1
|
Payne LB, Abdelazim H, Hoque M, Barnes A, Mironovova Z, Willi CE, Darden J, Houk C, Sedovy MW, Johnstone SR, Chappell JC. A Soluble Platelet-Derived Growth Factor Receptor-β Originates via Pre-mRNA Splicing in the Healthy Brain and Is Upregulated during Hypoxia and Aging. Biomolecules 2023; 13:711. [PMID: 37189457 PMCID: PMC10136073 DOI: 10.3390/biom13040711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
The platelet-derived growth factor-BB (PDGF-BB) pathway provides critical regulation of cerebrovascular pericytes, orchestrating their investment and retention within the brain microcirculation. Dysregulated PDGF Receptor-beta (PDGFRβ) signaling can lead to pericyte defects that compromise blood-brain barrier (BBB) integrity and cerebral perfusion, impairing neuronal activity and viability, which fuels cognitive and memory deficits. Receptor tyrosine kinases such as PDGF-BB and vascular endothelial growth factor-A (VEGF-A) are often modulated by soluble isoforms of cognate receptors that establish signaling activity within a physiological range. Soluble PDGFRβ (sPDGFRβ) isoforms have been reported to form by enzymatic cleavage from cerebrovascular mural cells, and pericytes in particular, largely under pathological conditions. However, pre-mRNA alternative splicing has not been widely explored as a possible mechanism for generating sPDGFRβ variants, and specifically during tissue homeostasis. Here, we found sPDGFRβ protein in the murine brain and other tissues under normal, physiological conditions. Utilizing brain samples for follow-on analysis, we identified mRNA sequences corresponding to sPDGFRβ isoforms, which facilitated construction of predicted protein structures and related amino acid sequences. Human cell lines yielded comparable sequences and protein model predictions. Retention of ligand binding capacity was confirmed for sPDGFRβ by co-immunoprecipitation. Visualizing fluorescently labeled sPDGFRβ transcripts revealed a spatial distribution corresponding to murine brain pericytes alongside cerebrovascular endothelium. Soluble PDGFRβ protein was detected throughout the brain parenchyma in distinct regions, such as along the lateral ventricles, with signals also found more broadly adjacent to cerebral microvessels consistent with pericyte labeling. To better understand how sPDGFRβ variants might be regulated, we found elevated transcript and protein levels in the murine brain with age, and acute hypoxia increased sPDGFRβ variant transcripts in a cell-based model of intact vessels. Our findings indicate that soluble isoforms of PDGFRβ likely arise from pre-mRNA alternative splicing, in addition to enzymatic cleavage mechanisms, and these variants exist under normal physiological conditions. Follow-on studies will be needed to establish potential roles for sPDGFRβ in regulating PDGF-BB signaling to maintain pericyte quiescence, BBB integrity, and cerebral perfusion-critical processes underlying neuronal health and function, and in turn, memory and cognition.
Collapse
Affiliation(s)
- Laura Beth Payne
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
| | - Hanaa Abdelazim
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
| | - Maruf Hoque
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
| | - Audra Barnes
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zuzana Mironovova
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
| | - Caroline E. Willi
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
| | - Jordan Darden
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
| | - Clifton Houk
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Meghan W. Sedovy
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
| | - Scott R. Johnstone
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - John C. Chappell
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
2
|
Payne LB, Abdelazim H, Hoque M, Barnes A, Mironovova Z, Willi CE, Darden J, Jenkins-Houk C, Sedovy MW, Johnstone SR, Chappell JC. A Soluble Platelet-Derived Growth Factor Receptor-β Originates via Pre-mRNA Splicing in the Healthy Brain and is Differentially Regulated during Hypoxia and Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527005. [PMID: 36778261 PMCID: PMC9915746 DOI: 10.1101/2023.02.03.527005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The platelet-derived growth factor-BB (PDGF-BB) pathway provides critical regulation of cerebrovascular pericytes, orchestrating their investment and retention within the brain microcirculation. Dysregulated PDGF Receptor-beta (PDGFRβ) signaling can lead to pericyte defects that compromise blood-brain barrier (BBB) integrity and cerebral perfusion, impairing neuronal activity and viability, which fuels cognitive and memory deficits. Receptor tyrosine kinases (RTKs) like PDGF-BB and vascular endothelial growth factor-A (VEGF-A) are often modulated by soluble isoforms of cognate receptors that establish signaling activity within a physiological range. Soluble PDGFRβ (sPDGFRβ) isoforms have been reported to form by enzymatic cleavage from cerebrovascular mural cells, and pericytes in particular, largely under pathological conditions. However, pre-mRNA alternative splicing has not been widely explored as a possible mechanism for generating sPDGFRβ variants, and specifically during tissue homeostasis. Here, we found sPDGFRβ protein in the murine brain and other tissues under normal, physiological conditions. Utilizing brain samples for follow-on