1
|
Rahman R, Selth LA. Cyclin-dependent kinases as mediators of aberrant transcription in prostate cancer. Transl Oncol 2025; 55:102378. [PMID: 40163908 DOI: 10.1016/j.tranon.2025.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
Transcriptional control of gene expression is fundamental to all cellular processes. Conversely, transcriptional dysregulation is a hallmark of cancer. While this hallmark is a key driver of all malignancy-related process, it also represents a vulnerability that can be exploited therapeutically. Prostate cancer is a prime example of this phenomenon: it is characterised by aberrant transcription and treated with drugs that influence transcriptional pathways. Indeed, the primary oncogenic driver and therapeutic target of prostate cancer, the androgen receptor (AR), is a transcription factor. Moreover, a plethora of other transcriptional regulators, including transcriptional cyclin-dependent kinases (CDK7, CDK8 and CDK9), MYC and Bromodomain-containing protein 4 (BRD4), play prominent roles in disease progression. In this review, we focus on the roles of transcriptional CDKs in prostate cancer growth, metastasis and therapy resistance and discuss their interplay with AR, MYC and BRD4. Additionally, we explore recent advances in the therapeutic targeting of transcriptional CDKs and propose how these strategies could be effectively harnessed for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Razia Rahman
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia
| | - Luke A Selth
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia; Flinders University, Freemasons Centre for Male Health and Wellbeing, Adelaide, South Australia; Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
2
|
Fan C, Wang Q, Krijger PHL, Cats D, Selle M, Khorosjutina O, Dhanjal S, Schmierer B, Mei H, de Laat W, Ten Dijke P. Identification of a SNAI1 enhancer RNA that drives cancer cell plasticity. Nat Commun 2025; 16:2890. [PMID: 40133308 PMCID: PMC11937597 DOI: 10.1038/s41467-025-58032-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Enhancer RNAs (eRNAs) are a pivotal class of enhancer-derived non-coding RNAs that drive gene expression. Here we identify the SNAI1 enhancer RNA (SNAI1e; SCREEM2) as a key activator of SNAI1 expression and a potent enforcer of transforming growth factor-β (TGF-β)/SMAD signaling in cancer cells. SNAI1e depletion impairs TGF-β-induced epithelial-mesenchymal transition (EMT), migration, in vivo extravasation, stemness, and chemotherapy resistance in breast cancer cells. SNAI1e functions as an eRNA to cis-regulate SNAI1 enhancer activity by binding to and strengthening the enrichment of the transcriptional co-activator bromodomain containing protein 4 (BRD4) at the local enhancer. SNAI1e selectively promotes the expression of SNAI1, which encodes the EMT transcription factor SNAI1. Furthermore, we reveal that SNAI1 interacts with and anchors the inhibitory SMAD7 in the nucleus, and thereby prevents TGF-β type I receptor (TβRI) polyubiquitination and proteasomal degradation. Our findings establish SNAI1e as a critical driver of SNAI1 expression and TGF-β-induced cell plasticity.
Collapse
Affiliation(s)
- Chuannan Fan
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Qian Wang
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Davy Cats
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Miriam Selle
- Department of Medical Biochemistry and Biophysics, SciLifeLab and Karolinska Institute, Solna, Sweden
| | - Olga Khorosjutina
- Department of Medical Biochemistry and Biophysics, SciLifeLab and Karolinska Institute, Solna, Sweden
| | - Soniya Dhanjal
- Department of Medical Biochemistry and Biophysics, SciLifeLab and Karolinska Institute, Solna, Sweden
| | - Bernhard Schmierer
- Department of Medical Biochemistry and Biophysics, SciLifeLab and Karolinska Institute, Solna, Sweden
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
3
|
Boros BD, Gachechiladze MA, Guo J, Galloway DA, Mueller SM, Shabsovich M, Yen A, Cammack AJ, Shen T, Mitra RD, Dougherty JD, Miller TM. Prior epigenetic status predicts future susceptibility to seizures in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644199. [PMID: 40166300 PMCID: PMC11957114 DOI: 10.1101/2025.03.20.644199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Wide variation of responses to identical stimuli presented to genetically inbred mice suggests the hypothesis that stochastic epigenetic variation during neurodevelopment can mediate such phenotypic differences. However , this hypothesis is largely untested since capturing pre-existing molecular states requires non-destructive, longitudinal recording. Therefore, we tested the potential of Calling Cards (CC) to record transient neuronal enhancer activity during postnatal development, and thereby associate epigenetic variation with a subsequent phenotypic presentation - degree of seizure response to the pro-convulsant pentylenetetrazol. We show that recorded differences in epigenetics at 243 loci predict a severe vs. mild response, and that these are enriched near genes associated with human epilepsy. We also validated pharmacologically a seizure -modifying role for two novel genes, Htr1f and Let7c . This proof-of-principle supports using CC broadly to discover predisposition loci for other neuropsychiatric traits and behaviors. Finally, as, human disease is also influenced by non-inherited factors, similar epigenetic predispositions are possible in humans.
Collapse
Affiliation(s)
- Benjamin D. Boros
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Mariam A. Gachechiladze
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Juanru Guo
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Dylan A. Galloway
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Shayna M. Mueller
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Mark Shabsovich
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Allen Yen
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Alexander J. Cammack
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Tao Shen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Robi D. Mitra
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Joseph D. Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Timothy M. Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
4
|
Chen YM, Yang WQ, Fan YY, Chen Z, Liu YZ, Zhao BS. Trichostatin A augments cell migration and epithelial-mesenchymal transition in esophageal squamous cell carcinoma through BRD4/ c-Myc endoplasmic reticulum-stress pathway. World J Gastroenterol 2025; 31:103449. [PMID: 40124272 PMCID: PMC11924005 DOI: 10.3748/wjg.v31.i11.103449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/09/2025] [Accepted: 02/14/2025] [Indexed: 03/13/2025] Open
Abstract
BACKGROUND The causes of death in patients with advanced esophageal cancer are multifactorial, with tumor metastasis being one of the important factors. Histone acetylation promotes the migration of esophageal squamous cell carcinoma (ESCC) cells, while the histone deacetylase inhibitor (HDACi) shows complex effects on tumor functions. AIM To comprehensively elucidate the impact and molecular mechanisms of trichostatin A (TSA), an HDACi, on cell migration in ESCC through bromodomain-containing protein (BRD4)/cellular myelocytomatosis oncogene (c-Myc)/endoplasmic reticulum (ER)-stress. METHODS The effects of TSA on ESCC cell lines Eca109 and EC9706 migration were evaluated using Transwell assays, with small interfering transfection and pathway-specific inhibitors to elucidate underlying mechanisms. The mRNA levels involved were examined by quantitative real-time polymerase chain reaction. Protein levels of acetylated histones H3 (acH3) and acetylated histones H4, BRD4, c-Myc, as well as markers of ER stress and epithelial-mesenchymal transition (EMT), were analyzed using western blot. Additionally, this method was also used to examine acH3 levels in esophageal cancer tissues and adjacent tissues. Patient outcomes were subsequently tracked to identify prognostic indicators using Log-Rank tests and Cox multivariate analysis. RESULTS TSA promoted the migration of ESCC cells by stimulating the EMT process. TSA-mediated histone acetylation facilitated the recruitment of BRD4, a bromodomain-containing protein, triggering the expression of c-Myc. This cascade induced ER stress and enhanced EMT in ESCC cells. To further elucidate the underlying mechanism, we employed various interventions including the ER stress inhibitor 4-phenylbutyric acid, knockdown of c-Myc and BRD4 expression, and utilization of the BRD4 inhibitor carboxylic acid as well as the inhibitor of TSA 1. Mechanistically, these studies revealed that TSA-mediated histone acetylation facilitated the recruitment of BRD4, which in turn triggered the expression of c-Myc. This sequential activation induced ER stress and subsequently enhanced EMT, thereby promoting the migration of ESCC cells. Additionally, we examined histone acetylation levels in specimens from 43 patients with ESCC, including both tumor tissues and paired adjacent tissues. Statistical analysis unveiled a negative correlation between the level of histone acetylation and the long-term prognosis of patients with ESCC. CONCLUSION TSA promoted ESCC cell migration through the BRD4/c-Myc/ER stress pathway. Moreover, elevated histone acetylation in ESCC tissues correlated with poor ESCC prognosis. These findings enhance our understanding of ESCC migration and HDACi therapy.
Collapse
Affiliation(s)
- Yan-Min Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Department of Oncology, The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo 454000, Henan Province, China
| | - Wen-Qian Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Henan Medical Science Key Laboratory of Esophageal Cancer Metastasis Translational Medicine, Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Ying-Ying Fan
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Zhi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Yu-Zhen Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Henan Medical Science Key Laboratory of Esophageal Cancer Metastasis Translational Medicine, Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Bao-Sheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Henan Medical Science Key Laboratory of Esophageal Cancer Metastasis Translational Medicine, Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| |
Collapse
|
5
|
Xu X, Brasier AR. SMARCA4 regulates inducible BRD4 genomic redistribution coupling intrinsic immunity and plasticity in epithelial injury-repair. Nucleic Acids Res 2025; 53:gkaf211. [PMID: 40131774 PMCID: PMC11934928 DOI: 10.1093/nar/gkaf211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Coordinated expression of differentiation and innate pathways is essential for successful mucosal injury-repair. Previously, we discovered that the core SWI/SNF complex ATPase, SWI/SNF-related, matrix associated, actin dependent regulator of chromatin, subfamily A, member 4 (SMARCA4)/Brg1, maintains tumor protein 63 + basal progenitor cells in an epithelial-committed state. In response to viral injury, SMARCA4 complexes BRD4 to activate innate inflammation and promote mesenchymal transition/plasticity. To investigate how innate inflammation couples with plasticity, Cleavage Under Targets and Release Using Nuclease of BRD4 binding was applied to wild type and SMARCA4 knockdown (KD) in mock- or respiratory syncytial virus (RSV)-infected basal cells. In mock-infected cells, BRD4 binds 4017 high-confidence peaks within gene bodies controlling mesenchymal transition pathways. By contrast, RSV replication repositions 2339 BRD4 peaks to open chromatin regions upstream of the genes controlling inducible cytokine, cell adherence, and antiviral programs. Also, we note RSV redistributes BRD4 into super enhancers regulating immune response-associated long noncoding (lnc)RNAs. In SMARCA4 KD cells, BRD4 distribution is reduced on 739 peaks after RSV infection. The boundaries of nucleosome-free regions are reduced by SMARCA4 KD, suggesting its role in maintaining open chromatin of super enhancers. Specifically, SMARCA4-BRD4 enhancer controls lncRNAs important in interferon response factor 1 autoregulation. These data indicate how SWI/SNF ATPases couple BRD4 to lncRNA expression controlling cell state and intrinsic immunity in epithelial injury-repair.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Medicine, University of Wisconsin–Madison School of Medicine and Public Health (SMPH), Madison, WI 53705, United States
| | - Allan R Brasier
- Department of Medicine, University of Wisconsin–Madison School of Medicine and Public Health (SMPH), Madison, WI 53705, United States
- Institute for Clinical and Translational Research, University of Wisconsin–Madison, Madison, WI 53705, United States
| |
Collapse
|
6
|
Gopi S, Brandani GB, Tan C, Jung J, Gu C, Mizutani A, Ochiai H, Sugita Y, Takada S. In silico nanoscope to study the interplay of genome organization and transcription regulation. Nucleic Acids Res 2025; 53:gkaf189. [PMID: 40114377 PMCID: PMC11925733 DOI: 10.1093/nar/gkaf189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/10/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025] Open
Abstract
In eukaryotic genomes, regulated access and communication between cis-regulatory elements (CREs) are necessary for enhancer-mediated transcription of genes. The molecular framework of the chromatin organization underlying such communication remains poorly understood. To better understand it, we develop a multiscale modeling pipeline to build near-atomistic models of the 200 kb Nanog gene locus in mouse embryonic stem cells comprising nucleosomes, transcription factors, co-activators, and RNA polymerase II-mediator complexes. By integrating diverse experimental data, including protein localization, genomic interaction frequencies, cryo-electron microscopy, and single-molecule fluorescence studies, our model offers novel insights into chromatin organization and its role in enhancer-promoter communication. The models equilibrated by high-performance molecular dynamics simulations span a scale of ∼350 nm, revealing an experimentally consistent local and global organization of chromatin and transcriptional machinery. Our models elucidate that the sequence-regulated chromatin accessibility facilitates the recruitment of transcription regulatory proteins exclusively at CREs, guided by the contrasting nucleosome organization compared to other regions. By constructing an experimentally consistent near-atomic model of chromatin in the cellular environment, our approach provides a robust framework for future studies on nuclear compartmentalization, chromatin organization, and transcription regulation.
