parameters was constructed. Correlations between glycolysis-related gene signature and molecular characterization as well as cancer subtypes were analyzed. RT-qPCR was applied to analyze gene expression. Functional experiments were performed to determine the role of PKM2 in the proliferation of bladder cancer cells. Results Using a Cox proportional regression model, we established that a 4-mRNA signature (NUP205, NUPL2, PFKFB1 and PKM) was significantly associated with prognosis in bladder cancer patients. Based on the signature, patients were split into high and low risk groups, with different prognostic outcomes. The gene signature was an independent prognostic indicator for overall survival. The ability of the 4-mRNA signature to make an accurate prognosis was tested in two other validation datasets. GSEA was performed to explore the 4-mRNA related canonical pathways and biological processes, such as the cell cycle, hypoxia, p53 pathway, and PI3K/AKT/mTOR pathway. A heatmap showing the correlation between risk score and cell cycle signature was generated. RT-qPCR revealed the genes that were differentially expressed between normal and cancer tissues. Experiments showed that PKM2 plays essential roles in cell proliferation and the cell cycle. Conclusion The established 4‑mRNA signature may act as a promising model for generating accurate prognoses for patients with bladder cancer, but the specific biological mechanism needs further verification.
Collapse
Affiliation(s)
- Chen Zhang
- 2Department of Gynecology and Obstetrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing, 400016 China.,4Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing, 400016 China
| | - Xin Gou
- 1Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing, 400016 China
| | - Weiyang He
- 1Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing, 400016 China
| | - Huaan Yang
- Department of Urology, Yubei District People's Hospital, No. 69 Jianshe Road, Chongqing, 400016 China
| | - Hubin Yin
- 1Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing, 400016 China.,3Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing, 400016 China
| |
Collapse
|
36
|
Gu Z, Zhang H, Guo X, Cao Y. Enhanced Glycogen Metabolism Supports the Survival and Proliferation of HPV-Infected Keratinocytes in Condylomata Acuminata. J Invest Dermatol 2020; 140:1513-1523.e5. [PMID: 32004566 DOI: 10.1016/j.jid.2020.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/02/2020] [Accepted: 01/10/2020] [Indexed: 01/21/2023]
Abstract
Condylomata acuminata (CA) is caused by human papillomavirus (HPV) infections of keratinocytes and is a common sexually transmitted disease. The main clinical feature and risk of CA is the high recurrence of genital warts formed by infected keratinocytes. Metabolic reprogramming of most types of mammalian cells including keratinocytes can provide energy and intermediates essential for their survival. Here, we report that HPV infection develops a hypoxic microenvironment in CA warts by inducing the accumulation of glycogen and increased glycogen metabolism in the infected keratinocytes in a hypoxia-inducible factor 1α (HIF-1α) -dependent pathway. Our in vitro studies show that the increased glycogen metabolism is essential for the survival and proliferation of keratinocytes. Regarding its mechanism of action, glycogenolysis generates glucose-1-phosphate that fluxes into the pentose phosphate pathway and, then, generates abundant nicotinamide adenine dinucleotide phosphate, thereby ensuring high levels of glutathione in keratinocytes under hypoxia. The abrogation of glycogen synthesis and glycogenolysis decreases the ratio of glutathione and glutathione disulfide and increases the level of ROS, further resulting in the impairment of keratinocyte survival. Collectively, our work offers an insight into the metabolic reprogramming in the development of CA and implies that the intervention of glycogen metabolism would be a promising therapeutic target for CA.
