1
|
González-Carracedo MA, Herrera-Luis E, Marco-Simancas M, Escuela-Escobar A, Martín-González E, Sardón-Prado O, Corcuera P, Hernández-Pérez JM, Lorenzo-Díaz F, Pérez-Pérez JA. Haplotype-Aware Detection of SERPINA1 Variants by Nanopore Sequencing. J Mol Diagn 2024; 26:971-987. [PMID: 39276924 DOI: 10.1016/j.jmoldx.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/17/2024] Open
Abstract
α-1 Antitrypsin (AAT) is an acute-phase reactant with immunomodulatory properties that mainly inhibits neutrophil elastase. Low serum levels cause AAT deficiency (AATD), an underdiagnosed condition that predisposes to pulmonary and hepatic diseases. The SERPINA1 gene, which encodes AAT, contains >500 variants. PI∗Z and PI∗S alleles are the most diagnosed causes of AATD, but the role of the SERPINA1 haplotypes in AAT function remains unknown. SERPINA1 gene was PCR amplified from 94 patients with asthma, using primers with tails for indexing. Sequencing libraries were loaded into a MinION-Mk1C, and MinKNOW was used for basecalling and demultiplexing. Nanofilt and Minimap2 were used for filtering and mapping/alignment. Variant calling/phasing were performed with PEPPER-Margin-DeepVariant. SERPINA1 gene was 100% covered for all samples, with a minimum sequencing depth of 500×. A total of 75 single-nucleotide variants (SNVs) and 4 insertions/deletions were detected, with 45 and 2 of them highly polymorphic (minor allele frequency >0.1), respectively. Nine of the SNVs showed differences in allele frequencies when compared with the overall Spanish population. More than 90% of heterozygous SNVs were phased, yielding 91 and 58 different haplotypes for each SERPINA1 amplified region. Haplotype-based linkage disequilibrium analysis suggests that a recombination hotspot could generate variation in the SERPINA1 gene. The proposed workflow enables haplotype-aware genotyping of the SERPINA1 gene by nanopore sequencing, which will allow the development of novel AATD diagnostic strategies.
Collapse
Affiliation(s)
- Mario A González-Carracedo
- Genetics Laboratory, Institute of Tropical Diseases and Public Health of the Canary Islands, Universidad de La Laguna, Tenerife, Spain; Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Tenerife, Spain
| | - Esther Herrera-Luis
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - María Marco-Simancas
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Tenerife, Spain
| | - Ainhoa Escuela-Escobar
- Genetics Laboratory, Institute of Tropical Diseases and Public Health of the Canary Islands, Universidad de La Laguna, Tenerife, Spain
| | - Elena Martín-González
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Tenerife, Spain
| | - Olaia Sardón-Prado
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain; Department of Pediatrics, University of the Basque Country, San Sebastián, Spain
| | - Paula Corcuera
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | - Jose M Hernández-Pérez
- Department of Respiratory Medicine, Hospital Universitario de N.S. de Candelaria, Tenerife, Spain
| | - Fabián Lorenzo-Díaz
- Genetics Laboratory, Institute of Tropical Diseases and Public Health of the Canary Islands, Universidad de La Laguna, Tenerife, Spain; Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Tenerife, Spain
| | - José A Pérez-Pérez
- Genetics Laboratory, Institute of Tropical Diseases and Public Health of the Canary Islands, Universidad de La Laguna, Tenerife, Spain; Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
2
|
Maslakova AA, Golyshev SA, Potashnikova DM, Moisenovich AM, Orlovsky IV, Smirnova OV, Rubtsov MA. SERPINA1 long transcripts produce non-secretory alpha1-antitrypsin isoform: In vitro translation in living cells. Int J Biol Macromol 2023; 241:124433. [PMID: 37086761 DOI: 10.1016/j.ijbiomac.2023.124433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/24/2023]
Abstract
SERPINA1 is a well-studied serpin gene due to its dramatic impact on human health. Translation initiation at the main SERPINA1 start codon produces the only known alpha1-antitrypsin (AAT) isoform intended for secretion. AAT performs essential functions by inhibiting proteases and modulating immunity. However, SERPINA1 expression at the level of translation is not sufficiently studied. Here we hypothesize that the main SERPINA1 ORF can be alternatively translated, producing a non-secretory AAT isoform by either masking or excluding a signal peptide. We defined SERPINA1 long mRNA isoforms specific for prostate (DU145) and liver (HepG2) cell lines and studied their individual expression by in vitro assay. We found that all long transcripts produce both glycosylated secretory AAT-eGFP fusion protein and non-glycosylated intracellular AAT-eGFP (initiated from an alternative AUG-2 start codon), with the proportion regulated by the SERPINA1 5'-UTR. Both fusion proteins localize to distinct cellular compartments: in contrast to a fusion with the secretory AAT accumulating in the ER, the intracellular one exhibits nuclear-cytoplasmic shuttling. We detected putative endogenous AAT isoform enriching the nuclear speckles. CONCLUSION: Alternative translation initiation might be a mechanism through which SERPINA1 expands the biological diversity of its protein products. Our findings open up new prospects for the study of SERPINA1 gene expression.
Collapse
Affiliation(s)
- A A Maslakova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia.
| | - S A Golyshev
- A.N. Belozersky Institute of Physical and Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
| | - D M Potashnikova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - A M Moisenovich
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - I V Orlovsky
- Research Institute of Molecular and Cellular Medicine, Рeoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya, Moscow 117198, Russia
| | - O V Smirnova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - M A Rubtsov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia; Center for Industrial Technologies and Entrepreneurship, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya, Moscow 119991, Russia
| |
Collapse
|
3
|
Morrow GB, Mutch NJ. Past, Present, and Future Perspectives of Plasminogen Activator Inhibitor 1 (PAI-1). Semin Thromb Hemost 2023; 49:305-313. [PMID: 36522166 DOI: 10.1055/s-0042-1758791] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plasminogen activator inhibitor 1 (PAI-1), a SERPIN inhibitor, is primarily known for its regulation of fibrinolysis. However, it is now known that this inhibitor functions and contributes to many (patho)physiological processes including inflammation, wound healing, cell adhesion, and tumor progression.This review discusses the past, present, and future roles of PAI-1, with a particular focus on the discovery of this inhibitor in the 1970s and subsequent characterization in health and disease. Throughout the past few decades diverse functions of this serpin have unraveled and it is now considered an important player in many disease processes. PAI-1 is expressed by numerous cell types, including megakaryocytes and platelets, adipocytes, endothelial cells, hepatocytes, and smooth muscle cells. In the circulation PAI-1 exists in two pools, within plasma itself and in platelet α-granules. Platelet PAI-1 is secreted following activation with retention of the inhibitor on the activated platelet membrane. Furthermore, these anucleate cells contain PAI-1 messenger ribonucleic acid to allow de novo synthesis.Outside of the traditional role of PAI-1 in fibrinolysis, this serpin has also been identified to play important roles in metabolic syndrome, obesity, diabetes, and most recently, acute respiratory distress syndrome, including coronavirus disease 2019 disease. This review highlights the complexity of PAI-1 and the requirement to ascertain a better understanding on how this complex serpin functions in (patho)physiological processes.
Collapse
Affiliation(s)
- Gael B Morrow
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola J Mutch
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
4
|
Rosenberg JB, De BP, Greco A, Gorman N, Kooner V, Chen A, Yost-Bido M, Munoz-Zuluaga C, Kaminsky SM, Rostami M, Monette S, Crystal RG, Sondhi D. Safety of Intravenous Administration of an AAV8 Vector Coding for an Oxidation-Resistant Human α1-Antitrypsin for the Treatment of α1-Antitrypsin Deficiency. Hum Gene Ther 2023; 34:139-149. [PMID: 36606685 PMCID: PMC9963503 DOI: 10.1089/hum.2022.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/18/2022] [Indexed: 01/07/2023] Open
Abstract
α1-antitrypsin (AAT) deficiency is a common autosomal recessive hereditary disorder, with a high risk for the development of early-onset panacinar emphysema. AAT, produced primarily in the liver, functions to protect the lung from neutrophil protease; with AAT deficiency, unimpeded neutrophil proteases destroy the lung parenchyma. AAT is susceptible to oxidative damage resulting in an inability to inhibit its target proteases, neutrophil elastase, and cathepsin G. The major sites of oxidative modification on the AAT molecule are methionine residues 351 and 358. We have previously demonstrated that an engineered variant of AAT that resists oxidation by modifying both protein surface methionines (M351V and M358L) provides antiprotease protection, despite oxidative stress. In mice, intravenous delivery of the modified AAT(AVL) variant by AAV serotype 8, AAV8hAAT(AVL), primarily to the liver resulted in long-term expression of an AAT that resists oxidative inactivation. In this study, we evaluated the safety of intravenous administration of AAV8hAAT(AVL) in a dose-escalating, blinded, placebo-controlled toxicology study in wild-type mice. The study assessed organ histology and clinical pathology findings of mice, intravenously administered AAV8hAAT(AVL) at three doses (5.0 × 1011, 5.0 × 1012, and 5.0 × 1013 genome copies [gc]/kg), compared to control mice injected intravenously with phosphate-buffered saline. As previously demonstrated, administration of AAV8hAAT(AVL) resulted in dose-dependent expression of high, potentially therapeutic, levels of serum human AAT protein that persist for at least 6 months. Antibodies against the AAV8 capsid were elicited as expected, but there was no antibody detected against the AAT(AVL) protein generated by the AAV8hAAT(AVL) vector. There was no morbidity or mortality observed in the study. The data demonstrate that intravenous administration of AAV8hAAT(AVL) is safe with no significant adverse effect attributed to AAV8hAAT(AVL) vector at any dose. This study demonstrates that AAV8hAAT(AVL) has a safety profile consistent with the requirements for proceeding to a clinical study.
