1
|
Guo B, Zhang F, Yin Y, Ning X, Zhang Z, Meng Q, Yang Z, Jiang W, Liu M, Wang Y, Sun L, Yu L, Mu N. Post-translational modifications of pyruvate dehydrogenase complex in cardiovascular disease. iScience 2024; 27:110633. [PMID: 39224515 PMCID: PMC11367490 DOI: 10.1016/j.isci.2024.110633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Pyruvate dehydrogenase complex (PDC) is a crucial enzyme that connects glycolysis and the tricarboxylic acid (TCA) cycle pathway. It plays an essential role in regulating glucose metabolism for energy production by catalyzing the oxidative decarboxylation of pyruvate to acetyl coenzyme A. Importantly, the activity of PDC is regulated through post-translational modifications (PTMs), phosphorylation, acetylation, and O-GlcNAcylation. These PTMs have significant effects on PDC activity under both physiological and pathophysiological conditions, making them potential targets for metabolism-related diseases. This review specifically focuses on the PTMs of PDC in cardiovascular diseases (CVDs) such as myocardial ischemia/reperfusion injury, diabetic cardiomyopathy, obesity-related cardiomyopathy, heart failure (HF), and vascular diseases. The findings from this review offer theoretical references for the diagnosis, treatment, and prognosis of CVD.
Collapse
Affiliation(s)
- Bo Guo
- Department of Pharmacy, Northwest Woman’s and Children’s Hospital, Xi’an, China
| | - Fujiao Zhang
- College of Life Sciences, Northwest University, Xi’an, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Xingmin Ning
- College of Life Sciences, Northwest University, Xi’an, China
| | - Zihui Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Qinglei Meng
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Ziqi Yang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Wenhua Jiang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Manling Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Lijuan Sun
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
2
|
Escobar-Morreale HF, Martínez-García MÁ, Insenser M, Cañellas N, Correig X, Luque-Ramírez M. Serum metabolomics profiling by proton nuclear magnetic resonance spectrometry of the response to single oral macronutrient challenges in women with polycystic ovary syndrome (PCOS) compared with male and female controls. Biol Sex Differ 2023; 14:62. [PMID: 37736753 PMCID: PMC10514968 DOI: 10.1186/s13293-023-00547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND The polycystic ovary syndrome (PCOS) is associated with insulin resistance, obesity and cardiometabolic comorbidities. We here challenged the hypothesis, using state-of-the-art proton nuclear magnetic resonance spectrometry (1H-NMRS) metabolomics profiling, that androgen excess in women induces a certain masculinization of postprandial metabolism that is modulated by obesity. MATERIALS AND METHODS Participants were 53 Caucasian young adults, including 17 women with classic PCOS consisting of hyperandrogenism and ovulatory dysfunction, 17 non-hyperandrogenic women presenting with regular menses, and 19 healthy men, selected to be similar in terms of age and body mass index (BMI). Half of the subjects had obesity. Patients were submitted to isocaloric separate glucose, lipid and protein oral challenges in alternate days and fasting and postprandial serum samples were submitted to 1H-NMRS metabolomics profiling for quantification of 36 low-molecular-weight polar metabolites. RESULTS The largest postprandial changes were observed after glucose and protein intake, with lipid ingestion inducing smaller differences. Changes after glucose intake consisted of a marked increase in carbohydrates and byproducts of glycolysis, and an overall decrease in byproducts of proteolysis, lipolysis and ketogenesis. After the protein load, most amino acids and derivatives increased markedly, in parallel to an increase in pyruvate and a decrease in 3-hydroxybutyric acid and glycerol. Obesity increased β- and D-glucose and pyruvate levels, with this effect being observed mostly after glucose ingestion in women with PCOS. Regardless of the type of macronutrient, men presented increased lysine and decreased 3-hydroxybutyric acid. In addition, non-obese men showed increased postprandial β-glucose and decreased pyroglutamic acid, compared with non-obese control women. We observed a common pattern of postprandial changes in branched-chain and aromatic amino acids, where men showed greater amino acids increases after protein intake than control women and patients with PCOS but only within the non-obese participants. Conversely, this increase was blunted in obese men but not in obese women, who even presented a larger increase in some amino acids compared with their non-obese counterparts. Interestingly, regardless of the type of macronutrient, only obese women with PCOS showed increased leucine, lysine, phenylalanine and tryptophan levels compared with non-obese patients. CONCLUSIONS Serum 1H-NMRS metabolomics profiling indicated sexual dimorphism in the responses to oral macronutrient challenges, which were apparently driven by the central role of postprandial insulin effects with obesity, and to a lesser extent PCOS, exerting modifying roles derived from insulin resistance. Hence, obesity impaired metabolic flexibility in young adults, yet sex and sex hormones also influenced the regulation of postprandial metabolism.