Collapse
Affiliation(s)
- Zhichao Gu
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huafeng Zhang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueyun Guo
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchun Cao
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
37
|
Sottnik JL, Mallaredy V, Chauca-Diaz A, Ritterson Lew C, Owens C, Dancik GM, Pagliarani S, Lucchiari S, Moggio M, Ripolone M, Comi GP, Frierson HF, Clouthier D, Theodorescu D. Elucidating the role of Agl in bladder carcinogenesis by generation and characterization of genetically engineered mice. Carcinogenesis 2019; 40:194-201. [PMID: 30403777 DOI: 10.1093/carcin/bgy139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/06/2018] [Indexed: 12/17/2022] Open
Abstract
Amylo-α-1,6-glucosidase,4-α-glucanotransferase (AGL) is an enzyme primarily responsible for glycogen debranching. Germline mutations lead to glycogen storage disease type III (GSDIII). We recently found AGL to be a tumor suppressor in xenograft models of human bladder cancer (BC) and low levels of AGL expression in BC are associated with poor patient prognosis. However, the impact of low AGL expression on the susceptibility of normal bladder to carcinogenesis is unknown. We address this gap by developing a germline Agl knockout (Agl-/-) mouse that recapitulates biochemical and histological features of GSDIII. Agl-/- mice exposed to N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) had a higher BC incidence compared with wild-type mice (Agl+/+). To determine if the increased BC incidence observed was due to decreased Agl expression in the urothelium specifically, we developed a urothelium-specific conditional Agl knockout (Aglcko) mouse using a Uroplakin II-Cre allele. BBN-induced carcinogenesis experiments repeated in Aglcko mice revealed that Aglcko mice had a higher BC incidence than control (Aglfl/fl) mice. RNA sequencing revealed that tumors from Agl-/- mice had 19 differentially expressed genes compared with control mice. An 'Agl Loss' gene signature was developed and found to successfully stratify normal and tumor samples in two BC patient datasets. These results support the role of AGL loss in promoting carcinogenesis and provide a rationale for evaluating Agl expression levels, or Agl Loss gene signature scores, in normal urothelium of populations at risk of BC development such as older male smokers.
Collapse
Affiliation(s)
- Joseph L Sottnik
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Vandana Mallaredy
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Ana Chauca-Diaz
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Carolyn Ritterson Lew
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Charles Owens
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Garrett M Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT, USA
| | - Serena Pagliarani
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sabrina Lucchiari
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo P Comi
- Department of Pathophysiology and Transplantation, University of Milan, and Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Henry F Frierson
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | | | - Dan Theodorescu
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.,Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| |
Collapse
|
38
|
Vyas M, Patel N, Celli R, Wajapeyee N, Jain D, Zhang X. Glucose Metabolic Reprogramming and Cell Proliferation Arrest in Colorectal Micropapillary Carcinoma. Gastroenterology Res 2019; 12:128-134. [PMID: 31236153 PMCID: PMC6575135 DOI: 10.14740/gr1145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
Background Micropapillary carcinoma (MPC) has been reported as an aggressive variant of colorectal carcinoma (CRC) associated with frequent lymphovascular invasion and poor outcome. Altered glycogen metabolism by metabolic reprogramming plays a critical role for cancer cell growth and survival. We aimed to investigate glucose metabolic reprogramming in colorectal MPC. Methods Immmunostains for Ki-67 and glucose transporter 1 (GLUT1) were performed on 10 colorectal MPCs. Real-time PCR analysis of expressions of GLUT1 and glycogen metabolizing enzymes: glycogen synthase (GYS1) and glycogen phosphorylase (PYGL) was performed on cultured monolayer and three-dimensional (3D) spheroid HCT116 colon cancer cells. Results GLUT1 was strongly expressed in MPC as compared to adjacent conventional glandular component, and was also significantly increased expression in 3D spheroids. Upregulation of GYS1 and PYGL was markedly increased in 3D spheroids. The proliferation rate (Ki-67) of MPC was significantly lower compared to conventional glandular component. The 3D spheroids showed increased cell cycle arrest. Our results demonstrate altered glycogen metabolism in colorectal MPC. Conclusion The reprogramming of glycogen metabolism in MPC provides a source of energy contributing to tumor cell survival in a low proliferation state. Targeting glucose-regulated metabolism may warrant consideration as possible MPC therapies.
