1
|
rDromaserpin: A Novel Anti-Hemostatic Serpin, from the Salivary Glands of the Hard Tick Hyalomma dromedarii. Toxins (Basel) 2021; 13:toxins13120913. [PMID: 34941750 PMCID: PMC8703697 DOI: 10.3390/toxins13120913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 01/17/2023] Open
Abstract
Hemostatic disorders are caused either by platelet-related dysfunctions, defective blood coagulation, or by a combination of both, leading to an increased susceptibility to cardiovascular diseases (CVD) and other related illnesses. The unique specificity of anticoagulants from hematophagous arthropods, such as ticks, suggests that tick saliva holds great promise for discovering new treatments for these life-threatening diseases. In this study, we combined in silico and in vitro analyses to characterize the first recombinant serpin, herein called Dromaserpin, from the sialotranscriptome of the Hyalomma dromedarii tick. Our in silico data described Dromaserpin as a secreted protein of ~43 kDa with high similarities to previously characterized inhibitory serpins. The recombinant protein (rDromaserpin) was obtained as a well-structured monomer, which was tested using global blood coagulation and platelet aggregation assays. With this approach, we confirmed rDromaserpin anticoagulant activity as it significantly delayed plasma clotting in activated partial thromboplastin time and thrombin time assays. The profiling of proteolytic activity shows its capacity to inhibit thrombin in the micromolar range (0.2 to 1 μM) and in the presence of heparin this inhibition was clearly increased. It was also able to inhibit Kallikrein, FXIa and slightly FXIIa, with no significant effect on other factors. In addition, the rDromaserpin inhibited thrombin-induced platelet aggregation. Taken together, our data suggest that rDromaserpin deserves to be further investigated as a potential candidate for developing therapeutic compounds targeting disorders related to blood clotting and/or platelet aggregation.
Collapse
|
2
|
Huttinger ZM, Haynes LM, Yee A, Kretz CA, Holding ML, Siemieniak DR, Lawrence DA, Ginsburg D. Deep mutational scanning of the plasminogen activator inhibitor-1 functional landscape. Sci Rep 2021; 11:18827. [PMID: 34552126 PMCID: PMC8458277 DOI: 10.1038/s41598-021-97871-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022] Open
Abstract
The serine protease inhibitor (SERPIN) plasminogen activator inhibitor-1 (PAI-1) is a key regulator of the fibrinolytic system, inhibiting the serine proteases tissue- and urokinase-type plasminogen activator (tPA and uPA, respectively). Missense variants render PAI-1 non-functional through misfolding, leading to its turnover as a protease substrate, or to a more rapid transition to the latent/inactive state. Deep mutational scanning was performed to evaluate the impact of amino acid sequence variation on PAI-1 inhibition of uPA using an M13 filamentous phage display system. Error prone PCR was used to construct a mutagenized PAI-1 library encompassing ~ 70% of potential single amino acid substitutions. The relative effects of 27% of all possible missense variants on PAI-1 inhibition of uPA were determined using high-throughput DNA sequencing. 826 missense variants demonstrated conserved inhibitory activity while 1137 resulted in loss of PAI-1 inhibitory function. The least evolutionarily conserved regions of PAI-1 were also identified as being the most tolerant of missense mutations. The results of this screen confirm previous low-throughput mutational studies, including those of the reactive center loop. These data provide a powerful resource for explaining structure-function relationships for PAI-1 and for the interpretation of human genomic sequence variants.
Collapse
Affiliation(s)
- Zachary M Huttinger
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.,Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Laura M Haynes
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Yee
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Colin A Kretz
- Department of Medicine, McMaster University and the Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | | | - David R Siemieniak
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.,Howard Hughes Medical Institute, Ann Arbor, MI, USA
| | - Daniel A Lawrence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA. .,Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA. .,Howard Hughes Medical Institute, Ann Arbor, MI, USA. .,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA. .,Departments of Human Genetics and Pediatrics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Sillen M, Declerck PJ. Targeting PAI-1 in Cardiovascular Disease: Structural Insights Into PAI-1 Functionality and Inhibition. Front Cardiovasc Med 2020; 7:622473. [PMID: 33415130 PMCID: PMC7782431 DOI: 10.3389/fcvm.2020.622473] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/03/2020] [Indexed: 01/31/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor (serpin) superfamily with antiprotease activity, is the main physiological inhibitor of tissue-type (tPA) and urokinase-type (uPA) plasminogen activators (PAs). Apart from being crucially involved in fibrinolysis and wound healing, PAI-1 plays a pivotal role in various acute and chronic pathophysiological processes, including cardiovascular disease, tissue fibrosis, cancer, and age-related diseases. In the prospect of treating the broad range of PAI-1-related pathologies, many efforts have been devoted to developing PAI-1 inhibitors. The use of these inhibitors, including low molecular weight molecules, peptides, antibodies, and antibody fragments, in various animal disease models has provided ample evidence of their beneficial effect in vivo and moved forward some of these inhibitors in clinical trials. However, none of these inhibitors is currently approved for therapeutic use in humans, mainly due to selectivity and toxicity issues. Furthermore, the conformational plasticity of PAI-1, which is unique among serpins, poses a real challenge in the identification and development of PAI-1 inhibitors. This review will provide an overview of the structural insights into PAI-1 functionality and modulation thereof and will highlight diverse approaches to inhibit PAI-1 activity.
Collapse
Affiliation(s)
| | - Paul J. Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Chu Y, Bucci JC, Peterson CB. Dissecting molecular details and functional effects of the high-affinity copper binding site in plasminogen activator Inhibitor-1. Protein Sci 2020; 30:597-612. [PMID: 33345392 DOI: 10.1002/pro.4017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 11/08/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the primary inhibitor for plasminogen activators, tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). As a unique member in the serine protease inhibitor (serpin) family, PAI-1 is metastable and converts to an inactive, latent structure with a half-life of 1-2 hr under physiological conditions. Unusual effects of metals on the rate of the latency conversion are incompletely understood. Previous work has identified two residues near the N-terminus, H2 and H3, which reside in a high-affinity copper-binding site in PAI-1 [Bucci JC, McClintock CS, Chu Y, Ware GL, McConnell KD, Emerson JP, Peterson CB (2017) J Biol Inorg Chem 22:1123-1,135]. In this study, neighboring residues, H10, E81, and H364, were tested as possible sites that participate in Cu(II) coordination at the high-affinity site. Kinetic methods, gel sensitivity assays, and isothermal titration calorimetry (ITC) revealed that E81 and H364 have different roles in coordinating metal and mediating the stability of PAI-1. H364 provides a third histidine in the metal-coordination sphere with H2 and H3. In contrast, E81 does not appear to be required for metal ligation along with histidines; contacts made by the side-chain carboxylate upon metal binding are perturbed and, in turn, influence dynamic fluctuations within the region encompassing helices D, E, and F and the W86 loop that are important in the pathway for the PAI-1 latency conversion. This investigation underscores a prominent role of protein dynamics, noncovalent bonding networks and ligand binding in controlling the stability of the active form of PAI-1.
Collapse
Affiliation(s)
- Yuzhuo Chu
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Joel C Bucci
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Cynthia B Peterson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
5
|
Liu J, Chen Z, Huang M, Tang S, Wang Q, Hu P, Gupta P, Ashby CR, Chen ZS, Zhang L. Plasminogen activator inhibitor (PAI) trap3, an exocellular peptide inhibitor of PAI-1, attenuates the rearrangement of F-actin and migration of cancer cells. Exp Cell Res 2020; 391:111987. [DOI: 10.1016/j.yexcr.2020.111987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/25/2022]
|
6
|
Shang L, Xue G, Gong L, Zhang Y, Peng S, Yuan C, Huang M. A novel ELISA for the detection of active form of plasminogen activator inhibitor-1 based on a highly specific trapping agent. Anal Chim Acta 2019; 1053:98-104. [DOI: 10.1016/j.aca.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/26/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022]
|
7
|
Wyganowska-Świątkowska M, Tarnowski M, Murtagh D, Skrzypczak-Jankun E, Jankun J. Proteolysis is the most fundamental property of malignancy and its inhibition may be used therapeutically (Review). Int J Mol Med 2018; 43:15-25. [PMID: 30431071 PMCID: PMC6257838 DOI: 10.3892/ijmm.2018.3983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022] Open
Abstract
The mortality rates of cancer patients decreased by ~1.5% per year between 2001 and 2015, although the decrease depends on patient sex, ethnic group and type of malignancy. Cancer remains a significant global health problem, requiring a search for novel treatments. The most common property of malignant tumors is their capacity to invade adjacent tissue and to metastasize, and this cancer aggressiveness is contingent on overexpression of proteolytic enzymes. The components of the plasminogen activation system (PAS) and the metal-loproteinase family [mainly matrix metalloproteinases (MMPs)] are overexpressed in malignant tumors, driving the local invasion, metastasis and angiogenesis. This is the case for numerous types of cancer, such as breast, colon, prostate and oral carcinoma, among others. Present chemotherapeutics agents typically attack all dividing cells; however, for future therapeutic agents to be clinically successful, they need to be highly selective for a specific protein(s) and act on the cancerous tissues without adverse systemic effects. Inhibition of proteolysis in cancerous tissue has the ability to attenuate tumor invasion, angiogenesis and migration. For that purpose, inhibiting both PAS and MMPs may be another approach, since the two groups of enzymes are overexpressed in cancer. In the present review, the roles and new findings on PAS and MMP families in cancer formation, growth and possible treatments are discussed.