analysis, we identified mRNA sequences corresponding to sPDGFRβ isoforms, which facilitated construction of predicted protein structures and related amino acid sequences. Human cell lines yielded comparable sequences and protein model predictions. Retention of ligand binding capacity was confirmed for sPDGFRβ by co-immunoprecipitation. Visualizing fluorescently labeled sPDGFRβ transcripts revealed a spatial distribution corresponding to murine brain pericytes alongside cerebrovascular endothelium. Soluble PDGFRβ protein was detected throughout the brain parenchyma in distinct regions such as along the lateral ventricles, with signals also found more broadly adjacent to cerebral microvessels consistent with pericyte labeling. To better understand how sPDGFRβ variants might be regulated, we found elevated transcript and protein levels in the murine brain with age, and acute hypoxia increased sPDGFRβ variant transcripts in a cell-based model of intact vessels. Our findings indicate that soluble isoforms of PDGFRβ likely arise from pre-mRNA alternative splicing, in addition to enzymatic cleavage mechanisms, and these variants exist under normal physiological conditions. Follow-on studies will be needed to establish potential roles for sPDGFRβ in regulating PDGF-BB signaling to maintain pericyte quiescence, BBB integrity, and cerebral perfusion - critical processes underlying neuronal health and function, and in turn memory and cognition.
Collapse
|
3
|
Kim HD, Park EJ, Choi EK, Song SY, Hoe KL, Kim DU. G-749 Promotes Receptor Tyrosine Kinase TYRO3 Degradation and Induces Apoptosis in Both Colon Cancer Cell Lines and Xenograft Mouse Models. Front Pharmacol 2021; 12:730241. [PMID: 34721022 PMCID: PMC8551583 DOI: 10.3389/fphar.2021.730241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/27/2021] [Indexed: 01/15/2023] Open
Abstract
G-749 is an FLT3 kinase inhibitor that was originally developed as a treatment for acute myeloid leukemia. Some FLT3 kinase inhibitors are dual kinase inhibitors that inhibit the TAM (Tyro3, Axl, Mer) receptor tyrosine kinase family and are used to treat solid cancers such as non-small cell lung cancer (NSCLC) and triple-negative breast cancer (TNBC). AXL promotes metastasis, suppression of immune response, and drug resistance in NSCLC and TNBC. G-749, a potential TAM receptor tyrosine kinase inhibitor, and its derivative SKI-G-801, effectively inhibits the phosphorylation of AXL at nanomolar concentration (IC50 = 20 nM). This study aimed to investigate the anticancer effects of G-749 targeting the TAM receptor tyrosine kinase in colon cancer. Here, we demonstrate the potential of G-749 to effectively inhibit tumorigenesis by degrading TYRO3 via regulated intramembrane proteolysis both in vitro and in vivo. In addition, we demonstrated that G-749 inhibits the signaling pathway associated with cell proliferation in colon cancer cell lines HCT15 and SW620, as well as tumor xenograft mouse models. We propose G-749 as a new therapeutic agent for the treatment of colon cancer caused by abnormal TYRO3 expression or activity.
Collapse
Affiliation(s)
- Hae Dong Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of New Drug Development, Chungnam National University, Daejeon, South Korea
| | - Eun Jung Park
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Application Strategy and Development Division, GeneChem Inc., Daejeon, South Korea
| | - Eun Kyoung Choi
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Seuk Young Song
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Kwang-Lae Hoe
- Department of New Drug Development, Chungnam National University, Daejeon, South Korea
| | - Dong-Uk Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| |
Collapse
|
4
|
Karmacharya U, Guragain D, Chaudhary P, Jee JG, Kim JA, Jeong BS. Novel Pyridine Bioisostere of Cabozantinib as a Potent c-Met Kinase Inhibitor: Synthesis and Anti-Tumor Activity against Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22189685. [PMID: 34575841 PMCID: PMC8468607 DOI: 10.3390/ijms22189685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
Two novel bioisosteres of cabozantinib, 3 and 4, were designed and synthesized. The benzene ring in the center of the cabozantinib structure was replaced by trimethylpyridine (3) and pyridine (4), respectively. Surprisingly, the two compounds showed extremely contrasting mesenchymal-epithelial transition factor (c-Met) inhibitory activities at 1 μM concentration (4% inhibition of 3 vs. 94% inhibition of 4). The IC50 value of compound 4 was 4.9 nM, similar to that of cabozantinib (5.4 nM). A ligand-based docking study suggested that 4 includes the preferred conformation for the binding to c-Met in the conformational ensemble, but 3 does not. The anti-proliferative activity of compound 4 against hepatocellular carcinoma (Hep3B and Huh7) and non-small-cell lung cancer (A549 and H1299) cell lines was better than that of cabozantinib, whereas 3 did not show a significant anti-proliferative activity. Moreover, the tumor selectivity of compound 4 toward hepatocellular carcinoma cell lines was higher than that of cabozantinib. In the xenograft chick tumor model, compound 4 inhibited Hep3B tumor growth to a much greater extent than cabozantinib. The present study suggests that compound 4 may be a good therapeutic candidate against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ujjwala Karmacharya
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (U.K.); (D.G.); (P.C.)