Collapse
Affiliation(s)
- Monika Vyas
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natalie Patel
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Romulo Celli
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Narendra Wajapeyee
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Dhanpat Jain
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Xuchen Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
39
|
Barot S, Abo-Ali EM, Zhou DL, Palaguachi C, Dukhande VV. Inhibition of glycogen catabolism induces intrinsic apoptosis and augments multikinase inhibitors in hepatocellular carcinoma cells. Exp Cell Res 2019; 381:288-300. [PMID: 31128107 DOI: 10.1016/j.yexcr.2019.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 02/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading cancers in the world in incidence and mortality. Current pharmacotherapy of HCC is limited in the number and efficacy of anticancer agents. Metabolic reprogramming is a prominent feature of many cancers and has rekindled interest in targeting metabolic proteins for cancer therapy. Glycogen is a storage form of glucose, and the levels of glycogen have been found to correlate with biological processes in reprogrammed cancer cells. However, the contribution of glycogen metabolism to carcinogenesis, cancer cell growth, metastasis, and chemoresistance is poorly understood. Thus, we studied the processes involved in the inhibition of glycogen metabolism in HCC cells. Pharmacological inhibition of glycogen phosphorylase (GP), a rate-limiting enzyme in glycogen catabolism, by CP-91149 led to a decrease in HCC cell viability. GP inhibition induced cancer cell death through the intrinsic apoptotic pathway. Mitochondrial dysfunction and autophagic adaptations accompanied this apoptosis process whereas endoplasmic reticulum stress, necrosis, and necroptosis were not major components of the cell death. In addition, GP inhibition potentiated the effects of multikinase inhibitors sorafenib and regorafenib, which are key drugs in advanced-stage HCC therapy. Our study provides mechanistic insights into cell death by perturbation of glycogen metabolism and identifies GP inhibition as a potential HCC pharmacotherapy target.
Collapse
Affiliation(s)
- Shrikant Barot
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Ehab M Abo-Ali
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Daisy L Zhou
- Department of Biological Sciences, St. John's College of Liberal Arts and Sciences, St. John's University, Queens, NY, USA
| | - Christian Palaguachi
- Department of Biological Sciences, St. John's College of Liberal Arts and Sciences, St. John's University, Queens, NY, USA
| | - Vikas V Dukhande
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
40
|
Loras A, Suárez-Cabrera C, Martínez-Bisbal MC, Quintás G, Paramio JM, Martínez-Máñez R, Gil S, Ruiz-Cerdá JL. Integrative Metabolomic and Transcriptomic Analysis for the Study of Bladder Cancer. Cancers (Basel) 2019; 11:cancers11050686. [PMID: 31100982 PMCID: PMC6562847 DOI: 10.3390/cancers11050686] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Metabolism reprogramming is considered a hallmark of cancer. The study of bladder cancer (BC) metabolism could be the key to developing new strategies for diagnosis and therapy. This work aimed to identify tissue and urinary metabolic signatures as biomarkers of BC and get further insight into BC tumor biology through the study of gene-metabolite networks and the integration of metabolomics and transcriptomics data. BC and control tissue samples (n = 44) from the same patients were analyzed by High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance and microarrays techniques. Besides, urinary profiling study (n = 35) was performed in the same patients to identify a metabolomic profile, linked with BC tissue hallmarks, as a potential non-invasive approach for BC diagnosis. The metabolic profile allowed for the classification of BC tissue samples with a sensitivity and specificity of 100%. The most discriminant metabolites for BC tissue samples reflected alterations in amino acids, glutathione, and taurine metabolic pathways. Transcriptomic data supported metabolomic results and revealed a predominant downregulation of metabolic genes belonging to phosphorylative oxidation, tricarboxylic acid cycle, and amino acid metabolism. The urinary profiling study showed a relation with taurine and other amino acids perturbed pathways observed in BC tissue samples, and classified BC from non-tumor urine samples with good sensitivities (91%) and specificities (77%). This urinary profile could be used as a non-invasive tool for BC diagnosis and follow-up.
Collapse
Affiliation(s)
- Alba Loras
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València-Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain.
| | - Cristian Suárez-Cabrera
- Grupo de Oncología Celular y Molecular, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain.
- Unidad de Oncología Molecular, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) (ed70A), 28040 Madrid, Spain.
| | - M Carmen Martínez-Bisbal
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València-Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain.
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
- Departamento de Química Física, Facultad de Químicas, Universitat de València, 46100 Burjassot, Spain.
| | - Guillermo Quintás
- Analytical Unit, IIS La Fe, 46026 Valencia, Spain.
- Health & Biomedicine, Leitat Technological Center, 08225 Terrassa, Spain.
| | - Jesús M Paramio
- Grupo de Oncología Celular y Molecular, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain.