Collapse
Affiliation(s)
| | | | - Daniel Murtagh
- Urology Research Center, Department of Urology, Health Science Campus, The University of Toledo, Toledo, OH 43614‑2598, USA
| | - Ewa Skrzypczak-Jankun
- Urology Research Center, Department of Urology, Health Science Campus, The University of Toledo, Toledo, OH 43614‑2598, USA
| | - Jerzy Jankun
- Urology Research Center, Department of Urology, Health Science Campus, The University of Toledo, Toledo, OH 43614‑2598, USA
| |
Collapse
|
8
|
Methods for Determining and Understanding Serpin Structure and Function: X-Ray Crystallography. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2018; 1826:9-39. [PMID: 30194591 DOI: 10.1007/978-1-4939-8645-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Deciphering the X-ray crystal structures of serine protease inhibitors (serpins) and serpin complexes has been an integral part of understanding serpin function and inhibitory mechanisms. In addition, high-resolution structural information of serpins derived from the three domains of life (bacteria, archaea, and eukaryotic) and viruses has provided valuable insights into the hereditary and evolutionary history of this unique superfamily of proteins. This chapter will provide an overview of the predominant biophysical method that has yielded this information, X-ray crystallography. In addition, details of up-and-coming methods, such as neutron crystallography, cryo-electron microscopy, and small- and wide-angle solution scattering, and their potential applications to serpin structural biology will be briefly discussed. As serpins remain important both biologically and medicinally, the information provided in this chapter will aid in future experiments to expand our knowledge of this family of proteins.
Collapse
|
9
|
Jendroszek A, Sønnichsen MS, Muñoz AC, Leyman K, Christensen A, Petersen SV, Wang T, Bendixen C, Panitz F, Andreasen PA, Jensen JK. Latency transition of plasminogen activator inhibitor type 1 is evolutionarily conserved. Thromb Haemost 2017; 117:1688-1699. [PMID: 28771275 DOI: 10.1160/th17-02-0102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/11/2017] [Indexed: 02/04/2023]
Abstract
Plasminogen activator inhibitor type 1 (PAI-1) is a central regulator of fibrinolysis and tissue remodelling. PAI-1 belongs to the serpin superfamily and unlike other inhibitory serpins undergoes a spontaneous inactivation process under physiological conditions, termed latency transition. During latency transition the solvent exposed reactive centre loop is inserted into the central β-sheet A of the molecule, and is no longer accessible to reaction with the protease. More than three decades of research on mammalian PAI-1 has not been able to clarify the evolutionary advantage and physiological relevance of latency transition. In order to study the origin of PAI-1 latency transition, we produced PAI-1 from Spiny dogfish shark (Squalus acanthias) and African lungfish (Protopterus sp.), which represent central species in the evolution of vertebrates. Although human PAI-1 and the non-mammalian PAI-1 variants share only approximately 50 % sequence identity, our results showed that all tested PAI-1 variants undergo latency transition with a similar rate. Since the functional stability of PAI-1 can be greatly increased by substitution of few amino acid residues, we conclude that the ability to undergo latency transition must have been a specific selection criterion for the evolution of PAI-1. It appears that all PAI-1 molecules must harbour latency transition to fulfil their physiological function, stressing the importance to further pursue a complete understanding of this molecular phenomenon with possible implication to pharmacological intervention. Our results provide the next step in understanding how the complete role of this important protease inhibitor evolved along with the fibrinolytic system.
Collapse
|
10
|
Inhibitory serpins. New insights into their folding, polymerization, regulation and clearance. Biochem J 2017; 473:2273-93. [PMID: 27470592 DOI: 10.1042/bcj20160014] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022]
Abstract
Serpins are a widely distributed family of high molecular mass protein proteinase inhibitors that can inhibit both serine and cysteine proteinases by a remarkable mechanism-based kinetic trapping of an acyl or thioacyl enzyme intermediate that involves massive conformational transformation. The trapping is based on distortion of the proteinase in the complex, with energy derived from the unique metastability of the active serpin. Serpins are the favoured inhibitors for regulation of proteinases in complex proteolytic cascades, such as are involved in blood coagulation, fibrinolysis and complement activation, by virtue of the ability to modulate their specificity and reactivity. Given their prominence as inhibitors, much work has been carried out to understand not only the mechanism of inhibition, but how it is fine-tuned, both spatially and temporally. The metastability of the active state raises the question of how serpins fold, whereas the misfolding of some serpin variants that leads to polymerization and pathologies of liver disease, emphysema and dementia makes it clinically important to understand how such polymerization might occur. Finally, since binding of serpins and their proteinase complexes, particularly plasminogen activator inhibitor-1 (PAI-1), to the clearance and signalling receptor LRP1 (low density lipoprotein receptor-related protein 1), may affect pathways linked to cell migration, angiogenesis, and tumour progression, it is important to understand the nature and specificity of binding. The current state of understanding of these areas is addressed here.
Collapse
|
11
|
Plasminogen activator inhibitor-1 stimulates macrophage activation through Toll-like Receptor-4. Biochem Biophys Res Commun 2016; 477:503-8. [PMID: 27317488 DOI: 10.1016/j.bbrc.2016.06.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 06/14/2016] [Indexed: 11/22/2022]
Abstract
While inflammation is often associated with increased Plasminogen Activator Inhibitor-1 (PAI-1), the functional consequences of PAI-1 in inflammation have yet to be fully determined. The aim of this study was to establish the in vivo relevance of PAI-1 in inflammation. A mouse model of systemic inflammation was employed in wild-type (WT) and PAI-1 deficient (PAI-1(-/-)) mice. Mice survival, macrophage infiltration into the lungs, and plasma levels of pro-inflammatory cytokines were assessed after lipopolysaccharide (LPS) infusion. In vitro experiments were conducted to examine changes in LPS-induced inflammatory responses after PAI-1 exposure. PAI-1 was shown to regulate inflammation, in vivo, and affect macrophage infiltration into lungs. Further, PAI-1 activated macrophages, and increased pro-inflammatory cytokines at both the mRNA and protein levels in these cells. The effect of PAI-1 on macrophage activation was dose-dependent and LPS-independent. Proteolytic inhibitory activity and Lipoprotein Receptor-related Protein (LRP) and vitronectin (VN) binding functions, were not involved in PAI-1-mediated activation of macrophages. However, the effect of PAI-1 on macrophage activation was partially blocked by a TLR4 neutralizing antibody. Furthermore, PAI-1-induced Tumor Necrosis Factor-alpha (TNF-α) and Macrophage Inflammatory Protein-2 (MIP-2) expression was reduced in TLR4(-/-) macrophages compared to WT macrophages. These results demonstrate that PAI-1 is involved in the regulation of host inflammatory responses through Toll-like Receptor-4 (TLR4)-mediated macrophage activation.
Collapse
|
12
|
Qureshi T, Peterson CB. Single fluorescence probes along the reactive center loop reveal site-specific changes during the latency transition of PAI-1. Protein Sci 2015; 25:487-98. [PMID: 26540464 DOI: 10.1002/pro.2839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/24/2015] [Accepted: 11/03/2015] [Indexed: 11/09/2022]
Abstract
The serine protease inhibitor (serpin), plasminogen activator inhibitor-1 (PAI-1), is an important biomarker for cardiovascular disease and many cancers. It is therefore a desirable target for pharmaceutical intervention. However, to date, no PAI-1 inhibitor has successfully reached clinical trial, indicating the necessity to learn more about the mechanics of the serpin. Although its kinetics of inhibition have been extensively studied, less is known about the latency transition of PAI-1, in which the solvent-exposed reactive center loop (RCL) inserts into its central β-sheet, rendering the inhibitor inactive. This spontaneous transition is concomitant with a large translocation of the RCL, but no change in covalent structure. Here, we conjugated the fluorescent probe, NBD, to single positions along the RCL (P13-P5') to detect changes in solvent exposure that occur during the latency transition. The results support a mousetrap-like RCL-insertion that occurs with a half-life of 1-2 h in accordance with previous reports. Importantly, this study exposes unique transitions during latency that occur with a half-life of ∼5 and 25 min at the P5' and P8 RCL positions, respectively. We hypothesize that the process detected at P5' represents s1C detachment, while that at P8 results from a steric barrier to RCL insertion. Together, these findings provide new insights by characterizing multiple steps in the latency transition.
Collapse
Affiliation(s)
- Tihami Qureshi
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Cynthia B Peterson
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| |
Collapse
|
13
|
Functional stability of plasminogen activator inhibitor-1. ScientificWorldJournal 2014; 2014:858293. [PMID: 25386620 PMCID: PMC4214104 DOI: 10.1155/2014/858293] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/17/2014] [Indexed: 12/23/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of plasminogen activators, such as tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), and a major regulator of the fibrinolytic system. PAI-1 plays a pivotal role in acute thrombotic events such as deep vein thrombosis (DVT) and myocardial infarction (MI). The biological effects of PAI-1 extend far beyond thrombosis including its critical role in fibrotic disorders, atherosclerosis, renal and pulmonary fibrosis, type-2 diabetes, and cancer. The conversion of PAI-1 from the active to the latent conformation appears to be unique among serpins in that it occurs spontaneously at a relatively rapid rate. Latency transition is believed to represent a regulatory mechanism, reducing the risk of thrombosis from a prolonged antifibrinolytic action of PAI-1. Thus, relying solely on plasma concentrations of PAI-1 without assessing its function may be misleading in interpreting the role of PAI-1 in many complex diseases. Environmental conditions, interaction with other proteins, mutations, and glycosylation are the main factors that have a significant impact on the stability of the PAI-1 structure. This review provides an overview on the current knowledge on PAI-1 especially importance of PAI-1 level and stability and highlights the potential use of PAI-1 inhibitors for treating cardiovascular disease.