| | - Diwakar Guragain
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (U.K.); (D.G.); (P.C.)
| | - Prakash Chaudhary
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (U.K.); (D.G.); (P.C.)
| | - Jun-Goo Jee
- College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (U.K.); (D.G.); (P.C.)
- Correspondence: (J.-A.K.); (B.-S.J.); Tel.: +82-53-810-2816 (J.-A.K.); +82-53-810-2814 (B.-S.J.)
| | - Byeong-Seon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (U.K.); (D.G.); (P.C.)
- Correspondence: (J.-A.K.); (B.-S.J.); Tel.: +82-53-810-2816 (J.-A.K.); +82-53-810-2814 (B.-S.J.)
| |
Collapse
|
5
|
Alghamri MS, Sharma P, Williamson TL, Readler JM, Yan R, Rider SD, Hostetler HA, Cool DR, Kolawole AO, Excoffon KJDA. MAGI-1 PDZ2 Domain Blockade Averts Adenovirus Infection via Enhanced Proteolysis of the Apical Coxsackievirus and Adenovirus Receptor. J Virol 2021; 95:e0004621. [PMID: 33762416 PMCID: PMC8437357 DOI: 10.1128/jvi.00046-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Adenoviruses (AdVs) are etiological agents of gastrointestinal, heart, eye, and respiratory tract infections that can be lethal for immunosuppressed people. Many AdVs use the coxsackievirus and adenovirus receptor (CAR) as a primary receptor. The CAR isoform resulting from alternative splicing that includes the eighth exon, CAREx8, localizes to the apical surface of polarized epithelial cells and is responsible for the initiation of AdV infection. We have shown that the membrane level of CAREx8 is tightly regulated by two MAGI-1 PDZ domains, PDZ2 and PDZ4, resulting in increased or decreased AdV transduction, respectively. We hypothesized that targeting the interactions between the MAGI-1 PDZ2 domain and CAREx8 would decrease the apical CAREx8 expression level and prevent AdV infection. Decoy peptides that target MAGI-1 PDZ2 were synthesized (TAT-E6 and TAT-NET1). PDZ2 binding peptides decreased CAREx8 expression and reduced AdV transduction. CAREx8 degradation was triggered by the activation of the regulated intramembrane proteolysis (RIP) pathway through a disintegrin and metalloproteinase (ADAM17) and γ-secretase. Further analysis revealed that ADAM17 interacts directly with the MAGI-1 PDZ3 domain, and blocking the PDZ2 domain enhanced the accessibility of ADAM17 to the substrate (CAREx8). Finally, we validated the efficacy of TAT-PDZ2 peptides in protecting the epithelia from AdV transduction in vivo using a novel transgenic animal model. Our data suggest that TAT-PDZ2 binding peptides are novel anti-AdV molecules that act by enhanced RIP of CAREx8 and decreased AdV entry. This strategy has additional translational potential for targeting other viral receptors that have PDZ binding domains, such as the angiotensin-converting enzyme 2 receptor. IMPORTANCE Adenovirus is a common threat in immunosuppressed populations and military recruits. There are no currently approved treatments/prophylactic agents that protect from most AdV infections. Here, we developed peptide-based small molecules that can suppress AdV infection of polarized epithelia by targeting the AdV receptor, coxsackievirus and adenovirus receptor (CAREx8). The newly discovered peptides target a specific PDZ domain of the CAREx8-interacting protein MAGI-1 and decrease AdV transduction in multiple polarized epithelial models. Peptide-induced CAREx8 degradation is triggered by extracellular domain (ECD) shedding through ADAM17 followed by γ-secretase-mediated nuclear translocation of the C-terminal domain. The enhanced shedding of the CAREx8 ECD further protected the epithelium from AdV infection. Taken together, these novel molecules protect the epithelium from AdV infection. This approach may be applicable to the development of novel antiviral molecules against other viruses that use a receptor with a PDZ binding domain.