- Unidad de Oncología Molecular, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) (ed70A), 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), 28029 Madrid, Spain.
| | - Ramón Martínez-Máñez
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València-Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain.
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain.
- Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Salvador Gil
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
- Departamento de Química Orgánica, Facultad de Químicas, Universitat de València, 46100 Burjassot, Spain.
| | - José Luis Ruiz-Cerdá
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València-Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain.
- Servicio de Urología, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain.
| |
Collapse
|
41
|
Curtis M, Kenny HA, Ashcroft B, Mukherjee A, Johnson A, Zhang Y, Helou Y, Batlle R, Liu X, Gutierrez N, Gao X, Yamada SD, Lastra R, Montag A, Ahsan N, Locasale JW, Salomon AR, Nebreda AR, Lengyel E. Fibroblasts Mobilize Tumor Cell Glycogen to Promote Proliferation and Metastasis. Cell Metab 2019; 29:141-155.e9. [PMID: 30174305 PMCID: PMC6326875 DOI: 10.1016/j.cmet.2018.08.007] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/22/2018] [Accepted: 08/02/2018] [Indexed: 12/29/2022]
Abstract
Successful metastasis requires the co-evolution of stromal and cancer cells. We used stable isotope labeling of amino acids in cell culture coupled with quantitative, label-free phosphoproteomics to study the bidirectional signaling in ovarian cancer cells and human-derived, cancer-associated fibroblasts (CAFs) after co-culture. In cancer cells, the interaction with CAFs supported glycogenolysis under normoxic conditions and induced phosphorylation and activation of phosphoglucomutase 1, an enzyme involved in glycogen metabolism. Glycogen was funneled into glycolysis, leading to increased proliferation, invasion, and metastasis of cancer cells co-cultured with human CAFs. Glycogen mobilization in cancer cells was dependent on p38α MAPK activation in CAFs. In vivo, deletion of p38α in CAFs and glycogen phosphorylase inhibition in cancer cells reduced metastasis, suggesting that glycogen is an energy source used by cancer cells to facilitate metastatic tumor growth.
Collapse
Affiliation(s)
- Marion Curtis
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Hilary A Kenny
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Bradley Ashcroft
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Abir Mukherjee
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Alyssa Johnson
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Yilin Zhang
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ynes Helou
- Department of Molecular Biology, Cell Biology, and Biochemistry/Center of Genomics and Proteomics, Brown University, Providence, RI 02903, USA
| | - Raquel Batlle
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27705, USA
| | - Nuria Gutierrez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Xia Gao
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27705, USA
| | - S Diane Yamada
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ricardo Lastra
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Anthony Montag
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Nagib Ahsan
- Division of Biology and Medicine, Alpert Medical School, Brown University, Providence, RI 02903, USA; Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI 02903, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27705, USA
| | - Arthur R Salomon
- Department of Molecular Biology, Cell Biology, and Biochemistry/Center of Genomics and Proteomics, Brown University, Providence, RI 02903, USA; Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI 02903, USA
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
42
|
Woolbright BL, Ayres M, Taylor JA. Metabolic changes in bladder cancer. Urol Oncol 2018; 36:327-337. [DOI: 10.1016/j.urolonc.2018.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022]
|
43
|
Superior anti-tumor efficacy of diisopropylamine dichloroacetate compared with dichloroacetate in a subcutaneous transplantation breast tumor model. Oncotarget 2018; 7:65721-65731. [PMID: 27582548 PMCID: PMC5323187 DOI: 10.18632/oncotarget.11609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/13/2016] [Indexed: 12/13/2022] Open
Abstract
Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase, has anti-tumor properties in various carcinoma models. Diisopropylamine dichloroacetate (DADA), an over-the-counter drug for chronic liver disease, is a derivative of DCA. To date, few studies have evaluated the anticancer potential of DADA in breast cancer. In this study, MDA-MB-231 cells, a breast adenocarcinoma cell line, were used in in vitro and in vivo experiments to evaluate the anti-tumor efficacy of DADA and DCA. The half maximal inhibitory concentration (IC50) of DADA (7.1 ± 1.1 mmol/L) against MDA-MB-231 cells was significantly lower than that of DCA (15.6 ± 2.0 mmol/L); 100 mg/kg (0.0004 mol/kg) DADA was better than 100 mg/kg (0.0008 mol/kg) DCA at suppressing the growth of subcutaneous transplantation breast tumor at the same dose after 24 days intervention. Histological examination showed that both DCA and DADA interventions led to necrosis, inflammation, and fibrosis of tumor tissue in a mouse subcutaneous transplantation breast tumor model. DADA treatment inhibited Ki67 expression in tumor tissue. In vitro experiments showed that DADA could inhibit lactic acid production and glucose uptake in MDA-MB-231 cells at 10 mmol/L and these effects were stronger than DCA. DADA administration also induced complete autophagy during early treatment stages and incomplete autophagy and cell death at later treatment stages. In conclusion, DADA showed better anti-tumor efficacy than DCA in a breast cancer model.