Collapse
Affiliation(s)
- Soundhararajan Gopi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Cheng Tan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe 650-0047, Japan
| | - Jaewoon Jung
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe 650-0047, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Chenyang Gu
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Azuki Mizutani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Ochiai
- Division of Gene Expression Dynamics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-0054, Japan
| | - Yuji Sugita
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe 650-0047, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Midoro-Horiuti T, Murakami Y, Kuzume K, Toler RM, Zhang K. Maternal exposure to bisphenol A has transgenerational effects on the development of experimental asthma through bromodomain-containing protein 4-zinc finger DHHC-type containing 1-stimulators of interferon genes axis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-11. [PMID: 40036137 DOI: 10.1080/09603123.2025.2473016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Perinatal exposures to the environmental estrogen bisphenol A (BPA) are associated with increased asthma prevalence. We tested the hypothesis that perinatal BPA exposure transgenerationally enhances allergic asthma development through the bromodomain-containing protein 4 (BRD4) - zinc finger HHC-1 (ZDHHC1) - stimulators of IFN genes (STING) axis. Female BALB/c mice (F0) were exposed to 10 μg/mL BPA in their drinking water during pregnancy until F1 pups were weaned. Pups were sensitized with low doses of ovalbumin (OVA) on postnatal day 4 (PND 4) and 1% OVA inhaler on PND 18-20. Asthma phenotype was assessed on PND 22. Non-sensitized female pups were bred with non-exposed male mice at 8 weeks of age. Subsequent pups were sensitized, and asthma phenotypes were examined for four generations (F1-F4). Maternal BPA exposure significantly enhanced airway hyperresponsiveness, eosinophilic inflammation, and allergen-specific IgE production in F1-3 pups. Further, treatment of F0 dams with STING inhibitor C-176 yielded pups with decreased response to sensitization. Thus, prenatal exposure to environmental estrogens such as BPA may promote development of experimental asthma through the BRD4-ZDHHC1-STING axis, causing immune alterations with multigenerational effects.
Collapse
Affiliation(s)
| | - Yoko Murakami
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Kazuyo Kuzume
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Rachel M Toler
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Kangling Zhang
- Department of Pharmacology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
8
|
Imai C, Goda T, Mochizuki K. Histone acetylation and BRD4 binding are associated with induction of TNF mRNA expression by temporal high-glucose exposure and subsequent low-glucose culture in juvenile macrophage-like THP-1 cells. Biochim Biophys Acta Gen Subj 2025; 1869:130759. [PMID: 39814272 DOI: 10.1016/j.bbagen.2025.130759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Postprandial hyperglycemia induces expression of inflammatory cytokines including tumor necrosis factor (TNF), which promotes the onset of type 2 diabetes and cardiovascular diseases. In this study, we investigated whether a transient high-glucose culture enhanced sustained expression of TNF, or whether the induction is associated with histone acetylation, and bromodomain protein containing protein 4 (BRD4), which binds acetylated histone, in human juvenile macrophage-like THP-1 cells. METHODS THP-1 cells were cultured in medium with high-glucose in the presence or absence of (+)-JQ1, an inhibitor of bromodomain and extra-terminal domain family, for 24 h (day 0). Thereafter, the cells were returned to a low-glucose medium without (+)-JQ1 and cultured for 2 or 4 days and samples were collected. mRNA expression of inflammation genes, and histone H3 K9/14 acetylation and binding of BRD4 and RNA polymerase II around the TNF gene were measured by RT-qPCR and chromatin immunoprecipitation, respectively. RESULTS TNF mRNA levels, histone H3 K9/14 acetylation, and bindings of BRD4 and RNA polymerase II to the TNF gene were higher in cells exposed to high-glucose culture for 24 h and subsequently cultured in low-glucose medium for 2-4 days, compared with cells cultured in a low-glucose medium. The addition of (+)-JQ1 to the high-glucose medium for 24 h reduced histone H3 K9/14 acetylation, and BRD4 and RNA polymerase II bindings around TNF gene, and the mRNA levels. CONCLUSIONS Histone H3 K9/14 acetylation and BRD4 binding are associated with the sustained expression of TNF mRNA induced by temporal high-glucose exposure in juvenile macrophage-like THP-1 cells.
Collapse
Affiliation(s)
- Chihiro Imai
- Faculty of Education, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan.
| | - Toshinao Goda
- Department of Nutrition and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka 422-8526, Japan
| | - Kazuki Mochizuki
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| |
Collapse
|
9
|
Olp MD, Bursch KL, Wynia-Smith SL, Nuñez R, Goetz CJ, Jackson V, Smith BC. Multivalent nucleosome scaffolding by bromodomain and extraterminal domain tandem bromodomains. J Biol Chem 2025; 301:108289. [PMID: 39938804 PMCID: PMC11930079 DOI: 10.1016/j.jbc.2025.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 02/14/2025] Open
Abstract
Promoter-promoter and enhancer-promoter interactions are enriched in histone acetylation and central to chromatin organization in active genetic regions. Bromodomains are epigenetic "readers" that recognize and bind histone acetylation. Bromodomains often exist in tandem or with other reader domains. Cellular knockdown of the bromodomain and extraterminal domain (BET) protein family disrupts chromatin organization, but the mechanisms through which BET proteins preserve chromatin structure are largely unknown. We hypothesize that BET proteins maintain overall chromatin structure by employing their tandem bromodomains to multivalently scaffold acetylated nucleosomes in an intranucleosomal or internucleosomal manner. To test this hypothesis biophysically, we used small-angle X-ray scattering, electron paramagnetic resonance, and Rosetta protein modeling to show that a disordered linker separates BET tandem bromodomain acetylation binding sites by 15 to 157 Å. Most of these modeled distances are sufficient to span the length of a nucleosome (>57 Å). Focusing on the BET family member BRD4, we employed bioluminescence resonance energy transfer and isothermal titration calorimetry to show that BRD4 bromodomain binding of multiple acetylation sites on a histone tail does not increase BRD4-histone tail affinity, suggesting that BET bromodomain intranucleosome binding is not biologically relevant. Using sucrose gradients and amplified luminescent proximity homogeneous (AlphaScreen) assays, we provide the first direct biophysical evidence that BET bromodomains can scaffold multiple acetylated nucleosomes. Taken together, our results demonstrate that BET bromodomains are capable of multivalent internucleosome scaffolding in vitro. The knowledge gained provides implications for how BET bromodomain-mediated acetylated internucleosome scaffolding may maintain cellular chromatin interactions in active genetic regions.
Collapse
Affiliation(s)
- Michael D Olp
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Karina L Bursch
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Raymundo Nuñez
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher J Goetz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vaughn Jackson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
10
|
Iudin MS, Khodarovich YM, Varizhuk AM, Tsvetkov VB, Severov VV. A Minireview on BET Inhibitors: Beyond Bromodomain Targeting. Biomedicines 2025; 13:594. [PMID: 40149571 PMCID: PMC11939847 DOI: 10.3390/biomedicines13030594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Bromodomain and extra-terminal domain (BET) proteins are epigenetic readers that recognize the histone acetylation code and play a critical role in regulating gene transcription. Dysregulation of BET proteins is associated with a number of pathologies, including cancer, inflammation-related metabolic disorders, etc. BET proteins can also be hijacked by some viruses and mediate latent viral infections, making BET proteins promising targets for therapeutic intervention. Research in this area has mainly focused on bromodomain inhibition, with less attention paid to other domains. Bromodomain inhibitors have great potential as anticancer and anti-inflammatory drug candidates. However, their broad-spectrum impact on transcription and potential cross-reactivity with non-BET bromodomain-containing proteins raise concerns about unforeseen side effects. Non-bromodomain BET inhibitors hold promise for gaining better control over the expression of host and viral genes by targeting different stages of BET-dependent transcriptional regulation. In this review, we discuss recent advances in the development of non-bromodomain BET inhibitors, as well as their potential applications, advantages, and perspectives.
Collapse
Affiliation(s)
- Mikhail S. Iudin
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (M.S.I.); (A.M.V.); (V.B.T.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Yuri M. Khodarovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
- Research and Educational Resource Center for Cellular Technologies of The Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Anna M. Varizhuk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (M.S.I.); (A.M.V.); (V.B.T.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Vladimir B. Tsvetkov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (M.S.I.); (A.M.V.); (V.B.T.)
- Center for Mathematical Modeling in Drug Development, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Vyacheslav V. Severov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (M.S.I.); (A.M.V.); (V.B.T.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| |
Collapse
|
11
|
Niu H, Wei H, Zhou X, Liu Y, Yang L, Wang Q, Luo B, Luo Q, Song F. BRD4 Induces Esophageal Squamous Cell Carcinoma Progression via the Wnt/β-catenin Pathway. Biochem Genet 2025:10.1007/s10528-025-11043-0. [PMID: 39903433 DOI: 10.1007/s10528-025-11043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
BRD4, part of the bromodomain and extra terminal domain (BET) protein family, plays a pivotal role in gene transcription, DNA replication, and repair via transcription regulators. Despite its established involvement in various human diseases, its function in esophageal squamous cell carcinoma (ESCC) has not been fully explored. Our research investigated the association of BRD4 in ESCC and its underlying molecular mechanisms. The findings revealed that BRD4 knockdown notably diminished the cells' proliferation, migration, invasion capabilities and induced apoptosis and cell cycle arrest. Conversely, overexpression of BRD4 can reverse these phenotypes. Pearson correlation and enrichment analyses indicated that BRD4 expression was associated with the cell cycle and Wnt/β-catenin signaling pathway. Further validation confirmed that reduced BRD4 expression downregulates Cyclin D1 and c-Myc, and suppresses epithelial-to-mesenchymal transition (EMT) and Wnt/β-catenin signaling pathway. Furthermore, rescue experiments showed that overexpressing c-Myc significantly mitigated the inhibitory impact of BRD4. Moreover, by employing single-cell transcriptome sequencing, we explored the impact of the tumor microenvironment on BRD4 overexpression in ESCC cells. These insights confirmed BRD4's potential as a therapeutic target, suggesting that modulating its expression could yield promising strategies for ESCC treatment.