Collapse
Affiliation(s)
| | - Bishnu P. De
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Alessandria Greco
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Nicholas Gorman
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Vikrum Kooner
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Alvin Chen
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Melissa Yost-Bido
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | - Stephen M. Kaminsky
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Mahboubeh Rostami
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Sébastien Monette
- Laboratory of Comparative Pathology, Weill Cornell Medicine, Memorial Sloan Kettering Cancer Center, The Rockefeller University, New York, New York, USA
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
5
|
Cruz MA, Bohinc D, Andraska EA, Alvikas J, Raghunathan S, Masters NA, van Kleef ND, Bane KL, Hart K, Medrow K, Sun M, Liu H, Haldeman S, Banerjee A, Lessieur EM, Hageman K, Gandhi A, de la Fuente M, Nieman MT, Kern TS, Maas C, de Maat S, Neeves KB, Neal MD, Sen Gupta A, Stavrou EX. Nanomedicine platform for targeting activated neutrophils and neutrophil-platelet complexes using an α 1-antitrypsin-derived peptide motif. NATURE NANOTECHNOLOGY 2022; 17:1004-1014. [PMID: 35851383 PMCID: PMC9909445 DOI: 10.1038/s41565-022-01161-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/24/2022] [Indexed: 05/30/2023]
Abstract
Targeted drug delivery to disease-associated activated neutrophils can provide novel therapeutic opportunities while avoiding systemic effects on immune functions. We created a nanomedicine platform that uniquely utilizes an α1-antitrypsin-derived peptide to confer binding specificity to neutrophil elastase on activated neutrophils. Surface decoration with this peptide enabled specific anchorage of nanoparticles to activated neutrophils and platelet-neutrophil aggregates, in vitro and in vivo. Nanoparticle delivery of a model drug, hydroxychloroquine, demonstrated significant reduction of neutrophil activities in vitro and a therapeutic effect on murine venous thrombosis in vivo. This innovative approach of cell-specific and activation-state-specific targeting can be applied to several neutrophil-driven pathologies.
Collapse
Affiliation(s)
- Michelle A Cruz
- Department of Pathology, Immunology Training Program, CWRU School of Medicine, Cleveland, OH, USA
| | - Dillon Bohinc
- Department of Medicine, Hematology and Oncology Division, CWRU School of Medicine, Cleveland, OH, USA
| | - Elizabeth A Andraska
- Department of Surgery, Division of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jurgis Alvikas
- Department of Surgery, Pittsburgh Trauma Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Shruti Raghunathan
- Department of Biomedical Engineering, Case Western Reserve University (CWRU), Cleveland, OH, USA
| | - Nicole A Masters
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Nadine D van Kleef
- CDL Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kara L Bane
- Department of Medicine, Hematology and Oncology Division, CWRU School of Medicine, Cleveland, OH, USA
| | - Kathryn Hart
- Department of Biomedical Engineering, Case Western Reserve University (CWRU), Cleveland, OH, USA
| | - Kathryn Medrow
- Department of Biomedical Engineering, Case Western Reserve University (CWRU), Cleveland, OH, USA
| | - Michael Sun
- Department of Biomedical Engineering, Case Western Reserve University (CWRU), Cleveland, OH, USA
| | - Haitao Liu
- Department of Ophthalmology, Children's Hospital of University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shannon Haldeman
- Department of Surgery, Pittsburgh Trauma Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ankush Banerjee
- Department of Biomedical Engineering, Case Western Reserve University (CWRU), Cleveland, OH, USA
| | - Emma M Lessieur
- Center for Translational Vision Research, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA
| | - Kara Hageman
- Department of Biomedical Engineering, Case Western Reserve University (CWRU), Cleveland, OH, USA
| | - Agharnan Gandhi
- Department of Medicine, Hematology and Oncology Division, CWRU School of Medicine, Cleveland, OH, USA
| | | | - Marvin T Nieman
- Department of Pharmacology, CWRU School of Medicine, Cleveland, OH, USA
| | - Timothy S Kern
- Center for Translational Vision Research, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA
- Veterans Administration Medical Center Research Service, Long Beach, CA, USA
| | - Coen Maas
- CDL Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Steven de Maat
- CDL Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Keith B Neeves
- Department of Bioengineering and Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant Hemophilia and Thrombosis Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew D Neal
- Department of Surgery, Pittsburgh Trauma Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anirban Sen Gupta
- Department of Pathology, Immunology Training Program, CWRU School of Medicine, Cleveland, OH, USA.
- Department of Biomedical Engineering, Case Western Reserve University (CWRU), Cleveland, OH, USA.
- Department of Pharmacology, CWRU School of Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Evi X Stavrou
- Department of Medicine, Hematology and Oncology Division, CWRU School of Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
- Department of Medicine, Section of Hematology-Oncology, Louis Stokes Veterans Administration Medical Center, Cleveland, OH, USA.
| |
Collapse
|
6
|
TMAO to the rescue of pathogenic protein variants. Biochim Biophys Acta Gen Subj 2022; 1866:130214. [PMID: 35902028 DOI: 10.1016/j.bbagen.2022.130214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
Trimethylamine N-oxide (TMAO) is a chemical chaperone found in various organisms including humans. Various studies unveiled that it is an excellent protein-stabilizing agent, and induces folding of unstructured proteins. It is also well established that it can counteract the deleterious effects of urea, salt, and hydrostatic pressure on macromolecular integrity. There is also existence of large body of data regarding its ability to restore functional deficiency of various mutant proteins or pathogenic variants by correcting misfolding defects and inhibiting the formation of high-order toxic protein oligomers. Since an important class of human disease called "protein conformational disorders" is due to protein misfolding and/or formation of high-order oligomers, TMAO stands as a promising molecule for the therapeutic intervention of such diseases. The present review has been designed to gather a comprehensive knowledge of the TMAO's effect on the functional restoration of various mutants, identify its shortcomings and explore its potentiality as a lead molecule. Future prospects have also been suitably incorporated.
Collapse
|
7
|
Chu W, Prodromou R, Moore B, Elhanafi D, Kilgore R, Shastry S, Menegatti S. Development of Peptide Ligands for the Purification of α-1 Antitrypsin from Cell Culture Fluids. J Chromatogr A 2022; 1679:463363. [DOI: 10.1016/j.chroma.2022.463363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
|
8
|
Koyuturk I, Kedia S, Robotham A, Star A, Brochu D, Sauvageau J, Kelly J, Gilbert M, Durocher Y. High-level production of wild-type and oxidation-resistant recombinant alpha-1-antitrypsin in glycoengineered CHO cells. Biotechnol Bioeng 2022; 119:2331-2344. [PMID: 35508753 DOI: 10.1002/bit.28129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/24/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2022]
Abstract
Alpha-1-antitrypsin (A1AT) is a serine protease inhibitor which blocks the activity of serum proteases including neutrophil elastase to protect the lungs. Its deficiency is known to increase the risk of pulmonary emphysema as well as chronic obstructive pulmonary disease. Currently, the only treatment for patients with A1AT deficiency is weekly injection of plasma-purified A1AT. There is still today no commercial source of therapeutic recombinant A1AT, likely due to significant differences in expression host-specific glycosylation profile and/or high costs associated with the huge therapeutic dose needed. Accordingly, we aimed to produce high levels of recombinant wild-type A1AT, as well as a mutated protein (mutein) version for increased oxidation resistance, with N-glycans analogous to human plasma-derived A1AT. To achieve this, we disrupted two endogenous glycosyltransferase genes controlling core α-1,6-fucosylation (Fut8) and α-2,3-sialylation (ST3Gal4) in CHO cells using CRISPR/Cas9 technology, followed by overexpression of human α-2,6-sialyltransferase (ST6Gal1) using a cumate-inducible expression system. Volumetric A1AT productivity obtained from stable CHO pools was 2.5- to 6.5-fold higher with the cumate-inducible CR5 promoter compared to five strong constitutive promoters. Using the CR5 promoter, glycoengineered stable CHO pools were able to produce over 2.1 g/L and 2.8 g/L of wild-type and mutein forms of A1AT, respectively, with N-glycans analogous to the plasma-derived clinical product Prolastin-C. Supplementation of N-acetylmannosamine to the cell culture media during production increased the overall sialylation of A1AT as well as the proportion of bi-antennary and disialylated A2G2S2 N-glycans. These purified recombinant A1AT proteins showed in vitro inhibitory activity equivalent to Prolastin-C and substitution of methionine residues 351 and 358 with valines rendered A1AT significantly more resistant to oxidation. The recombinant A1AT mutein bearing an improved oxidation-resistance described in this study could represent a viable biobetter drug, offering a safe and more stable alternative for augmentation therapy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Izel Koyuturk
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Qc, Canada, H3C 3J7.,Life Sciences, Human Health Therapeutics Research Centre, Building Montreal-Royalmount, National Research Council Canada, Montréal, Qc, Canada, H4P 2R2
| | - Surbhi Kedia
- Department of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Qc, Canada, H9X 3V9
| | - Anna Robotham
- Life Sciences, Human Health Therapeutics Research Centre, 100 Sussex Drive, National Research Council Canada, Ottawa, Ontario, Canada, K1A OR6
| | - Alexandra Star
- Life Sciences, Human Health Therapeutics Research Centre, 100 Sussex Drive, National Research Council Canada, Ottawa, Ontario, Canada, K1A OR6
| | - Denis Brochu
- Life Sciences, Human Health Therapeutics Research Centre, 100 Sussex Drive, National Research Council Canada, Ottawa, Ontario, Canada, K1A OR6
| | - Janelle Sauvageau
- Life Sciences, Human Health Therapeutics Research Centre, 100 Sussex Drive, National Research Council Canada, Ottawa, Ontario, Canada, K1A OR6
| | - John Kelly
- Life Sciences, Human Health Therapeutics Research Centre, 100 Sussex Drive, National Research Council Canada, Ottawa, Ontario, Canada, K1A OR6
| | - Michel Gilbert
- Life Sciences, Human Health Therapeutics Research Centre, 100 Sussex Drive, National Research Council Canada, Ottawa, Ontario, Canada, K1A OR6
| | - Yves Durocher
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Qc, Canada, H3C 3J7.,Life Sciences, Human Health Therapeutics Research Centre, Building Montreal-Royalmount, National Research Council Canada, Montréal, Qc, Canada, H4P 2R2
| |
Collapse
|
9
|
Kryvalap Y, Czyzyk J. The Role of Proteases and Serpin Protease Inhibitors in β-Cell Biology and Diabetes. Biomolecules 2022; 12:biom12010067. [PMID: 35053215 PMCID: PMC8774208 DOI: 10.3390/biom12010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Regulation of the equilibrium between proteases and their inhibitors is fundamental to health maintenance. Consequently, developing a means of targeting protease activity to promote tissue regeneration and inhibit inflammation may offer a new strategy in therapy development for diabetes and other diseases. Specifically, recent efforts have focused on serine protease inhibitors, known as serpins, as potential therapeutic targets. The serpin protein family comprises a broad range of protease inhibitors, which are categorized into 16 clades that are all extracellular, with the exception of Clade B, which controls mostly intracellular proteases, including both serine- and papain-like cysteine proteases. This review discusses the most salient, and sometimes opposing, views that either inhibition or augmentation of protease activity can bring about positive outcomes in pancreatic islet biology and inflammation. These potential discrepancies can be reconciled at the molecular level as specific proteases and serpins regulate distinct signaling pathways, thereby playing equally distinct roles in health and disease development.