Collapse
|
44
|
Kim JE, Kim EJ, Chen H, Wu CH, Adams MW, Zhang YHP. Advanced water splitting for green hydrogen gas production through complete oxidation of starch by in vitro metabolic engineering. Metab Eng 2017; 44:246-252. [DOI: 10.1016/j.ymben.2017.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/24/2017] [Accepted: 09/21/2017] [Indexed: 01/11/2023]
|
45
|
Difference in glycogen metabolism (glycogen synthesis and glycolysis) between normal and dysplastic/malignant oral epithelium. Arch Oral Biol 2017; 83:340-347. [PMID: 28892665 DOI: 10.1016/j.archoralbio.2017.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 08/23/2017] [Accepted: 08/27/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND The purpose of this study was to investigate a difference in glycogen metabolism (glycogen synthesis and glycolysis) between the iodine stained (normal non-keartinized) and the unstained (dysplasctic/malignant) oral epithelium. METHODS Twenty-one frozen tissue samples of iodine-stained and unstained mucosal tissue were obtained from 21 OSCC patients. Serial frozen sections were cut and examined with the hematoxylin-eosin and periodic acid-Schiff methods and immunohistochemical (IHC) staining for Ki67, P53, molecules associated with glycogenesis (i.e., glycogen synthase (GS) and phospho-glycogen synthase (PGS)), and molecules associated with glycogenolysis (i.e., glycogen phosphorylase isoenzyme BB (GPBB) examine the glycogen metabolism in OSCC. Additionally, in vitro study, the expression levels of GS and GPBB in the cultured cells were analyzed by immunofluorescent staining, Western blot analysis, and the real-time quantitative polymerase chain reaction (PCR). RESULTS There was no significant difference in GS and PGS immunoactivity between iodine stained and unstained area. On the other hand, significantly greater GPBB immunoreactivity was observed in the basal and parabasal layers of iodine-unstained epithelium, where higher positivity for p53 and Ki67 was also showed. Additionally, western blot analysis, immunofluorescent staining, and real-time quantitative PCR revealed that the oral squamous cancer cells exhibited greater expression of GPBB than normal epithelial cells. CONCLUSIONS The results of this study showed that GPBB expression, which resulted in up-regulation of glycogenolysis, is enhanced in oral dysplastic/malignant epithelium compared with non-keartinized normal epithelium, in spite of the fact that glycogenesis continues in both of them. Premalignant and malignant epithelial cells consume greater quantities of energy due to their increased proliferation, and hence, exhaust their glycogen stores, which resulting in negative stain reaction with iodine solution.