Collapse
|
14
|
Liu L, Werner M, Gershenson A. Collapse of a long axis: single-molecule Förster resonance energy transfer and serpin equilibrium unfolding. Biochemistry 2014; 53:2903-14. [PMID: 24749911 PMCID: PMC4020580 DOI: 10.1021/bi401622n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/17/2014] [Indexed: 01/25/2023]
Abstract
The energy required for mechanical inhibition of target proteases is stored in the native structure of inhibitory serpins and accessed by serpin structural remodeling. The overall serpin fold is ellipsoidal with one long and two short axes. Most of the structural remodeling required for function occurs along the long axis, while expansion of the short axes is associated with misfolded, inactive forms. This suggests that ellipticity, as typified by the long axis, may be important for both function and folding. Placement of donor and acceptor fluorophores approximately along the long axis or one of the short axes allows single-pair Förster resonance energy transfer (spFRET) to report on both unfolding transitions and the time-averaged shape of different conformations. Equilibrium unfolding and refolding studies of the well-characterized inhibitory serpin α1-antitrypsin reveal that the long axis collapses in the folding intermediates while the monitored short axis expands. These energetically distinct intermediates are thus more spherical than the native state. Our spFRET studies agree with other equilibrium unfolding studies that found that the region around one of the β strands, s5A, which helps define the long axis and must move for functionally required loop insertion, unfolds at low denaturant concentrations. This supports a connection between functionally important structural lability and unfolding in the inhibitory serpins.
Collapse
Affiliation(s)
- Lu Liu
- Department
of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Michael Werner
- Department
of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Anne Gershenson
- Department
of Biochemistry and Molecular Biology, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
15
|
Wyganowska-Świątkowska M, Surdacka A, Skrzypczak-Jankun E, Jankun J. The plasminogen activation system in periodontal tissue (Review). Int J Mol Med 2014; 33:763-8. [PMID: 24535478 DOI: 10.3892/ijmm.2014.1653] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/28/2014] [Indexed: 11/05/2022] Open
Abstract
The plasminogen activation system (PAS) plays an essential role in tissue proteolysis in physiological and pathological processes. Periodontitis is a chronic infection associated with increased proteolysis driven by plasminogen activation. In this comprehensive review, we summarise the effects of PAS in wound healing, tissue remodelling, inflammation, bacterial infection, and in the initiation and progression of periodontal disease. Specifically, we discuss the role of plasminogen activators (PAs), including urokinase PA (uPA), tissue-type PA (tPA), PA inhibitor type 1 (PAI-1) and 2 (PAI-2) and activated plasminogen in periodontal tissue, where their concentrations can reach much higher values than those found in other parts of the body. We also discuss whether PA deficiencies can have effects on periodontal tissue. We conclude that in periodontal disease, PAS is unbalanced and equalizing its function can improve the clinical periodontal tissue condition.
Collapse
Affiliation(s)
| | - Anna Surdacka
- Department of Conservative Dentistry and Periodontology, Poznań University of Medical Sciences, Poznań 60-820, Poland
| | - Ewa Skrzypczak-Jankun
- Urology Research Center, Department of Urology, College of Medicine, University of Toledo, Toledo, OH 43614, USA
| | - Jerzy Jankun
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Thompson LC, Goswami S, Ginsberg DS, Day DE, Verhamme IM, Peterson CB. Metals affect the structure and activity of human plasminogen activator inhibitor-1. I. Modulation of stability and protease inhibition. Protein Sci 2011; 20:353-65. [PMID: 21280127 DOI: 10.1002/pro.568] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor with a metastable active conformation. Under physiological conditions, half of the inhibitor transitions to a latent state within 1-2 h. The interaction between PAI-1 and the plasma protein vitronectin prolongs this active lifespan by ∼50%. Previously, our group demonstrated that PAI-1 binds to resins using immobilized metal affinity chromatography (Day, U.S. Pat. 7,015,021 B2, March 21, 2006). In this study, the effect of these metals on function and stability was investigated by measuring the rate of the transition from the active to latent conformation. All metals tested showed effects on stability, with the majority falling into one of two types depending on their effects. The first type of metal, which includes magnesium, calcium and manganese, invoked a slight stabilization of the active conformation of PAI-1. A second category of metals, including cobalt, nickel and copper, showed the opposite effects and a unique vitronectin-dependent modulation of PAI-1 stability. This second group of metals significantly destabilized PAI-1, although the addition of vitronectin in conjunction with these metals resulted in a marked stabilization and slower conversion to the latent conformation. In the presence of copper and vitronectin, the half-life of active PAI-1 was extended to 3 h, compared to a half-life of only ∼30 min with copper alone. Nickel had the largest effect, reducing the half-life to ∼5 min. Together, these data demonstrate a heretofore-unknown role for metals in modulating PAI-1 stability.
Collapse
Affiliation(s)
- Lawrence C Thompson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Blood-brain barrier permeability and tPA-mediated neurotoxicity. Neuropharmacology 2010; 58:972-80. [PMID: 20060006 DOI: 10.1016/j.neuropharm.2009.12.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 11/26/2009] [Accepted: 12/18/2009] [Indexed: 11/20/2022]
Abstract
Tissue type plasminogen activator (tPA) can induce neuronal apoptosis, disrupt the blood-brain barrier (BBB), and promote dilation of the cerebral vasculature. The timing, sequence and contributions of these and other deleterious effects of tPA and their contribution to post-ischemic brain damage after stroke, have not been fully elucidated. To dissociate the effects of tPA on BBB permeability, cerebral vasodilation and protease-dependent pathways, we developed several tPA mutants and PAI-1 derived peptides constructed by computerized homology modeling of tPA. Our data show that intravenous administration of human tPA to rats increases BBB permeability through a non-catalytic process that is associated with reversible neurotoxicity, brain damage, mortality and contributes significantly to its brief therapeutic window. Furthermore, our data show that inhibiting the effect of tPA on BBB function without affecting its catalytic activity, improves outcome and significantly extends its therapeutic window in mechanical as well as in thromboembolic models of stroke.
Collapse
|
19
|
Jankun J, M. Aleem A, Struniawski R, Łysiak-Szydłowska W, H. Selman S, Skrzypczak-Jankun E. Accelerated thrombus lysis in the blood of plasminogen activator inhibitor deficient mice is inhibited by PAI-1 with a very long half-life. Pharmacol Rep 2009; 61:673-80. [DOI: 10.1016/s1734-1140(09)70119-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 06/29/2009] [Indexed: 11/30/2022]
|
20
|
Dewilde M, Strelkov SV, Rabijns A, Declerck PJ. High quality structure of cleaved PAI-1-stab. J Struct Biol 2008; 165:126-32. [PMID: 19059484 DOI: 10.1016/j.jsb.2008.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 09/30/2008] [Accepted: 11/06/2008] [Indexed: 11/16/2022]
Abstract
Here we report the crystal structure of a stablilized plasminogen activator inhibitor-1 variant (PAI-1-N150H-K154T-Q301P-Q319L-M354I (PAI-1-stab)) that shows a cleavage within the reactive centre loop. The new structure is of superior quality compared to the previously determined structure of the cleaved PAI-1-A335P mutant. We present a detailed comparison of the two structures and also compare them with the structure of the active PAI-1-stab. The structural data give important insights into the working mechanism of PAI-1 and also explain the role of various stabilizing mutations.
Collapse
Affiliation(s)
- M Dewilde
- Katholieke Universiteit Leuven, Belgium
| | | | | | | |
Collapse
|
21
|
Yi JY, Im H. Structural factors affecting the choice between latency transition and polymerization in inhibitory serpins. Protein Sci 2007; 16:833-41. [PMID: 17400919 PMCID: PMC2206651 DOI: 10.1110/ps.062745807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 01/31/2007] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor (serpin) protein family, is unique among the serpins in its conformational lability. This lability allows spontaneous conversion of the active form to a more stable, latent conformation under physiological conditions. In other serpins, polymerization, rather than latency transition, is induced under pathological conditions or upon heat treatment. To identify specific factors promoting latency conversion in PAI-1, we mutated PAI-1 at various positions and compared the effects with those of equivalent mutations in alpha(1)-antitrypsin, the archetypal serpin. Mutations that improved interactions with the turn between helix F and the third strand of beta-sheet A (thFs3A) or the fifth strand of beta-sheet A (s5A), which are near the site of latency transition-associated insertion of the reactive center loop, retarded latency conversion but did not greatly increase structural stability. Mutations that decreased interactions with s2C facilitated conformational conversion, possibly by releasing the reactive center loop from beta-sheet C. Mutations of Thr93 that filled a hydrophobic surface pocket on s2A dramatically increased structural stability but had a negligible effect on the conformational transition. Our results suggest that the structural features controlling latency transition in PAI-1 are highly localized, whereas the conformational strain of the native forms of other inhibitory serpins is distributed throughout the molecule and induces polymerization.