Collapse
Affiliation(s)
- Haiyu Niu
- Department of Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Hanwen Wei
- Department of Cardiology, The First People's Hospital of Lanzhou, Lanzhou, 730050, China
| | - Xiaochun Zhou
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Yating Liu
- Department of Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Luxi Yang
- Gansu Provincial Key Laboratory of Environmental Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Qi Wang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Benxin Luo
- Department of Internal Medicine, The People's Hospital of Zhouqu, Gannan, 746300, China
| | - Qingping Luo
- Department of Traditional Chinese Medicine, The People's Hospital of Zhouqu, Gannan, 746300, China
| | - Feixue Song
- Department of Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China.
| |
Collapse
|
12
|
Davie JR, Sattarifard H, Sudhakar SRN, Roberts CT, Beacon TH, Muker I, Shahib AK, Rastegar M. Basic Epigenetic Mechanisms. Subcell Biochem 2025; 108:1-49. [PMID: 39820859 DOI: 10.1007/978-3-031-75980-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The human genome consists of 23 chromosome pairs (22 autosomes and one pair of sex chromosomes), with 46 chromosomes in a normal cell. In the interphase nucleus, the 2 m long nuclear DNA is assembled with proteins forming chromatin. The typical mammalian cell nucleus has a diameter between 5 and 15 μm in which the DNA is packaged into an assortment of chromatin assemblies. The human brain has over 3000 cell types, including neurons, glial cells, oligodendrocytes, microglial, and many others. Epigenetic processes are involved in directing the organization and function of the genome of each one of the 3000 brain cell types. We refer to epigenetics as the study of changes in gene function that do not involve changes in DNA sequence. These epigenetic processes include histone modifications, DNA modifications, nuclear RNA, and transcription factors. In the interphase nucleus, the nuclear DNA is organized into different structures that are permissive or a hindrance to gene expression. In this chapter, we will review the epigenetic mechanisms that give rise to cell type-specific gene expression patterns.
Collapse
Affiliation(s)
- James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Hedieh Sattarifard
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sadhana R N Sudhakar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chris-Tiann Roberts
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tasnim H Beacon
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ishdeep Muker
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ashraf K Shahib
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
13
|
Foffi E, Violante A, Pecorari R, Lena AM, Rugolo F, Melino G, Candi E. BRD4 sustains p63 transcriptional program in keratinocytes. Biol Direct 2024; 19:124. [PMID: 39605045 PMCID: PMC11600901 DOI: 10.1186/s13062-024-00547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024] Open
Abstract
Here, we investigated the potential interaction between bromodomain-containing protein 4 (BRD4), an established epigenetic modulator and transcriptional coactivator, and p63, a member of the p53 transcription factor family, essential for epithelial development and skin homeostasis. Our protein-protein interaction assays demonstrated a strong and conserved physical interaction between BRD4 and the p53 family members-p63, p73, and p53-suggesting a shared binding region among these proteins. While the role of BRD4 in cancer development through its interaction with p53 has been explored, the effects of BRD4 and Bromodomain and Extra Terminal (BET) inhibitors in non-transformed cells, such as keratinocytes, remain largely unknown. Our functional analyses revealed changes in cellular proliferation and differentiation in keratinocytes depleted of either p63 or BRD4, which were further supported by using the BRD4 inhibitor JQ1. Transcriptomic analyses, chromatin immunoprecipitation, and RT-qPCR indicated a synergistic mechanism between p63 and BRD4 in regulating the transcription of keratinocyte-specific p63 target genes, including HK2, FOXM1, and EVPL. This study not only highlights the complex relationship between BRD4 and p53 family members but also suggests a role for BRD4 in maintaining keratinocyte functions. Our findings pave the way for further exploration of potential therapeutic applications of BRD4 inhibitors in treating skin disorders.
Collapse
Affiliation(s)
- E Foffi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - A Violante
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - R Pecorari
- Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy
| | - A M Lena
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - F Rugolo
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - G Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - E Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.
- Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy.
| |
Collapse
|
14
|
Devaiah BN, Singh AK, Mu J, Chen Q, Meerzaman D, Singer DS. Phosphorylation by JNK switches BRD4 functions. Mol Cell 2024; 84:4282-4296.e7. [PMID: 39454579 PMCID: PMC11585421 DOI: 10.1016/j.molcel.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/11/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Bromodomain 4 (BRD4), a key regulator with pleiotropic functions, plays crucial roles in cancers and cellular stress responses. It exhibits dual functionality: chromatin-bound BRD4 regulates remodeling through its histone acetyltransferase (HAT) activity, while promoter-associated BRD4 regulates transcription through its kinase activity. Notably, chromatin-bound BRD4 lacks kinase activity, and RNA polymerase II (RNA Pol II)-bound BRD4 exhibits no HAT activity. This study unveils one mechanism underlying BRD4's functional switch. In response to diverse stimuli, c-Jun N-terminal kinase (JNK)-mediated phosphorylation of human BRD4 at Thr1186 and Thr1212 triggers its transient release from chromatin, disrupting its HAT activity and potentiating its kinase activity. Released BRD4 directly interacts with and phosphorylates RNA Pol II, PTEFb, and c-Myc, thereby promoting transcription of target genes involved in immune and inflammatory responses. JNK-mediated BRD4 functional switching induces CD8 expression in thymocytes and epithelial-to-mesenchymal transition (EMT) in prostate cancer cells. These findings elucidate the mechanism by which BRD4 transitions from a chromatin regulator to a transcriptional activator.
Collapse
Affiliation(s)
| | - Amit Kumar Singh
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Jie Mu
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Qingrong Chen
- Center for Biomedical Informatics and Information Technology, NCI, NIH, Bethesda, MD 20892, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, NCI, NIH, Bethesda, MD 20892, USA
| | - Dinah S Singer
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
van Hout FAH, Vihervaara A. Flipping a switch on BRD4: How to control the do-it-all. Mol Cell 2024; 84:4257-4259. [PMID: 39577398 DOI: 10.1016/j.molcel.2024.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024]
Abstract
In this issue, Devaiah et al.1 identify JNK-catalyzed phosphorylation to convert bromodomain-containing protein 4 (BRD4) from a chromatin regulator to a transcription activator.
Collapse
Affiliation(s)
- Femke A H van Hout
- Science for Life Laboratory, Stockholm, Sweden; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anniina Vihervaara
- Science for Life Laboratory, Stockholm, Sweden; Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
16
|
Suo Y, Qian X, Xiong Z, Liu X, Wang C, Mu B, Wu X, Lu W, Cui M, Liu J, Chen Y, Zheng M, Lu X. Enhancing the Predictive Power of Machine Learning Models through a Chemical Space Complementary DEL Screening Strategy. J Med Chem 2024; 67:18969-18980. [PMID: 39441849 DOI: 10.1021/acs.jmedchem.4c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
DNA-encoded library (DEL) technology is an effective method for small molecule drug discovery, enabling high-throughput screening against target proteins. While DEL screening produces extensive data, it can reveal complex patterns not easily recognized by human analysis. Lead compounds from DEL screens often have higher molecular weights, posing challenges for drug development. This study refines traditional DELs by integrating alternative techniques like photocross-linking screening to enhance chemical diversity. Combining these methods improved predictive performance for small molecule identification models. Using this approach, we predicted active small molecules for BRD4 and p300, achieving hit rates of 26.7 and 35.7%. Notably, the identified compounds exhibit smaller molecular weights and better modification potential compared to traditional DEL molecules. This research demonstrates the synergy between DEL and AI technologies, enhancing drug discovery.
Collapse
Affiliation(s)
- Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xu Qian
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Zhaoping Xiong
- Technology Development Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Xiaohong Liu
- Technology Development Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Chao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Baiyang Mu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- Shandong Second Medical University, Weifang 261053, China
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Meiying Cui
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Jiaxiang Liu
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Yujie Chen
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
17
|
Teufelsbauer M, Stickler S, Eggerstorfer MT, Hammond DC, Hamilton G. BET-directed PROTACs in triple negative breast cancer cell lines MDA-MB-231 and MDA-MB-436. Breast Cancer Res Treat 2024; 208:89-101. [PMID: 38896334 PMCID: PMC11452555 DOI: 10.1007/s10549-024-07403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE This study aims to find whether the proliferation and migration of triple negative breast cancer (TNBC) cell lines can be reduced by treatment with bromodomain and extra-terminal domain (BET) inhibitor JQ1 and BET protein targeting chimeras (PROTACs) ARV-771 and MZ1. METHODS Cytotoxicity tests, scratch migration assays and western blot proteome profiler arrays for protein expression of cancer-related proteins were used to evaluate the impact of a BET-inhibitor and two BET-directed PROTACs on cell viability, migration and on protein expression. RESULTS JQ1 and the PROTACs MZ1 and ARV-771 significantly inhibited the growth and migration of the KRAS G13D-mutated MDA-MB-231 cells. In this cell line, the PROTACs suppressed the residual expression of ERBB2/HER2, 3 and 4 that are essential for the proliferation of breast cancer cells and this cell line proved sensitive to HER2 inhibitors. In contrast, the effects of the PROTACs on the protein expression of MDA-MB-436 cells mostly affected cytokines and their cognate receptors. CONCLUSION The degradation of BET-protein by PROTACs demonstrated significant anti-proliferative effects. The KRAS-mutated MDA-MB-231 cells belong to the low-HER2 expressing tumors that have a poorer prognosis compared to HER2-null patients. Since first oral PROTACs against tumor hormone receptors are in clinical trials, this mode of tumor therapy is expected to become an important therapeutic strategy in the future treatment of TNBC.