Collapse
Affiliation(s)
- Héctor F Escobar-Morreale
- Diabetes Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Carretera de Colmenar km 9.1, 28034, Madrid, Spain.
| | - María Ángeles Martínez-García
- Diabetes Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Carretera de Colmenar km 9.1, 28034, Madrid, Spain
| | - María Insenser
- Diabetes Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Carretera de Colmenar km 9.1, 28034, Madrid, Spain
| | - Nicolau Cañellas
- Department of Electronic Engineering, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - Xavier Correig
- Department of Electronic Engineering, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - Manuel Luque-Ramírez
- Diabetes Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Carretera de Colmenar km 9.1, 28034, Madrid, Spain
| |
Collapse
|
3
|
Wang P, Jin JM, Liang XH, Yu MZ, Yang C, Huang F, Wu H, Zhang BB, Fei XY, Wang ZT, Xu R, Shi HL, Wu XJ. Helichrysetin inhibits gastric cancer growth by targeting c-Myc/PDHK1 axis-mediated energy metabolism reprogramming. Acta Pharmacol Sin 2022; 43:1581-1593. [PMID: 34462561 PMCID: PMC9160019 DOI: 10.1038/s41401-021-00750-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Helichrysetin (HEL), a chalcone isolated from Alpinia katsumadai Hayata, has an antitumor activity in human lung and cervical cancers. However, the inhibitory effect and underlying mechanism of HEL in gastric cancer have not been elucidated. Here, HEL significantly inhibited the growth of gastric cancer MGC803 cells in vitro and in vivo. HEL decreased expression and transcriptional regulatory activity of c-Myc and mRNA expression of c-Myc target genes. HEL enhanced mitochondrial oxidative phosphorylation (OXPHOS) and reduced glycolysis as evidenced by increased mitochondrial adenosine triphosphate (ATP) production and excessive reactive oxygen species (ROS) accumulation, and decreased the pPDHA1/PDHA1 ratio and Glyco-ATP production. Pyruvate enhanced OXPHOS after HEL treatment. c-Myc overexpression abolished HEL-induced inhibition of cell viability, glycolysis, and protein expression of PDHK1 and LDHA. PDHK1 overexpression also counteracted inhibitory effect of HEL on cell viability. Conversely, c-Myc siRNA decreased cell viability, glycolysis, and PDHK1 expression. NAC rescued the decrease in viability of HEL-treated cells. Additionally, HEL inhibited the overactivated mTOR/p70S6K pathway in vitro and in vivo. HEL-induced cell viability inhibition was counteracted by an mTOR agonist. mTOR inhibitor also decreased cell viability. Similar results were obtained in SGC7901 cells. HEL repressed lactate production and efflux in MGC803 cells. These results revealed that HEL inhibits gastric cancer growth by targeting mTOR/p70S6K/c-Myc/PDHK1-mediated energy metabolism reprogramming in cancer cells. Therefore, HEL may be a potential agent for gastric cancer treatment by modulating cancer energy metabolism reprogramming.