Collapse
Affiliation(s)
- Ji-Yeun Yi
- Department of Molecular Biology, Sejong University, Seoul 143-747, Korea
| | | |
Collapse
|
22
|
Marszal E, Shrake A. Serpin crystal structure and serpin polymer structure. Arch Biochem Biophys 2006; 453:123-9. [PMID: 16631102 DOI: 10.1016/j.abb.2006.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Accepted: 03/05/2006] [Indexed: 11/25/2022]
Abstract
Serpins are a family of structurally homologous proteins having metastable native structures. As a result, a serpin variant destabilized by mutation(s) has a tendency to undergo conformational changes leading to inactive forms, e.g., the latent form and polymer. Serpin polymers are involved in a number of conformational diseases. Although several models for polymer structure have been proposed, the actual structure remains unknown. Here, we provide a comprehensive list of serpins, both free and in complexes, deposited in the Protein Data Bank. Our discussion focuses on structures that potentially can contribute to a better understanding of polymer structure.
Collapse
Affiliation(s)
- Ewa Marszal
- Division of Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | | |
Collapse
|
23
|
Di Giusto DA, Sutherland APR, Jankova L, Harrop SJ, Curmi PMG, King GC. Plasminogen activator inhibitor-2 is highly tolerant to P8 residue substitution--implications for serpin mechanistic model and prediction of nsSNP activities. J Mol Biol 2005; 353:1069-80. [PMID: 16214170 DOI: 10.1016/j.jmb.2005.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2005] [Revised: 09/02/2005] [Accepted: 09/06/2005] [Indexed: 11/18/2022]
Abstract
The serine protease inhibitor (serpin) superfamily is involved in a wide range of cellular processes including fibrinolysis, angiogenesis, apoptosis, inflammation, metastasis and viral pathogenesis. Here, we investigate the unique mousetrap inhibition mechanism of serpins through saturation mutagenesis of the P8 residue for a typical family member, plasminogen activator inhibitor-2 (PAI-2). A number of studies have proposed an important role for the P8 residue in the efficient insertion and stabilisation of the cleaved reactive centre loop (RCL), which is a key event in the serpin inhibitory mechanism. The importance of this residue for inhibition of the PAI-2 protease target urinary plasminogen activator (urokinase, uPA) is confirmed, although a high degree of tolerance to P8 substitution is observed. Out of 19 possible PAI-2 P8 mutants, 16 display inhibitory activities within an order of magnitude of the wild-type P8 Thr species. Crystal structures of complexes between PAI-2 and RCL-mimicking peptides with P8 Met or Asp mutations are determined, and structural comparison with the wild-type complex substantiates the ability of the S8 pocket to accommodate disparate side-chains. These data indicate that the identity of the P8 residue is not a determinant of efficient RCL insertion, and provide further evidence for functional plasticity of key residues within enzyme structures. Poor correlation of observed PAI-2 P8 mutant activities with a range of physicochemical, evolutionary and thermodynamic predictive indices highlights the practical limitations of existing approaches to predicting the molecular phenotype of protein variants.
Collapse
Affiliation(s)
- Daniel A Di Giusto
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Na YR, Im H. The length of the reactive center loop modulates the latency transition of plasminogen activator inhibitor-1. Protein Sci 2005; 14:55-63. [PMID: 15576554 PMCID: PMC2253313 DOI: 10.1110/ps.041063705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 09/13/2004] [Accepted: 09/14/2004] [Indexed: 10/26/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) belongs to the serine protease inhibitor (serpin) protein family, which has a common tertiary structure consisting of three beta-sheets and several alpha-helices. Despite the similarity of its structure with those of other serpins, PAI-1 is unique in its conformational lability, which allows the conversion of the metastable active form to a more stable latent conformation under physiological conditions. For the conformational conversion to occur, the reactive center loop (RCL) of PAI-1 must be mobilized and inserted into the major beta-sheet, A sheet. In an effort to understand how the structural conversion is regulated in this conformationally labile serpin, we modulated the length of the RCL of PAI-1. We show that releasing the constraint on the RCL by extension of the loop facilitates a conformational transition of PAI-1 to a stable state. Biochemical data strongly suggest that the stabilization of the transformed conformation is owing to the insertion of the RCL into A beta-sheet, as in the known latent form. In contrast, reducing the loop length drastically retards the conformational change. The results clearly show that the constraint on the RCL is a factor that regulates the conformational transition of PAI-1.
Collapse
Affiliation(s)
- Yu-Ran Na
- Department of Molecular Biology, Research Center for Conformational Degenerative Diseases, Sejong University, 98 Gunja-dong, Kwangjin-gu, Seoul 143-747, Korea
| | | |
Collapse
|
25
|
Xu Z, Balsara RD, Gorlatova NV, Lawrence DA, Castellino FJ, Ploplis VA. Conservation of critical functional domains in murine plasminogen activator inhibitor-1. J Biol Chem 2004; 279:17914-20. [PMID: 14963029 DOI: 10.1074/jbc.m314197200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor-1 is the main physiological regulator of tissue-type plasminogen activator in normal plasma. In addition to its critical function in fibrinolysis, plasminogen activator inhibitor-1 has been implicated in roles in other physiological and pathophysiological processes. To investigate structure-function aspects of mouse plasminogen activator inhibitor-1, the recombinant protein was expressed in Escherichia coli and purified. Five variant recombinant murine proteins (R76E, Q123K, R346A, R101A, and Q123K/R101A) were also generated using site-directed mutagenesis. The variant (R346A) was found to be defective in its inhibitory activity against tissue plasminogen activator relative to its wild-type counterpart. Enzyme-linked immunosorbent assay and surface plasmon resonance experiments demonstrated reduced vitronectin-binding affinity of the (Q123K) variant (K(D) = 1800 nm) relative to the wild-type protein (K(D) = 5.4 nm). Kinetic analyses indicated that the (Q123K) variant had a slower association (k(on) = 2.92 x 10(4) m(-1) s(-1)) to, and a faster dissociation from, vitronectin (k(off) = 5.3 x 10(-2) s(-1)), (wild-type k(on) = 1.03 x 10(6) m(-1) s(-1) and k(off) = 5.27 x 10(-3) s(-1)). The Q123K/R101A variant demonstrated an even lower vitronectin-binding ability. Low density lipoprotein receptor-related protein binding was decreased for the (R76E) variant. It was also demonstrated that the plasminogen activator inhibitor-1/vitronectin complex decreased the interaction of plasminogen activator inhibitor-1 with low density lipoprotein receptor-related protein. These results indicate that the complex interactions traditionally associated with different plasminogen activator inhibitor-1 functions apply to the murine system, thus showing a commonality of subtle functions among different species and evolutionary conservation of this protein. Further, this study provides additional evidence that the human hemostasis system can be studied effectively in the mouse, which is a great asset for investigations with gene-altered mice.
Collapse
Affiliation(s)
- Zhi Xu
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | |
Collapse
|
26
|
Wind T, Jensen JK, Dupont DM, Kulig P, Andreasen PA. Mutational analysis of plasminogen activator inhibitor-1. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1680-8. [PMID: 12694181 DOI: 10.1046/j.1432-1033.2003.03524.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The serpin plasminogen activator inhibitor-1 (PAI-1) is a fast and specific inhibitor of the plasminogen activating serine proteases tissue-type and urokinase-type plasminogen activator and, as such, an important regulator in turnover of extracellular matrix and in fibrinolysis. PAI-1 spontaneously loses its antiproteolytic activity by inserting its reactive centre loop (RCL) as strand 4 in beta-sheet A, thereby converting to the so-called latent state. We have investigated the importance of the amino acid sequence of alpha-helix F (hF) and the connecting loop to s3A (hF/s3A-loop) for the rate of latency transition. We grafted regions of the hF/s3A-loop from antithrombin III and alpha1-protease inhibitor onto PAI-1, creating eight variants, and found that one of these reversions towards the serpin consensus decreased the rate of latency transition. We prepared 28 PAI-1 variants with individual residues in hF and beta-sheet A replaced by an alanine. We found that mutating serpin consensus residues always had functional consequences whereas mutating nonconserved residues only had so in one case. Two variants had low but stable inhibitory activity and a pronounced tendency towards substrate behaviour, suggesting that insertion of the RCL is held back during latency transition as well as during complex formation with target proteases. The data presented identify new determinants of PAI-1 latency transition and provide general insight into the characteristic loop-sheet interactions in serpins.
Collapse
Affiliation(s)
- Troels Wind
- Laboratory of Cellular Protein Science, Department of Molecular Biology, Aarhus University, Denmark
| | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Peter G W Gettins
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, M/C 536, 1819-53 West Polk Street, Chicago, Illinois 60612, USA.
| |
Collapse
|
28
|
Im H, Woo MS, Hwang KY, Yu MH. Interactions Causing the Kinetic Trap in Serpin Protein Folding. J Biol Chem 2002; 277:46347-54. [PMID: 12244055 DOI: 10.1074/jbc.m207682200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conformational transition is fundamental to the mechanism of functional regulation in proteins, and serpins (serine protease inhibitors) can provide insight into this process. Serpins are metastable in their native forms, and they ordinarily undergo conformational transition to a stable state only when they form a tight complex with target proteases. The metastable native form is thus considered to be a kinetically trapped folding intermediate. We sought to understand the nature of the serpin kinetic trap as a step toward discovering how conformational transition is regulated. We found that mutations of the B/C beta-barrel of native alpha(1)-antitrypsin, a prototypical serpin, allowed conversion of the molecule into a more stable state. A 2.2 A resolution crystal structure of the stable form (PDB code, ) showed that the reactive site loop is inserted into an A beta-sheet, as in the latent plasminogen activator inhibitor-1. Mutational analyses suggest strongly that interactions not found in the final stable form cause the kinetic trap in serpin protein folding.