Collapse
Affiliation(s)
| | - Jan Czyzyk
- Correspondence: ; Tel.: +1-(612)-273-3495; Fax: +1-(612)-273-1142
| |
Collapse
|
10
|
Park SJ. Protein-Nanoparticle Interaction: Corona Formation and Conformational Changes in Proteins on Nanoparticles. Int J Nanomedicine 2020; 15:5783-5802. [PMID: 32821101 PMCID: PMC7418457 DOI: 10.2147/ijn.s254808] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles (NPs) are highly potent tools for the diagnosis of diseases and specific delivery of therapeutic agents. Their development and application are scientifically and industrially important. The engineering of NPs and the modulation of their in vivo behavior have been extensively studied, and significant achievements have been made in the past decades. However, in vivo applications of NPs are often limited by several difficulties, including inflammatory responses and cellular toxicity, unexpected distribution and clearance from the body, and insufficient delivery to a specific target. These unfavorable phenomena may largely be related to the in vivo protein-NP interaction, termed "protein corona." The layer of adsorbed proteins on the surface of NPs affects the biological behavior of NPs and changes their functionality, occasionally resulting in loss-of-function or gain-of-function. The formation of a protein corona is an intricate process involving complex kinetics and dynamics between the two interacting entities. Structural changes in corona proteins have been reported in many cases after their adsorption on the surfaces of NPs that strongly influence the functions of NPs. Thus, understanding of the conformational changes and unfolding process of proteins is very important to accelerate the biomedical applications of NPs. Here, we describe several protein corona characteristics and specifically focus on the conformational fluctuations in corona proteins induced by NPs.
Collapse
Affiliation(s)
- Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon21936, Korea
| |
Collapse
|
11
|
Sosulski ML, Stiles KM, Frenk EZ, Hart FM, Matsumura Y, De BP, Kaminsky SM, Crystal RG. Gene therapy for alpha 1-antitrypsin deficiency with an oxidant-resistant human alpha 1-antitrypsin. JCI Insight 2020; 5:135951. [PMID: 32759494 PMCID: PMC7455074 DOI: 10.1172/jci.insight.135951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/01/2020] [Indexed: 12/25/2022] Open
Abstract
Alpha 1-antitrypsin (AAT) deficiency, a hereditary disorder characterized by low serum levels of functional AAT, is associated with early development of panacinar emphysema. AAT inhibits serine proteases, including neutrophil elastase, protecting the lung from proteolytic destruction. Cigarette smoke, pollution, and inflammatory cell–mediated oxidation of methionine (M) 351 and 358 inactivates AAT, limiting lung protection. In vitro studies using amino acid substitutions demonstrated that replacing M351 with valine (V) and M358 with leucine (L) on a normal M1 alanine (A) 213 background provided maximum antiprotease protection despite oxidant stress. We hypothesized that a onetime administration of a serotype 8 adeno-associated virus (AAV8) gene transfer vector coding for the oxidation-resistant variant AAT (A213/V351/L358; 8/AVL) would maintain antiprotease activity under oxidant stress compared with normal AAT (A213/M351/M358; 8/AMM). 8/AVL was administered via intravenous (IV) and intrapleural (IPL) routes to C57BL/6 mice. High, dose-dependent AAT levels were found in the serum and lung epithelial lining fluid (ELF) of mice administered 8/AVL or 8/AMM by IV or IPL. 8/AVL serum and ELF retained serine protease–inhibitory activity despite oxidant stress while 8/AMM function was abolished. 8/AVL represents a second-generation gene therapy for AAT deficiency providing effective antiprotease protection even with oxidant stress. A gene transfer-based therapeutic to deliver oxidant-resistant alpha 1-antitrypsin (AAT) protects mice with AAT deficiency from lung destruction.
Collapse
|
12
|
Lior Y, Jasevitch M, Ochayon DE, Zaretsky M, Lewis EC, Aharoni A. Application of directed evolution and back-to-consensus algorithms to human alpha1-antitrypsin leads to diminished anti-protease activity and augmented anti-inflammatory activities. Cell Immunol 2020; 355:104135. [PMID: 32703529 DOI: 10.1016/j.cellimm.2020.104135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022]
Abstract
Primarily known as an elastase inhibitor, human alpha1-antitrypsin also exerts anti-inflammatory and immunomodulatory effects, both in vitro and in vivo. While the anti-protease mechanism of alpha1-antitrypsin is attributed to a particular protein domain coined the reactive center loop, anti-inflammatory and immunomodulatory loci within the molecule remain to be identified. In the present study, directed evolution and back-to-consensus algorithms were applied to human alpha1-antitrypsin. Six unique functional candidate sites were identified on the surface of the molecule; in manipulating these sites by point mutations, a recombinant mutant form of alpha1-antitrypsin was produced, depicting a requirement for sites outside the reactive center loop as essential for protease inhibition, and displaying enhanced anti-inflammatory activities. Taken together, outcomes of the present study establish a potential use for directed evolution in advancing our understanding of site-specific protein functions, offering a platform for development of context- and disease-specific alpha1-antitrypsin-based therapeutics.
Collapse
Affiliation(s)
- Yotam Lior
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| | - Maria Jasevitch
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - David E Ochayon
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Mariana Zaretsky
- Department of Life Sciences, Ben-Gurion University of the Negev and National Institute for Biotechnology, Be'er Sheva, Israel
| | - Eli C Lewis
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Amir Aharoni
- Department of Life Sciences, Ben-Gurion University of the Negev and National Institute for Biotechnology, Be'er Sheva, Israel
| |
Collapse
|
13
|
Tinyou A, Chaimon S, Phuphisut O, Kobpornchai P, Malaithong P, Poodeepiyasawat A, Ieamsuwan I, Ruangsittichai J, Pumirat P, Dekumyoy P, Reamtong O, Adisakwattana P. Molecular cloning and characterization of serine protease inhibitor from food-borne nematode, Gnathostoma spinigerum. Acta Trop 2020; 204:105288. [PMID: 31811864 DOI: 10.1016/j.actatropica.2019.105288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 11/01/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
Gnathostoma spinigerum is a causative agent of human gnathostomiasis and infects people residing in endemic areas as well as travelers. Cutaneous and visceral larval migrants cause clinical manifestations, resulting in severe morbidity and mortality. To survive in hosts, these parasites have evolved various immune evasion mechanisms, including the release of regulatory molecules. Serine protease inhibitors (serpins) that are present in many parasitic helminths are proteins suspected of suppressing host serine protease-related digestion and immune responses. In this study, the serpin secreted by G. spinigerum (GsSerp) was characterized using bioinformatics and molecular biology techniques. The bioinformatics revealed that GsSerp contains 9 helices, 3 β-sheets, and a reactive central loop, which are conserved structures of the serpin superfamily. Recombinant GsSerp (rGsSerp) was expressed in E. coli (molecular weight, 39 kDa) and could inhibit chymotrypsin. Mouse polyclonal antibody against GsSerp could detect the native GsSerp in crude worm antigen but not the excretory-secretory product (ES) of infective-stage larva (aL3Gs). Moreover, the expression of GsSerp in the aL3Gs tissue was located in the hemolymph and intestinal tissue, indicating its role in parasite homeostasis. Our findings may help develop effective strategies for preventing and controlling gnathostomiasis.
Collapse
Affiliation(s)
- Anusorn Tinyou
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Salisa Chaimon
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Orawan Phuphisut
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Porntida Kobpornchai
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Preeyarat Malaithong
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Akkarin Poodeepiyasawat
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Issariya Ieamsuwan
- Faculty of Medical Technology, Huachiew Chalermprakiet University, Samut Prakan 10540, Thailand
| | - Jiraporn Ruangsittichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Paron Dekumyoy
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
14
|
Trinh HN, Jang SH, Lee C. Functional characterization of a SNP (F51S) found in human alpha 1-antitrypsin. Mol Genet Genomic Med 2019; 7:e819. [PMID: 31251477 PMCID: PMC6687665 DOI: 10.1002/mgg3.819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/16/2019] [Accepted: 05/29/2019] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Alpha 1-antitrypsin (A1AT) deficiency is related to lung and liver diseases, including pulmonary emphysema and liver cirrhosis in humans. Genetic variations including single nucleotide polymorphisms (SNPs) of SERPINA1 are responsible for A1AT deficiency, but the characteristics of the SNPs are not well-understood. Here, we investigated the features of a rare SNP (F51S) of A1AT, which introduces an additional N-glycosylation site in the N-terminal region of A1AT. METHODS We evaluated the F51S variant compared with the wild-type (WT) A1AT with regard to expression in CHO-K1 cells, trypsin inhibitory activity, polymerization, and thermal stability. RESULTS The recombinant F51S protein expressed in CHO-K1 cells was mostly retained inside cells. The F51S variant had trypsin inhibitory activity, but reduced thermal stability compared with the WT A1AT. The native acrylamide gel data showed that F51S tended to prevent polymerization of A1AT. CONCLUSION The results of this study indicate that Phe51 and the surrounding hydrophobic residue cluster plays an important role in the conformation and secretion of A1AT and suggest the harmful effects of a rare F51S SNP in human health.