Collapse
Affiliation(s)
- Maryana Teufelsbauer
- Clinics of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Sandra Stickler
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | - Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
18
|
Ma Z, Bolinger AA, Pinchuk IV, Tian B, Zhou J. BRD4 as an emerging epigenetic therapeutic target for inflammatory bowel disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:203-236. [PMID: 39521601 DOI: 10.1016/bs.apha.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disorder, mainly comprising two subtypes: ulcerative colitis (UC) and Crohn's disease (CD). IBD, featured by recurrent symptoms and significant morbidity, poses a significant threat to global health and has an adverse impact on quality of life. Currently, there is no curative therapy for IBD, and the available medications are only for managing the disease condition, likely owing to the insufficient understanding of the underlying pathophysiology processes involved in IBD, and the lack of safe and effective medicines. Thus, novel targeted therapies for IBD are urgently needed for better efficacy with an improved adverse event profile. As the most extensively studied member of bromodomain and extra terminal domain (BET) family proteins, bromodomain-containing protein 4 (BRD4) is emerging as a promising epigenetic therapeutic target for IBD. Pharmacological inhibition of BRD4 with selective small molecule inhibitors shows potent anti-inflammatory effects in both in vitro and different IBD mouse models. Herein, we summarize current knowledge in understanding the role of BRD4 in the pathogenesis and development of IBD, and the clinical landscape of developing BET/BRD4 inhibitors and emerging BRD4-targeted degraders as promising therapeutical alternatives. Challenges and opportunities, as well as future directions in drug discovery by targeting BRD4 are also briefly discussed.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Andrew A Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Irina V Pinchuk
- Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
19
|
Ma Z, Zhang C, Bolinger AA, Zhou J. An updated patent review of BRD4 degraders. Expert Opin Ther Pat 2024; 34:929-951. [PMID: 39219068 PMCID: PMC11427152 DOI: 10.1080/13543776.2024.2400166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Bromodomain-containing protein 4 (BRD4), an important epigenetic reader, is closely associated with the pathogenesis and development of many diseases, including various cancers, inflammation, and infectious diseases. Targeting BRD4 inhibition or protein elimination with small molecules represents a promising therapeutic strategy, particularly for cancer therapy. AREAS COVERED The recent advances of patented BRD4 degraders were summarized. The challenges, opportunities, and future directions for developing novel potent and selective BRD4 degraders are also discussed. The patents of BRD4 degraders were searched using the SciFinder and Cortellis Drug Discovery Intelligence database. EXPERT OPINION BRD4 degraders exhibit superior efficacy and selectivity to BRD4 inhibitors, given their unique mechanism of protein degradation instead of protein inhibition. Excitingly, RNK05047 is now in phase I/II clinical trials, indicating that selective BRD4 protein degradation may offer a viable therapeutic strategy, particularly for cancer. Targeting BRD4 with small-molecule degraders provides a promising approach with the potential to overcome therapeutic resistance for treating various BRD4-associated diseases.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Cun Zhang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| |
Collapse
|
20
|
Tridgett M, Mulet M, Johny SP, Ababi M, Raghunath M, Fustinoni C, Galabova B, Fernández-Díaz C, Mikalajūnaitė I, Tomás HA, Kucej M, Dunajová L, Zgrundo Z, Page E, McCall L, Parker-Manuel R, Payne T, Peckett M, Kent J, Holland L, Asatryan R, Montgomery L, Chow TL, Beveridge R, Salkauskaite I, Alam MT, Hollard D, Dowding S, Gabriel HB, Branciaroli C, Cawood R, Valenti W, Chang D, Patrício MI, Liu Q. Lentiviral vector packaging and producer cell lines yield titers equivalent to the industry-standard four-plasmid process. Mol Ther Methods Clin Dev 2024; 32:101315. [PMID: 39282073 PMCID: PMC11401174 DOI: 10.1016/j.omtm.2024.101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024]
Abstract
Lentiviral vector (LVV)-mediated cell and gene therapies have the potential to cure diseases that currently require lifelong intervention. However, the requirement for plasmid transfection hinders large-scale LVV manufacture. Moreover, large-scale plasmid production, testing, and transfection contribute to operational risk and the high cost associated with this therapeutic modality. Thus, we developed LVV packaging and producer cell lines, which reduce or eliminate the need for plasmid transfection during LVV manufacture. To develop a packaging cell line, lentiviral packaging genes were stably integrated by random integration of linearized plasmid DNA. Then, to develop EGFP- and anti-CD19 chimeric antigen receptor-encoding producer cell lines, transfer plasmids were integrated by transposase-mediated integration. Single-cell isolation and testing were performed to isolate the top-performing clonal packaging and producer cell lines. Production of LVVs that encode various cargo genes revealed consistency in the production performance of the packaging and producer cell lines compared to the industry-standard four-plasmid transfection method. By reducing or eliminating the requirement for plasmid transfection, while achieving production performance consistent with the current industry standard, the packaging and producer cell lines developed here can reduce costs and operational risks of LVV manufacture, thus increasing patient access to LVV-mediated cell and gene therapies.
Collapse
Affiliation(s)
- Matthew Tridgett
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Marie Mulet
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Sherin Parokkaran Johny
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Maria Ababi
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Meenakshi Raghunath
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Chloé Fustinoni
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Boryana Galabova
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Cristina Fernández-Díaz
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Iveta Mikalajūnaitė
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Hélio A Tomás
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Marek Kucej
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Lucia Dunajová
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Zofia Zgrundo
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Emma Page
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Lorna McCall
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Richard Parker-Manuel
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Tom Payne
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Matthew Peckett
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Jade Kent
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Louise Holland
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Robert Asatryan
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Louise Montgomery
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Tsz Lung Chow
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Ryan Beveridge
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Ieva Salkauskaite
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Mohine T Alam
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Daniel Hollard
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Sarah Dowding
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Heloísa Berti Gabriel
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Corinne Branciaroli
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Ryan Cawood
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Weimin Valenti
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
- WuXi Advanced Therapies, 4701 League Island Blvd, Philadelphia, PA 19112, USA
| | - David Chang
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
- WuXi Advanced Therapies, 4701 League Island Blvd, Philadelphia, PA 19112, USA
| | - Maria I Patrício
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Qian Liu
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| |
Collapse
|
21
|
Sun J, Gui Y, Zhou S, Zheng XL. Unlocking the secrets of aging: Epigenetic reader BRD4 as the target to combatting aging-related diseases. J Adv Res 2024; 63:207-218. [PMID: 37956861 PMCID: PMC11379999 DOI: 10.1016/j.jare.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Aging, a complex and profound journey, leads us through a labyrinth of physiological and pathological transformations, rendering us increasingly susceptible to aging-related diseases. Emerging investigations have unveiled the function of bromodomain containing protein 4 (BRD4) in manipulating the aging process and driving the emergence and progression of aging-related diseases. AIM OF REVIEW This review aims to offer a comprehensive outline of BRD4's functions involved in the aging process, and potential mechanisms through which BRD4 governs the initiation and progression of various aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW BRD4 has a fundamental role in regulating the cell cycle, apoptosis, cellular senescence, the senescence-associated secretory phenotype (SASP), senolysis, autophagy, and mitochondrial function, which are involved in the aging process. Several studies have indicated that BRD4 governs the initiation and progression of various aging-related diseases, including Alzheimer's disease, ischemic cerebrovascular diseases, hypertension, atherosclerosis, heart failure, aging-related pulmonary fibrosis, and intervertebral disc degeneration (IVDD). Thus, the evidence from this review supports that BRD4 could be a promising target for managing various aging-related diseases, while further investigation is warranted to gain a thorough understanding of BRD4's role in these diseases.
Collapse
Affiliation(s)
- Jiaxing Sun
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada; Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu Gui
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Shenghua Zhou
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China.
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada.
| |
Collapse
|
22
|
Wei Q, Gan C, Sun M, Xie Y, Liu H, Xue T, Deng C, Mo C, Ye T. BRD4: an effective target for organ fibrosis. Biomark Res 2024; 12:92. [PMID: 39215370 PMCID: PMC11365212 DOI: 10.1186/s40364-024-00641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Fibrosis is an excessive wound-healing response induced by repeated or chronic external stimuli to tissues, significantly impacting quality of life and primarily contributing to organ failure. Organ fibrosis is reported to cause 45% of all-cause mortality worldwide. Despite extensive efforts to develop new antifibrotic drugs, drug discovery has not kept pace with the clinical demand. Currently, only pirfenidone and nintedanib are approved by the FDA to treat pulmonary fibrotic illness, whereas there are currently no available antifibrotic drugs for hepatic, cardiac or renal fibrosis. The development of fibrosis is closely related to epigenetic alterations. The field of epigenetics primarily studies biological processes, including chromatin modifications, epigenetic readers, DNA transcription and RNA translation. The bromodomain and extra-terminal structural domain (BET) family, a class of epigenetic readers, specifically recognizes acetylated histone lysine residues and promotes the formation of transcriptional complexes. Bromodomain-containing protein 4 (BRD4) is one of the most well-researched proteins in the BET family. BRD4 is implicated in the expression of genes related to inflammation and pro-fibrosis during fibrosis. Inhibition of BRD4 has shown promising anti-fibrotic effects in preclinical studies; however, no BRD4 inhibitor has been approved for clinical use. This review introduces the structure and function of BET proteins, the research progress on BRD4 in organ fibrosis, and the inhibitors of BRD4 utilized in fibrosis. We emphasize the feasibility of targeting BRD4 as an anti-fibrotic strategy and discuss the therapeutic potential and challenges associated with BRD4 inhibitors in treating fibrotic diseases.
Collapse
Affiliation(s)
- Qun Wei
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Sun
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Xie
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyao Liu
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Taixiong Xue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Conghui Deng
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Ningxia Medical University, Yin Chuan, 640100, China.
| |
Collapse
|
23
|
Schep R, Trauernicht M, Vergara X, Friskes A, Morris B, Gregoricchio S, Manzo SG, Zwart W, Beijersbergen R, Medema RH, van Steensel B. Chromatin context-dependent effects of epigenetic drugs on CRISPR-Cas9 editing. Nucleic Acids Res 2024; 52:8815-8832. [PMID: 38953163 PMCID: PMC11347147 DOI: 10.1093/nar/gkae570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
The efficiency and outcome of CRISPR/Cas9 editing depends on the chromatin state at the cut site. It has been shown that changing the chromatin state can influence both the efficiency and repair outcome, and epigenetic drugs have been used to improve Cas9 editing. However, because the target proteins of these drugs are not homogeneously distributed across the genome, the efficacy of these drugs may be expected to vary from locus to locus. Here, we systematically analyzed this chromatin context-dependency for 160 epigenetic drugs. We used a human cell line with 19 stably integrated reporters to induce a double-stranded break in different chromatin environments. We then measured Cas9 editing efficiency and repair pathway usage by sequencing the mutational signatures. We identified 58 drugs that modulate Cas9 editing efficiency and/or repair outcome dependent on the local chromatin environment. For example, we find a subset of histone deacetylase inhibitors that improve Cas9 editing efficiency throughout all types of heterochromatin (e.g. PCI-24781), while others were only effective in euchromatin and H3K27me3-marked regions (e.g. apicidin). In summary, this study reveals that most epigenetic drugs alter CRISPR editing in a chromatin-dependent manner, and provides a resource to improve Cas9 editing more selectively at the desired location.
Collapse
Affiliation(s)
- Ruben Schep
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
| | - Max Trauernicht
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
| | - Xabier Vergara
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
- Division of Cell Biology, 1066 CX Amsterdam, The Netherlands
| | - Anoek Friskes
- Oncode Institute, The Netherlands
- Division of Cell Biology, 1066 CX Amsterdam, The Netherlands
| | - Ben Morris
- Division of Molecular Carcinogenesis, 1066 CX Amsterdam, The Netherlands
| | - Sebastian Gregoricchio
- Oncode Institute, The Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Stefano G Manzo
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
| | - Wilbert Zwart
- Oncode Institute, The Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - René H Medema
- Oncode Institute, The Netherlands
- Division of Cell Biology, 1066 CX Amsterdam, The Netherlands
| | - Bas van Steensel
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
24
|
Lee H, Nam J, Jang H, Park YS, Son MH, Lee IH, Eyun SI, Yang JH, Jeon J, Yang S. BRD2-specific inhibitor, BBC0403, inhibits the progression of osteoarthritis pathogenesis in osteoarthritis-induced C57BL/6 male mice. Br J Pharmacol 2024; 181:2528-2544. [PMID: 38600628 DOI: 10.1111/bph.16359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND AND PURPOSE The discovery of new bromo- and extra-terminal inhibitors presents new drugs to treat osteoarthritis (OA). EXPERIMENTAL APPROACH The new drug, BBC0403, was identified in the DNA-encoded library screening system by searching for compounds that target BRD (bromodomain-containing) proteins. The binding force with BRD proteins was evaluated using time-resolved fluorescence energy transfer (TR-FRET) and binding kinetics assays. Subsequently, in vitro and ex vivo analyses demonstrated the effects of the BRD2 inhibitor, BBC0403, on OA. For animal experiments, medial meniscus destabilization was performed to create a 12-week-old male C57BL/6 mouse model, and intra-articular (i.a.) injections were administered. Histological and immunohistochemical analyses were then performed. The underlying mechanism was confirmed by gene set enrichment analysis (GSEA) using RNA-seq. KEY RESULTS TR-FRET and binding kinetics assays revealed that BBC0403 exhibited higher binding specificity for BRD2 compared to BRD3 and BRD4. The anti-OA effects of BBC0403 were tested at concentrations of 5, 10 and 20 μM (no cell toxicity in the range tested). The expression of catabolic factors, prostaglandin E2 (PGE2) production and extracellular matrix (ECM) degradation was reduced. Additionally, the i.a. injection of BBC0403 prevented OA cartilage degradation in mice. Finally, BBC0403 was demonstrated to suppress NF-κB and MAPK signalling pathways. CONCLUSION AND IMPLICATIONS This study demonstrated that BBC0403 is a novel BRD2-specific inhibitor and a potential i.a.-injectable therapeutic agent to treat OA.