Collapse
Affiliation(s)
- Hana Im
- National Creative Research Initiatives, Protein Strain Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Sungbuk-gu, Seoul 136-791, Korea
| | | | | | | |
Collapse
|
29
|
Wind T, Hansen M, Jensen JK, Andreasen PA. The molecular basis for anti-proteolytic and non-proteolytic functions of plasminogen activator inhibitor type-1: roles of the reactive centre loop, the shutter region, the flexible joint region and the small serpin fragment. Biol Chem 2002; 383:21-36. [PMID: 11928815 DOI: 10.1515/bc.2002.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The serine proteinase inhibitor plasminogen activator inhibitor type-1 (PAI-1) is the primary physiological inhibitor of the tissue-type and the urokinase-type plasminogen activator (tPA and uPA, respectively) and as such an important regulator of proteolytic events taking place in the circulation and in the extracellular matrix. Moreover, a few non-proteolytic functions have been ascribed to PAI-1, mediated by its interaction with vitronectin or the interaction between the uPA-PAI-1 complex bound to the uPA receptor and members of the low density lipoprotein receptor family. PAI-1 belongs to the serpin family, characterised by an unusual conformational flexibility, which governs its molecular interactions. In this review we describe the anti-proteolytic and non-proteolytic functions of PAI-1 from both a biological and a biochemical point of view. We will relate the various biological roles of PAI-1 to its biochemistry in general and to the different conformations of PAI-1 in particular. We put emphasis on the intramolecular rearrangements of PAI-1 that are required for its antiproteolytic as well as its non-proteolytic functions.
Collapse
Affiliation(s)
- Troels Wind
- Department of Molecular and Structural Biology, Aarhus University, Denmark
| | | | | | | |
Collapse
|
30
|
Bottomley SP, Lawrenson ID, Tew D, Dai W, Whisstock JC, Pike RN. The role of strand 1 of the C beta-sheet in the structure and function of alpha(1)-antitrypsin. Protein Sci 2001; 10:2518-24. [PMID: 11714919 PMCID: PMC2374035 DOI: 10.1110/ps.ps.24101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Serpins inhibit cognate serine proteases involved in a number of important processes including blood coagulation and inflammation. Consequently, loss of serpin function or stability results in a number of disease states. Many of the naturally occurring mutations leading to disease are located within strand 1 of the C beta-sheet of the serpin. To ascertain the structural and functional importance of each residue in this strand, which constitutes the so-called distal hinge of the reactive center loop of the serpin, an alanine scanning study was carried out on recombinant alpha(1)-antitrypsin Pittsburgh mutant (P1 = Arg). Mutation of the P10' position had no effect on its inhibitory properties towards thrombin. Mutations to residues P7' and P9' caused these serpins to have an increased tendency to act as substrates rather than inhibitors, while mutations at P6' and P8' positions caused the serpin to behave almost entirely as a substrate. Mutations at the P6' and P8' residues of the C beta-sheet, which are buried in the hydrophobic core in the native structure, caused the serpin to become highly unstable and polymerize much more readily. Thus, P6' and P8' mutants of alpha(1)-antitrypsin had melting temperatures 14 degrees lower than wild-type alpha(1)-antitrypsin. These results indicate the importance of maintaining the anchoring of the distal hinge to both the inhibitory mechanism and stability of serpins, the inhibitory mechanism being particularly sensitive to any perturbations in this region. The results of this study allow more informed analysis of the effects of mutations found at these positions in disease-associated serpin variants.
Collapse
Affiliation(s)
- S P Bottomley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | |
Collapse
|
31
|
Bijnens AP, Gils A, Stassen JM, Komissarov AA, Knockaert I, Brouwers E, Shore JD, Declerck PJ. The distal hinge of the reactive site loop and its proximity: a target to modulate plasminogen activator inhibitor-1 activity. J Biol Chem 2001; 276:44912-8. [PMID: 11559698 DOI: 10.1074/jbc.m103077200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serpin plasminogen activator inhibitor type 1 (PAI-1) plays a regulatory role in various physiological processes (e.g. fibrinolysis and pericellular proteolysis) and forms a potential target for therapeutic interventions. In this study we identified the epitopes of three PAI-1 inhibitory monoclonal antibodies (MA-44E4, MA-42A2F6, and MA-56A7C10). Differential cross-reactivities of these monoclonals with PAI-1 from different species and sequence alignments between these PAI-1s, combined with the three-dimensional structure, revealed several charged residues as possible candidates to contribute to the respective epitopes. The production, characterization, and subsequent evaluation of a variety of alanine mutants using surface plasmon resonance revealed that the residues His(185), Arg(186), and Arg(187) formed the major sites of interaction for MA-44E4. In contrast, the epitopes of MA-42A2F6 and MA-56A7C10 were found to be conformational. The epitope of MA-42A2F6 comprises residues Lys(243) and Glu(350), whereas the epitope of MA-56A7C10 comprises residues Glu(242), Lys(243), Glu(244), Glu(350), Asp(355), and Arg(356). The participation of Glu(350), Asp(355), and Arg(356) provides a molecular explanation for the differential exposure of this epitope in the different conformations of PAI-1 and for the effect of these antibodies on the kinetics of the formation of the initial PAI-1-proteinase complexes. The localization of the epitopes of MA-44E4, MA42A2F6, and MA-56A7C10 elucidates two previously unidentified molecular mechanisms to modulate PAI-1 activity and opens new perspectives for the rational development of PAI-1 neutralizing compounds.
Collapse
Affiliation(s)
- A P Bijnens
- Laboratory for Pharmaceutical Biology and Phytopharmacology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Saunders DN, Jankova L, Harrop SJ, Curmi PM, Gould AR, Ranson M, Baker MS. Interaction between the P14 residue and strand 2 of beta-sheet B is critical for reactive center loop insertion in plasminogen activator inhibitor-2. J Biol Chem 2001; 276:43383-9. [PMID: 11555638 DOI: 10.1074/jbc.m103123200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular interactions driving reactive center loop (RCL) insertion are of considerable interest in gaining a better understanding of the serpin inhibitory mechanism. Previous studies have suggested that interactions in the proximal hinge/breach region may be critical determinants of RCL insertion in serpins. In this study, conformational and functional changes in plasminogen activator inhibitor-2 (PAI-2) following incubation with a panel of synthetic RCL peptides indicated that the P14 residue is critical for RCL insertion, and hence inhibitory activity, in PAI-2. Only RCL peptides with a P14 threonine were able to induce the stressed to relaxed transition and abolish inhibitory activity in PAI-2, indicating that RCL insertion into beta-sheet A of PAI-2 is dependent upon this residue. The recently solved crystal structure of relaxed PAI-2 (PAI-2.RCL peptide complex) allowed detailed analysis of molecular interactions involving P14 related to RCL insertion. Of most interest is the rearrangement of hydrogen bonding around the breach region that accompanies the stressed to relaxed transition, in particular the formation of a side chain hydrogen bond between the threonine at P14 and an adjacent tyrosine on strand 2 of beta-sheet B in relaxed PAI-2. Structural alignment of known serpin sequences showed that this pairing (or the equivalent serine/threonine pairing) is highly conserved ( approximately 87%) in inhibitory serpins and may represent a general structural basis for serpin inhibitory activity.
Collapse
Affiliation(s)
- D N Saunders
- Department of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong 2522, Australia.
| | | | | | | | | | | | | |
Collapse
|
33
|
Stoop AA, Eldering E, Dafforn TR, Read RJ, Pannekoek H. Different structural requirements for plasminogen activator inhibitor 1 (PAI-1) during latency transition and proteinase inhibition as evidenced by phage-displayed hypermutated PAI-1 libraries. J Mol Biol 2001; 305:773-83. [PMID: 11162091 DOI: 10.1006/jmbi.2000.4356] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasminogen activator inhibitor type 1 (PAI-1) is a member of the serine protease inhibitor (serpin) superfamily. Its highly mobile reactive-center loop (RCL) is thought to account for both the rapid inhibition of tissue-type plasminogen activator (t-PA), and the rapid and spontaneous transition of the unstable, active form of PAI-1 into a stable, inactive (latent) conformation (t(1/2) at 37 degrees C, 2.2 hours). We determined the amino acid residues responsible for the inherent instability of PAI-1, to assess whether these properties are independent and, consequently, whether the structural basis for inhibition and latency transition is different. For that purpose, a hypermutated PAI-1 library that is displayed on phage was pre-incubated for increasing periods (20 to 72 hours) at 37 degrees C, prior to a stringent selection for rapid t-PA binding. Accordingly, four rounds of phage-display selection resulted in the isolation of a stable PAI-1 variant (st-44: t(1/2) 450 hours) with 11 amino acid mutations. Backcrossing by DNA shuffling of this stable mutant with wt PAI-1 was performed to eliminate non-contributing mutations. It was shown that the combination of mutations at positions 50, 56, 61, 70, 94, 150, 222, 223, 264 and 331 increases the half-life of PAI-1 245-fold. Furthermore, within the limits of detection the stable mutants isolated are functionally indistinguishable from wild-type PAI-1 with respect to the rate of inhibition of t-PA, cleavage by t-PA, and binding to vitronectin. These stabilizing mutations constitute largely reversions to the stable "serpin consensus sequence" and are located in areas implicated in PAI-1 stability (e.g. the vitronectin-binding domain and the proximal hinge). Collectively, our data provide evidence that the structural requirements for PAI-1 loop insertion during latency transition and target proteinase inhibition can be separated.