Collapse
Affiliation(s)
- Ping Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jin-Mei Jin
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Hui Liang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ming-Zhu Yu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chun Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bei-Bei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Yan Fei
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zheng-Tao Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ren Xu
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Hai-Lian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiao-Jun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Zhang L, Zhang J, Liu Y, Zhang P, Nie J, Zhao R, Shi Q, Sun H, Jiao D, Chen Y, Zhao X, Huang Y, Li Y, Zhao JY, Xu W, Zhao SM, Wang C. Mitochondrial STAT5A promotes metabolic remodeling and the Warburg effect by inactivating the pyruvate dehydrogenase complex. Cell Death Dis 2021; 12:634. [PMID: 34148062 PMCID: PMC8214628 DOI: 10.1038/s41419-021-03908-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
Signal transducer and activator 5a (STAT5A) is a classical transcription factor that plays pivotal roles in various biological processes, including tumor initiation and progression. A fraction of STAT5A is localized in the mitochondria, but the biological functions of mitochondrial STAT5A remain obscure. Here, we show that STAT5A interacts with pyruvate dehydrogenase complex (PDC), a mitochondrial gatekeeper enzyme connecting two key metabolic pathways, glycolysis and the tricarboxylic acid cycle. Mitochondrial STAT5A disrupts PDC integrity, thereby inhibiting PDC activity and remodeling cellular glycolysis and oxidative phosphorylation. Mitochondrial translocation of STAT5A is increased under hypoxic conditions. This strengthens the Warburg effect in cancer cells and promotes in vitro cell growth under hypoxia and in vivo tumor growth. Our findings indicate distinct pro-oncogenic roles of STAT5A in energy metabolism, which is different from its classical function as a transcription factor.
Collapse
Affiliation(s)
- Liang Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Jianong Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Yan Liu
- Institute of metabolism and integrative biology (IMIB), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Pingzhao Zhang
- Fudan University Shanghai Cancer Center and Department of Pathology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Ji Nie
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Rui Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Qin Shi
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Huiru Sun
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Dongyue Jiao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Yingji Chen
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Xiaying Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Yan Huang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Yao Li
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Jian-Yuan Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Wei Xu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, 20032, Shanghai, China
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China.
| | - Chenji Wang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China.
| |
Collapse
|
5
|
Li Y, Shen J, Cheng CS, Gao H, Zhao J, Chen L. Overexpression of pyruvate dehydrogenase phosphatase 1 promotes the progression of pancreatic adenocarcinoma by regulating energy-related AMPK/mTOR signaling. Cell Biosci 2020; 10:95. [PMID: 32782783 PMCID: PMC7412669 DOI: 10.1186/s13578-020-00457-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background Human pyruvate dehydrogenase phosphatase 1 (PDP1) plays an important physiological role in energy metabolism; however, its expression and function in human pancreatic adenocarcinoma (PDAC) remain unknown. This study aimed to investigate the expression pattern and mechanisms of action of PDP1 in human PDAC. Methods The expression pattern of PDP1 in PDAC was determined, and its correlation with patient survival was analyzed. Ectopic expression or knockdown of PDP1 was performed, and in vitro proliferation and migration, as well as in vivo tumor growth of PDAC, were measured. The mechanism was studied by biochemical approaches. Results PDP1 was overexpressed in human PDAC samples, and high expression of PDP1 correlated with poor overall and disease-free survival of PDAC patients. PDP1 promoted the proliferation, colony formation, and invasion of PDAC cells in vitro and facilitated orthotopic tumor growth in vivo. PDP1 accelerated intracellular ATP production, leading to sufficient energy to support rapid cancer progression. mTOR activation was responsible for the PDP1-induced tumor cell proliferation and invasion in PDAC. AMPK was downregulated by PDP1 overexpression, resulting in mTOR activation and cancer progression. Conclusion Our findings suggested that PDP1 could be a promising diagnostic and therapeutic target for anti-PDAC treatment.