Collapse
Affiliation(s)
- Hyemi Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Jiho Nam
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Hahyeong Jang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | | | | | | | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Jae-Hyun Yang
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute Harvard Medical School (HMS), Boston, Massachusetts, USA
| | - Jimin Jeon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
25
|
Liu X, Zhang H, Fan Y, Cai D, Lei R, Wang Q, Li Y, Shen L, Gu Y, Zhang Q, Qi Z, Wang Z. SNORA28 Promotes Proliferation and Radioresistance in Colorectal Cancer Cells through the STAT3 Pathway by Increasing H3K9 Acetylation in the LIFR Promoter. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405332. [PMID: 38924373 PMCID: PMC11347989 DOI: 10.1002/advs.202405332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Radiotherapy is essential for treating colorectal cancer (CRC), especially in advanced rectal cancer. However, the low radiosensitivity of CRC cells greatly limits radiotherapy efficacy. Small nucleolar RNAs (snoRNAs) are a class of noncoding RNA that primarily direct post-transcriptional modifications of ribosomal RNAs (rRNAs), small nuclear RNAs (snRNAs), and other cellular RNAs. While snoRNAs are involved in tumor progression and chemoresistance, their association with radiosensitivity remains largely unknown. Herein, SNORA28 is shown highly expressed in CRC and is positively associated with poor prognosis. Furthermore, SNORA28 overexpression enhances the growth and radioresistance of CRC cells in vitro and in vivo. Mechanistically, SNORA28 acts as a molecular decoy that recruits bromodomain-containing protein 4 (BRD4), which increases the level of H3K9 acetylation at the LIFR promoter region. This stimulates LIFR transcription, which in turn triggers the JAK1/STAT3 pathway, enhancing the proliferation and radioresistance of CRC cells. Overall, these results highlight the ability of snoRNAs to regulate radiosensitivity in tumor cells and affect histone acetylation modification in the promoter region of target genes, thus broadening the current knowledge of snoRNA biological functions and the mechanism underlying target gene regulation.
Collapse
Affiliation(s)
- Xin Liu
- Department of RadiobiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Hong Zhang
- Department of RadiobiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Ying Fan
- Department of RadiobiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Dan Cai
- Department of RadiobiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijing100850China
- Graduate Collaborative Training Base of Academy of Military SciencesHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Ridan Lei
- Department of Epidemiology and Health StatisticsXiangya School of Public HealthCentral South UniversityChangshaHunan410078China
| | - Qi Wang
- Department of RadiobiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Yaqiong Li
- Department of RadiobiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Liping Shen
- Department of RadiobiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Yongqing Gu
- Department of RadiobiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Qingtong Zhang
- Department of Colorectal SurgeryLiaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyShenyang110042China
| | - Zhenhua Qi
- Department of RadiobiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Zhidong Wang
- Department of RadiobiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijing100850China
- Graduate Collaborative Training Base of Academy of Military SciencesHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| |
Collapse
|
26
|
Wu T, Hou H, Dey A, Bachu M, Chen X, Wisniewski J, Kudoh F, Chen C, Chauhan S, Xiao H, Pan R, Ozato K. Bromodomain protein BRD4 directs mitotic cell division of mouse fibroblasts by inhibiting DNA damage. iScience 2024; 27:109797. [PMID: 38993671 PMCID: PMC11237862 DOI: 10.1016/j.isci.2024.109797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/30/2023] [Accepted: 04/18/2024] [Indexed: 07/13/2024] Open
Abstract
Bromodomain protein BRD4 binds to acetylated histones to regulate transcription. BRD4 also drives cancer cell proliferation. However, the role of BRD4 in normal cell growth has remained unclear. Here, we investigated this question by using mouse embryonic fibroblasts with conditional Brd4 knockout (KO). We found that Brd4KO cells grow more slowly than wild type cells; they do not complete replication, fail to achieve mitosis, and exhibit extensive DNA damage throughout all cell cycle stages. BRD4 was required for expression of more than 450 cell cycle genes including genes encoding core histones and centromere/kinetochore proteins that are critical for genome replication and chromosomal segregation. Moreover, we show that many genes controlling R-loop formation and DNA damage response (DDR) require BRD4 for expression. Finally, BRD4 constitutively occupied genes controlling R-loop, DDR and cell cycle progression. In summary, BRD4 epigenetically marks above genes and serves as a master regulator of normal cell growth.
Collapse
Affiliation(s)
- Tiyun Wu
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haitong Hou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Anup Dey
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahesh Bachu
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Weill Cornell Medicine, Graduate School of Medical Sciences, 1300 York Avenue Box 65, New York, NY 10065, USA
| | - Xiongfong Chen
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Jan Wisniewski
- Confocal Microscopy and Digital Imaging Facility, Experimental Immunology Branch, CCR, NCI NIH Bldg 10 Rm 4A05, Bethesda, MD 20892, USA
| | - Fuki Kudoh
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chao Chen
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Division of Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sakshi Chauhan
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Pan
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
Wu M, Guan G, Yin H, Niu Q. A Review of the Bromodomain and Extraterminal Domain Epigenetic Reader Proteins: Function on Virus Infection and Cancer. Viruses 2024; 16:1096. [PMID: 39066258 PMCID: PMC11281655 DOI: 10.3390/v16071096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The BET (bromodomain and extraterminal domain) family of proteins, particularly BRD4 (bromodomain-containing protein 4), plays a crucial role in transcription regulation and epigenetic mechanisms, impacting key cellular processes such as proliferation, differentiation, and the DNA damage response. BRD4, the most studied member of this family, binds to acetylated lysines on both histones and non-histone proteins, thereby regulating gene expression and influencing diverse cellular functions such as the cell cycle, tumorigenesis, and immune responses to viral infections. Given BRD4's involvement in these fundamental processes, it is implicated in various diseases, including cancer and inflammation, making it a promising target for therapeutic development. This review comprehensively explores the roles of the BET family in gene transcription, DNA damage response, and viral infection, discussing the potential of targeted small-molecule compounds and highlighting BET proteins as promising candidates for anticancer therapy.
Collapse
Affiliation(s)
- Mengli Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Qingli Niu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| |
Collapse
|
28
|
Yongprayoon V, Wattanakul N, Khomate W, Apithanangsiri N, Kasitipradit T, Nantajit D, Tavassoli M. Targeting BRD4: Potential therapeutic strategy for head and neck squamous cell carcinoma (Review). Oncol Rep 2024; 51:74. [PMID: 38606512 DOI: 10.3892/or.2024.8733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
As a member of BET (bromodomain and extra-terminal) protein family, BRD4 (bromodomain‑containing protein 4) is a chromatin‑associated protein that interacts with acetylated histones and actively recruits regulatory proteins, leading to the modulation of gene expression and chromatin remodeling. The cellular and epigenetic functions of BRD4 implicate normal development, fibrosis and inflammation. BRD4 has been suggested as a potential therapeutic target as it is often overexpressed and plays a critical role in regulating gene expression programs that drive tumor cell proliferation, survival, migration and drug resistance. To address the roles of BRD4 in cancer, several drugs that specifically target BRD4 have been developed. Inhibition of BRD4 has shown promising results in preclinical models, with several BRD4 inhibitors undergoing clinical trials for the treatment of various cancers. Head and neck squamous cell carcinoma (HNSCC), a heterogeneous group of cancers, remains a health challenge with a high incidence rate and poor prognosis. Conventional therapies for HNSCC often cause adverse effects to the patients. Targeting BRD4, therefore, represents a promising strategy to sensitize HNSCC to chemo‑ and radiotherapy allowing de‑intensification of the current therapeutic regime and subsequent reduced side effects. However, further studies are required to fully understand the underlying mechanisms of action of BRD4 in HNSCC in order to determine the optimal dosing and administration of BRD4‑targeted drugs for the treatment of patients with HNSCC.
Collapse
Affiliation(s)
- Voraporn Yongprayoon
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Napasporn Wattanakul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Winnada Khomate
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Nathakrit Apithanangsiri
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Tarathip Kasitipradit
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Danupon Nantajit
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Mahvash Tavassoli
- Centre for Host Microbiome Interactions, King's College London, London SE1 1UL, UK
| |
Collapse
|
29
|
Ji Y, Chen W, Wang X. Bromodomain and Extraterminal Domain Protein 2 in Multiple Human Diseases. J Pharmacol Exp Ther 2024; 389:277-288. [PMID: 38565308 DOI: 10.1124/jpet.123.002036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Bromodomain and extraterminal domain protein 2 (BRD2), a member of the bromodomain and extraterminal domain (BET) protein family, is a crucial epigenetic regulator with significant function in various diseases and cellular processes. The central function of BRD2 is modulating gene transcription by binding to acetylated lysine residues on histones and transcription factors. This review highlights key findings on BRD2 in recent years, emphasizing its roles in maintaining genomic stability, influencing chromatin spatial organization, and participating in transcriptional regulation. BRD2's diverse functions are underscored by its involvement in diseases such as malignant tumors, neurologic disorders, inflammatory conditions, metabolic diseases, and virus infection. Notably, the potential role of BRD2 as a diagnostic marker and therapeutic target is discussed in the context of various diseases. Although pan inhibitors targeting the BET family have shown promise in preclinical studies, a critical need exists for the development of highly selective BRD2 inhibitors. In conclusion, this review offers insights into the multifaceted nature of BRD2 and calls for continued research to unravel its intricate mechanisms and harness its therapeutic potential. SIGNIFICANCE STATEMENT: BRD2 is involved in the occurrence and development of diseases through maintaining genomic stability, influencing chromatin spatial organization, and participating in transcriptional regulation. Targeting BRD2 through protein degradation-targeting complexes technology is emerging as a promising therapeutic approach for malignant cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Yikang Ji
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| |
Collapse
|
30
|
Theofilatos D, Ho T, Waitt G, Äijö T, Schiapparelli LM, Soderblom EJ, Tsagaratou A. Deciphering the TET3 interactome in primary thymic developing T cells. iScience 2024; 27:109782. [PMID: 38711449 PMCID: PMC11070343 DOI: 10.1016/j.isci.2024.109782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/04/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Ten-eleven translocation (TET) proteins are DNA dioxygenases that mediate active DNA demethylation. TET3 is the most highly expressed TET protein in thymic developing T cells. TET3, either independently or in cooperation with TET1 or TET2, has been implicated in T cell lineage specification by regulating DNA demethylation. However, TET-deficient mice exhibit complex phenotypes, suggesting that TET3 exerts multifaceted roles, potentially by interacting with other proteins. We performed liquid chromatography with tandem mass spectrometry in primary developing T cells to identify TET3 interacting partners in endogenous, in vivo conditions. We discover TET3 interacting partners. Our data establish that TET3 participates in a plethora of fundamental biological processes, such as transcriptional regulation, RNA polymerase elongation, splicing, DNA repair, and DNA replication. This resource brings in the spotlight emerging functions of TET3 and sets the stage for systematic studies to dissect the precise mechanistic contributions of TET3 in shaping T cell biology.
