1
|
Shahbaz S, Rezaeifar M, Syed H, Redmond D, Terveart JWC, Osman M, Elahi S. Upregulation of olfactory receptors and neuronal-associated genes highlights complex immune and neuronal dysregulation in Long COVID patients. Brain Behav Immun 2025; 124:97-114. [PMID: 39615603 DOI: 10.1016/j.bbi.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 01/20/2025] Open
Abstract
A substantial portion of patients infected with SARS-CoV-2 experience prolonged complications, known as Long COVID (LC). A subset of these patients exhibits the most debilitating symptoms, similar to those defined in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). We performed bulk RNA sequencing (RNAseq) on the whole blood of LC with ME/CFS, at least 12 months post-onset of the acute disease, and compared them with controls. We found that LC patients had a distinct transcriptional profile compared to controls. Key findings include the upregulation of genes involved in immune dysregulation and neuronal development, such as Fezf2, BRINP2, HOXC12, MEIS2, ZFHX3, and RELN. These genes are linked to neuroinflammatory responses, cognitive impairments, and hematopoietic disturbances, suggesting ongoing neurological and immune disturbances in LC patients. RELN, encoding the Reelin protein, was notably elevated in LC patients, potentially serving as a biomarker for LC pathogenesis due to its role in inflammation and neuronal function. Immune cell analysis showed altered profiles in LC patients, with increased activated memory CD4 + T cells and neutrophils, and decreased regulatory T cells and NK cells, reflecting immune dysregulation. Changes in cytokine and chemokine expression further underscore the chronic inflammatory state in LC patients. Notably, a unique upregulation of olfactory receptors (ORs) suggest alternative roles for ORs in non-olfactory tissues. Pathway analysis revealed upregulation in ribosomal RNA processing, amino acid metabolism, protein synthesis, cell proliferation, DNA repair, and mitochondrial pathways, indicating heightened metabolic and immune demands. Conversely, downregulated pathways, such as VEGF signaling and TP53 activity, point to impaired tissue repair and cellular stress responses. Overall, our study underscores the complex interplay between immune and neuronal dysfunction in LC patients, providing insights into potential diagnostic biomarkers and therapeutic targets. Future research is needed to fully understand the roles and interactions of these genes in LC pathophysiology.
Collapse
Affiliation(s)
- Shima Shahbaz
- Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Maryam Rezaeifar
- Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Hussein Syed
- Department of Medicine, Division of Gastroenterology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Desiree Redmond
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Jan Willem Cohen Terveart
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Women and Children Health Research Institute, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| | - Shokrollah Elahi
- Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Women and Children Health Research Institute, University of Alberta, Edmonton T6G 2E1, AB, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2E1, AB, Canada; Glycomics Institute of Alberta, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| |
Collapse
|
2
|
Schubert T, Schaaf CP. MAGEL2 (patho-)physiology and Schaaf-Yang syndrome. Dev Med Child Neurol 2025; 67:35-48. [PMID: 38950199 PMCID: PMC11625468 DOI: 10.1111/dmcn.16018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/19/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
Schaaf-Yang syndrome (SYS) is a complex neurodevelopmental disorder characterized by autism spectrum disorder, joint contractures, and profound hypothalamic dysfunction. SYS is caused by variants in MAGEL2, a gene within the Prader-Willi syndrome (PWS) locus on chromosome 15. In this review, we consolidate decades of research on MAGEL2 to elucidate its physiological functions. Moreover, we synthesize current knowledge on SYS, suggesting that while MAGEL2 loss-of-function seems to underlie several SYS and PWS phenotypes, additional pathomechanisms probably contribute to the distinct and severe phenotype observed in SYS. In addition, we highlight recent therapeutic advances and identify promising avenues for future investigation.
Collapse
Affiliation(s)
- Tim Schubert
- Institute of Human GeneticsHeidelberg UniversityHeidelbergGermany
| | | |
Collapse
|
3
|
Najjar R, Wang X, Pineda JMB, Alessi H, Bays A, Bradley RK, Jarvis JN, Mustelin T. Altered Protein Structures and Neoepitopes in Lupus Neutrophils From Dysregulated Splicing of Messenger RNA. ACR Open Rheumatol 2025; 7:e11770. [PMID: 39800670 PMCID: PMC11725403 DOI: 10.1002/acr2.11770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/03/2024] [Accepted: 06/05/2024] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVE To test whether messenger RNA (mRNA) splicing is altered in neutrophils from patients with systemic lupus erythematosus (SLE) and can produce neoantigens. METHODS RNA sequencing of neutrophils from patients with SLE (n = 15) and healthy donors (n = 12) were analyzed for mRNA splicing using the RiboSplitter pipeline, an event-focused tool based on SplAdder with subsequent translation and protein domain annotation. RNA sequencing from SARS-CoV2-infected individuals was used as an additional comparator. RESULTS Neutrophils from patients with SLE contained 521 statistically significant altered mRNA splicing events compared with healthy donor neutrophils, many of them affecting important immunologic pathways, myeloid function, transcription factors, and proteins involved in mRNA splicing. A subset of splicing events were only present in SLE samples, and some of them occurred at unannotated splice acceptor or donor sites. Two patients were particularly rich in such events. Only a small number of dysregulated splicing events were more pronounced in patients with active disease or with high type I interferons but were not detected in SARS-CoV2-infected individuals, who also had high type I interferons. Besides causing a range of structural changes, 80 mRNA splice variants exclusive to SLE were predicted to translate into novel amino acid sequences. Peptides derived from these novel amino acid sequences were predicted to bind to the individual patients' class I and II major histocompatibility complex molecules with high affinity. CONCLUSION We conclude that aberrant mRNA splicing in SLE has the potential to affect both the function of granulocytes and to generate novel autoantigens.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert K. Bradley
- University of Washington, Seattle, and Fred Hutchinson Cancer Research CenterSeattleWashington
| | | | | |
Collapse
|
4
|
El Mabrouk H, Othman H, Boussofarra L, Gribaa M, Saad A, Denguezli M, Has C, H'mida D. Genetic Insights Into Epidermolysis Bullosa: Identification of Novel Variants in Tunisian Patients. Am J Med Genet A 2024:e63967. [PMID: 39688128 DOI: 10.1002/ajmg.a.63967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Epidermolysis Bullosa (EB) is a group of genetic skin disorders characterized by extreme skin fragility and blistering. In North African countries, including Tunisia, complex genetic and phenotypic diversity is entangled with a scarcity of scientific research on EB. This lack of knowledge presents a distinct challenge in terms of diagnostic accuracy and patient care. Our study cohort includes 10 Tunisian patients with EB whose genetic profiles were investigated by exome sequencing. In silico analysis was conducted to determine the functional impact of three novel variants. We revealed ten genetic variants, including three novel ones within the COL7A1 and DST genes. The in silico analysis shed light on the potential structural and functional implications of these novel variants. By establishing the correlation between clinical features and genetic alterations, we have expanded the existing database of disease-causing variants associated with EB in Northern Africa. Our study fills a critical knowledge gap in the North African context, where the scarcity of clinical database and genetic testing in addition to the genetic diversity necessitates comprehensive research. Our findings have the potential to improve diagnosis and management strategies for EB patients in low and middle-income countries across the region, especially through the integration of exome sequencing and in silico analysis.
Collapse
Affiliation(s)
- Haifa El Mabrouk
- Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
- Laboratory of Human Cytogenetics, Molecular Genetics, and Reproductive Biology, Farhat Hached University Hospital, University of Sousse, Sousse, Tunisia
| | - Houcemeddine Othman
- Laboratory of Human Cytogenetics, Molecular Genetics, and Reproductive Biology, Farhat Hached University Hospital, University of Sousse, Sousse, Tunisia
| | - Lobna Boussofarra
- Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse, Tunisia
| | - Moez Gribaa
- Laboratory of Human Cytogenetics, Molecular Genetics, and Reproductive Biology, Farhat Hached University Hospital, University of Sousse, Sousse, Tunisia
- Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse, Tunisia
| | - Ali Saad
- Laboratory of Human Cytogenetics, Molecular Genetics, and Reproductive Biology, Farhat Hached University Hospital, University of Sousse, Sousse, Tunisia
- Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse, Tunisia
| | - Mohamed Denguezli
- Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse, Tunisia
- Department of Dermatology and Venerology, Farhat Hached University Hospital, University of Sousse, Sousse, Tunisia
| | - Cristina Has
- Department of Dermatology and Venerology, Medical Center University of Freiburg, Freiburg, Germany
| | - Dorra H'mida
- Laboratory of Human Cytogenetics, Molecular Genetics, and Reproductive Biology, Farhat Hached University Hospital, University of Sousse, Sousse, Tunisia
- Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse, Tunisia
| |
Collapse
|
5
|
Lehr AW, McDaniel KF, Roche KW. Analyses of Human Genetic Data to Identify Clinically Relevant Domains of Neuroligins. Genes (Basel) 2024; 15:1601. [PMID: 39766868 PMCID: PMC11675371 DOI: 10.3390/genes15121601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Background/Objectives: Neuroligins (NLGNs) are postsynaptic adhesion molecules critical for neuronal development that are highly associated with autism spectrum disorder (ASD). Here, we provide an overview of the literature on NLGN rare variants. In addition, we introduce a new approach to analyze human variation within NLGN genes to identify sensitive regions that have an increased frequency of ASD-associated variants to better understand NLGN function. Methods: To identify critical protein subdomains within the NLGN gene family, we developed an algorithm that assesses tolerance to missense mutations in human genetic variation by comparing clinical variants from ClinVar to reference variants from gnomAD. This approach provides tolerance values to subdomains within the protein. Results: Our algorithm identified several critical regions that were conserved across multiple NLGN isoforms. Importantly, this approach also identified a previously reported cluster of pathogenic variants in NLGN4X (also conserved in NLGN1 and NLGN3) as well as a region around the highly characterized NLGN3 R451C ASD-associated mutation. Additionally, we highlighted other, as of yet, uncharacterized regions enriched with mutations. Conclusions: The systematic analysis of NLGN ASD-associated variants compared to variants identified in the unaffected population (gnomAD) reveals conserved domains in NLGN isoforms that are tolerant to variation or are enriched in clinically relevant variants. Examination of databases also allows for predictions of the presumed tolerance to loss of an allele. The use of the algorithm we developed effectively allowed the evaluation of subdomains of NLGNs and can be used to examine other ASD-associated genes.
Collapse
Affiliation(s)
- Alexander W. Lehr
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.L.); (K.F.M.)
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Kathryn F. McDaniel
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.L.); (K.F.M.)
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Katherine W. Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.L.); (K.F.M.)
| |
Collapse
|
6
|
Tavoulari S, Lacabanne D, Pereira GC, Thangaratnarajah C, King MS, He J, Chowdhury SR, Tilokani L, Palmer SM, Prudent J, Walker JE, Kunji ERS. Distinct roles for the domains of the mitochondrial aspartate/glutamate carrier citrin in organellar localization and substrate transport. Mol Metab 2024; 90:102047. [PMID: 39419476 PMCID: PMC11539162 DOI: 10.1016/j.molmet.2024.102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE Citrin, the mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), is structurally and mechanistically the most complex SLC25 family member, because it consists of three domains and forms a homo-dimer. Each protomer has an N-terminal calcium-binding domain with EF-hands, followed by a substrate-transporting carrier domain and a C-terminal domain with an amphipathic helix. The absence or dysfunction of citrin leads to citrin deficiency, a highly prevalent pan-ethnic mitochondrial disease. Here, we aim to understand the role of different citrin domains and how they contribute to pathogenic mechanisms in citrin deficiency. METHODS We have employed structural modeling and functional reconstitution of purified proteins in proteoliposomes to assess the transport activity and calcium regulation of wild-type citrin and pathogenic variants associated with citrin deficiency. We have also developed a double knockout of citrin and aralar (AGC1), the two paralogs of the mitochondrial aspartate/glutamate carrier, in HAP1 cells to perform mitochondrial imaging and to investigate mitochondrial localisation. RESULTS Using 33 pathogenic variants of citrin we clarify determinants of subcellular localization and transport mechanism. We identify crucial elements of the carrier domain that are required for transport, including those involved in substrate binding, network formation and dynamics. We show that the N-terminal domain is not involved in calcium regulation of transport, as previously thought, but when mutated causes a mitochondrial import defect. CONCLUSIONS Our work introduces a new role for the N-terminal domain of citrin and demonstrates that dysfunction of the different domains contributes to distinct pathogenic mechanisms in citrin deficiency.