Collapse
Affiliation(s)
- Ye Li
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Jia Shen
- Department of Oncology, First People's Hospital of Pinghu, Zhejiang, 314200 China
| | - Chien-Shan Cheng
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - HuiFeng Gao
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Jiangang Zhao
- Department of Oncology, Shaoxing Central Hospital, Zhejiang, 312030 China
| | - Lianyu Chen
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
6
|
Guo X, Niemi NM, Coon JJ, Pagliarini DJ. Integrative proteomics and biochemical analyses define Ptc6p as the Saccharomyces cerevisiae pyruvate dehydrogenase phosphatase. J Biol Chem 2017; 292:11751-11759. [PMID: 28539364 DOI: 10.1074/jbc.m117.787341] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/12/2017] [Indexed: 01/27/2023] Open
Abstract
The pyruvate dehydrogenase complex (PDC) is the primary metabolic checkpoint connecting glycolysis and mitochondrial oxidative phosphorylation and is important for maintaining cellular and organismal glucose homeostasis. Phosphorylation of the PDC E1 subunit was identified as a key inhibitory modification in bovine tissue ∼50 years ago, and this regulatory process is now known to be conserved throughout evolution. Although Saccharomyces cerevisiae is a pervasive model organism for investigating cellular metabolism and its regulation by signaling processes, the phosphatase(s) responsible for activating the PDC in S. cerevisiae has not been conclusively defined. Here, using comparative mitochondrial phosphoproteomics, analyses of protein-protein interactions by affinity enrichment-mass spectrometry, and in vitro biochemistry, we define Ptc6p as the primary PDC phosphatase in S. cerevisiae Our analyses further suggest additional substrates for related S. cerevisiae phosphatases and describe the overall phosphoproteomic changes that accompany mitochondrial respiratory dysfunction. In summary, our quantitative proteomics and biochemical analyses have identified Ptc6p as the primary-and likely sole-S. cerevisiae PDC phosphatase, closing a key knowledge gap about the regulation of yeast mitochondrial metabolism. Our findings highlight the power of integrative omics and biochemical analyses for annotating the functions of poorly characterized signaling proteins.
Collapse
Affiliation(s)
- Xiao Guo
- Morgridge Institute for Research, Madison, Wisconsin 53715; Departments of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Natalie M Niemi
- Morgridge Institute for Research, Madison, Wisconsin 53715; Departments of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, Wisconsin 53715; Departments of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706; Genome Center of Wisconsin, Madison, Wisconsin 53706; Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - David J Pagliarini
- Morgridge Institute for Research, Madison, Wisconsin 53715; Departments of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706.
| |
Collapse
|
7
|
Gooda Sahib Jambocus N, Saari N, Ismail A, Khatib A, Mahomoodally MF, Abdul Hamid A. An Investigation into the Antiobesity Effects of Morinda citrifolia L. Leaf Extract in High Fat Diet Induced Obese Rats Using a (1)H NMR Metabolomics Approach. J Diabetes Res 2016; 2016:2391592. [PMID: 26798649 PMCID: PMC4698747 DOI: 10.1155/2016/2391592] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/13/2015] [Accepted: 09/13/2015] [Indexed: 12/29/2022] Open
Abstract
The prevalence of obesity is increasing worldwide, with high fat diet (HFD) as one of the main contributing factors. Obesity increases the predisposition to other diseases such as diabetes through various metabolic pathways. Limited availability of antiobesity drugs and the popularity of complementary medicine have encouraged research in finding phytochemical strategies to this multifaceted disease. HFD induced obese Sprague-Dawley rats were treated with an extract of Morinda citrifolia L. leaves (MLE 60). After 9 weeks of treatment, positive effects were observed on adiposity, fecal fat content, plasma lipids, and insulin and leptin levels. The inducement of obesity and treatment with MLE 60 on metabolic alterations were then further elucidated using a (1)H NMR based metabolomics approach. Discriminating metabolites involved were products of various metabolic pathways, including glucose metabolism and TCA cycle (lactate, 2-oxoglutarate, citrate, succinate, pyruvate, and acetate), amino acid metabolism (alanine, 2-hydroxybutyrate), choline metabolism (betaine), creatinine metabolism (creatinine), and gut microbiome metabolism (hippurate, phenylacetylglycine, dimethylamine, and trigonelline). Treatment with MLE 60 resulted in significant improvement in the metabolic perturbations caused obesity as demonstrated by the proximity of the treated group to the normal group in the OPLS-DA score plot and the change in trajectory movement of the diseased group towards the healthy group upon treatment.