Collapse
Affiliation(s)
- A A Stoop
- Department of Biochemistry Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Irving JA, Pike RN, Lesk AM, Whisstock JC. Phylogeny of the Serpin Superfamily: Implications of Patterns of Amino Acid Conservation for Structure and Function. Genome Res 2000. [DOI: 10.1101/gr.147800] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We present a comprehensive alignment and phylogenetic analysis of the serpins, a superfamily of proteins with known members in higher animals, nematodes, insects, plants, and viruses. We analyze, compare, and classify 219 proteins representative of eight major and eight minor subfamilies, using a novel technique of consensus analysis. Patterns of sequence conservation characterize the family as a whole, with a clear relationship to the mechanism of function. Variations of these patterns within phylogenetically distinct groups can be correlated with the divergence of structure and function. The goals of this work are to provide a carefully curated alignment of serpin sequences, to describe patterns of conservation and divergence, and to derive a phylogenetic tree expressing the relationships among the members of this family. We extend earlier studies by Huber and Carrell as well as by Marshall, after whose publication the serpin family has grown functionally, taxonomically, and structurally. We used gene and protein sequence data, crystal structures, and chromosomal location where available. The results illuminate structure–function relationships in serpins, suggesting roles for conserved residues in the mechanism of conformational change. The phylogeny provides a rational evolutionary framework to classify serpins and enables identification of conserved amino acids. Patterns of conservation also provide an initial point of comparison for genes identified by the various genome projects. New homologs emerging from sequencing projects can either take their place within the current classification or, if necessary, extend it.
Collapse
|
35
|
Stoop AA, Jespers L, Lasters I, Eldering E, Pannekoek H. High-density mutagenesis by combined DNA shuffling and phage display to assign essential amino acid residues in protein-protein interactions: application to study structure-function of plasminogen activation inhibitor 1 (PAI-I). J Mol Biol 2000; 301:1135-47. [PMID: 10966811 DOI: 10.1006/jmbi.2000.4035] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The identification of specific amino acid residues involved in protein-protein interaction is fundamental to understanding structure-function relationships. Supported by mathematical calculations, we designed a high-density mutagenesis procedure for the generation of a mutant library of which a limited number of random clones would suffice to exactly localize amino acid residues essential for a particular protein-protein interaction. This goal was achieved experimentally by consecutive cycles of DNA shuffling, under error prone conditions, each followed by exposure of the target protein on the surface of phages to screen and select for correctly folded, functional mutants. To validate the procedure, human plasminogen activator inhibitor 1 (PAI-1) was chosen, because its 3D structure is known, many experimental tools are available and it may serve as a model protein for structure-function studies of serine proteinases and their inhibitors (serpins). After five cycles of DNA shuffling and selection for t-PA binding, analysis of 27 randomly picked clones revealed that PAI-1 mutants contained an average of 9.1 amino acid substitutions distributed over 114 different positions, which were preferentially located at the surface of the protein. This limited collection of mutant PAI-1 preparations contained multiple mutants defective in binding to three out of four tested anti-PAI-1 monoclonal antibodies. Alignment of the nucleotide sequence of defective clones permitted assignment of single dominant amino acid residues for binding to each monoclonal antibody. The importance of these residues was confirmed by testing the properties of single point mutants. From the position of these amino acid residues in the 3D structure of PAI-1 and the effects of the corresponding monoclonal antibodies on t-PA-PAI-1 interaction, conclusions can be drawn with respect to this serpin-serine proteinase interaction.
Collapse
Affiliation(s)
- A A Stoop
- Department of Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Abstract
Amyloid-beta (Abeta) appears critical to Alzheimer's disease. To clarify possible mechanisms of Abeta action, we have quantified Abeta-induced gene expression in vitro by using Abeta-treated primary cortical neuronal cultures and in vivo by using mice transgenic for the Abeta precursor (AbetaP). Here, we report that aggregated, but not nonaggregated, Abeta increases the level of the mRNAs encoding tissue plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). Moreover, tPA and uPA were also upregulated in aged AbetaP overexpressing mice. Because others have reported that Abeta aggregates can substitute for fibrin aggregates in activating tPA post-translationally, the result of tPA induction by Abeta would be cleavage of plasminogen to the active protease plasmin. To gain insights into the possible actions of plasmin, we evaluated the hypotheses that tPA and plasmin may mediate Abeta in vitro toxicity or, alternatively, that plasmin activation may lead to Abeta degradation. In evaluating these conflicting hypotheses, we found that purified plasmin degrades Abeta with physiologically relevant efficiency, i.e., approximately 1/10th the rate of plasmin on fibrin. Mass spectral analyses show that plasmin cleaves Abeta at multiple sites. Electron microscopy confirms indirect assays suggesting that plasmin degrades Abeta fibrils. Moreover, exogenously added plasmin blocks Abeta neurotoxicity. In summation, we interpret these results as consistent with the possibility that the plasmin pathway is induced by aggregated Abeta, which can lead to Abeta degradation and inhibition of Abeta actions.
Collapse
|
37
|
Fa M, Bergström F, Karolin J, Johansson LB, Ny T. Conformational studies of plasminogen activator inhibitor type 1 by fluorescence spectroscopy. Analysis of the reactive centre of inhibitory and substrate forms, and of their respective reactive-centre cleaved forms. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3729-34. [PMID: 10848991 DOI: 10.1046/j.1432-1327.2000.01406.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The inhibitors that belong to the serpin family are suicide inhibitors that control the major proteolytic cascades in eucaryotes. Recent data suggest that serpin inhibition involves reactive centre cleavage followed by loop insertion, whereby the covalently linked protease is translocated away from the initial docking site. However under certain circumstances, serpins can also be cleaved like a substrate by target proteases. In this report we have studied the conformation of the reactive centre of plasminogen activator inhibitor type 1 (PAI-1) mutants with inhibitory and substrate properties. The polarized steady-state and time-resolved fluorescence anisotropies were determined for BODIPY(R) probes attached to the P1' and P3 positions of the substrate and active forms of PAI-1. The fluorescence data suggest an extended orientational freedom of the probe in the reactive centre of the substrate form as compared to the active form, revealing that the conformation of the reactive centres differ. The intramolecular distance between the P1' and P3 residues in reactive centre cleaved inhibitory and substrate mutants of PAI-1, were determined by using the donor-donor energy migration (DDEM) method. The distances found were 57+/-4 A and 63+/-3 A, respectively, which is comparable to the distance obtained between the same residues when PAI-1 is in complex with urokinase-type plasminogen activator (uPA). Following reactive centre cleavage, our data suggest that the core of the inhibitory and substrate forms possesses an inherited ability of fully inserting the reactive centre loop into beta-sheet A. In the inhibitory forms of PAI-1 forming serpin-protease complexes, this ability leads to a translocation of the cognate protease from one pole of the inhibitor to the opposite one.
Collapse
Affiliation(s)
- M Fa
- Department of Medical Biosciences, Medical Biochemistry, Umeå University, Sweden
| | | | | | | | | |
Collapse
|
38
|
Nar H, Bauer M, Stassen JM, Lang D, Gils A, Declerck PJ. Plasminogen activator inhibitor 1. Structure of the native serpin, comparison to its other conformers and implications for serpin inactivation. J Mol Biol 2000; 297:683-95. [PMID: 10731421 DOI: 10.1006/jmbi.2000.3604] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of a constitutively active multiple site mutant of plasminogen activator inhibitor 1 (PAI-1) was determined and refined at a resolution of 2.7 A. The present structure comprises a dimer of two crystallographically independent PAI-1 molecules that pack by association of the residues P6 to P3 of the reactive centre loop of one molecule (A) with the edge of the main beta-sheet A of the other molecule (B).Thus, the reactive centre loop is ordered for molecule A by crystal packing forces, while for molecule B it is unconstrained by crystal packing contacts and is disordered. The overall structure of active PAI-1 is similar to the structures of other active inhibitory serpins exhibiting as the major secondary structural feature a five-stranded beta-sheet A and an intact proteinase-binding loop protruding from the one end of the elongated molecule. No preinsertion of the reactive centre loop is observed in this structure.A comparison of the present structure with the previously determined crystal structures of PAI-1 in its alternative conformations reveals that, upon cleavage of an intact form of PAI-1 or formation of latent PAI-1, the well-characterised rearrangements of the serpin secondary structural elements are accompanied by dramatic and partly unexpected conformational changes of helical and loop structures proximal to beta-sheet A. The present structure explains the stabilising effects of the mutated residues, reveals the structural cause for the observed spectroscopic differences between active and latent PAI-1, and provides new insights into possible mechanisms of stabilisation by its natural binding partner, vitronectin.