Collapse
Affiliation(s)
- Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom.
| | - Denis Lacabanne
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Gonçalo C Pereira
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Chancievan Thangaratnarajah
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Jiuya He
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Suvagata R Chowdhury
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Lisa Tilokani
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Shane M Palmer
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - John E Walker
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom.
| |
Collapse
|
7
|
Kolli S, Kline CJ, Rad KM, Wehman AM. Phagolysosomes break down the membrane of a non-apoptotic corpse independent of macroautophagy. PLoS One 2024; 19:e0306435. [PMID: 39570954 PMCID: PMC11581207 DOI: 10.1371/journal.pone.0306435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/02/2024] [Indexed: 11/24/2024] Open
Abstract
Cell corpses must be cleared in an efficient manner to maintain tissue homeostasis and regulate immune responses. Ubiquitin-like Atg8/LC3 family proteins promote the degradation of membranes and internal cargo during both macroautophagy and corpse clearance, raising the question how macroautophagy contributes to corpse clearance. Studying the clearance of non-apoptotic dying polar bodies in Caenorhabditis elegans embryos, we show that the LC3 ortholog LGG-2 is enriched inside the polar body phagolysosome independent of autophagosome formation. We demonstrate that ATG-16.1 and ATG-16.2, which promote membrane association of lipidated Atg8/LC3 proteins, redundantly promote polar body membrane breakdown in phagolysosomes independent of their role in macroautophagy. We also show that the lipid scramblase ATG-9 is needed for autophagosome formation in early embryos but is dispensable for timely polar body membrane breakdown or protein cargo degradation. These findings demonstrate that macroautophagy is not required to promote polar body degradation, in contrast to recent findings with apoptotic corpse clearance in C. elegans embryos. Determining how factors regulating Atg8/LC3 promote the breakdown of different types of cell corpses in distinct cell types or metabolic states is likely to give insights into the mechanisms of immunoregulation during normal development, physiology, and disease.
Collapse
Affiliation(s)
- Shruti Kolli
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
| | - Cassidy J. Kline
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
| | - Kimya M. Rad
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
| | - Ann M. Wehman
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
| |
Collapse
|
8
|
Liu Y, Xia X, Ren W, Hong X, Tang X, Pang H, Yang Y. Alternative splicing perspective to prey preference of environmentally friendly biological agent Cryptolaemus montrouzieri. BMC Genomics 2024; 25:967. [PMID: 39407100 PMCID: PMC11481726 DOI: 10.1186/s12864-024-10870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Cryptolaemus montrouzieri (Coccinellidae) is widely utilized as biological control agents in modern agriculture. A comprehensive understanding of its food preference can help guide mass rearing and safety management during field application of pest control. Although some studies have paid attentions to the impacts of prey shift on C. montrouzieri, little is known regarding the role of post-transcriptional regulations in its acclimation to unnatural preys. RESULTS We performed a genome-wide investigation on alternative splicing dynamics in C. montrouzieri in response to the predation transition from natural prey to unnatural ones. When feeding on undesired diets, 402-764 genes were differentially alternative spliced in C. montrouzieri. It is noteworthy that the majority of these genes (> 87%) were not differentially expressed, and these differentially spliced genes regulated distinct biological processes from differentially expressed genes, such as organ development and morphogenesis, locomotory behavior, and homeostasis processes. These suggested the functionally nonredendant role of alternative splicing in modulating physiological and metabolic responses of C. montrouzieri to the shift to undesired preys. In addition, the individuals feeding on aphids were subject to a lower level of changes in splicing than other alternative diets, which might be because of the similar chemical and microbial compositions. Our study further suggested a putative coupling of alternative splicing and nonsense-mediated decay (AS-NMD), which may play an important role in fine-tuning the protein repertoire of C. montrouzieri, and promoting its acclimation to predation changes. CONCLUSION These findings highlight the key role of alternative splicing in modulating the acclimation of ladybirds to prey shift and provide new genetic clues for the future application of ladybirds in biocontrol.
Collapse
Affiliation(s)
- Yuqi Liu
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xinhui Xia
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenxu Ren
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiyao Hong
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xuefei Tang
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hong Pang
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yuchen Yang
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
9
|
Akamandisa MP, Boddicker NJ, Yadav S, Hu C, Hart SN, Ambrosone C, Anton-Culver H, Auer PL, Bodelon C, Burnside ES, Chen F, Eliassen HA, Goldgar DE, Haiman C, Hodge JM, Huang H, John EM, Karam R, Lacey JV, Lindstroem S, Martinez E, Na J, Neuhausen SL, O'Brien KM, Olson JE, Pal T, Palmer JR, Patel AV, Pesaran T, Polley EC, Richardson ME, Ruddy K, Sandler DP, Teras LR, Trentham-Dietz A, Vachon CM, Weinberg C, Winham SJ, Yao S, Zirpoli G, Kraft P, Weitzel JN, Domchek SM, Couch FJ, Nathanson KL. Association of Gene Variant Type and Location with Breast Cancer Risk in the General Population. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.11.24315237. [PMID: 39417132 PMCID: PMC11482981 DOI: 10.1101/2024.10.11.24315237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Importance Pathogenic variants (PVs) in ATM, BRCA1, BRCA2, CHEK2 , and PALB2 are associated with increased breast cancer risk. However, it is unknown whether breast cancer risk differs by PV type or location in carriers ascertained from the general population. Objective To evaluate breast cancer risks associated with PV type and location in ATM, BRCA1, BRCA2, CHEK2 , and PALB2 . Design Age adjusted case-control association analysis for all participants, subsets of PV carriers, and women with no breast cancer family history in population-based and clinical testing cohorts. Setting Twelve US population-based studies within the Cancer Risk Estimates Related to Susceptibility (CARRIERS) Consortium, and breast cancer cases from the UK-Biobank and an Ambry Genetics clinical testing cohort. Participants 32,247 women with and 32,544 age-matched women without a breast cancer diagnosis from CARRIERS; 237 and 1351 women with BRCA2 PVs and breast cancer from the UKBB and Ambry Genetics, respectively. Exposures PVs in ATM, BRCA1, BRCA2, CHEK2, and PALB2. Main Outcomes and Measures PVs were grouped by type and location within genes and assessed for risks of breast cancer (odds ratios (OR), 95% confidence intervals (CI), and p-values) using logistic regression. Mean ages at diagnosis were compared using linear regression. Results Compared to women carrying BRCA2 exon 11 protein truncating variants (PTVs) in the CARRIERS population-based study, women with BRCA2 ex13-27 PTVs (OR=2.7, 95%CI 1.1-7.9) and ex1-10 PTVs (OR=1.6, 95%CI 0.8-3.5) had higher breast cancer risks, lower rates of ER-negative breast cancer (ex13-27 OR=0.5, 95%CI 0.2-0.9; ex1-10 OR=0.5, 95%CI 0.1-1.0), and earlier age of breast cancer diagnosis (ex13-27 5.5 years, p<0.001; ex1-10 2.4 years, p=0.17). These associations with ER-negative breast cancer and age replicated in a high-risk clinical cohort and the population-based UK Biobank cohort. No differences in risk or age at diagnosis by gene region were observed for PTVs in other predisposition genes. Conclusions and Relevance Population-based and clinical high-risk cohorts establish that PTVs in exon 11 of BRCA2 are associated with reduced risk of breast cancer, later age at diagnosis, and greater risk of ER-negative disease. These differential risks may improve individualized risk prediction and clinical management for women carrying BRCA2 PTVs. Key Points Question: Does ATM , BRCA1 , BRCA2 , CHEK2 and PALB2 pathogenic variant type and location influence breast cancer risk in population-based studies? Findings: Breast cancer risk and estrogen receptor status differ based on the type and location of pathogenic variants in BRCA2 . Women carrying protein truncating variants in exon 11 have a lower breast cancer risk in the population-based cohorts, older age at diagnosis and higher rates of estrogen receptor negative breast cancer than women with exon 1-10 or exon 13-27 truncation variants in population-based and clinical testing cohorts. Meaning: Incorporating pathogenic variant type and location in cancer risk models may improve individualized risk prediction.
Collapse
|
10
|
Das D, Podder S. Microscale marvels: unveiling the macroscopic significance of micropeptides in human health. Brief Funct Genomics 2024; 23:624-638. [PMID: 38706311 DOI: 10.1093/bfgp/elae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
Non-coding RNA encodes micropeptides from small open reading frames located within the RNA. Interestingly, these micropeptides are involved in a variety of functions within the body. They are emerging as the resolving piece of the puzzle for complex biomolecular signaling pathways within the body. Recent studies highlight the pivotal role of small peptides in regulating important biological processes like DNA repair, gene expression, muscle regeneration, immune responses, etc. On the contrary, altered expression of micropeptides also plays a pivotal role in the progression of various diseases like cardiovascular diseases, neurological disorders and several types of cancer, including colorectal cancer, hepatocellular cancer, lung cancer, etc. This review delves into the dual impact of micropeptides on health and pathology, exploring their pivotal role in preserving normal physiological homeostasis and probing their involvement in the triggering and progression of diseases.
Collapse
Affiliation(s)
- Deepyaman Das
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal-733134, India
| | - Soumita Podder
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal-733134, India
| |
Collapse
|
11
|
Goolab S, Scholefield J. Making gene editing accessible in resource limited environments: recommendations to guide a first-time user. Front Genome Ed 2024; 6:1464531. [PMID: 39386178 PMCID: PMC11461239 DOI: 10.3389/fgeed.2024.1464531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
The designer nuclease, CRISPR-Cas9 system has advanced the field of genome engineering owing to its programmability and ease of use. The application of these molecular scissors for genome engineering earned the developing researchers the Nobel prize in Chemistry in the year 2020. At present, the potential of this technology to improve global challenges continues to grow exponentially. CRISPR-Cas9 shows promise in the recent advances made in the Global North such as the FDA-approved gene therapy for the treatment of sickle cell anaemia and β-thalassemia and the gene editing of porcine kidney for xenotransplantation into humans affected by end-stage kidney failure. Limited resources, low government investment with an allocation of 1% of gross domestic production to research and development including a shortage of skilled professionals and lack of knowledge may preclude the use of this revolutionary technology in the Global South where the countries involved have reduced science and technology budgets. Focusing on the practical application of genome engineering, successful genetic manipulation is not easily accomplishable and is influenced by the chromatin landscape of the target locus, guide RNA selection, the experimental design including the profiling of the gene edited cells, which impacts the overall outcome achieved. Our assessment primarily delves into economical approaches of performing efficient genome engineering to support the first-time user restricted by limited resources with the aim of democratizing the use of the technology across low- and middle-income countries. Here we provide a comprehensive overview on existing experimental techniques, the significance for target locus analysis and current pitfalls such as the underrepresentation of global genetic diversity. Several perspectives of genome engineering approaches are outlined, which can be adopted in a resource limited setting to enable a higher success rate of genome editing-based innovations in low- and middle-income countries.
Collapse
Affiliation(s)
- Shivani Goolab
- Bioengineering and Integrated Genomics Group, Future Production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Janine Scholefield
- Bioengineering and Integrated Genomics Group, Future Production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
Sun B, Huang J, Kong L, Gao C, Zhao F, Shen J, Wang T, Li K, Wang L, Wang Y, Halterman DA, Dong S. Alternative splicing of a potato disease resistance gene maintains homeostasis between growth and immunity. THE PLANT CELL 2024; 36:3729-3750. [PMID: 38941447 PMCID: PMC11371151 DOI: 10.1093/plcell/koae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Plants possess a robust and sophisticated innate immune system against pathogens and must balance growth with rapid pathogen detection and defense. The intracellular receptors with nucleotide-binding leucine-rich repeat (NLR) motifs recognize pathogen-derived effector proteins and thereby trigger the immune response. The expression of genes encoding NLR receptors is precisely controlled in multifaceted ways. The alternative splicing (AS) of introns in response to infection is recurrently observed but poorly understood. Here we report that the potato (Solanum tuberosum) NLR gene RB undergoes AS of its intron, resulting in 2 transcriptional isoforms, which coordinately regulate plant immunity and growth homeostasis. During normal growth, RB predominantly exists as an intron-retained isoform RB_IR, encoding a truncated protein containing only the N-terminus of the NLR. Upon late blight infection, the pathogen induces intron splicing of RB, increasing the abundance of RB_CDS, which encodes a full-length and active R protein. By deploying the RB splicing isoforms fused with a luciferase reporter system, we identified IPI-O1 (also known as Avrblb1), the RB cognate effector, as a facilitator of RB AS. IPI-O1 directly interacts with potato splicing factor StCWC15, resulting in altered localization of StCWC15 from the nucleoplasm to the nucleolus and nuclear speckles. Mutations in IPI-O1 that eliminate StCWC15 binding also disrupt StCWC15 re-localization and RB intron splicing. Thus, our study reveals that StCWC15 serves as a surveillance facilitator that senses the pathogen-secreted effector and regulates the trade-off between RB-mediated plant immunity and growth, expanding our understanding of molecular plant-microbe interactions.