Collapse
Affiliation(s)
- Najla Gooda Sahib Jambocus
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- *Najla Gooda Sahib Jambocus: and
| | - Nazamid Saari
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amin Ismail
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | | | - Azizah Abdul Hamid
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- *Azizah Abdul Hamid:
| |
Collapse
|
8
|
Tanoue K, Miller Jenkins LM, Durell SR, Debnath S, Sakai H, Tagad HD, Ishida K, Appella E, Mazur SJ. Binding of a third metal ion by the human phosphatases PP2Cα and Wip1 is required for phosphatase activity. Biochemistry 2013; 52:5830-43. [PMID: 23906386 DOI: 10.1021/bi4005649] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The PPM phosphatases require millimolar concentrations of Mg²⁺ or Mn²⁺ to activate phosphatase activity in vitro. The human phosphatases PP2Cα (PPM1A) and Wip1 (PPM1D) differ in their physiological function, substrate specificity, and apparent metal affinity. A crystallographic structure of PP2Cα shows only two metal ions in the active site. However, recent structural studies of several bacterial PP2C phosphatases have indicated three metal ions in the active site. Two residues that coordinate the third metal ion are highly conserved, suggesting that human PP2C phosphatases may also bind a third ion. Here, isothermal titration calorimetry analysis of Mg²⁺ binding to PP2Cα distinguished binding of two ions to high affinity sites from the binding of a third ion with a millimolar affinity, similar to the apparent metal affinity required for catalytic activity. Mutational analysis indicated that Asp239 and either Asp146 or Asp243 was required for low-affinity binding of Mg²⁺, but that both Asp146 and Asp239 were required for catalysis. Phosphatase activity assays in the presence of MgCl₂, MnCl₂, or mixtures of the two, demonstrate high phosphatase activity toward a phosphopeptide substrate when Mg²⁺ was bound to the low-affinity site, whether Mg²⁺ or Mn²⁺ ions were bound to the high affinity sites. Mutation of the corresponding putative third metal ion-coordinating residues of Wip1 affected catalytic activity similarly both in vitro and in human cells. These results suggest that phosphatase activity toward phosphopeptide substrates by PP2Cα and Wip1 requires the binding of a Mg²⁺ ion to the low-affinity site.