Collapse
Affiliation(s)
- Hong-Nhung Trinh
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - Sei-Heon Jang
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - ChangWoo Lee
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| |
Collapse
|
15
|
Abstract
Serine proteinase inhibitors (serpins), typically fold to a metastable native state and undergo a major conformational change in order to inhibit target proteases. However, conformational lability of the native serpin fold renders them susceptible to misfolding and aggregation, and underlies misfolding diseases such as α1-antitrypsin deficiency. Serpin specificity towards its protease target is dictated by its flexible and solvent exposed reactive centre loop (RCL), which forms the initial interaction with the target protease during inhibition. Previous studies have attempted to alter the specificity by mutating the RCL to that of a target serpin, but the rules governing specificity are not understood well enough yet to enable specificity to be engineered at will. In this paper, we use conserpin, a synthetic, thermostable serpin, as a model protein with which to investigate the determinants of serpin specificity by engineering its RCL. Replacing the RCL sequence with that from α1-antitrypsin fails to restore specificity against trypsin or human neutrophil elastase. Structural determination of the RCL-engineered conserpin and molecular dynamics simulations indicate that, although the RCL sequence may partially dictate specificity, local electrostatics and RCL dynamics may dictate the rate of insertion during protease inhibition, and thus whether it behaves as an inhibitor or a substrate. Engineering serpin specificity is therefore substantially more complex than solely manipulating the RCL sequence, and will require a more thorough understanding of how conformational dynamics achieves the delicate balance between stability, folding and function required by the exquisite serpin mechanism of action.
Collapse
|
16
|
Callea F, Giovannoni I, Francalanci P, Boldrini R, Faa G, Medicina D, Nobili V, Desmet VJ, Ishak K, Seyama K, Bellacchio E. Mineralization of alpha-1-antitrypsin inclusion bodies in Mmalton alpha-1-antitrypsin deficiency. Orphanet J Rare Dis 2018; 13:79. [PMID: 29769092 PMCID: PMC5956786 DOI: 10.1186/s13023-018-0821-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Background Alpha-1-antitrypsin (AAT) deficiency (AATD) of Z, Mmalton, Siiyama type is associated with liver storage of the mutant proteins and liver disease. The Z variant can be diagnosed on isoelectric focusing (IEF) while Mmalton and Siiyama may be missed or misdiagnosed with this technique. Therefore, molecular analysis is mandatory for their characterization. In particular, that holds true for the Mmalton variant as on IEF profile it resembles the wild M2 subtype. Methods This is a retrospective analysis involving review of medical records and of liver biopsy specimens from a series of Mmalton, Z and Siiyama Alpha-1-antitrypsin deficiency patients. The review has been implemented by additional histological stains, electron microscopic observations and 3-D modeling studies of the sites of the mutations. Results Z, Mmalton and Siiyama liver specimen contained characteristic intrahepatocytic PAS-D globules. The globules differed in the three variants as only Mmalton cases showed dark basophilic precipitates within the AAT inclusions. The precipitates were visualized in haematoxylin-eosin (H.E.) stained preparations and corresponded to calcium precipitates as demonstrated by von Kossa staining. On immunohistochemistry, ZAAT inclusions were stained by polyclonal as well as monoclonal noncommercial anti-AAT antibody (AZT11), whilst Mmalton and Siiyama inclusion bodies remained negative with the monoclonal anti-Z antibody. 3-D protein analysis allowed to predict more severe misfolding of the Mmalton molecule as compared to Z and Siiyama that could trigger anomalous interaction with endoplasmic reticulum chaperon proteins, namely calcium binding proteins. Conclusions Mmalton AAT inclusion bodies contain calcium precipitates inside them that allow the differential diagnosis with Siiyama and ZAAT inclusions in routine histological sections. The study has confirmed the specificity of the monoclonal AZT11 for the Z mutant. Thus, the combination of these two features is crucial for the distinction between the three variants and for predicting the genotype, whose confirmation would definitely require molecular analysis. Our study provides new data on the pathomorphogenesis of Mmalton inclusion bodies whose mineralization could play a central role in disease pathogenesis of Mmalton that is distinct from the Z and Siiyama variants. Calcium is known to be a major effector of cell death either via the increased intracellular concentration or the alteration of homeostasis.
Collapse
Affiliation(s)
- Francesco Callea
- Department of Pathology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.
| | - Isabella Giovannoni
- Department of Pathology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Paola Francalanci
- Department of Pathology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Renata Boldrini
- Department of Pathology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Gavino Faa
- Department of Cytomorphology, University of Cagliari, Cagliari, Italy
| | - Daniela Medicina
- Department of Pathology Spedali Civili, University of Brescia, Brescia, Italy
| | - Valerio Nobili
- Hepato-metabolic Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Kamal Ishak
- Armed Forces Institute of Pathology, Washington, USA
| | - Kuniaki Seyama
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Emanuele Bellacchio
- Genetic and Rare Diseases, Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
17
|
Janciauskiene S, Wrenger S, Immenschuh S, Olejnicka B, Greulich T, Welte T, Chorostowska-Wynimko J. The Multifaceted Effects of Alpha1-Antitrypsin on Neutrophil Functions. Front Pharmacol 2018; 9:341. [PMID: 29719508 PMCID: PMC5914301 DOI: 10.3389/fphar.2018.00341] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/23/2018] [Indexed: 01/02/2023] Open
Abstract
Neutrophils are the predominant immune cells in human blood possessing heterogeneity, plasticity and functional diversity. The activation and recruitment of neutrophils into inflamed tissue in response to stimuli are tightly regulated processes. Alpha1-Antitrypsin (AAT), an acute phase protein, is one of the potent regulators of neutrophil activation via both -protease inhibitory and non-inhibitory functions. This review summarizes our current understanding of the effects of AAT on neutrophils, illustrating the interplay between AAT and the key effector functions of neutrophils.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Sabine Wrenger
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Beata Olejnicka
- Department of Medicine, Trelleborg Hospital, Trelleborg, Sweden
| | - Timm Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL), University Hospital of Giessen and Marburg, University of Marburg, Marburg, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
18
|
Bao J, Pan G, Poncz M, Wei J, Ran M, Zhou Z. Serpin functions in host-pathogen interactions. PeerJ 2018; 6:e4557. [PMID: 29632742 PMCID: PMC5889911 DOI: 10.7717/peerj.4557] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/09/2018] [Indexed: 01/20/2023] Open
Abstract
Serpins are a broadly distributed superfamily of protease inhibitors that are present in all kingdoms of life. The acronym, serpin, is derived from their function as potent serine proteases inhibitors. Early studies of serpins focused on their functions in haemostasis since modulating serine proteases activities are essential for coagulation. Additional research has revealed that serpins function in infection and inflammation, by modulating serine and cysteine proteases activities. The aim of this review is to summarize the accumulating findings and current understanding of the functions of serpins in host-pathogen interactions, serving as host defense proteins as well as pathogenic factors. We also discuss the potential crosstalk between host and pathogen serpins. We anticipate that future research will elucidate the therapeutic value of this novel target.
Collapse
Affiliation(s)
- Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Mortimer Poncz
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America.,Division of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Maoshuang Ran
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
19
|
Götzfried J, Smirnova NF, Morrone C, Korkmaz B, Yildirim AÖ, Eickelberg O, Jenne DE. Preservation with α 1-antitrypsin improves primary graft function of murine lung transplants. J Heart Lung Transplant 2018; 37:1021-1028. [PMID: 29776812 PMCID: PMC6078707 DOI: 10.1016/j.healun.2018.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/15/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Vascular damage and primary graft dysfunction increase with prolonged preservation times of transplanted donor lungs. Hence, storage and conservation of donated lungs in protein-free, dextran-containing electrolyte solutions, like Perfadex, is limited to about 6 hours. We hypothesized that transplanted lungs are protected against neutrophil-mediated proteolytic damage by adding α1-anti-trypsin (AAT), a highly abundant human plasma proteinase inhibitor, to Perfadex. METHODS A realistic clinically oriented murine model of lung transplantation was used to simulate the ischemia-reperfusion process. Lung grafts were stored at 4°C in Perfadex solution supplemented with AAT or an AAT mutant devoid of elastase-inhibiting activity for 18 hours. We examined wild-type and proteinase 3/neutrophil elastase (PR3/NE) double-deficient mice as graft recipients. Gas exchange function and infiltrating neutrophils of the transplanted lung, as well as protein content and neutrophil numbers in the bronchoalveolar lavage fluid, were determined. RESULTS AAT as a supplement to Perfadex reduced the extent of primary graft dysfunction and early neutrophil responses after extended storage for 18 hours at 4°C and 4-hour reperfusion in the recipients. Double-knockout recipients that lack elastase-like activities in neutrophils were also protected from early reperfusion injury, but not lung grafts that were perfused with a reactive center mutant of AAT devoid of elastase-inhibiting activity. CONCLUSIONS PR3 and NE, the principal targets of AAT, are major triggers of post-ischemic reperfusion damage. Their effective inhibition in the graft and recipient is a promising strategy for organ usage after storage for >6 hours.