Collapse
Affiliation(s)
- Biying Sun
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Huang
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Liang Kong
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuyun Gao
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Zhao
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayong Shen
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Wang
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Kangping Li
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Luyao Wang
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen Branch, Shenzhen, Guangdong 518120, China
| | - Yuanchao Wang
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Dennis A Halterman
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
- US Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706-1514, USA
| | - Suomeng Dong
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Tresbach RH, Sperb-Ludwig F, Ligabue-Braun R, Bitencourt FHD, Tonon T, Souza CFMD, Poswar FDO, Leite MEDQ, Amorim T, Porta G, Seda Neto J, Miura IK, Steiner CE, Martins AM, Pessoa ALS, Ribeiro EM, Schwartz IVD. Maple syrup urine disease diagnosis in Brazilian patients by massive parallel sequencing. Mol Genet Metab 2024; 143:108569. [PMID: 39270351 DOI: 10.1016/j.ymgme.2024.108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Biallelic pathogenic variants cause maple syrup urine disease (MSUD) in one of the branched-chain α-keto acid dehydrogenase (BCKDH) complex genes (BCKDHA, BCKDHB, DBT, DLD, and PPM1K) leading to the accumulation of leucine, isoleucine, and valine. This study aimed to perform a molecular diagnosis of Brazilian patients with MSUD using gene panels and massive parallel sequencing. Eighteen Brazilian patients with a biochemical diagnosis of MSUD were analyzed by massive parallel sequencing in the Ion PGM Torrent Server using a gene panel with the BCKDHA, BCKDHB, and DBT genes. The American College of Medical Genetics and Genomics guidelines were used to determine variant pathogenicity. Thirteen patients had both variants found by massive parallel sequencing, whereas 3 patients had only one variant found. In 2 patients, the variants were not found by this analysis. These 5 patients required additional Sanger sequencing to confirm their genotype. Twenty-five pathogenic variants were identified in the 3 MSUD-related genes (BCKDHA, BCKDHB, and DBT). Most variants were present in the BCKDHB gene, and no common variants were found. Nine novel variants were observed: c.922 A > G, c.964C > A, and c.1237 T > C in the BCKDHA gene; and c.80_90dup, c.384delA, c.478 A > T, c.528C > G, c.977 T > C, and c.1039-2 A > G in the BCKDHB gene. All novel variants were classified as pathogenic. Molecular modeling of the novel variants indicated that the binding of monomers was affected in the BCKDH complex tetramer, which could lead to a change in the stability and activity of the enzyme. Massive parallel sequencing with targeted gene panels seems to be a cost-effective method that can provide a molecular diagnosis of MSUD.
Collapse
Affiliation(s)
- Rafael Hencke Tresbach
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Sperb-Ludwig
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rodrigo Ligabue-Braun
- Graduate Program in Biological Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Department of Pharmacosciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Fernanda Hendges de Bitencourt
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Tássia Tonon
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Carolina Fischinger Moura de Souza
- Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fabiano de Oliveira Poswar
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Maria Efigênia de Queiroz Leite
- Newborn Screening Reference Center - Association of Parents and Friends of People with Disabilities (APAE), Salvador, BA, Brazil
| | - Tatiana Amorim
- Newborn Screening Reference Center - Association of Parents and Friends of People with Disabilities (APAE), Salvador, BA, Brazil
| | - Gilda Porta
- Pedro de Alcântara Children's Institute - Hospital das Clínicas, Medical School, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - João Seda Neto
- Department of Hepatology and Liver Transplantation, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Irene Kazumi Miura
- Department of Hepatology and Liver Transplantation, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Carlos Eduardo Steiner
- Department of Translational Medicine, School of Medical Sciences, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | - Ana Maria Martins
- Reference Center for Inborn Errors of Metabolism, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil
| | - André Luiz Santos Pessoa
- Hospital Infantil Albert Sabin, Fortaleza, CE, Brazil; Department of Pediatrics, Universidade Estadual do Ceará (UECE), Fortaleza, CE, Brazil
| | | | - Ida Vanessa Doederlein Schwartz
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; InRaras, National Institute of Rare Diseases, Brazil
| |
Collapse
|
14
|
Periasamy P, Joseph C, Campos A, Rajandran S, Batho C, Hudson JE, Sivakumaran H, Kore H, Datta K, Yeong J, Gowda H. Regulation of non-canonical proteins from diverse origins through the nonsense-mediated mRNA decay pathway. Proteomics 2024; 24:e2300361. [PMID: 38350726 DOI: 10.1002/pmic.202300361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Immunotherapy harnesses neoantigens encoded within the human genome, but their therapeutic potential is hampered by low expression, which may be controlled by the nonsense-mediated mRNA decay (NMD) pathway. This study investigates the impact of UPF1-knockdown on the expression of non-canonical/mutant proteins, employing proteogenomic to explore UPF1 role within the NMD pathway. Additionally, we conducted a comprehensive pan-cancer analysis of UPF1 expression and evaluated UPF1 expression in Triple-Negative Breast Cancer (TNBC) tissue in-vivo. Our findings reveal that UPF1-knockdown leads to increased translation of non-canonical/mutant proteins, particularly those originating from retained-introns, pseudogenes, long non-coding RNAs, and unannotated transcript biotypes. Moreover, our analysis demonstrates elevated UPF1 expression in various cancer types, with notably heightened protein levels in patient-derived TNBC tumors compared to adjacent tissues. This study elucidates UPF1 role in mitigating transcriptional noise by degrading transcripts encoding non-canonical/mutant proteins. Targeting this mechanism may reveal a new spectrum of neoantigens accessible to the antigen presentation pathway. Our novel findings provide a strong foundation for the development of therapeutic strategies aimed at targeting UPF1 or modulating the NMD pathway.
Collapse
Affiliation(s)
- Parthiban Periasamy
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Craig Joseph
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Adrian Campos
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Regeneron Genetics Center, Tarrytown, New York, USA
| | - Sureka Rajandran
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Flow Cytometry Department, Covance Central Laboratory Services, Singapore, 609917, Singapore
| | - Christopher Batho
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Haran Sivakumaran
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hitesh Kore
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Keshava Datta
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Joe Yeong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Harsha Gowda
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Hewezi T. Phytopathogens Reprogram Host Alternative mRNA Splicing. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:173-192. [PMID: 38691872 DOI: 10.1146/annurev-phyto-121423-041908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Alternative splicing (AS) is an evolutionarily conserved cellular process in eukaryotes in which multiple messenger RNA (mRNA) transcripts are produced from a single gene. The concept that AS adds to transcriptome complexity and proteome diversity introduces a new perspective for understanding how phytopathogen-induced alterations in host AS cause diseases. Recently, it has been recognized that AS represents an integral component of the plant immune system during parasitic, commensalistic, and symbiotic interactions. Here, I provide an overview of recent progress detailing the reprogramming of plant AS by phytopathogens and the functional implications on disease phenotypes. Additionally, I discuss the vital function of AS of immune receptors in regulating plant immunity and how phytopathogens use effector proteins to target key components of the splicing machinery and exploit alternatively spliced variants of immune regulators to negate defense responses. Finally, the functional association between AS and nonsense-mediated mRNA decay in the context of plant-pathogen interface is recapitulated.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, USA;
| |
Collapse
|
16
|
Yunusova AM, Smirnov AV, Shnaider TA, Pristyazhnuk IE, Korableva SY, Battulin NR. Generation and analysis of mouse embryonic stem cells with knockout of the Mcph1 (microcephalin) gene. Vavilovskii Zhurnal Genet Selektsii 2024; 28:487-494. [PMID: 39280843 PMCID: PMC11393655 DOI: 10.18699/vjgb-24-55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 09/18/2024] Open
Abstract
Chromatin is not randomly distributed within the nucleus, but organized in a three-dimensional structure that plays a critical role in genome functions. Сohesin and condensins are conserved multi-subunit protein complexes that participate in mammalian genome organization by extruding chromatin loops. The fine temporal regulation of these complexes is facilitated by a number of other proteins, one of which is microcephalin (Mcph1). Mcph1 prevents condensin II from associating with chromatin through interphase. Loss of Mcph1 induces chromosome hypercondensation; it is not clear to what extent this reorganization affects gene expression. In this study, we generated several mouse embryonic stem cell (mESC) lines with knockout of the Mcph1 gene and analyzed their gene expression profile. Gene Ontology analyses of differentially expressed genes (DEGs) after Mcph1 knockout revealed gene categories related to general metabolism and olfactory receptor function but not to cell cycle control previously described for Mcph1. We did not find a correlation between the DEGs and their frequency of lamina association. Thus, this evidence questions the hypothesis that Mcph1 knockout-mediated chromatin reorganization governs gene expression in mESCs. Among the negative effects of Mcph1 knockout, we observed numerous chromosomal aberrations, including micronucleus formation and chromosome fusion. This confirms the role of Mcph1 in maintaining genome integrity described previously. In our opinion, dysfunction of Mcph1 may be a kind of "Rosetta stone" for deciphering the function of condensin II in the interphase nucleus. Thus, the cell lines with knocked-out Mcph1 can be used to further study the influence of chromatin structural proteins on gene expression.
Collapse
Affiliation(s)
- A M Yunusova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Smirnov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T A Shnaider
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I E Pristyazhnuk
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - N R Battulin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
17
|
Kikuchi M, Viet J, Nagata K, Sato M, David G, Audic Y, Silverman MA, Yamamoto M, Akatsu H, Hashizume Y, Takeda S, Akamine S, Miyamoto T, Uozumi R, Gotoh S, Mori K, Ikeda M, Paillard L, Morihara T. Gene-gene functional relationships in Alzheimer's disease: CELF1 regulates KLC1 alternative splicing. Biochem Biophys Res Commun 2024; 721:150025. [PMID: 38768546 DOI: 10.1016/j.bbrc.2024.150025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
The causes of Alzheimer's disease (AD) are poorly understood, although many genes are known to be involved in this pathology. To gain insights into the underlying molecular mechanisms, it is essential to identify the relationships between individual AD genes. Previous work has shown that the splice variant E of KLC1 (KLC1_vE) promotes AD, and that the CELF1 gene, which encodes an RNA-binding protein involved in splicing regulation, is at a risk locus for AD. Here, we identified a functional link between CELF1 and KLC1 in AD pathogenesis. Transcriptomic data from human samples from different ethnic groups revealed that CELF1 mRNA levels are low in AD brains, and the splicing pattern of KLC1 is strongly correlated with CELF1 expression levels. Specifically, KLC1_vE is negatively correlated with CELF1. Depletion and overexpression experiments in cultured cells demonstrated that the CELF1 protein down-regulates KLC1_vE. In a cross-linking and immunoprecipitation sequencing (CLIP-seq) database, CELF1 directly binds to KLC1 RNA, following which it likely modulates terminal exon usage, hence KLC1_vE formation. These findings reveal a new pathogenic pathway where a risk allele of CELF1 is associated with reduced CELF1 expression, which up-regulates KLC1_vE to promote AD.
Collapse
Affiliation(s)
- Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Justine Viet
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, F-35000, Rennes, France
| | - Kenichi Nagata
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Masahiro Sato
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Geraldine David
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, F-35000, Rennes, France
| | - Yann Audic
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, F-35000, Rennes, France
| | - Michael A Silverman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, Canada
| | - Mitsuko Yamamoto
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroyasu Akatsu
- Department of Community-based Medical Education, Graduate School of Medicine, Nagoya City University, Nagoya, Japan; Choju Medical/Neuropathological Institute, Fukushimura Hospital, Toyohashi, Japan
| | | | - Shuko Takeda
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Japan; Osaka Psychiatric Medical Center, Osaka Psychiatric Research Center, Hirakata, Japan
| | - Shoshin Akamine
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tesshin Miyamoto
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ryota Uozumi
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shiho Gotoh
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kohji Mori
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Luc Paillard
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, F-35000, Rennes, France.
| | - Takashi Morihara
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan; Toyonaka Municipal Hospital, Toyonaka, Japan.
| |
Collapse
|
18
|
Gomez EA, De Matteis R, Udomjarumanee P, Munroe PB, Dalli J. An LGR6 frameshift variant abrogates receptor expression on select leukocyte subsets and is associated with viral infections. Blood 2024; 144:420-434. [PMID: 38718314 DOI: 10.1182/blood.2023021826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/15/2024] [Indexed: 07/26/2024] Open
Abstract
ABSTRACT The leucine-rich repeat-containing G-protein-coupled receptor 6 (LGR6) was recently identified as the cognate receptor for the proresolving mediator maresin 1 (MaR1). To address the biological role of LGR6 in humans, we investigated the functional impact of a genetic variant in the gene encoding for LGR6, which is predicted to lead to a frameshift mutation in one of the receptor isoforms, on both receptor expression and immune cell responses. In neutrophils, monocytes, and natural killer (NK) cells from volunteers homozygous for this variant, we found a significant downregulation in the expression of LGR6 when compared with controls without the variant; whereas the LGR6 expression was essentially similar in monocyte-derived macrophages and CD8+ T cells. Functionally, loss of LGR6 expression was linked with a decreased ability of neutrophils and monocytes to phagocytose bacteria. We observed an increase in neutrophil chemotaxis and leukotriene B4 production and increased expression of activation markers, including markers for platelet-leukocyte phagocyte heterotypic aggregates, such as CD41, in neutrophils and monocytes from the variant group. Using data from the UK Biobank, we found that at a population level the rs4266947 variant, which is in high linkage disequilibrium with rs74355478, was associated with a higher incidence of viral infections. Intriguingly, neutrophils, NK cells, and CD8+ T cells from volunteers with the LGR6 variant displayed altered viral responses when stimulated with Toll-like receptor 3 (TLR3), TLR7/TLR8, and TLR9 agonists. Together, these findings shed new light on the cell type-specific regulation of LGR6 expression and the role of this receptor in directing host immune responses.