Collapse
Affiliation(s)
- Kan Tanoue
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kupfer DM, White VL, Strayer DL, Crouch DJ, Burian D. Microarray characterization of gene expression changes in blood during acute ethanol exposure. BMC Med Genomics 2013; 6:26. [PMID: 23883607 PMCID: PMC3750403 DOI: 10.1186/1755-8794-6-26] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 07/17/2013] [Indexed: 11/29/2022] Open
Abstract
Background As part of the civil aviation safety program to define the adverse effects of ethanol on flying performance, we performed a DNA microarray analysis of human whole blood samples from a five-time point study of subjects administered ethanol orally, followed by breathalyzer analysis, to monitor blood alcohol concentration (BAC) to discover significant gene expression changes in response to the ethanol exposure. Methods Subjects were administered either orange juice or orange juice with ethanol. Blood samples were taken based on BAC and total RNA was isolated from PaxGene™ blood tubes. The amplified cDNA was used in microarray and quantitative real-time polymerase chain reaction (RT-qPCR) analyses to evaluate differential gene expression. Microarray data was analyzed in a pipeline fashion to summarize and normalize and the results evaluated for relative expression across time points with multiple methods. Candidate genes showing distinctive expression patterns in response to ethanol were clustered by pattern and further analyzed for related function, pathway membership and common transcription factor binding within and across clusters. RT-qPCR was used with representative genes to confirm relative transcript levels across time to those detected in microarrays. Results Microarray analysis of samples representing 0%, 0.04%, 0.08%, return to 0.04%, and 0.02% wt/vol BAC showed that changes in gene expression could be detected across the time course. The expression changes were verified by qRT-PCR. The candidate genes of interest (GOI) identified from the microarray analysis and clustered by expression pattern across the five BAC points showed seven coordinately expressed groups. Analysis showed function-based networks, shared transcription factor binding sites and signaling pathways for members of the clusters. These include hematological functions, innate immunity and inflammation functions, metabolic functions expected of ethanol metabolism, and pancreatic and hepatic function. Five of the seven clusters showed links to the p38 MAPK pathway. Conclusions The results of this study provide a first look at changing gene expression patterns in human blood during an acute rise in blood ethanol concentration and its depletion because of metabolism and excretion, and demonstrate that it is possible to detect changes in gene expression using total RNA isolated from whole blood. The analysis approach for this study serves as a workflow to investigate the biology linked to expression changes across a time course and from these changes, to identify target genes that could serve as biomarkers linked to pilot performance.
Collapse
Affiliation(s)
- Doris M Kupfer
- Civil Aerospace Medical Institute, AAM 610, Federal Aviation Administration, Bioaeronautical Sciences Research Laboratory, Oklahoma City, OK 73169, USA.
| | | | | | | | | |
Collapse
|
10
|
Deng WJ, Nie S, Dai J, Wu JR, Zeng R. Proteome, phosphoproteome, and hydroxyproteome of liver mitochondria in diabetic rats at early pathogenic stages. Mol Cell Proteomics 2009; 9:100-16. [PMID: 19700791 DOI: 10.1074/mcp.m900020-mcp200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It has been proposed that mitochondrial dysfunction is involved in the pathogenesis of type 2 diabetes (T2D). To dissect the underlying mechanisms, we performed a multiplexed proteomics study on liver mitochondria isolated from a spontaneous diabetic rat model before/after they were rendered diabetic. Altogether, we identified 1091 mitochondrial proteins, 228 phosphoproteins, and 355 hydroxyproteins. Mitochondrial proteins were found to undergo expression changes in a highly correlated fashion during T2D development. For example, proteins involved in beta-oxidation, the tricarboxylic acid cycle, oxidative phosphorylation, and other bioenergetic processes were coordinately up-regulated, indicating that liver cells confronted T2D by increasing energy expenditure and activating pathways that rid themselves of the constitutively increased flux of glucose and lipid. Notably, activation of oxidative phosphorylation was immediately related to the overproduction of reactive oxygen species, which caused oxidative stress within the cells. Increased oxidative stress was also evidenced by our post-translational modification profiles such that mitochondrial proteins were more heavily hydroxylated during T2D development. Moreover, we observed a distinct depression of antiapoptosis and antioxidative stress proteins that might reflect a higher apoptotic index under the diabetic stage. We suggest that such changes in systematic metabolism were causally linked to the development of T2D. Comparing proteomics data against microarray data, we demonstrated that many T2D-related alterations were unidentifiable by either proteomics or genomics approaches alone, underscoring the importance of integrating different approaches. Our compendium could help to unveil pathogenic events in mitochondria leading to T2D and be useful for the discovery of diagnosis biomarker and therapeutic targets of T2D.