Collapse
Affiliation(s)
- Jessica Götzfried
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany
| | - Natalia F Smirnova
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany
| | - Carmela Morrone
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany
| | - Brice Korkmaz
- INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, Tours, France
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany; German Center for Lung Research, Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany; Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado, USA
| | - Dieter E Jenne
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany; German Center for Lung Research, Munich, Germany; Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany.
| |
Collapse
|
20
|
Loke I, Østergaard O, Heegaard NHH, Packer NH, Thaysen-Andersen M. Paucimannose-Rich N-glycosylation of Spatiotemporally Regulated Human Neutrophil Elastase Modulates Its Immune Functions. Mol Cell Proteomics 2017; 16:1507-1527. [PMID: 28630087 PMCID: PMC5546201 DOI: 10.1074/mcp.m116.066746] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 06/04/2017] [Indexed: 12/22/2022] Open
Abstract
Human neutrophil elastase (HNE) is an important N-glycosylated serine protease in the innate immune system, but the structure and immune-modulating functions of HNE N-glycosylation remain undescribed. Herein, LC-MS/MS-based glycan, glycopeptide and glycoprotein profiling were utilized to first determine the heterogeneous N-glycosylation of HNE purified from neutrophil lysates and then from isolated neutrophil granules of healthy individuals. The spatiotemporal expression of HNE during neutrophil activation and the biological importance of its N-glycosylation were also investigated using immunoblotting, cell surface capture, native MS, receptor interaction, protease inhibition, and bacteria growth assays. Site-specific HNE glycoprofiling demonstrated that unusual paucimannosidic N-glycans, particularly Manα1,6Manβ1,4GlcNAcβ1,4(Fucα1,6)GlcNAcβ, predominantly occupied Asn124 and Asn173. The equally unusual core fucosylated monoantenna complex-type N-sialoglycans also decorated these two fully occupied sites. In contrast, the mostly unoccupied Asn88 carried nonfucosylated paucimannosidic N-glycans probably resulting from low glycosylation site solvent accessibility. Asn185 was not glycosylated. Subcellular- and site-specific glycoprofiling showed highly uniform N-glycosylation of HNE residing in distinct neutrophil compartments. Stimulation-induced cell surface mobilization demonstrated a spatiotemporal regulation, but not cell surface-specific glycosylation signatures, of HNE in activated human neutrophils. The three glycosylation sites of HNE were located distal to the active site indicating glycan functions other than interference with HNE enzyme activity. Functionally, the paucimannosidic HNE glycoforms displayed preferential binding to human mannose binding lectin compared with the HNE sialoglycoforms, suggesting a glycoform-dependent involvement of HNE in complement activation. The heavily N-glycosylated HNE protease inhibitor, α1-antitrypsin, displayed concentration-dependent complex formation and preferred glycoform-glycoform interactions with HNE. Finally, both enzymatically active HNE and isolated HNE N-glycans demonstrated low micromolar concentration-dependent growth inhibition of clinically-relevant Pseudomonas aeruginosa, suggesting some bacteriostatic activity is conferred by the HNE N-glycans. Taken together, these observations support that the unusual HNE N-glycosylation, here reported for the first time, is involved in modulating multiple immune functions central to inflammation and infection.
Collapse
Affiliation(s)
- Ian Loke
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ole Østergaard
- §Department of Autoimmunology and Biomarkers, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Niels H H Heegaard
- §Department of Autoimmunology and Biomarkers, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Nicolle H Packer
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Morten Thaysen-Andersen
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia;
| |
Collapse
|
21
|
Inhibitory serpins. New insights into their folding, polymerization, regulation and clearance. Biochem J 2017; 473:2273-93. [PMID: 27470592 DOI: 10.1042/bcj20160014] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022]
Abstract
Serpins are a widely distributed family of high molecular mass protein proteinase inhibitors that can inhibit both serine and cysteine proteinases by a remarkable mechanism-based kinetic trapping of an acyl or thioacyl enzyme intermediate that involves massive conformational transformation. The trapping is based on distortion of the proteinase in the complex, with energy derived from the unique metastability of the active serpin. Serpins are the favoured inhibitors for regulation of proteinases in complex proteolytic cascades, such as are involved in blood coagulation, fibrinolysis and complement activation, by virtue of the ability to modulate their specificity and reactivity. Given their prominence as inhibitors, much work has been carried out to understand not only the mechanism of inhibition, but how it is fine-tuned, both spatially and temporally. The metastability of the active state raises the question of how serpins fold, whereas the misfolding of some serpin variants that leads to polymerization and pathologies of liver disease, emphysema and dementia makes it clinically important to understand how such polymerization might occur. Finally, since binding of serpins and their proteinase complexes, particularly plasminogen activator inhibitor-1 (PAI-1), to the clearance and signalling receptor LRP1 (low density lipoprotein receptor-related protein 1), may affect pathways linked to cell migration, angiogenesis, and tumour progression, it is important to understand the nature and specificity of binding. The current state of understanding of these areas is addressed here.
Collapse
|
22
|
Korkmaz B, Lesner A, Guarino C, Wysocka M, Kellenberger C, Watier H, Specks U, Gauthier F, Jenne DE. Inhibitors and Antibody Fragments as Potential Anti-Inflammatory Therapeutics Targeting Neutrophil Proteinase 3 in Human Disease. Pharmacol Rev 2017; 68:603-30. [PMID: 27329045 DOI: 10.1124/pr.115.012104] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proteinase 3 (PR3) has received great scientific attention after its identification as the essential antigenic target of antineutrophil cytoplasm antibodies in Wegener's granulomatosis (now called granulomatosis with polyangiitis). Despite many structural and functional similarities between neutrophil elastase (NE) and PR3 during biosynthesis, storage, and extracellular release, unique properties and pathobiological functions have emerged from detailed studies in recent years. The development of highly sensitive substrates and inhibitors of human PR3 and the creation of PR3-selective single knockout mice led to the identification of nonredundant roles of PR3 in cell death induction via procaspase-3 activation in cell cultures and in mouse models. According to a study in knockout mice, PR3 shortens the lifespan of infiltrating neutrophils in tissues and accelerates the clearance of aged neutrophils in mice. Membrane exposure of active human PR3 on apoptotic neutrophils reprograms the response of macrophages to phagocytosed neutrophils, triggers secretion of proinflammatory cytokines, and undermines immune silencing and tissue regeneration. PR3-induced disruption of the anti-inflammatory effect of efferocytosis may be relevant for not only granulomatosis with polyangiitis but also for other autoimmune diseases with high neutrophil turnover. Inhibition of membrane-bound PR3 by endogenous inhibitors such as the α-1-protease inhibitor is comparatively weaker than that of NE, suggesting that the adverse effects of unopposed PR3 activity resurface earlier than those of NE in individuals with α-1-protease inhibitor deficiency. Effective coverage of PR3 by anti-inflammatory tools and simultaneous inhibition of both PR3 and NE should be most promising in the future.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Adam Lesner
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Carla Guarino
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Magdalena Wysocka
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Christine Kellenberger
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Hervé Watier
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Ulrich Specks
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Francis Gauthier
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Dieter E Jenne
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| |
Collapse
|
23
|
Hazari YM, Bashir A, Habib M, Bashir S, Habib H, Qasim MA, Shah NN, Haq E, Teckman J, Fazili KM. Alpha-1-antitrypsin deficiency: Genetic variations, clinical manifestations and therapeutic interventions. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:14-25. [PMID: 28927525 DOI: 10.1016/j.mrrev.2017.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 03/11/2017] [Accepted: 03/13/2017] [Indexed: 02/08/2023]
Abstract
Alpha-1-antitrypsin (AAT) is an acute phase secretory glycoprotein that inhibits neutrophil proteases like elastase and is considered as the archetype of a family of structurally related serine-protease inhibitors termed serpins. Serum AAT predominantly originates from liver and increases three to five fold during host response to tissue injury and inflammation. The AAT deficiency is unique among the protein-misfolding diseases in that it causes target organ injury by both loss-of-function and gain-of-toxic function mechanisms. Lack of its antiprotease activity is associated with premature development of pulmonary emphysema and loss-of-function due to accumulation of resultant aggregates in chronic obstructive pulmonary disease (COPD). This' in turn' markedly reduces the amount of AAT that is available to protect lungs against proteolytic attack by the enzyme neutrophil elastase. The coalescence of AAT deficiency, its reduced efficacy, and cigarette smoking or poor ventilation conditions have devastating effect on lung function. On the other hand, the accumulation of retained mutant proteins in the endoplasmic reticulum of hepatocytes in a polymerized form rather than secreted into the blood in its monomeric form is associated with chronic liver disease and predisposition to hepatocellular carcinoma (HCC) by gain- of- toxic function. Liver injury resulting from this gain-of-toxic function mechanism in which mutant AAT retained in the ER initiates a series of pathologic events, eventually culminating at liver cirrhosis and HCC. Here in this review, we underline the structural, genetic, polymorphic, biochemical and pathological advances made in the field of AAT deficiency and further comprehensively emphasize on the therapeutic interventions available for the patient.
Collapse
Affiliation(s)
| | - Arif Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mudasir Habib
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Samirul Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Huma Habib
- The Islamia College of Science & Commerce, Srinagar, Jammu and Kashmir, India
| | - M Abul Qasim
- Department of Chemistry, Indiana University Purdue University Fort Wayne, IN, USA
| | - Naveed Nazir Shah
- Department of Chest Medicine, Government Medical College, Srinagar, Jammu and Kashmir, India
| | - Ehtishamul Haq
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Jeffrey Teckman
- Department of Pediatrics, Saint Louis University, St Louis, MO, USA
| | - Khalid Majid Fazili
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
24
|
Serpins in arthropod biology. Semin Cell Dev Biol 2016; 62:105-119. [PMID: 27603121 DOI: 10.1016/j.semcdb.2016.09.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/21/2022]
Abstract
Serpins are the largest known family of serine proteinase inhibitors and perform a variety of physiological functions in arthropods. Herein, we review the field of serpins in arthropod biology, providing an overview of current knowledge and topics of interest. Serpins regulate insect innate immunity via inhibition of serine proteinase cascades that initiate immune responses such as melanization and antimicrobial peptide production. In addition, several serpins with anti-pathogen activity are expressed as acute-phase serpins in insects upon infection. Parasitoid wasps can downregulate host serpin expression to modulate the host immune system. In addition, examples of serpin activity in development and reproduction in Drosophila have also been discovered. Serpins also function in host-pathogen interactions beyond immunity as constituents of venom in parasitoid wasps and saliva of blood-feeding ticks and mosquitoes. These serpins have distinct effects on immunosuppression and anticoagulation and are of interest for vaccine development. Lastly, the known structures of arthropod serpins are discussed, which represent the serpin inhibitory mechanism and provide a detailed overview of the process.