Collapse
Affiliation(s)
- Esteban A Gomez
- Centre for Biochemical Pharmacology, The William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Roberta De Matteis
- Centre for Biochemical Pharmacology, The William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Palita Udomjarumanee
- Centre for Biochemical Pharmacology, The William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Patricia B Munroe
- Centre for Clinical Pharmacology and Precision Medicine, The William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jesmond Dalli
- Centre for Biochemical Pharmacology, The William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
19
|
van Waardenburg RCAM, Falany CN. Sulfotransferase 4A1 Coding Sequence and Protein Structure Are Highly Conserved in Vertebrates. Genes (Basel) 2024; 15:914. [PMID: 39062693 PMCID: PMC11275347 DOI: 10.3390/genes15070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Cytosolic sulfotransferases (SULTs) are Phase 2 drug-metabolizing enzymes that catalyze the conjugation of sulfonate to endogenous and xenobiotic compounds, increasing their hydrophilicity and excretion from cells. To date, 13 human SULTs have been identified and classified into five families. SULT4A1 mRNA encodes two variants: (1) the wild type, encoding a 284 amino acid, ~33 kDa protein, and (2) an alternative spliced variant resulting from a 126 bp insert between exon 6 and 7, which introduces a premature stop codon that enhances nonsense-mediated decay. SULT4A1 is classified as an SULT based on sequence and structural similarities, including PAPS-domains, active-site His, and the dimerization domain; however, the catalytic pocket lid 'Loop 3' size is not conserved. SULT4A1 is uniquely expressed in the brain and localized in the cytosol and mitochondria. SULT4A1 is highly conserved, with rare intronic polymorphisms that have no outward manifestations. However, the SULT4A1 haplotype is correlated with Phelan-McDermid syndrome and schizophrenia. SULT4A1 knockdown revealed potential SULT4A1 functions in photoreceptor signaling and knockout mice display hampered neuronal development and behavior. Mouse and yeast models revealed that SULT4A1 protects the mitochondria from endogenously and exogenously induced oxidative stress and stimulates cell division, promoting dendritic spines' formation and synaptic transmission. To date, no physiological enzymatic activity has been associated with SULT4A1.
Collapse
|
20
|
Kolli S, Kline CJ, Rad KM, Wehman AM. Phagolysosomes break down the membrane of a non-apoptotic corpse independent of macroautophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599770. [PMID: 38948720 PMCID: PMC11212964 DOI: 10.1101/2024.06.19.599770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cell corpses must be cleared in an efficient manner to maintain tissue homeostasis and regulate immune responses. Ubiquitin-like Atg8/LC3 family proteins promote the degradation of membranes and internal cargo during both macroautophagy and corpse clearance, raising the question how macroautophagy contributes to corpse clearance. Studying the clearance of non-apoptotic dying polar bodies in Caenorhabditis elegans embryos, we show that the LC3 ortholog LGG-2 is enriched in the polar body phagolysosome independent of membrane association or autophagosome formation. We demonstrate that ATG-16.1 and ATG-16.2, which promote membrane association of lipidated Atg8/LC3 proteins, redundantly promote polar body membrane breakdown in phagolysosomes independent of their role in macroautophagy. We also show that the lipid scramblase ATG-9 is needed for autophagosome formation in early embryos but is dispensable for timely polar body membrane breakdown or protein cargo degradation. These findings demonstrate that macroautophagy is not required to promote polar body degradation, in contrast to recent findings with apoptotic corpse clearance in C. elegans embryos. Determining how membrane association of Atg8/LC3 promotes the breakdown of different types of cell corpses in distinct cell types or metabolic states is likely to give insights into the mechanisms of immunoregulation during normal development, physiology, and disease.
Collapse
Affiliation(s)
- Shruti Kolli
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Cassidy J. Kline
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Kimya M. Rad
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Ann M. Wehman
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| |
Collapse
|
21
|
Chen S, Wang H, Zhang D, Chen R, Luo J. Readon: a novel algorithm to identify read-through transcripts with long-read sequencing data. Bioinformatics 2024; 40:btae336. [PMID: 38808568 PMCID: PMC11162696 DOI: 10.1093/bioinformatics/btae336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/30/2024] [Accepted: 05/26/2024] [Indexed: 05/30/2024] Open
Abstract
MOTIVATION There are many clustered transcriptionally active regions in the human genome, in which the transcription complex cannot immediately terminate transcription at the upstream gene termination site, but instead continues to transcribe intergenic regions and downstream genes, resulting in read-through transcripts. Several studies have demonstrated the regulatory roles of read-through transcripts in tumorigenesis and development. However, limited by the read length of next-generation sequencing, discovery of read-through transcripts has been slow. For long but also erroneous third-generation sequencing data, this study developed a novel minimizer sketch algorithm to accurately and quickly identify read-through transcripts. RESULTS Readon initially splits the reference sequence into distinct active regions. It employs a sliding window approach within each region, calculates minimizers, and constructs the specialized structured arrays for query indexing. Following initial alignment anchor screening of candidate read-through transcripts, further confirmation steps are executed. Comparative assessments against existing software reveal Readon's superior performance on both simulated and validated real data. Additionally, two downstream tools are provided: one for predicting whether a read-through transcript is likely to undergo nonsense-mediated decay or encodes a protein, and another for visualizing splicing patterns. AVAILABILITY AND IMPLEMENTATION Readon is freely available on GitHub (https://github.com/Bulabula45/Readon).
Collapse
Affiliation(s)
- Siang Chen
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongdong Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Runsheng Chen
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjun Luo
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Zhao C, Liu Y, Zhang P, Xia X, Yang Y. Alternative splicing plays a nonredundant role in greater amberjack (Seriola dumerili) in acclimation to ambient salinity fluctuations. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106549. [PMID: 38733739 DOI: 10.1016/j.marenvres.2024.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Alternative splicing (AS) is an important post-transcriptional mechanism for adaptation of fish to environmental stress. Here, we performed a genome-wide investigation to AS dynamics in greater amberjack (Seriola dumerili), an economical marine teleost, in response to hypo- (10 ppt) and hyper-salinity (40 ppt) stresses. Totally, 2267-2611 differentially spliced events were identified in gills and kidney upon the exposure to undesired salinity regimes. In gills, genes involved in energy metabolism, stimulus response and epithelial cell differentiation were differentially spliced in response to salinity variation, while sodium ion transport and cellular amide metabolism were enhanced in kidney to combat the adverse impacts of salinity changes. Most of these differentially spliced genes were not differentially expressed, and AS was found to regulate different biological processes from differential gene expression, indicative of the functionally nonredundant role of AS in modulating salinity acclimation in greater amberjack. Together, our study highlights the important contribution of post-transcriptional mechanisms to the adaptation of fish to ambient salinity fluctuations and provides theoretical guidance for the conservation of marine fishery resources against increasingly environmental challenges.
Collapse
Affiliation(s)
- Chunyu Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Yuqi Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Panpan Zhang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Xinhui Xia
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China.
| |
Collapse
|
23
|
Lai S, Shiraishi H, Sebastian WA, Shimizu N, Umeda R, Ikeuchi M, Kiyota K, Takeno T, Miyazaki S, Yano S, Shimada T, Yoshimura A, Hanada R, Hanada T. Effect of nonsense-mediated mRNA decay factor SMG9 deficiency on premature aging in zebrafish. Commun Biol 2024; 7:654. [PMID: 38806677 PMCID: PMC11133409 DOI: 10.1038/s42003-024-06356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
SMG9 is an essential component of the nonsense-mediated mRNA decay (NMD) machinery, a quality control mechanism that selectively degrades aberrant transcripts. Mutations in SMG9 are associated with heart and brain malformation syndrome (HBMS). However, the molecular mechanism underlying HBMS remains unclear. We generated smg9 mutant zebrafish (smg9oi7/oi7) that have a lifespan of approximately 6 months or longer, allowing for analysis of the in vivo function of Smg9 in adults in more detail. smg9oi7/oi7 zebrafish display congenital brain abnormalities and reduced cardiac contraction. Additionally, smg9oi7/oi7 zebrafish exhibit a premature aging phenotype. Analysis of NMD target mRNAs shows a trend toward increased mRNA levels in smg9oi7/oi7 zebrafish. Spermidine oxidase (Smox) is increased in smg9oi7/oi7 zebrafish, resulting in the accumulation of byproducts, reactive oxygen species, and acrolein. The accumulation of smox mRNA due to NMD dysregulation caused by Smg9 deficiency leads to increased oxidative stress, resulting in premature aging.
Collapse
Affiliation(s)
- Shaohong Lai
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Hiroshi Shiraishi
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | | | - Nobuyuki Shimizu
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Ryohei Umeda
- Department of Neurophysiology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Mayo Ikeuchi
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Kyoko Kiyota
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Takashi Takeno
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Shuya Miyazaki
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Shinji Yano
- Institute for Research Management, Oita University, Yufu, Oita, Japan
| | - Tatsuo Shimada
- Oita Medical Technology School, Japan College of Judo-Therapy, Acupuncture & Moxibustion Therapy, Oita, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan.
| |
Collapse
|
24
|
Singh AK. Rules and impacts of nonsense-mediated mRNA decay in the degradation of long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1853. [PMID: 38741356 DOI: 10.1002/wrna.1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality-control process that selectively degrades mRNAs having premature termination codon, upstream open reading frame, or unusually long 3'UTR. NMD detects such mRNAs and rapidly degrades them during initial rounds of translation in the eukaryotic cells. Since NMD is a translation-dependent cytoplasmic mRNA surveillance process, the noncoding RNAs were initially believed to be NMD-resistant. The sequence feature-based analysis has revealed that many putative long noncoding RNAs (lncRNAs) have short open reading frames, most of which have translation potential. Subsequent transcriptome-based molecular studies showed an association of a large set of such putative lncRNAs with translating ribosomes, and some of them produce stable and functionally active micropeptides. The translationally active lncRNAs typically have relatively longer and unprotected 3'UTR, which can induce their NMD-dependent degradation. This review defines the mechanism and regulation of NMD-dependent degradation of lncRNAs and its impact on biological processes related to the functions of lncRNAs or their encoded micropeptides. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Anand Kumar Singh
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, India
| |
Collapse
|
25
|
Karimi E, Gohlke J, van der Borgh M, Lindqvist J, Hourani Z, Kolb J, Cossette S, Lawlor MW, Ottenheijm C, Granzier H. Characterization of NEB pathogenic variants in patients reveals novel nemaline myopathy disease mechanisms and omecamtiv mecarbil force effects. Acta Neuropathol 2024; 147:72. [PMID: 38634969 PMCID: PMC11026289 DOI: 10.1007/s00401-024-02726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Nebulin, a critical protein of the skeletal muscle thin filament, plays important roles in physiological processes such as regulating thin filament length (TFL), cross-bridge cycling, and myofibril alignment. Pathogenic variants in the nebulin gene (NEB) cause NEB-based nemaline myopathy (NEM2), a genetically heterogeneous disorder characterized by hypotonia and muscle weakness, currently lacking curative therapies. In this study, we examined a cohort of ten NEM2 patients, each with unique pathogenic variants, aiming to understand their impact on mRNA, protein, and functional levels. Results show that pathogenic truncation variants affect NEB mRNA stability and lead to nonsense-mediated decay of the mutated transcript. Moreover, a high incidence of cryptic splice site activation was found in patients with pathogenic splicing variants that are expected to disrupt the actin-binding sites of nebulin. Determination of protein levels revealed patients with either relatively normal or markedly reduced nebulin. We observed a positive relation between the reduction in nebulin and a reduction in TFL, or reduction in tension (both maximal and submaximal tension). Interestingly, our study revealed a pathogenic duplication variant in nebulin that resulted in a four-copy gain in the triplicate region of NEB and a much larger nebulin protein and longer TFL. Additionally, we investigated the effect of Omecamtiv mecarbil (OM), a small-molecule activator of cardiac myosin, on force production of type 1 muscle fibers of NEM2 patients. OM treatment substantially increased submaximal tension across all NEM2 patients ranging from 87 to 318%, with the largest effects in patients with the lowest level of nebulin. In summary, this study indicates that post-transcriptional or post-translational mechanisms regulate nebulin expression. Moreover, we propose that the pathomechanism of NEM2 involves not only shortened but also elongated thin filaments, along with the disruption of actin-binding sites resulting from pathogenic splicing variants. Significantly, our findings highlight the potential of OM treatment to improve skeletal muscle function in NEM2 patients, especially those with large reductions in nebulin levels.
Collapse
Affiliation(s)
- Esmat Karimi
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Jochen Gohlke
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Mila van der Borgh
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Johan Lindqvist
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Justin Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Stacy Cossette
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael W Lawlor
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
- Diverge Translational Science Laboratory, Milwaukee, WI, USA
| | - Coen Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
- Department of Physiology, Amsterdam UMC (Location VUMC), Amsterdam, Netherlands
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
26
|
Granadeiro L, Zarralanga VE, Rosa R, Franquinho F, Lamas S, Brites P. Ataxia with giant axonopathy in Acbd5-deficient mice halted by adeno-associated virus gene therapy. Brain 2024; 147:1457-1473. [PMID: 38066620 DOI: 10.1093/brain/awad407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 04/06/2024] Open
Abstract
Acyl-CoA binding domain containing 5 (ACBD5) is a critical player in handling very long chain fatty acids (VLCFA) en route for peroxisomal β-oxidation. Mutations in ACBD5 lead to the accumulation of VLCFA and patients present retinal dystrophy, ataxia, psychomotor delay and a severe leukodystrophy. Using CRISPR/Cas9, we generated and characterized an Acbd5 Gly357* mutant allele. Gly357* mutant mice recapitulated key features of the human disorder, including reduced survival, impaired locomotion and reflexes, loss of photoreceptors, and demyelination. The ataxic presentation of Gly357* mice involved the loss of cerebellar Purkinje cells and a giant axonopathy throughout the CNS. Lipidomic studies provided evidence for the extensive lipid dysregulation caused by VLCFA accumulation. Following a proteomic survey, functional studies in neurons treated with VLCFA unravelled a deregulated cytoskeleton with reduced actin dynamics and increased neuronal filopodia. We also show that an adeno-associated virus-mediated gene delivery ameliorated the gait phenotypes and the giant axonopathy, also improving myelination and astrocyte reactivity. Collectively, we established a mouse model with significance for VLCFA-related disorders. The development of relevant neuropathological outcomes enabled the understanding of mechanisms modulated by VLCFA and the evaluation of the efficacy of preclinical therapeutic interventions.