Collapse
Affiliation(s)
- Dimitris Theofilatos
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tricia Ho
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Greg Waitt
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Tarmo Äijö
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Erik J. Soderblom
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Ageliki Tsagaratou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
31
|
Li D, Deng Y, Wen G, Wang L, Shi X, Chen S, Chen R. Targeting BRD4 with PROTAC degrader ameliorates LPS-induced acute lung injury by inhibiting M1 alveolar macrophage polarization. Int Immunopharmacol 2024; 132:111991. [PMID: 38581996 DOI: 10.1016/j.intimp.2024.111991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
OBJECTIVES Acute lung injury (ALI) is a highly inflammatory condition with the involvement of M1 alveolar macrophages (AMs) polarization, eventually leading to the development of non-cardiogenic edema in alveolar and interstitial regions, accompanied by persistent hypoxemia. Given the significant mortality rate associated with ALI, it is imperative to investigate the underlying mechanisms of this condition so as to identify potential therapeutic targets. The therapeutic effects of the inhibition of bromodomain containing protein 4 (BRD4), an epigenetic reader, has been proven with high efficacy in ameliorating various inflammatory diseases through mediating immune cell activation. However, little is known about the therapeutic potential of BRD4 degradation in acute lung injury. METHODS This study aimed to assess the protective efficacy of ARV-825, a novel BRD4-targeted proteolysis targeting chimera (PROTAC), against ALI through histopathological examination in lung tissues and biochemical analysis in bronchoalveolar lavage fluid (BALF). Additionally, the underlying mechanism by which BRD4 regulated M1 AMs was elucidated by using CUT & Tag assay. RESULTS In this study, we found the upregulation of BRD4 in a lipopolysaccharide (LPS)-induced ALI model. Furthermore, we observed that intraperitoneal administration of ARV-825, significantly alleviated LPS-induced pulmonary pathological changes and inflammatory responses. These effects were accompanied by the suppression of M1 AMs. In addition, our findings revealed that the administration of ARV-825 effectively suppressed M1 AMs by inhibiting the expression of IRF7, a crucial transcriptional factor involved in M1 macrophages. CONCLUSION Our study suggested that targeting BRD4 using ARV-825 is a potential therapeutic approach for ALI.
Collapse
Affiliation(s)
- Difei Li
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yao Deng
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guanxi Wen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lingwei Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xing Shi
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Shanze Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
32
|
Chen Y, Ying Y, Ma W, Ma H, Shi L, Gao X, Jia M, Li M, Song X, Kong W, Chen W, Zheng X, Muluh TA, Wang X, Wang M, Shu XS. Targeting the Epigenetic Reader ENL Inhibits Super-Enhancer-Driven Oncogenic Transcription and Synergizes with BET Inhibition to Suppress Tumor Progression. Cancer Res 2024; 84:1237-1251. [PMID: 38241700 DOI: 10.1158/0008-5472.can-23-1836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/23/2023] [Accepted: 01/18/2024] [Indexed: 01/21/2024]
Abstract
Epigenetic alterations at cis-regulatory elements (CRE) fine-tune transcriptional output. Epigenetic readers interact with CREs and can cooperate with other chromatin regulators to drive oncogene transcription. Here, we found that the YEATS domain-containing histone acetylation reader ENL (eleven-nineteen leukemia) acts as a key regulator of super-enhancers (SE), which are highly active distal CREs, across cancer types. ENL occupied the majority of SEs with substantially higher preference over typical enhancers, and the enrichment of ENL at SEs depended on its ability to bind acetylated histones. Rapid depletion of ENL by auxin-inducible degron tagging severely repressed the transcription of SE-controlled oncogenes, such as MYC, by inducing the decommissioning of their SEs, and restoring ENL protein expression largely reversed these effects. Additionally, ENL was indispensable for the rapid activation of SE-regulated immediate early genes in response to growth factor stimulation. Furthermore, ENL interacted with the histone chaperone FACT complex and was required for the deposition of FACT over CREs, which mediates nucleosome reorganization required for transcription initiation and elongation. Proper control of transcription by ENL and ENL-associated FACT was regulated by the histone reader BRD4. ENL was overexpressed in colorectal cancer and functionally contributed to colorectal cancer growth and metastasis. ENL degradation or inhibition synergized with BET inhibitors that target BRD4 in restraining colorectal cancer progression. These findings establish the essential role of epigenetic reader ENL in governing SE-driven oncogenic transcription and uncover the potential of ENL intervention to increase sensitivity to BET inhibition. SIGNIFICANCE ENL plays a key role in decoding epigenetic marks at highly active oncogenic super-enhancers and can be targeted in combination with BET inhibition as a promising synergistic strategy for optimizing cancer treatment.
Collapse
Affiliation(s)
- Yongheng Chen
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
- Graduate Program of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen, China
| | - Ying Ying
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
| | - Wenlong Ma
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
| | - Hongchao Ma
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
| | - Liang Shi
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
| | - Xuefeng Gao
- Integrative Microecology Center, Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Min Jia
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
| | - Meiqi Li
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
| | - Xiaoman Song
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
| | - Weixiao Kong
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
| | - Wei Chen
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Xiangyi Zheng
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
| | - Tobias Achu Muluh
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
| | - Xiaobin Wang
- Southern University of Science and Technology Hospital, Shenzhen, China
| | - Maolin Wang
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xing-Sheng Shu
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
- Graduate Program of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
33
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
34
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
35
|
Xu X, Qiao D, Brasier AR. Cooperative interaction of interferon regulatory factor -1 and bromodomain-containing protein 4 on RNA polymerase activation for intrinsic innate immunity. Front Immunol 2024; 15:1366235. [PMID: 38601157 PMCID: PMC11004252 DOI: 10.3389/fimmu.2024.1366235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction The human orthopneumovirus, Respiratory Syncytial Virus (RSV), is the causative agent of severe lower respiratory tract infections (LRTI) and exacerbations of chronic lung diseases. In immune competent hosts, RSV productively infects highly differentiated epithelial cells, where it elicits robust anti-viral, cytokine and remodeling programs. By contrast, basal cells are relatively resistant to RSV infection, in part, because of constitutive expression of an intrinsic innate immune response (IIR) consisting of a subgroup of interferon (IFN) responsive genes. The mechanisms controlling the intrinsic IIR are not known. Methods Here, we use human small airway epithelial cell hSAECs as a multipotent airway stem cell model to examine regulatory control of an intrinsic IIR pathway. Results We find hSAECs express patterns of intrinsic IIRs, highly conserved with pluri- and multi-potent stem cells. We demonstrate a core intrinsic IIR network consisting of Bone Marrow Stromal Cell Antigen 2 (Bst2), Interferon Induced Transmembrane Protein 1 (IFITM1) and Toll-like receptor (TLR3) expression are directly under IRF1 control. Moreover, expression of this intrinsic core is rate-limited by ambient IRF1• phospho-Ser 2 CTD RNA Polymerase II (pSer2 Pol II) complexes binding to their proximal promoters. In response to RSV infection, the abundance of IRF1 and pSer2 Pol II binding is dramatically increased, with IRF1 complexing to the BRD4 chromatin remodeling complex (CRC). Using chromatin immunoprecipitation in IRF1 KD cells, we find that the binding of BRD4 is IRF1 independent. Using a small molecule inhibitor of the BRD4 acetyl lysine binding bromodomain (BRD4i), we further find that BRD4 bromodomain interactions are required for stable BRD4 promoter binding to the intrinsic IIR core promoters, as well as for RSV-inducible pSer2 Pol II recruitment. Surprisingly, BRD4i does not disrupt IRF1-BRD4 interactions, but disrupts both RSV-induced BRD4 and IRF1 interactions with pSer2 Pol II. Conclusions We conclude that the IRF1 functions in two modes- in absence of infection, ambient IRF1 mediates constitutive expression of the intrinsic IIR, whereas in response to RSV infection, the BRD4 CRC independently activates pSer2 Pol II to mediates robust expression of the intrinsic IIR. These data provide insight into molecular control of anti-viral defenses of airway basal cells.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Dianhua Qiao
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Allan R. Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
36
|
Pan L, Boldogh I. The potential for OGG1 inhibition to be a therapeutic strategy for pulmonary diseases. Expert Opin Ther Targets 2024; 28:117-130. [PMID: 38344773 PMCID: PMC11111349 DOI: 10.1080/14728222.2024.2317900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
INTRODUCTION Pulmonary diseases impose a daunting burden on healthcare systems and societies. Current treatment approaches primarily address symptoms, underscoring the urgency for the development of innovative pharmaceutical solutions. A noteworthy focus lies in targeting enzymes recognizing oxidatively modified DNA bases within gene regulatory elements, given their pivotal role in governing gene expression. AREAS COVERED This review delves into the intricate interplay between the substrate-specific binding of 8-oxoguanine DNA glycosylase 1 (OGG1) and epigenetic regulation, with a focal point on elucidating the molecular underpinnings and their biological implications. The absence of OGG1 distinctly attenuates the binding of transcription factors to cis elements, thereby modulating pro-inflammatory or pro-fibrotic transcriptional activity. Through a synergy of experimental insights gained from cell culture studies and murine models, utilizing prototype OGG1 inhibitors (O8, TH5487, and SU0268), a promising panorama emerges. These investigations underscore the absence of cytotoxicity and the establishment of a favorable tolerance profile for these OGG1 inhibitors. EXPERT OPINION Thus, the strategic targeting of the active site pocket of OGG1 through the application of small molecules introduces an innovative trajectory for advancing redox medicine. This approach holds particular significance in the context of pulmonary diseases, offering a refined avenue for their management.
Collapse
Affiliation(s)
- Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| |
Collapse
|
37
|
Basu M, Bhatt R, Sharma A, Boopathi R, Das S, Kundu TK. The Largest Subunit of Human TFIIIC Complex, TFIIIC220, a Lysine Acetyltransferase Targets Histone H3K18. J Biochem 2024; 175:205-213. [PMID: 37963603 DOI: 10.1093/jb/mvad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/23/2023] [Accepted: 10/21/2023] [Indexed: 11/16/2023] Open
Abstract
TFIIIC is a multi-subunit complex required for tRNA transcription by RNA polymerase III. Human TFIIIC holo-complex possesses lysine acetyltransferase activity that aids in relieving chromatin-mediated repression for RNA polymerase III-mediated transcription and chromatin assembly. Here we have characterized the acetyltransferase activity of the largest and DNA-binding subunit of TFIIIC complex, TFIIIC220. Purified recombinant human TFIIIC220 acetylated core histones H3, H4 and H2A in vitro. Moreover, we have identified the putative catalytic domain of TFIIIC220 that efficiently acetylates core histones in vitro. Mutating critical residues of the putative acetyl-CoA binding 'P loop' drastically reduced the catalytic activity of the acetyltransferase domain. Further analysis showed that the knockdown of TFIIIC220 in mammalian cell lines dramatically reduces global H3K18 acetylation level, which was rescued by overexpression of the putative acetyltransferase domain of human TFIIIC220. Our findings indicated a possibility of a crucial role for TFIIIC220 in maintaining acetylation homeostasis in the cell.