Collapse
|
25
|
Hennawy MG, Elhosseiny NM, Sultan H, Abdelfattah W, Akl Y, Sabry NA, Attia AS. The effect of α 1-antitrypsin deficiency combined with increased bacterial loads on chronic obstructive pulmonary disease pharmacotherapy: A prospective, parallel, controlled pilot study. J Adv Res 2016; 7:1019-1028. [PMID: 27857848 PMCID: PMC5106446 DOI: 10.1016/j.jare.2016.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 02/03/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is caused by α1-antitrypsin deficiency (AATD) genetic susceptibility and exacerbated by infection. The current pilot study aimed at studying the combined effect of AATD and bacterial loads on the efficacy of COPD conventional pharmacotherapy. Fifty-nine subjects (29 controls and 30 COPD patients) were tested for genetic AATD and respiratory function. The bacterial loads were determined to the patients’ group who were then given a long acting beta-agonist and corticosteroid inhaler for 6 months. Nineteen percent of the studied group were Pi∗MZ (heterozygote deficiency variant), Pi∗S (5%) (milder deficiency variant), Pi∗ZZ (10%) (the most common deficiency variant), and Pi∗Mmalton (2%) (very rare deficiency variant). The patients’ sputum contained from 0 to 8 × 108 CFU/mL pathogenic bacteria. The forced vital capacity (FVC6) values of the AAT non-deficient group significantly improved after 3 and 6 months. Patients lacking AATD and pathogenic bacteria showed significant improvement in forced expiratory volume (FEV1), FEV1/FVC6, FVC6, and 6 min walk distance (6MWD) after 6 months. However, patients with AATD and pathogenic bacteria showed only significant improvement in FEV1 and FEV1/FVC6. The findings of this pilot study highlight for the first time the role of the combined AATD and pathogenic bacterial loads on the efficacy of COPD treatment.
Collapse
Affiliation(s)
- Marwa G Hennawy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Noha M Elhosseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Hussein Sultan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Wael Abdelfattah
- Department of Chest Diseases and Allergy, Faculty of Medicine, Ain Shams University, Cairo 11539, Egypt
| | - Yousry Akl
- Department of Chest Diseases and Allergy, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Nirmeen A Sabry
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
26
|
Abstract
Specific conformations of signaling proteins can serve as “signals” in signal transduction by being recognized by receptors.
Collapse
Affiliation(s)
- Peter Tompa
- VIB Structural Biology Research Center (SBRC)
- Brussels
- Belgium
- Vrije Universiteit Brussel
- Brussels
| |
Collapse
|
27
|
Caccia S, Ricagno S, Bolognesi M. Molecular bases of neuroserpin function and pathology. Biomol Concepts 2015; 1:117-30. [PMID: 25961991 DOI: 10.1515/bmc.2010.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Serpins build a large and evolutionary widespread protein superfamily, hosting members that are mainly Ser-protease inhibitors. Typically, serpins display a conserved core domain composed of three main β-sheets and 9-10 α-helices, for a total of approximately 350 amino acids. Neuroserpin (NS) is mostly expressed in neurons and in the central and peripheral nervous systems, where it targets tissue-type plasminogen activator. NS activity is relevant for axogenesis, synaptogenesis and synaptic plasticity. Five (single amino acid) NS mutations are associated with severe neurodegenerative disease in man, leading to early onset dementia, epilepsy and neuronal death. The functional aspects of NS protease inhibition are linked to the presence of a long exposed loop (reactive center loop, RCL) that acts as bait for the incoming partner protease. Large NS conformational changes, associated with the cleavage of the RCL, trap the protease in an acyl-enzyme complex. Contrary to other serpins, this complex has a half-life of approximately 10 min. Conformational flexibility is held to be at the bases of NS polymerization leading to Collins bodies intracellular deposition and neuronal damage in the pathological NS variants. Two main general mechanisms of serpin polymerization are currently discussed. Both models require the swapping of the RCL among neighboring serpin molecules. Specific differences in the size of swapped regions, as well as differences in the folding stage at which polymerization can occur, distinguish the two models. The results provided by recent crystallographic and biophysical studies allow rationalization of the functional and pathological roles played by NS based on the analysis of four three-dimensional structures.
Collapse
|
28
|
McElvaney OJ, Bella AME, McElvaney NG. α-1 antitrypsin deficiency: current and future treatment options. Expert Opin Orphan Drugs 2014. [DOI: 10.1517/21678707.2015.997208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Castilho A, Windwarder M, Gattinger P, Mach L, Strasser R, Altmann F, Steinkellner H. Proteolytic and N-glycan processing of human α1-antitrypsin expressed in Nicotiana benthamiana. PLANT PHYSIOLOGY 2014; 166:1839-51. [PMID: 25355867 PMCID: PMC4256845 DOI: 10.1104/pp.114.250720] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 10/28/2014] [Indexed: 05/19/2023]
Abstract
Plants are increasingly being used as an expression system for complex recombinant proteins. However, our limited knowledge of the intrinsic factors that act along the secretory pathway, which may compromise product integrity, renders process design difficult in some cases. Here, we pursued the recombinant expression of the human protease inhibitor α1-antitrypsin (A1AT) in Nicotiana benthamiana. This serum protein undergoes intensive posttranslational modifications. Unusually high levels of recombinant A1AT were expressed in leaves (up to 6 mg g(-1) of leaf material) in two forms: full-length A1AT located in the endoplasmic reticulum displaying inhibitory activity, and secreted A1AT processed in the reactive center loop, thus rendering it unable to interact with target proteinases. We found that the terminal protein processing is most likely a consequence of the intrinsic function of A1AT (i.e. its interaction with proteases [most likely serine proteases] along the secretory pathway). Secreted A1AT carried vacuolar-type paucimannosidic N-glycans generated by the activity of hexosaminidases located in the apoplast/plasma membrane. Notwithstanding, an intensive glycoengineering approach led to secreted A1AT carrying sialylated N-glycan structures largely resembling its serum-derived counterpart. In summary, we elucidate unique insights in plant glycosylation processes and show important aspects of postendoplasmic reticulum protein processing in plants.
Collapse
Affiliation(s)
- Alexandra Castilho
- Departments of Applied Genetics and Cell Biology (A.C., P.G., L.M., R.S., H.S.) andChemistry (M.W., F.A.), University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Markus Windwarder
- Departments of Applied Genetics and Cell Biology (A.C., P.G., L.M., R.S., H.S.) andChemistry (M.W., F.A.), University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Pia Gattinger
- Departments of Applied Genetics and Cell Biology (A.C., P.G., L.M., R.S., H.S.) andChemistry (M.W., F.A.), University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Lukas Mach
- Departments of Applied Genetics and Cell Biology (A.C., P.G., L.M., R.S., H.S.) andChemistry (M.W., F.A.), University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Richard Strasser
- Departments of Applied Genetics and Cell Biology (A.C., P.G., L.M., R.S., H.S.) andChemistry (M.W., F.A.), University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Friedrich Altmann
- Departments of Applied Genetics and Cell Biology (A.C., P.G., L.M., R.S., H.S.) andChemistry (M.W., F.A.), University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Herta Steinkellner
- Departments of Applied Genetics and Cell Biology (A.C., P.G., L.M., R.S., H.S.) andChemistry (M.W., F.A.), University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
30
|
Tan L, Perez J, Mela M, Miranda E, Burling KA, Rouhani FN, DeMeo DL, Haq I, Irving JA, Ordóñez A, Dickens JA, Brantly M, Marciniak SJ, Alexander GJM, Gooptu B, Lomas DA. Characterising the association of latency with α(1)-antitrypsin polymerisation using a novel monoclonal antibody. Int J Biochem Cell Biol 2014; 58:81-91. [PMID: 25462157 PMCID: PMC4305080 DOI: 10.1016/j.biocel.2014.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/13/2014] [Accepted: 11/04/2014] [Indexed: 11/27/2022]
Abstract
α1-Antitrypsin is primarily synthesised in the liver, circulates to the lung and protects pulmonary tissues from proteolytic damage. The Z mutant (Glu342Lys) undergoes inactivating conformational change and polymerises. Polymers are retained within the hepatocyte endoplasmic reticulum (ER) in homozygous (PiZZ) individuals, predisposing the individuals to hepatic cirrhosis and emphysema. Latency is an analogous process of inactivating, intra-molecular conformational change and may co-occur with polymerisation. However, the relationship between latency and polymerisation remained unexplored in the absence of a suitable probe. We have developed a novel monoclonal antibody specific for latent α1-antitrypsin and used it in combination with a polymer-specific antibody, to assess the association of both conformers in vitro, in disease and during augmentation therapy. In vitro kinetics analysis showed polymerisation dominated the pathway but latency could be promoted by stabilising monomeric α1-antitrypsin. Polymers were extensively produced in hepatocytes and a cell line expressing Z α1-antitrypsin but the latent protein was not detected despite manipulation of the secretory pathway. However, α1-antitrypsin augmentation therapy contains latent α1-antitrypsin, as did the plasma of 63/274 PiZZ individuals treated with augmentation therapy but 0/264 who were not receiving this medication (p<10(-14)). We conclude that latent α1-antitrypsin is a by-product of the polymerisation pathway, that the intracellular folding environment is resistant to formation of the latent conformer but that augmentation therapy introduces latent α1-antitrypsin into the circulation. A suite of monoclonal antibodies and methodologies developed in this study can characterise α1-antitrypsin folding and conformational transitions, and screen methods to improve augmentation therapy.