Collapse
|
46
|
Understanding the Role of Non-Coding RNAs in Bladder Cancer: From Dark Matter to Valuable Therapeutic Targets. Int J Mol Sci 2017; 18:ijms18071514. [PMID: 28703782 PMCID: PMC5536004 DOI: 10.3390/ijms18071514] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/22/2017] [Accepted: 07/07/2017] [Indexed: 02/07/2023] Open
Abstract
The mortality and morbidity that characterize bladder cancer compel this malignancy into the category of hot topics in terms of biomolecular research. Therefore, a better knowledge of the specific molecular mechanisms that underlie the development and progression of bladder cancer is demanded. Tumor heterogeneity among patients with similar diagnosis, as well as intratumor heterogeneity, generates difficulties in terms of targeted therapy. Furthermore, late diagnosis represents an ongoing issue, significantly reducing the response to therapy and, inevitably, the overall survival. The role of non-coding RNAs in bladder cancer emerged in the last decade, revealing that microRNAs (miRNAs) may act as tumor suppressor genes, respectively oncogenes, but also as biomarkers for early diagnosis. Regarding other types of non-coding RNAs, especially long non-coding RNAs (lncRNAs) which are extensively reviewed in this article, their exact roles in tumorigenesis are—for the time being—not as evident as in the case of miRNAs, but, still, clearly suggested. Therefore, this review covers the non-coding RNA expression profile of bladder cancer patients and their validated target genes in bladder cancer cell lines, with repercussions on processes such as proliferation, invasiveness, apoptosis, cell cycle arrest, and other molecular pathways which are specific for the malignant transformation of cells.
Collapse
|
47
|
Yosef HK, Krauß SD, Lechtonen T, Jütte H, Tannapfel A, Käfferlein HU, Brüning T, Roghmann F, Noldus J, Mosig A, El-Mashtoly SF, Gerwert K. Noninvasive Diagnosis of High-Grade Urothelial Carcinoma in Urine by Raman Spectral Imaging. Anal Chem 2017; 89:6893-6899. [PMID: 28541036 DOI: 10.1021/acs.analchem.7b01403] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The current gold standard for the diagnosis of bladder cancer is cystoscopy, which is invasive and painful for patients. Therefore, noninvasive urine cytology is usually used in the clinic as an adjunct to cystoscopy; however, it suffers from low sensitivity. Here, a novel noninvasive, label-free approach with high sensitivity for use with urine is presented. Coherent anti-Stokes Raman scattering imaging of urine sediments was used in the first step for fast preselection of urothelial cells, where high-grade urothelial cancer cells are characterized by a large nucleus-to-cytoplasm ratio. In the second step, Raman spectral imaging of urothelial cells was performed. A supervised classifier was implemented to automatically differentiate normal and cancerous urothelial cells with 100% accuracy. In addition, the Raman spectra not only indicated the morphological changes that are identified by cytology with hematoxylin and eosin staining but also provided molecular resolution through the use of specific marker bands. The respective Raman marker bands directly show a decrease in the level of glycogen and an increase in the levels of fatty acids in cancer cells as compared to controls. These results pave the way for "spectral" cytology of urine using Raman microspectroscopy.
Collapse
Affiliation(s)
- Hesham K Yosef
- Department of Biophysics, Ruhr-University Bochum , 44780 Bochum, Germany
| | - Sascha D Krauß
- Department of Biophysics, Ruhr-University Bochum , 44780 Bochum, Germany
| | - Tatjana Lechtonen
- Department of Biophysics, Ruhr-University Bochum , 44780 Bochum, Germany
| | - Hendrik Jütte
- Bergmannsheil Hospital, Ruhr-University Bochum , 44789 Bochum, Germany
| | - Andrea Tannapfel
- Bergmannsheil Hospital, Ruhr-University Bochum , 44789 Bochum, Germany
| | - Heiko U Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA) , 44789 Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA) , 44789 Bochum, Germany
| | - Florian Roghmann
- Department of Urology, Marien Hospital Herne, Ruhr-University Bochum , 44625 Herne, Germany
| | - Joachim Noldus
- Department of Urology, Marien Hospital Herne, Ruhr-University Bochum , 44625 Herne, Germany
| | - Axel Mosig
- Department of Biophysics, Ruhr-University Bochum , 44780 Bochum, Germany
| | | | - Klaus Gerwert
- Department of Biophysics, Ruhr-University Bochum , 44780 Bochum, Germany
| |
Collapse
|
48
|
Weinhaus B, Guin S. Involvement of glycogen debranching enzyme in bladder cancer. Biomed Rep 2017; 6:595-598. [PMID: 28584628 DOI: 10.3892/br.2017.907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/07/2017] [Indexed: 12/19/2022] Open
Abstract
Bladder cancer is the most common malignancy of the urinary system, however the molecular pathways underlying this disease are incompletely understood. To understand new regulators of bladder cancer progression, the authors carried out a functional genomic screen which identified glycogen debranching enzyme (AGL) as a novel regulator of bladder cancer growth. Glycogen debranching enzyme is involved in glycogen breakdown and germline loss of function mutation of this gene leads to glycogen storage disease type III. To the best of the authors' knowledge, the present study is the first to demonstrate that loss of AGL leads to aggressive bladder tumor growth. AGL mRNA and protein expression in bladder tumors serve as a prognostic marker for patients. Interestingly, AGL's participation in regulating tumor growth is independent of its enzymatic function and involvement with glycogen metabolism in general. Detailed metabolomics and transcriptomic analysis indicated that increases in glucose metabolism, glycine synthesis driven by serine hydroxymethyltransferase 2 and increases in hyaluronic acid synthase 2-driven HA synthesis are major contributors of aggressive bladder tumor growth with loss of AGL. However, the detailed mechanism of how AGL regulates the above mentioned metabolic and genetic pathways is unknown and is being investigated. The present review focuses on AGL's involvement in bladder cancer.