Collapse
Affiliation(s)
- Moumita Basu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore- 560064, India
| | - Rohini Bhatt
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore- 560064, India
| | - Anjali Sharma
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore- 560064, India
| | - Ramachandran Boopathi
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore- 560064, India
| | - Sadhan Das
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore- 560064, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore- 560064, India
| |
Collapse
|
38
|
Umphred-Wilson K, Ratnayake S, Tang Q, Wang R, Devaiah BN, Zhou L, Chen Q, Meerzaman D, Singer DS, Adoro S. The ESCRT protein CHMP5 promotes T cell leukemia by controlling BRD4-p300-dependent transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577409. [PMID: 38352301 PMCID: PMC10862731 DOI: 10.1101/2024.01.29.577409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Oncogene activity rewires cellular transcription, creating new transcription networks to which cancer cells become addicted, by mechanisms that are still poorly understood. Using human and mouse models of T cell acute lymphoblastic leukemia (T-ALL), we identify an essential nuclear role for CHMP5, a cytoplasmic endosomal sorting complex required for transport (ESCRT) protein, in establishing and maintaining the T-ALL transcriptional program. Nuclear CHMP5 promoted the T-ALL gene program by augmenting recruitment of the co-activator BRD4 by the histone acetyl transferase p300 selectively at enhancers and super-enhancers, an interaction that potentiated H3K27 acetylation at these regulatory enhancers. Consequently, loss of CHMP5 diminished BRD4 occupancy at enhancers and super-enhancers and impaired RNA polymerase II pause release, which resulted in downregulation of key T-ALL genes, notably MYC. Reinforcing its importance in T-ALL pathogenesis, CHMP5 deficiency mitigated chemoresistance in human T-ALL cells and abrogated T-ALL induction by oncogenic NOTCH1 in vivo. Thus, the ESCRT protein CHMP5 is an essential positive regulator of the transcriptional machinery promoting T-ALL disease.
Collapse
Affiliation(s)
- Katharine Umphred-Wilson
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- Immunology Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Shashikala Ratnayake
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850
- These authors contributed equally
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University; Chengdu 611130, China
- These authors contributed equally
| | - Rui Wang
- College of Animal Science and Technology, Sichuan Agricultural University; Chengdu 611130, China
- These authors contributed equally
| | - Ballachanda N. Devaiah
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lan Zhou
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
| | - Qingrong Chen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850
| | - Dinah S Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stanley Adoro
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- Lead contact
| |
Collapse
|
39
|
Hamilton G, Stickler S, Rath B. Bromodomain Protein-directed Agents and MYC in Small Cell Lung Cancer. Curr Cancer Drug Targets 2024; 24:930-940. [PMID: 38275056 DOI: 10.2174/0115680096272757231211113206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 01/27/2024]
Abstract
Small cell lung cancer (SCLC) has a dismal prognosis. In addition to the inactivation of the tumor suppressors TP53 and RB1, tumor-promoting MYC and paralogs are frequently overexpressed in this neuroendocrine carcinoma. SCLC exhibits high resistance to second-line chemotherapy and all attempts of novel drugs and targeted therapy have failed so far to achieve superior survival. MYC and paralogs have key roles in the oncogenic process, orchestrating proliferation, apoptosis, differentiation, and metabolism. In SCLC, MYC-L and MYC regulate the neuroendocrine dedifferentiation of SCLC cells from Type A (ASCL1 expression) to the other SCLC subtypes. Targeting MYC to suppress tumor growth is difficult due to the lack of suitable binding pockets and the most advanced miniprotein inhibitor Omomyc exhibits limited efficacy. MYC may be targeted indirectly via the bromodomain (BET) protein BRD4, which activates MYC transcription, by specific BET inhibitors that reduce the expression of this oncogenic driver. Here, novel BET-directed Proteolysis Targeting Chimeras (PROTACs) are discussed that show high antiproliferative activity in SCLC. Particularly, ARV-825, targeting specifically BRD4, exhibits superior cytotoxic effects on SCLC cell lines and may become a valuable adjunct to SCLC combination chemotherapy.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sandra Stickler
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
40
|
Rani AQ, Bonam SR, Zhou J, Li J, Hu H, Liu X. BRD4 as a potential target for human papillomaviruses associated cancer. J Med Virol 2023; 95:e29294. [PMID: 38100650 PMCID: PMC11315413 DOI: 10.1002/jmv.29294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
Around 99% of cervical cancer and 5%-10% of human cancer are associated with human papillomaviruses (HPV). Notably, the life-cycle of HPV begins by low-level infection of the basal cells of the stratified epithelium, where the viral genomes are replicated and passed on to the daughter proliferating basal cells. The production of new viral particles remains restricted to eventually differentiated cells. HPVs support their persistent infectious cycle by hijacking pivotal pathways and cellular processes. Bromodomain-containing protein 4 (BRD4) is one of the essential cellular factors involved in multiple stages of viral transcription and replication. In this review, we demonstrate the role of BRD4 in the multiple stages of HPV infectious cycle. Also, we provide an overview of the intense research about the cellular functions of BRD4, the mechanism of action of bromodomain and extra terminal inhibitors, and how it could lead to the development of antiviral/anticancer therapies.
Collapse
Affiliation(s)
- Abdul Qawee Rani
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Departments of Pathology, Urology and Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
41
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
42
|
Wang ZQ, Zhang ZC, Wu YY, Pi YN, Lou SH, Liu TB, Lou G, Yang C. Bromodomain and extraterminal (BET) proteins: biological functions, diseases, and targeted therapy. Signal Transduct Target Ther 2023; 8:420. [PMID: 37926722 PMCID: PMC10625992 DOI: 10.1038/s41392-023-01647-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
BET proteins, which influence gene expression and contribute to the development of cancer, are epigenetic interpreters. Thus, BET inhibitors represent a novel form of epigenetic anticancer treatment. Although preliminary clinical trials have shown the anticancer potential of BET inhibitors, it appears that these drugs have limited effectiveness when used alone. Therefore, given the limited monotherapeutic activity of BET inhibitors, their use in combination with other drugs warrants attention, including the meaningful variations in pharmacodynamic activity among chosen drug combinations. In this paper, we review the function of BET proteins, the preclinical justification for BET protein targeting in cancer, recent advances in small-molecule BET inhibitors, and preliminary clinical trial findings. We elucidate BET inhibitor resistance mechanisms, shed light on the associated adverse events, investigate the potential of combining these inhibitors with diverse therapeutic agents, present a comprehensive compilation of synergistic treatments involving BET inhibitors, and provide an outlook on their future prospects as potent antitumor agents. We conclude by suggesting that combining BET inhibitors with other anticancer drugs and innovative next-generation agents holds great potential for advancing the effective targeting of BET proteins as a promising anticancer strategy.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Yu-Yang Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya-Nan Pi
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Sheng-Han Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tian-Bo Liu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| | - Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| |
Collapse
|
43
|
Pecharromán I, Solé L, Álvarez‐Villanueva D, Lobo‐Jarne T, Alonso‐Marañón J, Bertran J, Guillén Y, Montoto Á, Martínez‐Iniesta M, García‐Hernández V, Giménez G, Salazar R, Santos C, Garrido M, Borràs E, Sabidó E, Bonfill‐Teixidor E, Iurlaro R, Seoane J, Villanueva A, Iglesias M, Bigas A, Espinosa L. IκB kinase-α coordinates BRD4 and JAK/STAT signaling to subvert DNA damage-based anticancer therapy. EMBO J 2023; 42:e114719. [PMID: 37737566 PMCID: PMC10620764 DOI: 10.15252/embj.2023114719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/28/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Activation of the IκB kinase (IKK) complex has recurrently been linked to colorectal cancer (CRC) initiation and progression. However, identification of downstream effectors other than NF-κB has remained elusive. Here, analysis of IKK-dependent substrates in CRC cells after UV treatment revealed that phosphorylation of BRD4 by IKK-α is required for its chromatin-binding at target genes upon DNA damage. Moreover, IKK-α induces the NF-κB-dependent transcription of the cytokine LIF, leading to STAT3 activation, association with BRD4 and recruitment to specific target genes. IKK-α abrogation results in defective BRD4 and STAT3 functions and consequently irreparable DNA damage and apoptotic cell death upon different stimuli. Simultaneous inhibition of BRAF-dependent IKK-α activity, BRD4, and the JAK/STAT pathway enhanced the therapeutic potential of 5-fluorouracil combined with irinotecan in CRC cells and is curative in a chemotherapy-resistant xenograft model. Finally, coordinated expression of LIF and IKK-α is a poor prognosis marker for CRC patients. Our data uncover a functional link between IKK-α, BRD4, and JAK/STAT signaling with clinical relevance.
Collapse
Affiliation(s)
- Irene Pecharromán
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Laura Solé
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Daniel Álvarez‐Villanueva
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet del LlobregatBarcelonaSpain
| | - Teresa Lobo‐Jarne
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Josune Alonso‐Marañón
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Joan Bertran
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
- Faculty of Science and TechnologyUniversity of Vic – Central University of CataloniaVicSpain
| | - Yolanda Guillén
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Ángela Montoto
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - María Martínez‐Iniesta
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet del LlobregatBarcelonaSpain
| | - Violeta García‐Hernández
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Gemma Giménez
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Ramon Salazar
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)‐CIBERONCL'Hospitalet de LlobregatBarcelonaSpain
| | - Cristina Santos
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)‐CIBERONCL'Hospitalet de LlobregatBarcelonaSpain
| | - Marta Garrido
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Eva Borràs
- Proteomics Unit, Centre for Genomic Regulation (CRG)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Proteomics UnitUniversitat Pompeu FabraBarcelonaSpain
| | - Eduard Sabidó
- Proteomics Unit, Centre for Genomic Regulation (CRG)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Proteomics UnitUniversitat Pompeu FabraBarcelonaSpain
| | - Ester Bonfill‐Teixidor
- Vall d'Hebron Institute of Oncology (VHIO), CIBERONCVall d'Hebron University Hospital, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Raffaella Iurlaro
- Vall d'Hebron Institute of Oncology (VHIO), CIBERONCVall d'Hebron University Hospital, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Joan Seoane
- Vall d'Hebron Institute of Oncology (VHIO), CIBERONCVall d'Hebron University Hospital, Universitat Autònoma de BarcelonaBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet del LlobregatBarcelonaSpain
- Xenopat S.L., Parc Cientific de Barcelona (PCB)BarcelonaSpain
| | - Mar Iglesias
- Department of Pathology, Institut Mar d'Investigacions Mèdiques, CIBERONCUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Anna Bigas
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
- Josep Carreras Leukemia Research InstituteBadalonaSpain
| | - Lluís Espinosa
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| |
Collapse
|
44
|
Ma T, Chen Y, Yi ZG, Li YH, Bai J, Li LJ, Zhang LS. BET in hematologic tumors: Immunity, pathogenesis, clinical trials and drug combinations. Genes Dis 2023; 10:2306-2319. [PMID: 37554207 PMCID: PMC10404881 DOI: 10.1016/j.gendis.2022.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/14/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
The bromodomain and extra-terminal (BET) proteins act as "readers" for lysine acetylation and facilitate the recruitment of transcriptional elongation complexes. BET protein is associated with transcriptional elongation of genes such as c-MYC and BCL-2, and is involved in the regulation of cell cycle and apoptosis. Meanwhile, BET inhibitors (BETi) have regulatory effects on immune checkpoints, immune cells, and cytokine expression. The role of BET proteins and BETi in a variety of tumors has been studied. This paper reviews the recent research progress of BET and BETi in hematologic tumors (mainly leukemia, lymphoma and multiple myeloma) from cellular level studies, animal studies, clinical trials, drug combination, etc. BETi has a promising future in hematologic tumors, and future research directions may focus on the combination with other drugs to improve the efficacy.