Collapse
Affiliation(s)
- Luis Granadeiro
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S and Instituto de Biologia Molecular e Celular - IBMC, 4200-135 Porto, Portugal
- Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Violeta Enríquez Zarralanga
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S and Instituto de Biologia Molecular e Celular - IBMC, 4200-135 Porto, Portugal
| | - Ricardo Rosa
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S and Instituto de Biologia Molecular e Celular - IBMC, 4200-135 Porto, Portugal
| | - Filipa Franquinho
- Animal Facility, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S, 4200-135 Porto, Portugal
| | - Sofia Lamas
- Animal Facility, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S, 4200-135 Porto, Portugal
| | - Pedro Brites
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S and Instituto de Biologia Molecular e Celular - IBMC, 4200-135 Porto, Portugal
| |
Collapse
|
27
|
Klim J, Zielenkiewicz U, Kaczanowski S. Loss-of-function mutations are main drivers of adaptations during short-term evolution. Sci Rep 2024; 14:7128. [PMID: 38532077 DOI: 10.1038/s41598-024-57694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
We noticed that during short-term experimental evolution and carcinogenesis, mutations causing gene inactivation (i.e., nonsense mutations or frameshifts) are frequent. Our meta-analysis of 65 experiments using modified dN/dS statistics indicated that nonsense mutations are adaptive in different experimental conditions and we empirically confirmed this prediction. Using yeast S. cerevisiae as a model we show that fixed or highly frequent gene loss-of-function mutations are almost exclusively adaptive in the majority of experiments.
Collapse
Affiliation(s)
- Joanna Klim
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Urszula Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Szymon Kaczanowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
28
|
Yang M, Peng L, Lv L, Dai E, He Y, Zhao R, Li S. Characterization of a novel heterozygous frameshift variant in NDP gene that causes familial exudative vitreoretinopathy in female patients. Mol Genet Genomics 2024; 299:32. [PMID: 38472449 DOI: 10.1007/s00438-024-02128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/28/2023] [Indexed: 03/14/2024]
Abstract
Familial exudative vitreoretinopathy (FEVR) is a severe inherited disease characterized by defective retinal vascular development. With genetic and clinical heterogeneity, FEVR can be inherited in different patterns and characterized by phenotypes ranging from moderate visual defects to complete vision loss. This study was conducted to unravel the genetic and functional etiology of a 4-month-old female FEVR patient. Targeted gene panel and Sanger sequencing were utilized for genetic evaluation. Luciferase assays, western blot, quantitive real-time PCR, and immunocytochemistry were performed to verify the functional defects in the identified candidate variant. Here, we report a 4-month-old girl with bilateral retinal folds and peripheral avascularization, and identified a novel frameshift heterozygous variant c.37dup (p.Leu13ProfsTer13) in NDP. In vitro experiments revealed that the Leu13ProfsTer13 variant led to a prominent decrease in protein levels instead of mRNA levels, resulting in compromised Norrin/β-catenin signaling activity. Human androgen receptor assay further revealed that a slight skewing of X chromosome inactivation could partially cause FEVR. Thus, the pathogenic mechanism by which heterozygous frameshift or nonsense variants in female carriers cause FEVR might largely result from a loss-of-function variant in one X chromosome allele and a slightly skewed X-inactivation. Further recruitment of more FEVR-affected females carrying NDP variants and genotype-phenotype correlation analysis can ultimately offer valuable information for the prognosis prediction of FEVR.
Collapse
Affiliation(s)
- Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No. 2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No. 2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Liting Lv
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No. 2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No. 2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No. 2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China.
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No. 2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.
| |
Collapse
|
29
|
Al-Kasbi G, Al-Murshedi F, Al-Futaisi A, Al-Jabry T, Zadjali F, Al-Yahyaee S, Al-Maawali A. Revisiting Exome Data Identified Missed Splice Site Variant of the Asparagine Synthetase ( ASNS ) Gene. J Pediatr Genet 2024; 13:1-5. [PMID: 38567172 PMCID: PMC10984708 DOI: 10.1055/s-0042-1757193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/21/2022] [Indexed: 04/04/2024]
Abstract
Next-generation sequencing, such as whole-exome sequencing (WES), is increasingly used in the study of Mendelian disorders, yet many are reported as "negative." Inappropriate variant annotation and filtering steps are reasons for missing the molecular diagnosis. Noncoding variants, including splicing mutations, are examples of variants that can be overlooked. Herein, we report a family of four affected newborns, and all presented with severe congenital microcephaly. Initial research WES analysis identified a damaging homozygous variant in NME1 gene as a possible cause of primary microcephaly phenotype in these patients. However, reanalysis of the exome data uncovered a biallelic splice site variant in asparagine synthetase gene which seems to be the possible cause of the phenotype in these patients. This study highlights the importance of revisiting the exome data and the issue of "negative" exome and the afterward approaches to identify and prove new candidate genes.
Collapse
Affiliation(s)
- Ghalia Al-Kasbi
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Fathiya Al-Murshedi
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Amna Al-Futaisi
- Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Tariq Al-Jabry
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Fahad Zadjali
- Department of Clinical Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Said Al-Yahyaee
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Almundher Al-Maawali
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
30
|
Chica‐Redecillas L, Cuenca‐Lopez S, Andres‐Leon E, Terron‐Camero LC, Cano‐Gutierrez B, Cozar JM, Lorente JA, Vazquez‐Alonso F, Martinez‐Gonzalez LJ, Alvarez‐Cubero MJ. Multi-omic study to unmask genes involved in prostate cancer development in a multi-case family. Cancer Commun (Lond) 2024; 44:443-447. [PMID: 37990486 PMCID: PMC10958670 DOI: 10.1002/cac2.12501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Affiliation(s)
- Lucia Chica‐Redecillas
- GENYO, Centre for Genomics and Oncological Research, PfizerUniversity of GranadaAndalusian Regional Government, PTS GranadaGranadaGranadaSpain
- Department of BiochemistryMolecular Biology III and Immunology, Faculty of Medicine, University of Granada, PTS GranadaGranadaGranadaSpain
| | - Sergio Cuenca‐Lopez
- GENYO, Centre for Genomics and Oncological Research, PfizerUniversity of GranadaAndalusian Regional Government, PTS GranadaGranadaGranadaSpain
| | - Eduardo Andres‐Leon
- Bioinformatics UnitInstitute of Parasitology and Biomedicine “López‐Neyra”Spanish National Research CouncilGranadaGranadaSpain
| | - Laura Carmen Terron‐Camero
- Bioinformatics UnitInstitute of Parasitology and Biomedicine “López‐Neyra”Spanish National Research CouncilGranadaGranadaSpain
| | | | - Jose Manuel Cozar
- Urology DepartmentUniversity Hospital Virgen de las NievesGranadaGranadaSpain
| | - Jose Antonio Lorente
- GENYO, Centre for Genomics and Oncological Research, PfizerUniversity of GranadaAndalusian Regional Government, PTS GranadaGranadaGranadaSpain
- Legal Medicine and Toxicology DepartmentFaculty of MedicineUniversity of GranadaPTS GranadaGranadaGranadaSpain
| | - Fernando Vazquez‐Alonso
- Urology DepartmentUniversity Hospital Virgen de las NievesGranadaGranadaSpain
- Ibs, Biosanitary Research InstituteGranadaGranadaSpain
| | - Luis Javier Martinez‐Gonzalez
- GENYO, Centre for Genomics and Oncological Research, PfizerUniversity of GranadaAndalusian Regional Government, PTS GranadaGranadaGranadaSpain
| | - Maria Jesus Alvarez‐Cubero
- GENYO, Centre for Genomics and Oncological Research, PfizerUniversity of GranadaAndalusian Regional Government, PTS GranadaGranadaGranadaSpain
- Department of BiochemistryMolecular Biology III and Immunology, Faculty of Medicine, University of Granada, PTS GranadaGranadaGranadaSpain
- Ibs, Biosanitary Research InstituteGranadaGranadaSpain
| |
Collapse
|
31
|
Duan Q, Zheng H, Qin Y, Yan J, Wang J, Burgess SM, Fan C. Stat3 Has a Different Role in Axon Growth During Development Than It Does in Axon Regeneration After Injury. Mol Neurobiol 2024; 61:1753-1768. [PMID: 37775721 DOI: 10.1007/s12035-023-03644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/07/2023] [Indexed: 10/01/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is essential for neural development and regeneration as a key transcription factor and mitochondrial activator. However, the mechanism of Stat3 in axon development and regeneration has not been fully understood. In this study, using zebrafish posterior lateral line (PLL) axons, we demonstrate that Stat3 plays distinct roles in PLL axon embryonic growth and regeneration. Our experiments indicate that stat3 is required for PLL axon extension. In stat3 mutant zebrafish, the PLL axon ends were stalled at the level of the cloaca, and expression of stat3 rescues the PLL axon growth in a cell-autonomous manner. Jak/Stat signaling inhibition did not affect PLL axon growth indicating Jak/Stat was dispensable for PLL axon growth. In addition, we found that Stat3 was co-localized with mitochondria in PLL axons and important for the mitochondrial membrane potential and ATPase activity. The PLL axon growth defect of stat3 mutants was mimicked and rescued by rotenone and DCHC treatment, respectively, which suggests that Stat3 regulates PLL axon growth through mitochondrial Stat3. By contrast, mutation of stat3 or Jak/Stat signaling inhibition retarded PLL axon regeneration. Meanwhile, we also found Schwann cell migration was also inhibited in stat3 mutants. Taken together, Stat3 is required for embryonic PLL axon growth by regulating the ATP synthesis efficiency of mitochondria, whereas Stat3 stimulates PLL axon regeneration by regulating Schwann cell migration via Jak/Stat signaling. Our findings show a new mechanism of Stat3 in axon growth and regeneration.
Collapse
Affiliation(s)
- Qinwen Duan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Hongfei Zheng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yanjun Qin
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jizhou Yan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jian Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Chunxin Fan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Marine Biomedical Science and Technology Innovation Platform of Lingang New Area, Shanghai, China.
| |
Collapse
|
32
|
Muto H, Yu Y, Chambers JK, Coghill LM, Nakamura Y, Uchida K, Lyons LA. Association of a novel dystrophin (DMD) genetic nonsense variant in a cat with X-linked muscular dystrophy with a mild clinical course. J Vet Intern Med 2024; 38:1160-1166. [PMID: 38415938 PMCID: PMC10937502 DOI: 10.1111/jvim.17024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
X-linked muscular dystrophy in cats (FXMD) is an uncommon disease, with few reports describing its pathogenic genetic variants. A 9-year-old castrated male domestic shorthair cat was presented with persistent muscle swelling and breathing difficulty from 3 years of age. Serum activity of alanine aminotransferase, aspartate transaminase, and creatine kinase were abnormally high. Physical and neurological examinations showed muscle swelling in the neck and proximal limb, slow gait, and occasional breathing difficulties. Electromyography showed pseudomyotonic discharges and complex repetitive discharges with a "dive-bomber" sound. Histopathology revealed muscle necrosis and regeneration. Whole-genome sequencing identified a novel and unique hemizygous nonsense genetic variant, c.8333G > A in dystrophin (DMD), potentially causing a premature termination codon (p.Trp2778Ter). Based on a combination of clinical and histological findings and the presence of the DMD nonsense genetic variant, this case was considered FXMD, which showed mild clinical signs and long-term survival, even though immunohistochemical characterization was lacking.