Collapse
Affiliation(s)
- Wen-Jun Deng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
11
|
Piccinini M, Mostert M, Seardo MA, Bussolino S, Alberto G, Lupino E, Ramondetti C, Buccinnà B, Rinaudo MT. Pregnancy induces molecular alterations reflecting impaired insulin control over glucose oxidative pathways that only in women with a family history of Type 2 diabetes last beyond pregnancy. J Endocrinol Invest 2009; 32:6-12. [PMID: 19337007 DOI: 10.1007/bf03345670] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In circulating lymphomonocytes (CLM) of patients with Type 2 diabetes (DM2) pyruvate dehydrogenase (PDH), the major determinant of glucose oxidative breakdown, is affected by a cohort of alterations reflecting impaired insulin stimulated glucose utilization. The cohort is also expressed, although incompletely, in 40% of healthy young subjects with a DM2-family history (FH). Pregnancy restrains glucose utilization in maternal peripheral tissues to satisfy fetal requirements. Here we explore whether pregnant women develop the PDH alterations and, if so, whether there are differences between women with and without FH (FH+, FH-). Ten FH+ and 10 FH- were evaluated during pregnancy (12-14, 24-26, and 37-39 weeks) and 1 yr after (follow-up) for fasting plasma glucose and insulin as well as body mass index (BMI), and for the PDH alterations. Twenty FH- and 20 FH+ non-pregnant women served as controls. All FH+ and FH- controls exhibited normal clinical parameters and 8 FH+ had an incomplete cohort of PDH alterations. In FH- and FH+ pregnant women at 12-14 weeks clinical parameters were normal; from 24-26 weeks, with unvaried glucose, insulin and BMI rose more in FH- and only in the latter recovered the 12-14 weeks values at follow-up. In all FH-, the cohort of PDH alterations was incomplete at 24-26 weeks, complete at 37-39 weeks, and absent at follow-up but complete from 12-14 weeks including follow-up in all FH+. In FH-, the cohort is an acquired trait restricted to pregnancy signaling transiently reduced insulin-stimulated glucose utilization; in FH+, instead, it unveils the existence of an inherited DM2-related background these women all have, that is awakened by pregnancy and as such lastingly impairs insulin-stimulated glucose utilization.
Collapse
Affiliation(s)
- M Piccinini
- Department of Medicine and Experimental Oncology-Section of Biochemistry, University of Turin, 10126 Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
LeBlanc PJ, Mulligan M, Antolić A, MacPherson L, Inglis JG, Martin D, Roy BD, Peters SJ. Skeletal muscle type comparison of pyruvate dehydrogenase phosphatase activity and isoform expression: effects of obesity and endurance training. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1224-30. [DOI: 10.1152/ajpregu.90320.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pyruvate dehydrogenase (PDH) plays an important role in regulating carbohydrate metabolism in skeletal muscle. PDH is activated by PDH phosphatase (PDP) and deactivated by PDH kinase (PDK). Obesity has a large negative impact on skeletal muscle carbohydrate metabolism, whereas endurance training has been shown to improve regulatory control of skeletal muscle carbohydrate metabolism, more so when coupled with obesity. A majority of this literature has focused on PDK, with little information available on PDP. To determine the relative role of PDP in regulating skeletal muscle PDH activity with obesity and endurance training, obese and lean Zucker rats remained sedentary or were endurance trained (1 h/day, 5 days/wk) for a period of 8 wk. Soleus, red gastrocnemius, (RG), and white gastrocnemius (WG) muscles were sampled after the training period. The main findings were 1) obesity resulted in a 46% decrease in PDP activity expressed per milligram extracted mitochondrial protein only in RG, while PDP isoform content was unchanged; 2) 8 wk of endurance training led to a significant 1.4–2.2-fold increase in PDP activity of all muscle examined from obese rats, and the concomitant increase in PDP1 protein was only seen in soleus and RG; 3) 8 wk of endurance training led to a trending 1.4–2.2-fold increase in PDP activity of all muscle examined from obese rats, and the concomitant increase in PDP1 protein was only seen in soleus and RG; and 4) PDP2 protein content was not affected by obesity or training. These results suggest that decreased PDP activity in oxidative skeletal muscles may play a role in the impairment of carbohydrate metabolism in obese rats, which is reversible with endurance training.