Collapse
Affiliation(s)
- Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Yan Chen
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhi-Gang Yi
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Yan-Hong Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Jun Bai
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Li-Juan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Lian-Sheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| |
Collapse
|
45
|
Berzero G, Pieri V, Mortini P, Filippi M, Finocchiaro G. The coming of age of liquid biopsy in neuro-oncology. Brain 2023; 146:4015-4024. [PMID: 37289981 PMCID: PMC10545511 DOI: 10.1093/brain/awad195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Abstract
The clinical role of liquid biopsy in oncology is growing significantly. In gliomas and other brain tumours, targeted sequencing of cell-free DNA (cfDNA) from CSF may help differential diagnosis when surgery is not recommended and be more representative of tumour heterogeneity than surgical specimens, unveiling targetable genetic alterations. Given the invasive nature of lumbar puncture to obtain CSF, the quantitative analysis of cfDNA in plasma is a lively option for patient follow-up. Confounding factors may be represented by cfDNA variations due to concomitant pathologies (inflammatory diseases, seizures) or clonal haematopoiesis. Pilot studies suggest that methylome analysis of cfDNA from plasma and temporary opening of the blood-brain barrier by ultrasound have the potential to overcome some of these limitations. Together with this, an increased understanding of mechanisms modulating the shedding of cfDNA by the tumour may help to decrypt the meaning of cfDNA kinetics in blood or CSF.
Collapse
Affiliation(s)
- Giulia Berzero
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Valentina Pieri
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pietro Mortini
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Neurorehabilitation Unit; Neurophysiology Unit; Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | |
Collapse
|
46
|
Zhou L, Ho BM, Chan HYE, Tong Y, Du L, He JN, Ng DSC, Tham CC, Pang CP, Chu WK. Emerging Roles of cGAS-STING Signaling in Mediating Ocular Inflammation. J Innate Immun 2023; 15:739-750. [PMID: 37778330 PMCID: PMC10616671 DOI: 10.1159/000533897] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Cyclic GMP-AMP (cGAMP) synthase (cGAS), a sensor of cytosolic DNA, recognizes cytoplasmic nucleic acids to activate the innate immune responses via generation of the second messenger cGAMP and subsequent activation of the stimulator of interferon genes (STINGs). The cGAS-STING signaling has multiple immunologic and physiological functions in all human vital organs. It mediates protective innate immune defense against DNA-containing pathogen infection, confers intrinsic antitumor immunity via detecting tumor-derived DNA, and gives rise to autoimmune and inflammatory diseases upon aberrant activation by cytosolic leakage of self-genomic and mitochondrial DNA. Disruptions in these functions are associated with the pathophysiology of various immunologic and neurodegenerative diseases. Recent evidence indicates important roles of the cGAS-STING signaling in mediating inflammatory responses in ocular inflammatory and inflammation-associated diseases, such as keratitis, diabetic retinopathy, age-related macular degeneration, and uveitis. In this review, we summarize the recently emerging evidence of cGAS-STING signaling in mediating ocular inflammatory responses and affecting pathogenesis of these complex eye diseases. We attempt to provide insightful perspectives on future directions of investigating cGAS-STING signaling in ocular inflammation. Understanding how cGAS-STING signaling is modulated to mediate ocular inflammatory responses would allow future development of novel therapeutic strategies to treat ocular inflammation and autoimmunity.
Collapse
Affiliation(s)
- Linbin Zhou
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Bo Man Ho
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Hoi Ying Emily Chan
- Medicine Programme Global Physician-Leadership Stream, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Yan Tong
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Lin Du
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Jing Na He
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Danny Siu-Chun Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Clement C. Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| |
Collapse
|
47
|
Lee H, Nam J, Jang H, Park YS, Son MH, Lee IH, Eyun SI, Jeon J, Yang S. Novel molecule BBC0901 inhibits BRD4 and acts as a catabolic regulator in the pathogenesis of osteoarthritis. Biomed Pharmacother 2023; 166:115426. [PMID: 37666177 DOI: 10.1016/j.biopha.2023.115426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023] Open
Abstract
Osteoarthritis (OA) is induced by matrix degradation and inflammation mediated by bromo-domain-containing protein 4 (BRD4)-dependent catabolic factors. BRD4 acts as both a transcriptional regulator and an epigenetic reader. BBC0901 was identified as an inhibitor of BRD4 using a DNA-encoded library screening system. We aimed to demonstrate the effects of BBC0901 on OA pathogenesis by in vitro, ex vivo, and in vivo analyses. BBC0901 inhibited the expression of catabolic factors that degrade cartilage without significantly affecting the viability of mouse articular chondrocytes. Additionally, ex vivo experiments under conditions mimicking OA showed that BBC0901 suppressed extracellular matrix degradation. RNA sequencing analysis of gene expression patterns showed that BBC0901 inhibited the expression of catabolic factors, such as matrix metalloproteinases (MMPs) and cyclooxygenase (COX)2, along with reactive oxygen species (ROS) production. Furthermore, intra-articular (IA) injection of BBC0901 into the knee joint blocked osteoarthritic cartilage destruction by inhibition of MMP3, MMP13, COX2, interleukin (IL)6, and ROS production, thereby obstructing the nuclear factor kappa-light-chain-enhancer of activated B cell and mitogen activated protein kinase signaling. In conclusion, BBC0901-mediated BRD4 inhibition prevented OA development by attenuating catabolic signaling and hence, can be considered a promising IA therapeutic for OA.
Collapse
Affiliation(s)
- Hyemi Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jiho Nam
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Hahyeong Jang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Young-Sik Park
- Benobio Co., Ltd., Gyeonggi-do 13494, Republic of Korea.
| | - Min-Hee Son
- Benobio Co., Ltd., Gyeonggi-do 13494, Republic of Korea.
| | - In-Hyun Lee
- Benobio Co., Ltd., Gyeonggi-do 13494, Republic of Korea.
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Jimin Jeon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
48
|
Kotekar A, Singh AK, Devaiah BN. BRD4 and MYC: power couple in transcription and disease. FEBS J 2023; 290:4820-4842. [PMID: 35866356 PMCID: PMC9867786 DOI: 10.1111/febs.16580] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 01/26/2023]
Abstract
The MYC proto-oncogene and BRD4, a BET family protein, are two cardinal proteins that have a broad influence in cell biology and disease. Both proteins are expressed ubiquitously in mammalian cells and play central roles in controlling growth, development, stress responses and metabolic function. As chromatin and transcriptional regulators, they play a critical role in regulating the expression of a burgeoning array of genes, maintaining chromatin architecture and genome stability. Consequently, impairment of their function or regulation leads to many diseases, with cancer being the most predominant. Interestingly, accumulating evidence indicates that regulation of the expression and functions of MYC are tightly intertwined with BRD4 at both transcriptional and post-transcriptional levels. Here, we review the mechanisms by which MYC and BRD4 are regulated, their functions in governing various molecular mechanisms and the consequences of their dysregulation that lead to disease. We present a perspective of how the regulatory mechanisms for the two proteins could be entwined at multiple points in a BRD4-MYC nexus that leads to the modulation of their functions and disease upon dysregulation.
Collapse
Affiliation(s)
- Aparna Kotekar
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Amit Kumar Singh
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
49
|
Wang C, Chen C, Pan Z, He Y, Zhang Z, Liu R, Xue Y, Zhou Q, Gao X. Quantitative Proteomics of the CDK9 Interactome Reveals a Function of the HSP90-CDC37-P-TEFb Complex for BETi-Induced HIV-1 Latency Reactivation. J Proteome Res 2023; 22:2880-2889. [PMID: 37540094 DOI: 10.1021/acs.jproteome.3c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Brd4 has been intensively investigated as a promising drug target because of its implicated functions in oncogenesis, inflammation, and HIV-1 transcription. The formation of the Brd4-P-TEFb (CDK9/Cyclin T1) complex and its regulation of transcriptional elongation are critical for HIV latency reactivation and expression of many oncogenes. To further investigate the mechanism of the Brd4-P-TEFb complex in controlling elongation, mass spectrometry-based quantitative proteomics of the CDK9 interactome was performed. Upon treatment with the selective BET bromodomain inhibitor JQ1, 352 proteins were successfully identified with high confidence as CDK9-interacting proteins. Among them, increased bindings of HSP90 and CDC37 to CDK9 were particularly striking, and our data suggest that the HSP90-CDC37-P-TEFb complex is involved in controlling the dynamic equilibrium of the P-TEFb complex during BETi-induced reactivation of HIV-1 latency. Furthermore, the HSP90-CDC37-P-TEFb complex directly regulates HIV-1 transcription and relies on recruitment by heat shock factor 1 (HSF1) for binding to the HIV-1 promoter. These results advance the understanding of HSP90-CDC37-P-TEFb in HIV-1 latency reversal and enlighten the development of potential strategies to eradicate HIV-1 using a combination of targeted drugs.
Collapse
Affiliation(s)
- Cong Wang
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Medical Center of Hematology, The Second Affiliated Hospital, Army Medical University, Chongqing 400000, China
| | - Chunjing Chen
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenrui Pan
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yaohui He
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhanming Zhang
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Rongdiao Liu
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Yuhua Xue
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiang Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong 999077, China
| | - Xiang Gao
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
50
|
Umaña JD, Wasserman SR, Song L, Goel AA, Yu X, Jin J, Hathaway NA. Chemical Epigenetic Regulation of Adeno-Associated Virus Delivered Transgenes. Hum Gene Ther 2023; 34:947-957. [PMID: 37624737 PMCID: PMC10517330 DOI: 10.1089/hum.2023.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Adeno-associated virus (AAV) is a powerful gene therapy vector that has been used in several FDA-approved therapies as well as in multiple clinical trials. This vector has high therapeutic versatility with the ability to deliver genetic payloads to a variety of human tissue types, yet there is currently a lack of transgene expression control once the virus is administered. There are also times when transgene expression is too low for the desired therapeutic outcome, necessitating high viral dose administration resulting in possible immunological complications. Herein, we validate a chemically controllable AAV transgene expression technology in vitro that utilizes bifunctional molecules known as chemical epigenetic modifiers (CEMs). These compounds employ endogenous epigenetic machinery to specifically enhance transgene expression of episomal DNA. A recombinant AAV (rAAV) was designed to both deliver the reporter transgene as well as deliver a synthetic zinc finger (ZFs) protein fused to FK506 binding protein (FKBP). These synthetic ZFs target a DNA-binding array sequence upstream of the promoter expressing the AAV transgene to specifically enhance AAV transgene expression in the presence of a CEM. The transcriptional activating compound CEM87 functions by recruiting the epigenetic transcription activator bromodomain-containing protein 4 (BRD4), increasing AAV transgene activity up to fivefold in a dose-dependent manner in HEK293T cells. The highest levels of transgene product activity are seen 24 h following CEM87 treatment. Additionally, the CEM87-mediated enhancement of different transgene products with either Luciferase or green fluorescent protein (GFP) was observed in multiple cell lines and enhancement of transgene expression was capsid serotype independent. The impact of CEM87 activity can be disrupted through drug removal or chemical recruitment site competition with FK506, thus demonstrating the reversibility of the impact of CEM87 on transgene expression. Collectively, this chemically controllable rAAV transgene technology provides temporal gene expression control that could increase the safety and efficiency of AAV-based research and therapies.
Collapse
Affiliation(s)
- Jessica D. Umaña
- Division of Chemical Biology and Medicinal Chemistry,Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sara R. Wasserman
- Division of Chemical Biology and Medicinal Chemistry,Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Liujiang Song
- Gene Therapy Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Arushi A. Goel
- Division of Chemical Biology and Medicinal Chemistry,Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nathaniel A. Hathaway
- Division of Chemical Biology and Medicinal Chemistry,Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|