Collapse
Affiliation(s)
| | - Yoshihiko Yu
- Laboratory of Veterinary RadiologyNippon Veterinary and Life Science UniversityTokyoJapan
- Present address:
MitakaTokyoJapan
| | - James K. Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Lyndon M. Coghill
- Department of Veterinary PathobiologyCollege of Veterinary Medicine, University of MissouriColumbiaMissouriUSA
| | | | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Leslie A. Lyons
- Department of Veterinary PathobiologyCollege of Veterinary Medicine, University of MissouriColumbiaMissouriUSA
- Department of Veterinary Medicine and SurgeryCollege of Veterinary Medicine, University of MissouriColumbiaMissouriUSA
| |
Collapse
|
33
|
Wang S, DeLeon C, Sun W, Quake SR, Roth BL, Südhof TC. Alternative splicing of latrophilin-3 controls synapse formation. Nature 2024; 626:128-135. [PMID: 38233523 PMCID: PMC10830413 DOI: 10.1038/s41586-023-06913-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
The assembly and specification of synapses in the brain is incompletely understood1-3. Latrophilin-3 (encoded by Adgrl3, also known as Lphn3)-a postsynaptic adhesion G-protein-coupled receptor-mediates synapse formation in the hippocampus4 but the mechanisms involved remain unclear. Here we show in mice that LPHN3 organizes synapses through a convergent dual-pathway mechanism: activation of Gαs signalling and recruitment of phase-separated postsynaptic protein scaffolds. We found that cell-type-specific alternative splicing of Lphn3 controls the LPHN3 G-protein-coupling mode, resulting in LPHN3 variants that predominantly signal through Gαs or Gα12/13. CRISPR-mediated manipulation of Lphn3 alternative splicing that shifts LPHN3 from a Gαs- to a Gα12/13-coupled mode impaired synaptic connectivity as severely as the overall deletion of Lphn3, suggesting that Gαs signalling by LPHN3 splice variants mediates synapse formation. Notably, Gαs-coupled, but not Gα12/13-coupled, splice variants of LPHN3 also recruit phase-transitioned postsynaptic protein scaffold condensates, such that these condensates are clustered by binding of presynaptic teneurin and FLRT ligands to LPHN3. Moreover, neuronal activity promotes alternative splicing of the synaptogenic Gαs-coupled variant of LPHN3. Together, these data suggest that activity-dependent alternative splicing of a key synaptic adhesion molecule controls synapse formation by parallel activation of two convergent pathways: Gαs signalling and clustered phase separation of postsynaptic protein scaffolds.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Chelsea DeLeon
- Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Wenfei Sun
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Stephen R Quake
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- The Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - Bryan L Roth
- Department of Pharmacology, UNC Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
34
|
Balasooriya ER, Madhusanka D, López-Palacios TP, Eastmond RJ, Jayatunge D, Owen JJ, Gashler JS, Egbert CM, Bulathsinghalage C, Liu L, Piccolo SR, Andersen JL. Integrating Clinical Cancer and PTM Proteomics Data Identifies a Mechanism of ACK1 Kinase Activation. Mol Cancer Res 2024; 22:137-151. [PMID: 37847650 PMCID: PMC10831333 DOI: 10.1158/1541-7786.mcr-23-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/17/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Beyond the most common oncogenes activated by mutation (mut-drivers), there likely exists a variety of low-frequency mut-drivers, each of which is a possible frontier for targeted therapy. To identify new and understudied mut-drivers, we developed a machine learning (ML) model that integrates curated clinical cancer data and posttranslational modification (PTM) proteomics databases. We applied the approach to 62,746 patient cancers spanning 84 cancer types and predicted 3,964 oncogenic mutations across 1,148 genes, many of which disrupt PTMs of known and unknown function. The list of putative mut-drivers includes established drivers and others with poorly understood roles in cancer. This ML model is available as a web application. As a case study, we focused the approach on nonreceptor tyrosine kinases (NRTK) and found a recurrent mutation in activated CDC42 kinase-1 (ACK1) that disrupts the Mig6 homology region (MHR) and ubiquitin-association (UBA) domains on the ACK1 C-terminus. By studying these domains in cultured cells, we found that disruption of the MHR domain helps activate the kinase while disruption of the UBA increases kinase stability by blocking its lysosomal degradation. This ACK1 mutation is analogous to lymphoma-associated mutations in its sister kinase, TNK1, which also disrupt a C-terminal inhibitory motif and UBA domain. This study establishes a mut-driver discovery tool for the research community and identifies a mechanism of ACK1 hyperactivation shared among ACK family kinases. IMPLICATIONS This research identifies a potentially targetable activating mutation in ACK1 and other possible oncogenic mutations, including PTM-disrupting mutations, for further study.
Collapse
Affiliation(s)
- Eranga R. Balasooriya
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
- Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Dept. of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Deshan Madhusanka
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Tania P. López-Palacios
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Riley J. Eastmond
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Dasun Jayatunge
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jake J. Owen
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Jack S. Gashler
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Christina M. Egbert
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | | | - Lu Liu
- Department of Computer Science, North Dakota State University, Fargo, North Dakota
| | | | - Joshua L. Andersen
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
35
|
Li G, Mahajan S, Ma S, Jeffery ED, Zhang X, Bhattacharjee A, Venkatasubramanian M, Weirauch MT, Miraldi ER, Grimes HL, Sheynkman GM, Tilburgs T, Salomonis N. Splicing neoantigen discovery with SNAF reveals shared targets for cancer immunotherapy. Sci Transl Med 2024; 16:eade2886. [PMID: 38232136 PMCID: PMC11517820 DOI: 10.1126/scitranslmed.ade2886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/13/2023] [Indexed: 01/19/2024]
Abstract
Immunotherapy has emerged as a crucial strategy to combat cancer by "reprogramming" a patient's own immune system. Although immunotherapy is typically reserved for patients with a high mutational burden, neoantigens produced from posttranscriptional regulation may provide an untapped reservoir of common immunogenic targets for new targeted therapies. To comprehensively define tumor-specific and likely immunogenic neoantigens from patient RNA-Seq, we developed Splicing Neo Antigen Finder (SNAF), an easy-to-use and open-source computational workflow to predict splicing-derived immunogenic MHC-bound peptides (T cell antigen) and unannotated transmembrane proteins with altered extracellular epitopes (B cell antigen). This workflow uses a highly accurate deep learning strategy for immunogenicity prediction (DeepImmuno) in conjunction with new algorithms to rank the tumor specificity of neoantigens (BayesTS) and to predict regulators of mis-splicing (RNA-SPRINT). T cell antigens from SNAF were frequently evidenced as HLA-presented peptides from mass spectrometry (MS) and predict response to immunotherapy in melanoma. Splicing neoantigen burden was attributed to coordinated splicing factor dysregulation. Shared splicing neoantigens were found in up to 90% of patients with melanoma, correlated to overall survival in multiple cancer cohorts, induced T cell reactivity, and were characterized by distinct cells of origin and amino acid preferences. In addition to T cell neoantigens, our B cell focused pipeline (SNAF-B) identified a new class of tumor-specific extracellular neoepitopes, which we termed ExNeoEpitopes. ExNeoEpitope full-length mRNA predictions were tumor specific and were validated using long-read isoform sequencing and in vitro transmembrane localization assays. Therefore, our systematic identification of splicing neoantigens revealed potential shared targets for therapy in heterogeneous cancers.
Collapse
Affiliation(s)
- Guangyuan Li
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, OH, 45267 USA
| | - Shweta Mahajan
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 45229
| | - Siyuan Ma
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 45229
| | - Erin D. Jeffery
- Department of Molecular Physiology and Biological Physics, University of Virginia, VA 22903
| | - Xuan Zhang
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 45229
| | - Anukana Bhattacharjee
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Meenakshi Venkatasubramanian
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Computer Science, University of Cincinnati, Cincinnati, OH 45229
| | - Matthew T. Weirauch
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital, Cincinnati, OH 45229
- Division of Human Genetics, Cincinnati Children’s Hospital, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Emily R. Miraldi
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - H. Leighton Grimes
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Gloria M. Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, VA 22903
| | - Tamara Tilburgs
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, OH, 45267 USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| |
Collapse
|
36
|
Lei Q, Xiang K, Cheng L, Xiang M. Human retinal organoids with an OPA1 mutation are defective in retinal ganglion cell differentiation and function. Stem Cell Reports 2024; 19:68-83. [PMID: 38101398 PMCID: PMC10828684 DOI: 10.1016/j.stemcr.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Autosomal dominant optic atrophy (ADOA), mostly caused by heterozygous OPA1 mutations and characterized by retinal ganglion cell (RGC) loss and optic nerve degeneration, is one of the most common types of inherited optic neuropathies. Previous work using a two-dimensional (2D) differentiation model of induced pluripotent stem cells (iPSCs) has investigated ADOA pathogenesis but failed to agree on the effect of OPA1 mutations on RGC differentiation. Here, we use 3D retinal organoids capable of mimicking in vivo retinal development to resolve the issue. We generated isogenic iPSCs carrying the hotspot OPA1 c.2708_2711delTTAG mutation and found that the mutant variant caused defective initial and terminal differentiation and abnormal electrophysiological properties of organoid-derived RGCs. Moreover, this variant inhibits progenitor proliferation and results in mitochondrial dysfunction. These data demonstrate that retinal organoids coupled with gene editing serve as a powerful tool to definitively identify disease-related phenotypes and provide valuable resources to further investigate ADOA pathogenesis and screen for ADOA therapeutics.
Collapse
Affiliation(s)
- Qiannan Lei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Kangjian Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
37
|
Park NK, Park SJ, Park YG, Moon SH, Woo J, Kim HJ, Kim SJ, Choi SW. Translation reinitiation in c.453delC frameshift mutation of KCNH2 producing functional hERG K+ channels with mild dominant negative effect in the heterozygote patient-derived iPSC cardiomyocytes. Hum Mol Genet 2024; 33:110-121. [PMID: 37769355 DOI: 10.1093/hmg/ddad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 09/30/2023] Open
Abstract
The c.453delC (p.Thr152Profs*14) frameshift mutation in KCNH2 is associated with an elevated risk of Long QT syndrome (LQTS) and fatal arrhythmia. Nevertheless, the loss-of-function mechanism underlying this mutation remains unexplored and necessitates an understanding of electrophysiology. To gain insight into the mechanism of the LQT phenotype, we conducted whole-cell patch-clamp and immunoblot assays, utilizing both a heterologous expression system and patient-derived induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) with 453delC-KCNH2. We also explored the site of translational reinitiation by employing LC/MS mass spectrometry. Contrary to the previous assumption of early termination of translation, the findings of this study indicate that the 453delC-KCNH2 leads to an N-terminally truncated hERG channel, a potential from a non-canonical start codon, with diminished expression and reduced current (IhERG). The co-expression with wildtype KCNH2 produced heteromeric hERG channel with mild dominant-negative effect. Additionally, the heterozygote patient-derived iPSC-CMs exhibited prolonged action potential duration and reduced IhERG, which was ameliorated with the use of a hERG activator, PD-118057. The results of our study offer novel insights into the mechanisms involved in congenital LQTS associated with the 453delC mutation of KCNH2. The mutant results in the formation of less functional N-terminal-truncated channels with reduced amount of membrane expression. A hERG activator is capable of correcting abnormalities in both the heterologous expression system and patient-derived iPSC-CMs.
Collapse
Affiliation(s)
- Na Kyeong Park
- Department of Physiology, Seoul National University College of Medicine, 103, Daehak-ro, Seoul 03080, Korea
| | - Soon-Jung Park
- Stem Cell Research Institute, T&R Biofab Co. Ltd, 237, Sangidaehak-ro, Siheung 15073, Korea
| | - Yun-Gwi Park
- Department of Animal Science and Technology, Chung-Ang University, 4726, Seodong-daero, Anseong 17546, Korea
| | - Sung-Hwan Moon
- Department of Animal Science and Technology, Chung-Ang University, 4726, Seodong-daero, Anseong 17546, Korea
| | - JooHan Woo
- Department of Physiology, Dongguk University College of Medicine, 123, Dongdae-ro, Gyeongju 38066, Korea
| | - Hyun Jong Kim
- Department of Physiology, Dongguk University College of Medicine, 123, Dongdae-ro, Gyeongju 38066, Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, 103, Daehak-ro, Seoul 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, 103, Daehak-ro, Seoul 03080, Korea
| | - Seong Woo Choi
- Department of Physiology, Dongguk University College of Medicine, 123, Dongdae-ro, Gyeongju 38066, Korea
| |
Collapse
|
38
|
Mir A, Song Y, Lee H, Nadeali Z, Tabatabaiefar MA. A novel de novo frameshift variant in the CHD2 gene related to intellectual and developmental disability, seizures and speech problems. Mol Genet Genomic Med 2024; 12:e2305. [PMID: 37877434 PMCID: PMC10767600 DOI: 10.1002/mgg3.2305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/23/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND The chromodomain helicase DNA-binding protein 2 (CHD2) is a member of the ATP-dependent chromatin remodelling family of proteins, which are critical for the assembly and regulation of chromatin. De novo variants and deletions in the CHD2 gene have been associated with childhood-onset developmental and epileptic encephalopathies type 94 (DEE 94). This study reports a novel deleterious de novo heterozygous frameshift insertion variant in the CHD2 gene. METHODS The causative variant was diagnosed using whole-exome sequencing. Sanger sequencing and cosegregation analysis were applied to confirm the candidate variant. Multiple in silico analysis tools were employed to interpret the variant using the American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines. RESULTS A de novo deleterious variant, NM_001271.4:c.1570dup (NP_001262.3:p.Ser524PhefsTer30), in the CHD2 gene, was identified in a 16-year-old boy with an intellectual and developmental disability, seizures and speech problems. The de novo occurrence of the variant was confirmed by segregation analysis in the family. CONCLUSION The findings of this study expand the existing knowledge of variants of the CHD2 gene and provide a detailed phenotype associated with this gene. These data could have implications for genetic diagnosis and counselling in similar conditions. Moreover, this information could be useful for therapeutic purposes, including the proper administration of medication to control epilepsy.