Collapse
Affiliation(s)
| | - Sunny Guin
- Gundersen Medical Foundation, La Crosse, WI 54601, USA
| |
Collapse
|
49
|
Gu Z, Xia J, Xu H, Frech I, Tricot G, Zhan F. NEK2 Promotes Aerobic Glycolysis in Multiple Myeloma Through Regulating Splicing of Pyruvate Kinase. J Hematol Oncol 2017; 10:17. [PMID: 28086949 PMCID: PMC5237262 DOI: 10.1186/s13045-017-0392-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/03/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Aerobic glycolysis, a hallmark of cancer, is characterized by increased metabolism of glucose and production of lactate in normaxia. Recently, pyruvate kinase M2 (PKM2) has been identified as a key player for regulating aerobic glycolysis and promoting tumor cell proliferation and survival. METHODS Tandem affinity purification followed up by mass spectrometry (TAP-MS) and co-immunoprecipitation (Co-IP) were used to study the interaction between NIMA (never in mitosis gene A)-related kinase 2 (NEK2) and heterogeneous nuclear ribonucleoproteins (hnRNP) A1/2. RNA immunoprecipitation (RIP) was performed to identify NEK2 binding to PKM pre-mRNA sequence. Chromatin-immunoprecipitation (ChIP)-PCR was performed to analyze a transcriptional regulation of NEK2 by c-Myc. Western blot and real-time PCR were executed to analyze the regulation of PKM2 by NEK2. RESULTS NEK2 regulates the alternative splicing of PKM immature RNA in multiple myeloma cells by interacting with hnRNPA1/2. RIP shows that NEK2 binds to the intronic sequence flanking exon 9 of PKM pre-mRNA. Knockdown of NEK2 decreases the ratio of PKM2/PKM1 and also other aerobic glycolysis genes including GLUT4, HK2, ENO1, LDHA, and MCT4. Myeloma patients with high expression of NEK2 and PKM2 have lower event-free survival and overall survival. Our data indicate that NEK2 is transcriptionally regulated by c-Myc in myeloma cells. Ectopic expression of NEK2 partially rescues growth inhibition and cell death induced by silenced c-Myc. CONCLUSIONS Our studies demonstrate that NEK2 promotes aerobic glycolysis through regulating splicing of PKM and increasing the PKM2/PKM1 ratio in myeloma cells which contributes to its oncogenic activity.
Collapse
Affiliation(s)
- Zhimin Gu
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA
| | - Jiliang Xia
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA
- Institute of Cancer Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongwei Xu
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA
| | - Ivana Frech
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA
| | - Guido Tricot
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA
| | - Fenghuang Zhan
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA.
| |
Collapse
|
50
|
Kantsadi AL, Bokor É, Kun S, Stravodimos GA, Chatzileontiadou DS, Leonidas DD, Juhász-Tóth É, Szakács A, Batta G, Docsa T, Gergely P, Somsák L. Synthetic, enzyme kinetic, and protein crystallographic studies of C -β- d -glucopyranosyl pyrroles and imidazoles reveal and explain low nanomolar inhibition of human liver glycogen phosphorylase. Eur J Med Chem 2016; 123:737-745. [DOI: 10.1016/j.ejmech.2016.06.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/19/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|