Collapse
Affiliation(s)
- Lu Tan
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Juan Perez
- Department of Cell Biology, Genetics and Physiology, University of Málaga, Málaga, Spain
| | - Marianna Mela
- Division of Gastroenterology & Hepatology, University Department of Medicine, Cambridge University Hospitals, Cambridge, UK
| | - Elena Miranda
- Department of Biology and Biotechnologies Charles Darwin and Pasteur Institute-Cenci Bolognetti Foundation-University of Rome La Sapienza, Rome, Italy
| | - Keith A Burling
- Core Biochemical Assay Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Farshid N Rouhani
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Imran Haq
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - James A Irving
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Adriana Ordóñez
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Jennifer A Dickens
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Mark Brantly
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Stefan J Marciniak
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Graeme J M Alexander
- Division of Gastroenterology & Hepatology, University Department of Medicine, Cambridge University Hospitals, Cambridge, UK
| | - Bibek Gooptu
- Division of Asthma, Allergy and Lung Biology, King's College London, Guy's Hospital, 5th Floor, Tower Wing, London, UK.
| | - David A Lomas
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| |
Collapse
|
31
|
Jung CH, Lim JH, Lee K, Im H. An Endoplasmic Reticulum Cyclophilin Cpr5p Rescues Z-type α 1-Antitrypsin from Retarded Folding. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.9.2781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
McCarthy C, Saldova R, Wormald MR, Rudd PM, McElvaney NG, Reeves EP. The Role and Importance of Glycosylation of Acute Phase Proteins with Focus on Alpha-1 Antitrypsin in Acute and Chronic Inflammatory Conditions. J Proteome Res 2014; 13:3131-43. [DOI: 10.1021/pr500146y] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cormac McCarthy
- Respiratory
Research Division, Royal College of Surgeons in Ireland, Beaumont
Hospital, Dublin 9, Ireland
| | - Radka Saldova
- NIBRT
GlycoScience Group, The National Institute for Bioprocessing Research
and Training, University College Dublin, Dublin 4, Ireland
| | - Mark R Wormald
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, U.K
| | - Pauline M. Rudd
- NIBRT
GlycoScience Group, The National Institute for Bioprocessing Research
and Training, University College Dublin, Dublin 4, Ireland
| | - Noel G. McElvaney
- Respiratory
Research Division, Royal College of Surgeons in Ireland, Beaumont
Hospital, Dublin 9, Ireland
| | - Emer P. Reeves
- Respiratory
Research Division, Royal College of Surgeons in Ireland, Beaumont
Hospital, Dublin 9, Ireland
| |
Collapse
|
33
|
Gooptu B, Dickens JA, Lomas DA. The molecular and cellular pathology of α₁-antitrypsin deficiency. Trends Mol Med 2013; 20:116-27. [PMID: 24374162 DOI: 10.1016/j.molmed.2013.10.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 12/30/2022]
Abstract
Since its discovery 50 years ago, α₁-antitrypsin deficiency has represented a case study in molecular medicine, with careful clinical characterisation guiding genetic, biochemical, biophysical, structural, cellular, and in vivo studies. Here we highlight the milestones in understanding the disease mechanisms and show how they have spurred the development of novel therapeutic strategies. α₁-Antitrypsin deficiency is an archetypal conformational disease. Its pathogenesis demonstrates the interplay between protein folding and quality control mechanisms, with aberrant conformational changes causing liver and lung disease through combined loss- and toxic gain-of-function effects. Moreover, α₁-antitrypsin exemplifies the ability of diverse proteins to self-associate into a range of morphologically distinct polymers, suggesting a mechanism for protein and cell evolution.
Collapse
Affiliation(s)
- Bibek Gooptu
- Division of Asthma, Allergy, and Lung Biology, King's College London, 5th Floor, Tower Wing, Guy's Hospital, London, SE1 9RT, UK; Institute of Structural and Molecular Biology/Crystallography, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK
| | - Jennifer A Dickens
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK
| | - David A Lomas
- Institute of Structural and Molecular Biology/Crystallography, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK; Division of Medicine, University College London, 1st Floor, Maple House, 149, Tottenham Court Road, London, W1T 7NF, UK.
| |
Collapse
|
34
|
McCarthy C, Saldova R, O'Brien ME, Bergin DA, Carroll TP, Keenan J, Meleady P, Henry M, Clynes M, Rudd PM, Reeves EP, McElvaney NG. Increased outer arm and core fucose residues on the N-glycans of mutated alpha-1 antitrypsin protein from alpha-1 antitrypsin deficient individuals. J Proteome Res 2013; 13:596-605. [PMID: 24328305 DOI: 10.1021/pr400752t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alpha-1 antitrypsin (AAT) is the major physiological inhibitor of a range of serine proteases, and in the lung, it maintains a protease-antiprotease balance. AAT deficiency (AATD) is an autosomal co-dominant condition with the Z mutation being the most common cause. Individuals homozygous for Z (PiZZ) have low levels of circulating mutant Z-AAT protein leading to premature emphysematous lung disease. Extensive glycoanalysis has been performed on normal AAT (M-AAT) from healthy individuals and the importance of glycosylation in affecting the immune modulatory roles of AAT is documented. However, no glycoanalysis has been carried out on Z-AAT from deficient individuals to date. In this study, we investigate whether the glycans present on Z-AAT differ to those found on M-AAT from healthy controls. Plasma AAT was purified from 10 individuals: 5 AATD donors with the PiZZ phenotype and 5 PiMM healthy controls. Glycoanalysis was performed employing N-glycan release, exoglycosidase digestion and UPLC analysis. No difference in branched glycans was identified between AATD and healthy controls. However, a significant increase in both outer arm (α1-3) (p = 0.04) and core (α1-6) fucosylated glycans (p < 0.0001) was found on Z-AAT compared to M-AAT. This study has identified increased fucosylation on N-glycans of Z-AAT indicative of ongoing inflammation in AATD individuals with implications for early therapeutic intervention.
Collapse
Affiliation(s)
- Cormac McCarthy
- Respiratory Research Division, Royal College of Surgeons in Ireland , Beaumont Hospital, Dublin 9, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lomas DA. Twenty Years of Polymers: A Personal Perspective on Alpha-1 Antitrypsin Deficiency. COPD 2013; 10 Suppl 1:17-25. [DOI: 10.3109/15412555.2013.764401] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Chang YP, Chu YH. Blocking formation of large protein aggregates by small peptides. Chem Commun (Camb) 2013; 49:4591-600. [DOI: 10.1039/c3cc37518h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
Abdul-Wahab MF, Homma T, Wright M, Olerenshaw D, Dafforn TR, Nagata K, Miller AD. The pH sensitivity of murine heat shock protein 47 (HSP47) binding to collagen is affected by mutations in the breach histidine cluster. J Biol Chem 2012; 288:4452-61. [PMID: 23212911 DOI: 10.1074/jbc.m112.409029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Heat shock protein 47 (HSP47) is a single-substrate molecular chaperone crucial for collagen biosynthesis. Although its function is well established, the molecular mechanisms that govern binding to procollagen peptides and triple helices in the endoplasmic reticulum (followed by controlled release in the Golgi) are unclear. HSP47 binds procollagen at a neutral pH but releases at a pH similar to the pK(a) of the imidazole side chain of histidine residues. It thus seems likely that these residues are involved in this pH-dependent mechanism. Murine HSP47 has 14 histidine residues grouped into three clusters, known as the breach, gate, and shutter. Here, we report the use of histidine mutagenesis to demonstrate the relative contribution of these three clusters to HSP47 structure and the "pH switch." Many of the tested mutants are silent; however, breach mutants H197A and H198A show binding but no apparent pH switch and are unable to control release. Another breach mutant, H191A, shows perturbed collagen release characteristics, consistent with observed perturbations in pH-driven trans-conformational changes. Thus, His-198, His-197 and His-191 are important (if not central) to HSP47 mechanism of binding/release to collagen. This is consistent with the breach cluster residues being well conserved across the HSP47 family.
Collapse
Affiliation(s)
- Mohd Firdaus Abdul-Wahab
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
38
|
Guerriero CJ, Brodsky JL. The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiol Rev 2012; 92:537-76. [PMID: 22535891 DOI: 10.1152/physrev.00027.2011] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein folding is a complex, error-prone process that often results in an irreparable protein by-product. These by-products can be recognized by cellular quality control machineries and targeted for proteasome-dependent degradation. The folding of proteins in the secretory pathway adds another layer to the protein folding "problem," as the endoplasmic reticulum maintains a unique chemical environment within the cell. In fact, a growing number of diseases are attributed to defects in secretory protein folding, and many of these by-products are targeted for a process known as endoplasmic reticulum-associated degradation (ERAD). Since its discovery, research on the mechanisms underlying the ERAD pathway has provided new insights into how ERAD contributes to human health during both normal and diseases states. Links between ERAD and disease are evidenced from the loss of protein function as a result of degradation, chronic cellular stress when ERAD fails to keep up with misfolded protein production, and the ability of some pathogens to coopt the ERAD pathway. The growing number of ERAD substrates has also illuminated the differences in the machineries used to recognize and degrade a vast array of potential clients for this pathway. Despite all that is known about ERAD, many questions remain, and new paradigms will likely emerge. Clearly, the key to successful disease treatment lies within defining the molecular details of the ERAD pathway and in understanding how this conserved pathway selects and degrades an innumerable cast of substrates.
Collapse
Affiliation(s)
- Christopher J Guerriero
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
39
|
Abstract
Serine protease inhibitors (serpins) are a superfamily of structurally conserved proteins that inhibit serine proteases and play key physiological roles in numerous biological systems such as blood coagulation, complement activation and inflammation. A number of serpins have now been identified in parasitic helminths with putative involvement in immune regulation and in parasite survival through interference with the host immune response. This review describes the serpins and smapins (small serine protease inhibitors) that have been identified in Ascaris spp., Brugia malayi, Ancylostoma caninum Onchocerca volvulus, Haemonchus contortus, Trichinella spiralis, Trichostrongylus vitrinus, Anisakis simplex, Trichuris suis, Schistosoma spp., Clonorchis sinensis, Paragonimus westermani and Echinococcus spp. and discusses their possible biological functions, including roles in host-parasite interplay and their evolutionary relationships.