Collapse
Affiliation(s)
- Atefeh Mir
- Department of Genetics and Molecular Biology, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Yongjun Song
- Division of Medical Genetics3Billion IncSeoulSouth Korea
| | - Hane Lee
- Division of Medical Genetics3Billion IncSeoulSouth Korea
| | - Zakiye Nadeali
- Department of Genetics and Molecular Biology, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of MedicineIsfahan University of Medical SciencesIsfahanIran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable DiseaseIsfahan University of Medical SciencesIsfahanIran
- GenTArget Corp (GTAC), Deputy of Research and TechnologyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
39
|
Karimi E, van der Borgh M, Lindqvist J, Gohlke J, Hourani Z, Kolb J, Cossette S, Lawlor MW, Ottenheijm C, Granzier H. Characterization of NEB mutations in patients reveals novel nemaline myopathy disease mechanisms and omecamtiv mecarbil force effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572678. [PMID: 38187705 PMCID: PMC10769406 DOI: 10.1101/2023.12.20.572678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Nebulin, a critical protein of the skeletal muscle thin filament, plays important roles in physiological processes such as regulating thin filament length (TFL), cross-bridge cycling, and myofibril alignment. Mutations in the nebulin gene ( NEB ) cause NEB-based nemaline myopathy (NEM2), a genetically heterogeneous disorder characterized by hypotonia and muscle weakness, currently lacking therapies targeting the underlying pathological mechanisms. In this study, we examined a cohort of ten NEM2 patients, each with unique mutations, aiming to understand their impact on mRNA, protein, and functional levels. Results show that truncation mutations affect NEB mRNA stability and lead to nonsense-mediated decay of the mutated transcript. Moreover, a high incidence of cryptic splice site activation was found in patients with splicing mutations which is expected to disrupt the actin-binding sites of nebulin. Determination of protein levels revealed patients with relatively normal nebulin levels and others with markedly reduced nebulin. We observed a positive relation between the reduction in nebulin and a reduction in TFL, and a positive relation between the reduction in nebulin level and the reduction in tension (both maximal and submaximal tension). Interestingly, our study revealed a duplication mutation in nebulin that resulted in a larger nebulin protein and longer TFL. Additionally, we investigated the effect of Omecamtiv mecarbil (OM), a small-molecule activator of cardiac myosin, on force production of type I muscle fibers of NEM2 patients. OM treatment substantially increased submaximal tension across all NEM2 patients ranging from 87-318%, with the largest effects in patients with the lowest level of nebulin. In summary, this study indicates that post-transcriptional or post-translational mechanisms regulate nebulin expression. Moreover, we propose that the pathomechanism of NEM2 involves not only shortened but also elongated thin filaments, along with the disruption of actin-binding sites resulting from splicing mutations. Significantly, our findings highlight the potential of OM treatment to improve skeletal muscle function in NEM2 patients, especially those with large reductions in nebulin levels.
Collapse
|
40
|
Yin Q, Chen L. CellTICS: an explainable neural network for cell-type identification and interpretation based on single-cell RNA-seq data. Brief Bioinform 2023; 25:bbad449. [PMID: 38061196 PMCID: PMC10703497 DOI: 10.1093/bib/bbad449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Identifying cell types is crucial for understanding the functional units of an organism. Machine learning has shown promising performance in identifying cell types, but many existing methods lack biological significance due to poor interpretability. However, it is of the utmost importance to understand what makes cells share the same function and form a specific cell type, motivating us to propose a biologically interpretable method. CellTICS prioritizes marker genes with cell-type-specific expression, using a hierarchy of biological pathways for neural network construction, and applying a multi-predictive-layer strategy to predict cell and sub-cell types. CellTICS usually outperforms existing methods in prediction accuracy. Moreover, CellTICS can reveal pathways that define a cell type or a cell type under specific physiological conditions, such as disease or aging. The nonlinear nature of neural networks enables us to identify many novel pathways. Interestingly, some of the pathways identified by CellTICS exhibit differential expression "variability" rather than differential expression across cell types, indicating that expression stochasticity within a pathway could be an important feature characteristic of a cell type. Overall, CellTICS provides a biologically interpretable method for identifying and characterizing cell types, shedding light on the underlying pathways that define cellular heterogeneity and its role in organismal function. CellTICS is available at https://github.com/qyyin0516/CellTICS.
Collapse
Affiliation(s)
- Qingyang Yin
- Department of Quantitative and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, United States
| | - Liang Chen
- Department of Quantitative and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, United States
| |
Collapse
|
41
|
Akbari B, Ahmadi E, Zabihi MR, Zamir MR, Shaker MS, Noorbakhsh F. SARS-CoV-2 helicase might interfere with cellular nonsense-mediated RNA decay: insights from a bioinformatics study. BMC Genom Data 2023; 24:68. [PMID: 37980504 PMCID: PMC10657555 DOI: 10.1186/s12863-023-01173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Viruses employ diverse strategies to interfere with host defense mechanisms, including the production of proteins that mimic or resemble host proteins. This study aimed to analyze the similarities between SARS-CoV-2 and human proteins, investigate their impact on virus-host interactions, and elucidate underlying mechanisms. RESULTS Comparing the proteins of SARS-CoV-2 with human and mammalian proteins revealed sequence and structural similarities between viral helicase with human UPF1. The latter is a protein that is involved in nonsense-mediated RNA decay (NMD), an mRNA surveillance pathway which also acts as a cellular defense mechanism against viruses. Protein sequence similarities were also observed between viral nsp3 and human Poly ADP-ribose polymerase (PARP) family of proteins. Gene set enrichment analysis on transcriptomic data derived from SARS-CoV-2 positive samples illustrated the enrichment of genes belonging to the NMD pathway compared with control samples. Moreover, comparing transcriptomic data from SARS-CoV-2-infected samples with transcriptomic data derived from UPF1 knockdown cells demonstrated a significant overlap between datasets. CONCLUSIONS These findings suggest that helicase/UPF1 sequence and structural similarity might have the ability to interfere with the NMD pathway with pathogenic and immunological implications.
Collapse
Affiliation(s)
- Behnia Akbari
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ahmadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zabihi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Roshan Zamir
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Sadeghi Shaker
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
| |
Collapse
|
42
|
Haddad-Mashadrizeh A, Mirahmadi M, Taghavizadeh Yazdi ME, Gholampour-Faroji N, Bahrami A, Zomorodipour A, Moghadam Matin M, Qayoomian M, Saebnia N. Introns and Their Therapeutic Applications in Biomedical Researches. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3316. [PMID: 38269198 PMCID: PMC10804063 DOI: 10.30498/ijb.2023.334488.3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/23/2023] [Indexed: 01/26/2024]
Abstract
Context Although for a long time, it was thought that intervening sequences (introns) were junk DNA without any function, their critical roles and the underlying molecular mechanisms in genome regulation have only recently come to light. Introns not only carry information for splicing, but they also play many supportive roles in gene regulation at different levels. They are supposed to function as useful tools in various biological processes, particularly in the diagnosis and treatment of diseases. Introns can contribute to numerous biological processes, including gene silencing, gene imprinting, transcription, mRNA metabolism, mRNA nuclear export, mRNA localization, mRNA surveillance, RNA editing, NMD, translation, protein stability, ribosome biogenesis, cell growth, embryonic development, apoptosis, molecular evolution, genome expansion, and proteome diversity through various mechanisms. Evidence Acquisition In order to fulfill the objectives of this study, the following databases were searched: Medline, Scopus, Web of Science, EBSCO, Open Access Journals, and Google Scholar. Only articles published in English were included. Results & Conclusions The intervening sequences of eukaryotic genes have critical functions in genome regulation, as well as in molecular evolution. Here, we summarize recent advances in our understanding of how introns influence genome regulation, as well as their effects on molecular evolution. Moreover, therapeutic strategies based on intron sequences are discussed. According to the obtained results, a thorough understanding of intron functional mechanisms could lead to new opportunities in disease diagnosis and therapies, as well as in biotechnology applications.
Collapse
Affiliation(s)
- Aliakbar Haddad-Mashadrizeh
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Nazanin Gholampour-Faroji
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmadreza Bahrami
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Maryam Moghadam Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohsen Qayoomian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Saebnia
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
43
|
Cortés-López M, Chamely P, Hawkins AG, Stanley RF, Swett AD, Ganesan S, Mouhieddine TH, Dai X, Kluegel L, Chen C, Batta K, Furer N, Vedula RS, Beaulaurier J, Drong AW, Hickey S, Dusaj N, Mullokandov G, Stasiw AM, Su J, Chaligné R, Juul S, Harrington E, Knowles DA, Potenski CJ, Wiseman DH, Tanay A, Shlush L, Lindsley RC, Ghobrial IM, Taylor J, Abdel-Wahab O, Gaiti F, Landau DA. Single-cell multi-omics defines the cell-type-specific impact of splicing aberrations in human hematopoietic clonal outgrowths. Cell Stem Cell 2023; 30:1262-1281.e8. [PMID: 37582363 PMCID: PMC10528176 DOI: 10.1016/j.stem.2023.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/28/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023]
Abstract
RNA splicing factors are recurrently mutated in clonal blood disorders, but the impact of dysregulated splicing in hematopoiesis remains unclear. To overcome technical limitations, we integrated genotyping of transcriptomes (GoT) with long-read single-cell transcriptomics and proteogenomics for single-cell profiling of transcriptomes, surface proteins, somatic mutations, and RNA splicing (GoT-Splice). We applied GoT-Splice to hematopoietic progenitors from myelodysplastic syndrome (MDS) patients with mutations in the core splicing factor SF3B1. SF3B1mut cells were enriched in the megakaryocytic-erythroid lineage, with expansion of SF3B1mut erythroid progenitor cells. We uncovered distinct cryptic 3' splice site usage in different progenitor populations and stage-specific aberrant splicing during erythroid differentiation. Profiling SF3B1-mutated clonal hematopoiesis samples revealed that erythroid bias and cell-type-specific cryptic 3' splice site usage in SF3B1mut cells precede overt MDS. Collectively, GoT-Splice defines the cell-type-specific impact of somatic mutations on RNA splicing, from early clonal outgrowths to overt neoplasia, directly in human samples.
Collapse
Affiliation(s)
- Mariela Cortés-López
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Paulina Chamely
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Allegra G Hawkins
- Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, PA, USA
| | - Robert F Stanley
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ariel D Swett
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Saravanan Ganesan
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Tarek H Mouhieddine
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiaoguang Dai
- Oxford Nanopore Technologies Inc., New York, NY, USA
| | - Lloyd Kluegel
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Celine Chen
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kiran Batta
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Nili Furer
- Weizmann Institute of Science, Department of Molecular Cell Biology, Rehovot, Israel
| | - Rahul S Vedula
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Scott Hickey
- Oxford Nanopore Technologies Inc., San Francisco, CA, USA
| | - Neville Dusaj
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gavriel Mullokandov
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Adam M Stasiw
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jiayu Su
- New York Genome Center, New York, NY, USA; Department of Systems Biology, Columbia University, New York, NY, USA
| | - Ronan Chaligné
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sissel Juul
- Oxford Nanopore Technologies Inc., New York, NY, USA
| | | | - David A Knowles
- New York Genome Center, New York, NY, USA; Department of Systems Biology, Columbia University, New York, NY, USA; Department of Computer Science, Columbia University, New York, NY, USA
| | - Catherine J Potenski
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Daniel H Wiseman
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Amos Tanay
- Weizmann Institute of Science, Department of Computer Science and Applied Mathematics, Rehovot, Israel
| | - Liran Shlush
- Weizmann Institute of Science, Department of Molecular Cell Biology, Rehovot, Israel
| | - Robert C Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Federico Gaiti
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON, Canada; University of Toronto, Medical Biophysics, Toronto, ON, Canada.
| | - Dan A Landau
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
44
|
Yu B, Li X, Yan W, Ding B, Zhang X, Shen S, Xie S, Hu J, Liu H, Chen X, Nie Y, Liu F, Zhang Y, Wang S. Post-transcriptional regulation of tumor suppressor gene lncRNA CARMN via m 6A modification and miRNA regulation in cervical cancer. J Cancer Res Clin Oncol 2023; 149:10307-10318. [PMID: 37273106 DOI: 10.1007/s00432-023-04893-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/20/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE The abnormal regulation of lncRNA CARMN has been proved to be a tumor suppressor gene of cervical cancer (CC). However, its role in CC is still elusive. The regulation of CARMN post-transcriptional level by m6A modification and miRNA has not been studied. This study aims to analyze the molecular mechanism of m6A modification and miRNA on the abnormal expression of CARMN in CC cells, so as to provide a new theoretical basis for the diagnosis and treatment of CC. METHODS MeRIP-seq was used to identify the differential m6A-modified genes between tumor and normal cervical tissues. RT-qPCR assay was used to detect gene expression levels in tissues or cells. The m6A modification sites of CARMN was predicted by bioinformatics, and the modification of m6A and its regulatory effect on CARMN were analyzed by MeRIP-qPCR, Actinomycin D assay and RIP assay. RIP-microarray combined with bioinformatics methods to screen miRNAs that may target CARMN. The regulation mechanism between miRNA and CARMN was verified by RT-qPCR, nucleo-plasmic separation assay, mRNA stability assay, dual-luciferase reporter assay, and in vivo experiments. RESULTS MeRIP-seq found that CARMN is a significant different gene in the abundance of m6A in CC, and the modification level of m6A in CC tissues was higher than that in normal cervical tissues. Further, this study verified that m6A reader YTHDF2 could recognize m6A-modified CARMN and promote its degradation in CC cells. miR-21-5p was proved to be the downstream target gene of CARMN, and miR-21-5p could negatively regulate the expression of CARMN. Further experiments showed that miR-21-5p could directly bind to CARMN and lead to the degradation of CARMN. The in vivo experimental results indicated that the level of miR-21-5p in the overexpressed CARMN group was significantly lower than that in the control group. CONCLUSION m6A modification and miR-21-5p play important roles in promoting the occurrence and development of tumors by regulating CARMN, provide new potential targets for the treatment of CC.