Collapse
Affiliation(s)
- H Nar
- Department of Chemistry, Boehringer Ingelheim Pharma KG, Biberach, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Sharp AM, Stein PE, Pannu NS, Carrell RW, Berkenpas MB, Ginsburg D, Lawrence DA, Read RJ. The active conformation of plasminogen activator inhibitor 1, a target for drugs to control fibrinolysis and cell adhesion. Structure 1999; 7:111-8. [PMID: 10368279 DOI: 10.1016/s0969-2126(99)80018-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Plasminogen activator inhibitor 1 (PAI-1) is a serpin that has a key role in the control of fibrinolysis through proteinase inhibition. PAI-1 also has a role in regulating cell adhesion processes relevant to tissue remodeling and metastasis; this role is mediated by its binding to the adhesive glycoprotein vitronectin rather than by proteinase inhibition. Active PAI-1 is metastable and spontaneously transforms to an inactive latent conformation. Previous attempts to crystallize the active conformation of PAI-1 have failed. RESULTS The crystal structure of a stable quadruple mutant of PAI-1(Asn150-->His, Lys154-->Thr, Gln319-->Leu, Met354-->Ile) in its active conformation has been solved at a nominal 3 A resolution. In two of four independent molecules within the crystal, the flexible reactive center loop is unconstrained by crystal-packing contacts and is disordered. In the other two molecules, the reactive center loop forms intimate loop-sheet interactions with neighboring molecules, generating an infinite chain within the crystal. The overall conformation resembles that seen for other active inhibitory serpins. CONCLUSIONS The structure clarifies the molecular basis of the stabilizing mutations and the reduced affinity of PAI-1, on cleavage or in the latent form, for vitronectin. The infinite chain of linked molecules also suggests a new mechanism for the serpin polymerization associated with certain diseases. The results support the concept that the reactive center loop of an active serpin is flexible and has no defined conformation in the absence of intermolecular contacts. The determination of the structure of the active form constitutes an essential step for the rational design of PAI-1 inhibitors.
Collapse
Affiliation(s)
- A M Sharp
- Departments of Biochemistry, 1-41 Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Xue Y, Björquist P, Inghardt T, Linschoten M, Musil D, Sjölin L, Deinum J. Interfering with the inhibitory mechanism of serpins: crystal structure of a complex formed between cleaved plasminogen activator inhibitor type 1 and a reactive-centre loop peptide. Structure 1998; 6:627-36. [PMID: 9634700 DOI: 10.1016/s0969-2126(98)00064-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Plasminogen activator inhibitor type 1 (PAI-1) is an important endogenous regulator of the fibrinolytic system. Reduction of PAI-1 activity has been shown to enhance dissolution of blood clots. Like other serpins, PAI-1 binds covalently to a target serine protease, thereby irreversibly inactivating the enzyme. During this process the exposed reactive-centre loop of PAI-1 is believed to undergo a conformational change becoming inserted into beta sheet A of the serpin. Incubation with peptides from the reactive-centre loop transform serpins into a substrate for their target protease. It has been hypothesised that these peptides bind to beta sheet A, thereby hindering the conformational rearrangement leading to loop insertion and formation of the stable serpin-protease complex. RESULTS We report here the 1.95 A X-ray crystal structure of a complex of a glycosylated mutant of PAI-1, PAI-1-ala335Glu, with two molecules of the inhibitory reactive-centre loop peptide N-Ac-TVASS-NH2. Both bound peptide molecules are located between beta strands 3A and 5A of the serpin. The binding kinetics of the peptide inhibitor to immobilised PAI-1-Ala335Glu, as monitored by surface plasmon resonance, is consistent with there being two different binding sites. CONCLUSIONS This is the first reported crystal structure of a complex formed between a serpin and a serpin inhibitor. The localisation of the inhibitory peptide in the complex strongly supports the theory that molecules binding in the space between beta strands 3A and 5A of a serpin are able to prevent insertion of the reactive-centre loop into beta sheet A, thereby abolishing the ability of the serpin to irreversibly inactivate its target enzyme. The characterisation of the two binding sites for the peptide inhibitor provides a solid foundation for computer-aided design of novel, low molecular weight PAI-1 inhibitors.
Collapse
Affiliation(s)
- Y Xue
- Department of Inorganic Chemistry, Göteborg University, Sweden
| | | | | | | | | | | | | |
Collapse
|
41
|
Chang WS, Lomas DA. Latent alpha1-antichymotrypsin. A molecular explanation for the inactivation of alpha1-antichymotrypsin in chronic bronchitis and emphysema. J Biol Chem 1998; 273:3695-701. [PMID: 9452500 DOI: 10.1074/jbc.273.6.3695] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
alpha1-Antichymotrypsin is an acute phase protein that protects the tissues from damage by proteolytic enzymes, but previous studies have shown that alpha1-antichymotrypsin within the lungs of patients with chronic bronchitis and emphysema is intact but inactive as an inhibitor. Ammonium sulfate fractionation followed by blue Sepharose and DNA-Sepharose chromatography was used to isolate small amounts of intact, monomeric but inactive alpha1-antichymotrypsin from the plasma of 30 healthy blood donors. This species had a higher DNA binding affinity with more anodal electrophoretic mobility than native alpha1-antichymotrypsin and was conformationally stable against thermal denaturation, 8 M urea, and 7 M guanidinium chloride. The protein was unable to accept synthetic reactive loop peptides, and the reactive loop was resistant to proteolytic cleavage at the P5-P4 bond but could be cleaved between P1' and P3'. These data suggest that this new alpha1-antichymotrypsin species was in a conformation similar to those of the crystallographically determined latent serpins, plasminogen activator inhibitor-1 and antithrombin. alpha1-Antichymotrypsin from lung lavage migrated with the same electrophoretic mobility as the putative latent alpha1-antichymotrypsin, suggesting that this is the inactive conformation described previously in the lungs of patients with chronic bronchitis and emphysema. This conformational transition of alpha1-antichymotrypsin, from an active to an inactive state, within the lung may play an important role in the pathogenesis of chronic lung disease.
Collapse
Affiliation(s)
- W S Chang
- Departments of Medicine and Haematology, University of Cambridge, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | |
Collapse
|
42
|
Cunningham MA, Blajchman MA, Sheffield WP. Impact of mutations at the P4 and P5 positions on the reaction of antithrombin with thrombin and elastase. Thromb Res 1997; 88:171-81. [PMID: 9361370 DOI: 10.1016/s0049-3848(97)00228-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Antithrombin (AT) is a serpin capable of trapping thrombin (IIa) in a stable and covalent complex. Complex formation is prevented by leukocyte elastase (LE) cleavage near the AT reactive centre. We mutated the known LE cleavage sites of AT to explore the possibility of producing an LE-resistant AT molecule. Initially, six rabbit AT variants differing only at residue 390 (P4) were generated in a cell-free system, and gel-based assays were used to assess IIa-mediated complex formation and LE-mediated cleavage of the variants. Substitution of charged residues (Glu or Arg) reduced complex formation by 50-60%, while the Ser variant was incapable of inhibiting thrombin; LE reactivity was less affected. The least (Trp) and most (Ser) affected variants were expressed in COS-1 cells. Again, the Ser variant was incapable of detectably reducing the rate of thrombin-mediated amidolysis while the Trp variant inhibited thrombin at a slightly reduced rate (-28%). LE inactivated the Trp variant and the wild-type AT to a similar extent. Recreation of the Trp mutation in COS-derived human AT showed similar results. Since retention of LE-sensitivity could have arisen due to cleavage at Val389 (P5), we produced and characterized a human AT substitution mutant with Trp at both P4 and P5. This variant showed a slight reduction in thrombin inhibitory activity (-22%), but remained susceptible to LE inactivation. These results suggest either that LE cleaves at secondary sites if its primary cleavage sites are blocked, or that the substrate specificity of LE differs in polypeptides as compared to peptide substrates.
Collapse
Affiliation(s)
- M A Cunningham
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
43
|
Gils A, Lu J, Aertgeerts K, Knockaert I, Declerck PJ. Identification of positively charged residues contributing to the stability of plasminogen activator inhibitor 1. FEBS Lett 1997; 415:192-5. [PMID: 9350994 DOI: 10.1016/s0014-5793(97)01122-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Plasminogen activator inhibitor 1 (PAI-1), a member of the serpins, has a unique conformational flexibility. A typical characteristic is its intrinsic lability resulting in the conversion of the active conformation to a latent conformation. In the present study, we have evaluated the effect of substitution of positively charged residues located at the turn connecting strand s4C with strand s3C, either with negatively charged or with neutral residues, on the functional stability of PAI-1. The following mutants were constructed, purified and characterized in comparison to wild-type (wt) PAI-1: PAI-1-R186E,R187E (Arg186--> Glu and Arg187--> Glu), PAI-1-H190E,K191E (His190--> Glu and Lys191--> Glu) and PAI-1-H190L,K191L (His190--> Leu and Lys191--> Leu). In contrast to wtPAI-1 the mutants exhibited no inhibitory activity. Whereas latent wtPAI-1 can be reactivated (up to a specific activity of 78+/-19%) by treatment with guanidinium chloride, a similar treatment applied to these mutants resulted in a significant but relatively small increase of specific activity (i.e. to 14%). Evaluation of the functional stability (at 37 degrees C, pH 5.5, 1 M NaCl revealed a strongly decreased functional stability compared to wtPAI-1 (i.e. 3-9 h for the mutants vs. > 24 h for wtPAI-1). Further characterization by heat denaturation studies and plasmin susceptibility confirmed that removal or reversal of the positive charge on the turn connecting s4C with s3C results in PAI-1 mutants with a highly accelerated conversion of active to latent forms. We can therefore conclude that the pronounced positive charge in the turn connecting s4C with s3C is of the highest importance for the functional stability of PAI-1.