Collapse
|
40
|
A novel model and molecular therapy for Z alpha-1 antitrypsin deficiency. Mamm Genome 2011; 23:241-9. [PMID: 22076419 DOI: 10.1007/s00335-011-9370-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/06/2011] [Indexed: 10/15/2022]
Abstract
Animal models that closely resemble human disease can present a challenge. Particularly so in alpha-1 antitrypsin deficiency (α(1)ATD), as the mouse alpha-1 antitrypsin (α(1)AT) cluster encodes five highly related genes compared with the one in humans. The mouse PI2 homologue is closest to the α(1)AT human gene. We have changed the equivalent mouse site that results in the Z variant in man (Glu342Lys) and made both the "M" and "Z" mouse PI2 α(1)AT proteins. We have tested the ability of a small-molecular-weight compound CG to alleviate polymerisation of these mouse α(1)AT proteins as it has been shown to reduce aggregates of Z α(1)AT in man. We found that (1) CG specifically reduces the formation of polymers of recombinant mouse "Z" protein but not "M" protein; (2) whereas there is significantly more α(1)AT secreted from Chinese Hamster Ovary cells transfected with the mouse "M" α(1)AT gene than with the "Z" (20.8 ± 3.9 and 6.7 ± 3.6, respectively; P < 0.005), CG increased the α(1)AT levels secreted from "Z" cells (21.2 ± 0.01) to that of "M" (20.2 ± 0.02). The data support the concept that the murine "Z" gene is a potential model for the study of α(1)ATD and that mice expressing this gene would be relevant for testing treatments in vivo.
Collapse
|
41
|
Roussel BD, Irving JA, Ekeowa UI, Belorgey D, Haq I, Ordóñez A, Kruppa AJ, Duvoix A, Rashid ST, Crowther DC, Marciniak SJ, Lomas DA. Unravelling the twists and turns of the serpinopathies. FEBS J 2011; 278:3859-67. [DOI: 10.1111/j.1742-4658.2011.08201.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Blanchard V, Liu X, Eigel S, Kaup M, Rieck S, Janciauskiene S, Sandig V, Marx U, Walden P, Tauber R, Berger M. N-glycosylation and biological activity of recombinant human alpha1-antitrypsin expressed in a novel human neuronal cell line. Biotechnol Bioeng 2011; 108:2118-28. [DOI: 10.1002/bit.23158] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/01/2011] [Accepted: 03/30/2011] [Indexed: 11/11/2022]
|
43
|
Olson ST, Gettins PGW. Regulation of proteases by protein inhibitors of the serpin superfamily. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 99:185-240. [PMID: 21238937 DOI: 10.1016/b978-0-12-385504-6.00005-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The serpins comprise an ancient superfamily of proteins, found abundantly in eukaryotes and even in some bacteria and archea, that have evolved to regulate proteases of both serine and cysteine mechanistic classes. Unlike the thermodynamically determined lock-and-key type inhibitors, such as those of the Kunitz and Kazal families, serpins use conformational change and consequent kinetic trapping of an enzyme intermediate to effect inhibition. By combining interactions of both an exposed reactive center loop and exosites outside this loop with the active site and complementary exosites on the target protease, serpins can achieve remarkable specificity. Together with the frequent use of regulatory cofactors, this permits a sophisticated time- and location-dependent mode of protease regulation. An understanding of the structure and function of serpins has suggested that they may provide novel scaffolds for engineering protease inhibitors of desired specificity for therapeutic use.
Collapse
Affiliation(s)
- Steven T Olson
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
44
|
|
45
|
Kelly E, Greene CM, Carroll TP, McElvaney NG, O’Neill SJ. Alpha-1 antitrypsin deficiency. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.rmedc.2011.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Miranda E, Pérez J, Ekeowa UI, Hadzic N, Kalsheker N, Gooptu B, Portmann B, Belorgey D, Hill M, Chambers S, Teckman J, Alexander GJ, Marciniak SJ, Lomas DA. A novel monoclonal antibody to characterize pathogenic polymers in liver disease associated with alpha1-antitrypsin deficiency. Hepatology 2010; 52:1078-88. [PMID: 20583215 DOI: 10.1002/hep.23760] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Alpha(1)-antitrypsin is the most abundant circulating protease inhibitor. The severe Z deficiency allele (Glu342Lys) causes the protein to undergo a conformational transition and form ordered polymers that are retained within hepatocytes. This causes neonatal hepatitis, cirrhosis, and hepatocellular carcinoma. We have developed a conformation-specific monoclonal antibody (2C1) that recognizes the pathological polymers formed by alpha(1)-antitrypsin. This antibody was used to characterize the Z variant and a novel shutter domain mutant (His334Asp; alpha(1)-antitrypsin King's) identified in a 6-week-old boy who presented with prolonged jaundice. His334Asp alpha(1)-antitrypsin rapidly forms polymers that accumulate within the endoplasmic reticulum and show delayed secretion when compared to the wild-type M alpha(1)-antitrypsin. The 2C1 antibody recognizes polymers formed by Z and His334Asp alpha(1)-antitrypsin despite the mutations directing their effects on different parts of the protein. This antibody also recognized polymers formed by the Siiyama (Ser53Phe) and Brescia (Gly225Arg) mutants, which also mediate their effects on the shutter region of alpha(1)-antitrypsin. CONCLUSION Z and shutter domain mutants of alpha(1)-antitrypsin form polymers with a shared epitope and so are likely to have a similar structure.
Collapse
Affiliation(s)
- Elena Miranda
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kelly E, Greene CM, Carroll TP, McElvaney NG, O'Neill SJ. Alpha-1 antitrypsin deficiency. Respir Med 2010; 104:763-72. [PMID: 20303723 DOI: 10.1016/j.rmed.2010.01.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 01/22/2010] [Accepted: 01/24/2010] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To review the topic of alpha-1 antitrypsin (AAT) deficiency. METHOD Narrative literature review. RESULTS Much work has been carried out on this condition with many questions being answered but still further questions remain. DISCUSSION AND CONCLUSIONS AAT deficiency is an autosomal co-dominantly inherited disease which affects the lungs and liver predominantly. The clinical manifestations, prevalence, genetics, molecular pathophysiology, screening and treatment recommendations are summarised in this review.
Collapse
Affiliation(s)
- Emer Kelly
- Department of Respiratory Research, Royal College of Surgeons in Ireland, Beaumont Hospital, Education Research Building, Beaumont Road, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
48
|
Bae S, Choi J, Hong J, Lee S, Her E, Choi W, Kim S, Choi Y, Kim S. Generation of Anti-Proteinase 3 Monoclonal Antibodies and Development of Immunological Methods to Detect Endogenous Proteinase 3. Hybridoma (Larchmt) 2010; 29:17-26. [DOI: 10.1089/hyb.2009.0054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Suyoung Bae
- Laboratory of Cytokine Immunology, Medical Immunology Center, Konkuk University, Seoul, Korea
| | - Jida Choi
- Laboratory of Cytokine Immunology, Medical Immunology Center, Konkuk University, Seoul, Korea
| | - Jaewoo Hong
- Laboratory of Cytokine Immunology, Medical Immunology Center, Konkuk University, Seoul, Korea
| | - Siyoung Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju City, Korea
| | - Erk Her
- Department of Immunology, College of Medicine, Konkuk University, Chungju City, Korea
| | - Wonhyuk Choi
- Department of Internal Medicine, College of Medicine, Konkuk University, Chungju City, Korea
| | - Sangmin Kim
- Department of Dermatology, College of Medicine, Konkuk University, Chungju City, Korea
| | - Youngbum Choi
- Department of Dermatology, College of Medicine, Konkuk University, Chungju City, Korea
| | - Soohyun Kim
- Laboratory of Cytokine Immunology, Medical Immunology Center, Konkuk University, Seoul, Korea
| |
Collapse
|
49
|
Maarouf CL, Andacht TM, Kokjohn TA, Castaño EM, Sue LI, Beach TG, Roher AE. Proteomic analysis of Alzheimer's disease cerebrospinal fluid from neuropathologically diagnosed subjects. Curr Alzheimer Res 2009; 6:399-406. [PMID: 19689240 DOI: 10.2174/156720509788929318] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A crucial need exists for reliable Alzheimer's disease (AD) diagnostic and prognostic tests. Given its intimate communication with the brain, the cerebrospinal fluid (CSF) has been surveyed intensively for reliable AD biomarkers. The heterogeneity of AD pathology and the unavoidable difficulties associated with the clinical diagnosis and differentiation of this dementia from other pathologies have confounded biomarker studies in antemortem CSF samples. Using postmortem ventricular CSF (V-CSF) pools, two-dimensional difference gel electrophoresis (2D DIGE) analyses revealed a set of proteins that showed significant differences between neuropathologically-diagnosed AD and elderly non-demented controls (NDC), as well as subjects with non-AD dementias. The 2D DIGE system identified a set of 21 different protein biomarkers. This panel of proteins probably reflects fundamental pathological changes that are divergent from both normal aging and non-AD dementias.
Collapse
Affiliation(s)
- Chera L Maarouf
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, Arizona 85351, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Chang YP, Mahadeva R, Chang WSW, Lin SC, Chu YH. Small-molecule peptides inhibit Z alpha1-antitrypsin polymerization. J Cell Mol Med 2009; 13:2304-2316. [PMID: 19120695 PMCID: PMC6529975 DOI: 10.1111/j.1582-4934.2008.00608.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 10/27/2008] [Indexed: 11/28/2022] Open
Abstract
The Z variant of 1-antitrypsin (AT) polymerizes within the liver and gives rise to liver cirrhosis and the associated plasma deficiency leads to emphysema. In this work, a combinatorial approach based on the inhibitory mechanism of (alpha1)-AT was developed to arrest its pathogenic polymerization. One peptide, Ac-TTAI-NH(2), emerged as the most tight-binding ligand for Z (alpha1)-AT. Characterization of this tetrapeptide by gel electrophoresis and biosensor analysis revealed its markedly improved binding specificity and affinity compared with all previously reported peptide inhibitors. In addition, the peptide is not cytotoxic to lung cell lines. A model of the peptide-protein complex suggests that the peptide interacts with nearby residues by hydrogen bonds, hydrophobic interactions, and cavity-filling stabilization. The combinatorially selected peptide not only effectively blocks the polymerization but also promotes dissociation of the oligomerized (alpha1)-AT. These results are a significant step towards the potential treatment of Z (alpha1)-AT related diseases.
Collapse
Affiliation(s)
- Yi-Pin Chang
- Department of Chemistry and Biochemistry, National Chung Cheng University,Chia-Yi, Taiwan, Republic of China
| | - Ravi Mahadeva
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Wun-Shaing W Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan, Republic of China
| | - Sheng-Chieh Lin
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan, Republic of China
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University,Chia-Yi, Taiwan, Republic of China
| |
Collapse
|