Collapse
Affiliation(s)
- Bingjia Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiuting Li
- School of Health Management and Basic Science, Jiangsu Health Vocational College, Nanjing, China
| | - Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Bo Ding
- Department of Gynecology and Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Siyuan Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shuqian Xie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jing Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Haohan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xue Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yamei Nie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Fengying Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yan Zhang
- School of Medicine, Shihezi University, Xinjiang, China.
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
45
|
Zhao P, Gu L, Gao Y, Pan Z, Liu L, Li X, Zhou H, Yu D, Han X, Qian L, Liu GE, Fang L, Wang Z. Young SINEs in pig genomes impact gene regulation, genetic diversity, and complex traits. Commun Biol 2023; 6:894. [PMID: 37652983 PMCID: PMC10471783 DOI: 10.1038/s42003-023-05234-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
Transposable elements (TEs) are a major source of genetic polymorphisms and play a role in chromatin architecture, gene regulatory networks, and genomic evolution. However, their functional role in pigs and contributions to complex traits are largely unknown. We created a catalog of TEs (n = 3,087,929) in pigs and found that young SINEs were predominantly silenced by histone modifications, DNA methylation, and decreased accessibility. However, some transcripts from active young SINEs showed high tissue-specificity, as confirmed by analyzing 3570 RNA-seq samples. We also detected 211,067 dimorphic SINEs in 374 individuals, including 340 population-specific ones associated with local adaptation. Mapping these dimorphic SINEs to genome-wide associations of 97 complex traits in pigs, we found 54 candidate genes (e.g., ANK2 and VRTN) that might be mediated by TEs. Our findings highlight the important roles of young SINEs and provide a supplement for genotype-to-phenotype associations and modern breeding in pigs.
Collapse
Affiliation(s)
- Pengju Zhao
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lihong Gu
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, No. 14 Xingdan Road, Haikou, 571100, China
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Zhangyuan Pan
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Lei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Xingzheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Dongyou Yu
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyan Han
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lichun Qian
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA.
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark.
| | - Zhengguang Wang
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China.
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
46
|
Kodytková A, Amaratunga SA, Zemková D, Maratová K, Dušátková P, Plachý L, Průhová Š, Koloušková S, Lebl J. SALL4 Phenotype in Four Generations of One Family: An Interplay of the Upper Limb, Kidneys, and the Pituitary. Horm Res Paediatr 2023; 97:203-210. [PMID: 37611564 DOI: 10.1159/000531996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/01/2023] [Indexed: 08/25/2023] Open
Abstract
INTRODUCTION The SALL4 gene encodes a transcription factor that is essential for early embryonic cellular differentiation of the epiblast and primitive endoderm. It is required for the development of neural tissue, kidney, heart, and limbs. Pathogenic SALL4 variants cause Duane-radial ray syndrome (Okihiro syndrome), acro-renal-ocular syndrome, and Holt-Oram syndrome. We report a family with vertical transmission of a SALL4 pathogenic variant leading to radial hypoplasia and kidney dystopia in several generations with additional growth hormone deficiency (GHD) in the proband. CASE PRESENTATION Our male proband was born at the 39th week of gestation. He was born small for gestational age (SGA; birth weight 2,550 g, -2.2 SDS; length 47 cm, -2.0 SDS). He had bilateral asymmetrical radial ray malformation (consisting of radial hypoplasia, ulnar flexure, and bilateral aplasia of the thumb) and pelvic kidney dystopia, but no cardiac malformations, clubfoot, ocular coloboma, or Duane anomaly. He was examined for progressive short stature at the age of 3.9 years, where his IGF-1 was 68 μg/L (-1.0 SD), and growth hormone (GH) after stimulation 6.2 μg/L. Other pituitary hormones were normal. A brain CT revealed normal morphology of the cerebral midline and the pituitary. He had a dental anomaly - a central mandibular ectopic canine. MRI could not be done due to the presence of metal after multiple corrective plastic surgeries of his hands. His mother's and father's heights are 152.3 cm (-2.4 SD) and 177.8 cm (-0.4 SD), respectively. His father has a milder malformation of the forearm. The affected paternal grandfather (height 164 cm; -2.3 SD) has a radial ray defect with missing opposition of the thumb. The family reports a similar phenotype of radial dysplasia in the paternal grandfather's mother. The proband started GH therapy at age 6.5 years when his height was 109 cm (-2.8 SDS) and he experienced catch-up growth as expected in GHD. Puberty started spontaneously at the age of 12.5 years. At age 13, his height was 158.7 cm (-0.2 SDS). Whole-exome sequencing revealed a nonsense variant in the SALL4 gene c.1717C>T (p.Arg573Ter) in the proband, his father, and paternal grandfather. CONCLUSION This is the first observation of a patient with a congenital upper limb defect due to a pathogenic SALL4 variant who has isolated GHD with no apparent cerebral or facial midline anomaly and has been successfully treated with growth hormone.
Collapse
Affiliation(s)
- Aneta Kodytková
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Shenali Anne Amaratunga
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Daniela Zemková
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Klára Maratová
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Petra Dušátková
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Lukáš Plachý
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Štěpánka Průhová
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Stanislava Koloušková
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Jan Lebl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia,
| |
Collapse
|
47
|
George J, Stegmann M, Monaghan J, Bailey-Serres J, Zipfel C. Arabidopsis translation initiation factor binding protein CBE1 negatively regulates accumulation of the NADPH oxidase respiratory burst oxidase homolog D. J Biol Chem 2023; 299:105018. [PMID: 37423301 PMCID: PMC10432800 DOI: 10.1016/j.jbc.2023.105018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 07/11/2023] Open
Abstract
Cell surface pattern recognition receptors sense invading pathogens by binding microbial or endogenous elicitors to activate plant immunity. These responses are under tight control to avoid excessive or untimely activation of cellular responses, which may otherwise be detrimental to host cells. How this fine-tuning is accomplished is an area of active study. We previously described a suppressor screen that identified Arabidopsis thaliana mutants with regained immune signaling in the immunodeficient genetic background bak1-5, which we named modifier of bak1-5 (mob) mutants. Here, we report that bak1-5 mob7 mutant restores elicitor-induced signaling. Using a combination of map-based cloning and whole-genome resequencing, we identified MOB7 as conserved binding of eIF4E1 (CBE1), a plant-specific protein that interacts with the highly conserved eukaryotic translation initiation factor eIF4E1. Our data demonstrate that CBE1 regulates the accumulation of respiratory burst oxidase homolog D, the NADPH oxidase responsible for elicitor-induced apoplastic reactive oxygen species production. Furthermore, several mRNA decapping and translation initiation factors colocalize with CBE1 and similarly regulate immune signaling. This study thus identifies a novel regulator of immune signaling and provides new insights into reactive oxygen species regulation, potentially through translational control, during plant stress responses.
Collapse
Affiliation(s)
- Jeoffrey George
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom; Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Martin Stegmann
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jacqueline Monaghan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, California, USA
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom; Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
48
|
Thaweesapphithak S, Theerapanon T, Rattanapornsompong K, Intarak N, Kanpittaya P, Trachoo V, Porntaveetus T, Shotelersuk V. Functional consequences of C-terminal mutations in RUNX2. Sci Rep 2023; 13:12202. [PMID: 37500953 PMCID: PMC10374887 DOI: 10.1038/s41598-023-39293-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023] Open
Abstract
Cleidocranial dysplasia (CCD) is a genetic disorder caused by mutations in the RUNX2 gene, affecting bone and teeth development. Previous studies focused on mutations in the RUNX2 RHD domain, with limited investigation of mutations in the C-terminal domain. This study aimed to investigate the functional consequences of C-terminal mutations in RUNX2. Eight mutations were analyzed, and their effects on transactivation activity, protein expression, subcellular localization, and osteogenic potential were studied. Truncating mutations in the PST region and a missense mutation in the NMTS region resulted in increased transactivation activity, while missense mutations in the PST showed activity comparable to the control. Truncating mutations produced truncated proteins, while missense mutations produced normal-sized proteins. Mutant proteins were mislocalized, with six mutant proteins detected in both the nucleus and cytoplasm. CCD patient bone cells exhibited mislocalization of RUNX2, similar to the generated mutant. Mislocalization of RUNX2 and reduced expression of downstream genes were observed in MSCs from a CCD patient with the p.Ser247Valfs*3 mutation, leading to compromised osteogenic potential. This study provides insight into the functional consequences of C-terminal mutations in RUNX2, including reduced expression, mislocalization, and aberrant transactivation of downstream genes, contributing to the compromised osteogenic potential observed in CCD.
Collapse
Affiliation(s)
- Sermporn Thaweesapphithak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Graduate Program in Oral Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanakorn Theerapanon
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Khanti Rattanapornsompong
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Narin Intarak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pimsiri Kanpittaya
- Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorapat Trachoo
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Graduate Program in Geriatric and Special Patients Care, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
49
|
Sun B, Chen L. Mapping genetic variants for nonsense-mediated mRNA decay regulation across human tissues. Genome Biol 2023; 24:164. [PMID: 37434206 PMCID: PMC10337212 DOI: 10.1186/s13059-023-03004-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/30/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Nonsense-mediated mRNA decay (NMD) was originally conceived as an mRNA surveillance mechanism to prevent the production of potentially deleterious truncated proteins. Research also shows NMD is an important post-transcriptional gene regulation mechanism selectively targeting many non-aberrant mRNAs. However, how natural genetic variants affect NMD and modulate gene expression remains elusive. RESULTS Here we elucidate NMD regulation of individual genes across human tissues through genetical genomics. Genetic variants corresponding to NMD regulation are identified based on GTEx data through unique and robust transcript expression modeling. We identify genetic variants that influence the percentage of NMD-targeted transcripts (pNMD-QTLs), as well as genetic variants regulating the decay efficiency of NMD-targeted transcripts (dNMD-QTLs). Many such variants are missed in traditional expression quantitative trait locus (eQTL) mapping. NMD-QTLs show strong tissue specificity especially in the brain. They are more likely to overlap with disease single-nucleotide polymorphisms (SNPs). Compared to eQTLs, NMD-QTLs are more likely to be located within gene bodies and exons, especially the penultimate exons from the 3' end. Furthermore, NMD-QTLs are more likely to be found in the binding sites of miRNAs and RNA binding proteins. CONCLUSIONS We reveal the genome-wide landscape of genetic variants associated with NMD regulation across human tissues. Our analysis results indicate important roles of NMD in the brain. The preferential genomic positions of NMD-QTLs suggest key attributes for NMD regulation. Furthermore, the overlap with disease-associated SNPs and post-transcriptional regulatory elements implicates regulatory roles of NMD-QTLs in disease manifestation and their interactions with other post-transcriptional regulators.
Collapse
Affiliation(s)
- Bo Sun
- Department of Quantitative and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA
| | - Liang Chen
- Department of Quantitative and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA.
| |
Collapse
|
50
|
Cumbo C, Orsini P, Anelli L, Zagaria A, Iannò MF, De Cecco L, Minervini CF, Coccaro N, Tota G, Parciante E, Conserva MR, Redavid I, Tarantini F, Minervini A, Carluccio P, De Grassi A, Pierri CL, Specchia G, Musto P, Albano F. Case report: biallelic DNMT3A mutations in acute myeloid leukemia. Front Oncol 2023; 13:1205220. [PMID: 37448520 PMCID: PMC10336536 DOI: 10.3389/fonc.2023.1205220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
DNMT3A gene mutations, detected in 20-25% of de novo acute myeloid leukemia (AML) patients, are typically heterozygous. Biallelic variants are uncommon, affecting ~3% of cases and identifying a worse prognosis. Indeed, two concomitant DNMT3A mutations were recently associated with shorter event-free survival and overall survival in AML. We present an AML case bearing an unusual DNMT3A molecular status, strongly affecting its function and strangely impacting the global genomic methylation profile. A 56-year-old Caucasian male with a diagnosis of AML not otherwise specified (NOS) presented a complex DNMT3A molecular profile consisting of four different somatic variants mapping on different alleles (in trans). 3D modelling analysis predicted the effect of the DNMT3A mutational status, showing that all the investigated mutations decreased or abolished DNMT3A activity. Although unexpected, DNMT3A's severe loss of function resulted in a global genomic hypermethylation in genes generally involved in cell differentiation. The mechanisms through which DNMT3A contributes to AML remain elusive. We present a unique AML case bearing multiple biallelic DNMT3A variants abolishing its activity and resulting in an unexpected global hypermethylation. The unusual DNMT3A behavior described requires a reflection on its role in AML development and persistence, highlighting the heterogeneity of its deregulation.
Collapse
Affiliation(s)
- Cosimo Cumbo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Orsini
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Luisa Anelli
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Zagaria
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | | | - Loris De Cecco
- Molecular Mechanisms Unit, Department of Research Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Crescenzio Francesco Minervini
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Nicoletta Coccaro
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppina Tota
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Elisa Parciante
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Rosa Conserva
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Immacolata Redavid
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Tarantini
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Angela Minervini
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Carluccio
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Anna De Grassi
- Laboratory of Biochemistry, Molecular and Computational Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Ciro Leonardo Pierri
- Laboratory of Biochemistry, Molecular and Computational Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Pellegrino Musto
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Albano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|