Collapse
|
13
|
The activity of calpains in lymphocytes is glucose-dependent and is decreased in diabetic patients. Blood Cells Mol Dis 2007; 40:414-9. [PMID: 17964829 DOI: 10.1016/j.bcmd.2007.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 08/22/2007] [Indexed: 11/20/2022]
Abstract
Calpains are nonlysosomal calcium-dependent cysteine proteases that participate in insulin secretion and action. Polymorphisms in the calpain-10 gene have been shown to increase the risk for type 2 diabetes. Since white blood cells have been used to study glucose homeostasis, the present study was carried to find out if calpains have different activity and/or expression in accessible cells such as lymphocytes of individuals with or without type 2 diabetes. Fasting blood glucose concentration was significantly higher in diabetic subjects, whereas the difference in the activity of calpains evaluated in basal and stimulating extracellular glucose concentration was significantly higher in the lymphocytes from the control group. The mRNA expression of calpain-10 was similar in the lymphocytes of both patients and controls. The protein blots showed four bands that ranged between 75 and 50 kDa; however, no statistical differences were observed in the expression of the calpain-10 isoforms between controls and patients. Data obtained showed that human lymphocytes express calpain-10 mRNA and protein, showing a similar expression between diabetic and control subjects, nevertheless in the diabetic group calpain activity was less glucose-sensitive.
Collapse
|
14
|
Beaulieu LM, Whitley BR, Wiesner TF, Rehault SM, Palmieri D, Elkahloun AG, Church FC. Breast cancer and metabolic syndrome linked through the plasminogen activator inhibitor-1 cycle. Bioessays 2007; 29:1029-38. [PMID: 17876797 PMCID: PMC4046619 DOI: 10.1002/bies.20640] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a physiological inhibitor of urokinase (uPA), a serine protease known to promote cell migration and invasion. Intuitively, increased levels of PAI-1 should be beneficial in downregulating uPA activity, particularly in cancer. By contrast, in vivo, increased levels of PAI-1 are associated with a poor prognosis in breast cancer. This phenomenon is termed the "PAI-1 paradox". Many factors are responsible for the upregulation of PAI-1 in the tumor microenvironment. We hypothesize that there is a breast cancer predisposition to a more aggressive stage when PAI-1 is upregulated as a consequence of Metabolic Syndrome (MetS). MetS exerts a detrimental effect on the breast tumor microenvironment that supports cancer invasion. People with MetS have an increased risk of coronary heart disease, stroke, peripheral vascular disease and hyperinsulinemia. Recently, MetS has also been identified as a risk factor for breast cancer. We hypothesize the existence of the "PAI-1 cycle". Sustained by MetS, adipocytokines alter PAI-1 expression to promote angiogenesis, tumor-cell migration and procoagulant microparticle formation from endothelial cells, which generates thrombin and further propagates PAI-1 synthesis. All of these factors culminate in a chemotherapy-resistant breast tumor microenvironment. The PAI-1 cycle may partly explain the PAI-1 paradox. In this hypothesis paper, we will discuss further how MetS upregulates PAI-1 and how an increased level of PAI-1 can be linked to a poor prognosis.
Collapse
Affiliation(s)
- Lea M. Beaulieu
- Departments of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035
| | - Brandi R. Whitley
- Departments of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035
| | - Theodore F. Wiesner
- Departments of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7035
| | - Sophie M. Rehault
- Departments of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035
| | - Diane Palmieri
- Departments of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035
| | - Abdel G. Elkahloun
- NHGRI-NIH Genome Technology Branch, National Institute of Health, Bethesda, MD 20892
| | - Frank C. Church
- Departments of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035
| |
Collapse
|