Collapse
Affiliation(s)
- A Gils
- Laboratory for Pharmaceutical Biology and Phytopharmacology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | |
Collapse
|
44
|
Gils A, Knockaert I, Declerck P. Construction and characterization of plasminogen activator inhibitor-1 mutants in which part of the active site loop is deleted. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0268-9499(97)80111-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Ke SH, Coombs GS, Tachias K, Corey DR, Madison EL. Optimal subsite occupancy and design of a selective inhibitor of urokinase. J Biol Chem 1997; 272:20456-62. [PMID: 9252355 DOI: 10.1074/jbc.272.33.20456] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human urokinase type plasminogen activator (u-PA) is a member of the chymotrypsin family of serine proteases that can play important roles in both health and disease. We have used substrate phage display techniques to characterize the specificity of this enzyme in detail and to identify peptides that are cleaved 840-5300 times more efficiently by u-PA than peptides containing the physiological target sequence of the enzyme. In addition, unlike peptides containing the physiological target sequence, the peptide substrates selected in this study were cleaved as much as 120 times more efficiently by u-PA than by tissue type plasminogen activator (t-PA), an intimately related enzyme. Analysis of the selected peptide substrates strongly suggested that the primary sequence SGRSA, from position P3 to P2', represents optimal subsite occupancy for substrates of u-PA. Insights gained in these investigations were used to design a variant of plasminogen activator inhibitor type 1, the primary physiological inhibitor of both u-PA and t-PA, that inhibited u-PA approximately 70 times more rapidly than it inhibited t-PA. These observations provide a solid foundation for the design of highly selective, high affinity inhibitors of u-PA and, consequently, may facilitate the development of novel therapeutic agents to inhibit the initiation and/or progression of selected human tumors.
Collapse
Affiliation(s)
- S H Ke
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
46
|
Ke SH, Madison EL. Rapid and efficient site-directed mutagenesis by single-tube 'megaprimer' PCR method. Nucleic Acids Res 1997; 25:3371-2. [PMID: 9241254 PMCID: PMC146891 DOI: 10.1093/nar/25.16.3371] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We describe a rapid and efficient megaprimer PCR procedure for site-directed mutagenesis that does not require any intermediate purification of DNA between the two rounds of PCR. This protocol is based on the design of forward and reverse flanking primers with significantly different melting temperatures ( T m). A megaprimer is synthesized in the first PCR reaction using a mutagenic primer, the low T m flanking primer and a low annealing temperature. The second PCR reaction is performed in the same tube as the first PCR and utilizes the high T m flanking primer, the megaprimer product of the first PCR and a high annealing temperature, which prevents priming by the low T m primer from the first PCR reaction. We have used this protocol with two different plasmids to produce cDNAs encoding seven distinct mutated proteins. We have observed an average mutagenesis efficiency of 82% in these experiments.
Collapse
Affiliation(s)
- S H Ke
- The Scripps Research Institute, Department of Vascular Biology (VB-1), 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
47
|
Gechtman Z, Belleli A, Lechpammer S, Shaltiel S. The cluster of basic amino acids in vitronectin contributes to its binding of plasminogen activator inhibitor-1: evidence from thrombin-, elastase- and plasmin-cleaved vitronectins and anti-peptide antibodies. Biochem J 1997; 325 ( Pt 2):339-49. [PMID: 9230112 PMCID: PMC1218566 DOI: 10.1042/bj3250339] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Derivatives of vitronectin obtained by specific cleavage at its cluster of basic amino acids with thrombin, elastase and plasmin are shown to have a decreased ability to bind plasminogen activator inhibitor-1 (PAI-1). The identification and localization of the segment involved in the binding of PAI-1 (Lys348-Arg379) were carried out by purification of these cleaved vitronectins and their subsequent structural characterization (sequence analysis, phosphorylation of Ser378 with cAMP-dependent protein kinase and immunostaining with peptide-specific antibodies), then measurement of the vitronectin-PAI-1 interaction by (a) a two-phase system (ELISA); (b) co-precipitation of the vitronectin-PAI-1 complex out of solution, and (c) analysis of the stereospecific interaction between the active conformation of PAI-1 and a peptide derived from the above-mentioned cluster; this interaction occurs when the peptide is composed of all-l-amino acids but not when it is composed of all-d-amino acids. Our results explain why workers who have used immobilized vitronectin to study this interaction could not have observed the involvement of the cluster of basic amino acids in PAI-1 binding, since the immobilization of vitronectin is shown to render this cluster inaccessible for interaction. We propose that vitronectin binds active PAI-1 by interaction via amino acid residues that originate from distal locations in the N- and C-termini of vitronectin.
Collapse
Affiliation(s)
- Z Gechtman
- Department of Biological Regulation, The Weizmann Institute of Science, IL-76100 Rehovot, Israel
| | | | | | | |
Collapse
|
48
|
Ke SH, Coombs GS, Tachias K, Navre M, Corey DR, Madison EL. Distinguishing the specificities of closely related proteases. Role of P3 in substrate and inhibitor discrimination between tissue-type plasminogen activator and urokinase. J Biol Chem 1997; 272:16603-9. [PMID: 9195973 DOI: 10.1074/jbc.272.26.16603] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Elucidating subtle specificity differences between closely related enzymes is a fundamental challenge for both enzymology and drug design. We have addressed this issue for two intimately related serine proteases, tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), by modifying the technique of substrate phage display to create substrate subtraction libraries. Characterization of individual members of the substrate subtraction library accomplished the rapid, direct identification of small, highly selective substrates for t-PA. Comparison of the amino acid sequences of these selective substrates with the consensus sequence for optimal substrates for t-PA, derived using standard substrate phage display protocols, suggested that the P3 and P4 residues are the primary determinants of the ability of a substrate to discriminate between t-PA and u-PA. Mutagenesis of the P3 and P4 residues of plasminogen activator inhibitor type 1, the primary physiological inhibitor of both t-PA and u-PA, confirmed this prediction and indicated a predominant role for the P3 residue. Appropriate replacement of both the P3 and P4 residues enhanced the t-PA specificity of plasminogen activator inhibitor type 1 by a factor of 600, and mutation of the P3 residue alone increased this selectivity by a factor of 170. These results demonstrate that the combination of substrate phage display and substrate subtraction methods can be used to discover specificity differences between very closely related enzymes and that this information can be utilized to create highly selective inhibitors.
Collapse
Affiliation(s)
- S H Ke
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
49
|
Gils A, Declerck PJ. Proteinase specificity and functional diversity in point mutants of plasminogen activator inhibitor 1. J Biol Chem 1997; 272:12662-6. [PMID: 9139722 DOI: 10.1074/jbc.272.19.12662] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a unique member of the serpin superfamily. The alternative behavior of PAI-1 as an inhibitor, a non-inhibitory substrate, or a non-reactive latent form has been shown to be dependent on the initial conformation. In this study, we have evaluated the effect of a substitution outside the reactive site loop (P18) or in the reactive site loop (P6 and P10) on proteinase specificity and conformational transitions in PAI-1. Wild-type PAI-1 (wtPAI-1) revealed the same conformational distribution pattern toward tissue-type plasminogen activator (t-PA) as toward urokinase-type plasminogen activator (u-PA) (i.e. 53 +/- 6. 9% active, 36 +/- 6.8% latent, and 12 +/- 1.9% substrate). Inactivation of wtPAI-1 resulted in the conversion of the labile active form into the latent form while the stable substrate form remained unchanged. PAI-1-P6 (Val --> Pro at P6) revealed a target specificity for t-PA (39 +/- 7% versus 3 +/- 2% of the theoretical maximal value toward t-PA and u-PA, respectively), PAI-1-P10 (Ser --> Pro at P10) was 4-fold more active toward u-PA than toward t-PA, and PAI-1-P18 (Asn --> Pro at P18) exhibited inhibitory properties exclusively toward u-PA (41 +/- 10%). Surprisingly, inactivation of these mutants revealed functional and conformational transitions distinct from those observed for wtPAI-1. Inactivation of PAI-1-P6(Val --> Pro) resulted in a total conversion of the active form into the latent form and in a partial conversion of the substrate form into the latent form. The active forms of both PAI-1-P10(Ser --> Pro) and PAI-1-P18(Asn --> Pro) are also labile but, in contrast to the active form of wtPAI-1, convert into substrate forms. Based on the existence of various conformations of PAI-1, we propose an alternative reaction scheme describing the putative interactions between serpins and their target proteinases. The unusual conformational and functional flexibility of PAI-1 that, according to the current study, appears not to be restricted to the reactive site loop further underlines the importance of potential structural rearrangements (e.g. upon binding to cofactors) in PAI-1 (or serpins in general) for its functional behavior at particular biological sites.
Collapse
Affiliation(s)
- A Gils
- Laboratory for Pharmaceutical Biology and Phytopharmacology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | |
Collapse
|
50
|
Lukacs CM, Zhong JQ, Plotnick MI, Rubin H, Cooperman BS, Christianson DW. Arginine substitutions in the hinge region of antichymotrypsin affect serpin beta-sheet rearrangement. NATURE STRUCTURAL BIOLOGY 1996; 3:888-93. [PMID: 8836107 DOI: 10.1038/nsb1096-888] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A hallmark of serpin function is the massive beta-sheet rearrangement involving the insertion of the cleaved reactive loop into beta-sheet A as strand s4A. This structural transition is required for inhibitory activity. Small hydrophobic residues at P14 and P12 positions of the reactive loop facilitate this transition, since these residues must pack in the hydrophobic core of the cleaved serpin. Despite the radical substitution of arginine at the P12 position, the crystal structure of cleaved A347R antichymotrypsin reveals full strand s4A insertion with normal beta-sheet A geometry; the R347 side chain is buried in the hydrophobic protein core. In contrast, the structure of cleaved P14 T345R antichymotrypsin reveals substantial yet incomplete strand s4A insertion, without burial of the R345 side chain.
Collapse
Affiliation(s)
- C M Lukacs
- Department of Chemistry, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|