Collapse
Affiliation(s)
- Mahmoud S. Alghamri
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Priyanka Sharma
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | | | - James M. Readler
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Ran Yan
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - S. Dean Rider
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Heather A. Hostetler
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - David R. Cool
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio, USA
| | | | | |
Collapse
|
6
|
Liu C, Törnkvist A, Charova S, Stael S, Moschou PN. Proteolytic Proteoforms: Elusive Components of Hormonal Pathways? TRENDS IN PLANT SCIENCE 2020; 25:325-328. [PMID: 32191869 DOI: 10.1016/j.tplants.2020.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/31/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Hormonal pathways often converge on transcriptional repressors that can be degraded by the proteasome to initiate a response. We wish to draw attention to developments in a less-explored proteolytic branch called 'limited proteolysis' that, in addition to the classical proteolytic pathways, seems to regulate auxin and ethylene signaling.
Collapse
Affiliation(s)
- Chen Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Anna Törnkvist
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Spyridoula Charova
- Department of Biology, University of Crete, Heraklion, Crete, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; VIB Center for Medical Biotechnology, 9000 Ghent, Belgium.
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden; Department of Biology, University of Crete, Heraklion, Crete, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| |
Collapse
|
7
|
Abstract
Tissue macrophages rapidly recognize and engulf apoptotic cells. These events require the display of so-called eat-me signals on the apoptotic cell surface, the most fundamental of which is phosphatidylserine (PtdSer). Externalization of this phospholipid is catalysed by scramblase enzymes, several of which are activated by caspase cleavage. PtdSer is detected both by macrophage receptors that bind to this phospholipid directly and by receptors that bind to a soluble bridging protein that is independently bound to PtdSer. Prominent among the latter receptors are the MER and AXL receptor tyrosine kinases. Eat-me signals also trigger macrophages to engulf virus-infected or metabolically traumatized, but still living, cells, and this 'murder by phagocytosis' may be a common phenomenon. Finally, the localized presentation of PtdSer and other eat-me signals on delimited cell surface domains may enable the phagocytic pruning of these 'locally dead' domains by macrophages, most notably by microglia of the central nervous system.
Collapse
Affiliation(s)
- Greg Lemke
- Molecular Neurobiology Laboratory, Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
8
|
Lopez-Font I, Sogorb-Esteve A, Javier-Torrent M, Brinkmalm G, Herrando-Grabulosa M, García-Lareu B, Turon-Sans J, Rojas-García R, Lleó A, Saura CA, Zetterberg H, Blennow K, Bosch A, Navarro X, Sáez-Valero J. Decreased circulating ErbB4 ectodomain fragments as a read-out of impaired signaling function in amyotrophic lateral sclerosis. Neurobiol Dis 2019; 124:428-438. [DOI: 10.1016/j.nbd.2018.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/06/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023] Open
|
9
|
Huang H. Anaplastic Lymphoma Kinase (ALK) Receptor Tyrosine Kinase: A Catalytic Receptor with Many Faces. Int J Mol Sci 2018; 19:E3448. [PMID: 30400214 PMCID: PMC6274813 DOI: 10.3390/ijms19113448] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022] Open
Abstract
The anaplastic lymphoma kinase (ALK) receptor is a membrane-bound tyrosine kinase. The pathogenesis of several cancers is closely related to aberrant forms of ALK or aberrant ALK expression, including ALK fusion proteins, ALK-activated point mutations, and ALK amplification. Clinical applications of different ALK inhibitors represent significant progress in targeted therapy. Knowledge of different aspects of ALK biology can provide significant information to further the understanding of this receptor tyrosine kinase. In this mini-review, we briefly summarize different features of ALK. We also summarize some recent research advances on ALK fusion proteins in cancers.
Collapse
Affiliation(s)
- Hao Huang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Merilahti JAM, Elenius K. Gamma-secretase-dependent signaling of receptor tyrosine kinases. Oncogene 2018; 38:151-163. [PMID: 30166589 PMCID: PMC6756091 DOI: 10.1038/s41388-018-0465-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/28/2022]
Abstract
Human genome harbors 55 receptor tyrosine kinases (RTK). At least half of the RTKs have been reported to be cleaved by gamma-secretase-mediated regulated intramembrane proteolysis. The two-step process involves releasing the RTK ectodomain to the extracellular space by proteolytic cleavage called shedding, followed by cleavage in the RTK transmembrane domain by the gamma-secretase complex resulting in release of a soluble RTK intracellular domain. This intracellular domain, including the tyrosine kinase domain, can in turn translocate to various cellular compartments, such as the nucleus or proteasome. The soluble intracellular domain may interact with transcriptional regulators and other proteins to induce specific effects on cell survival, proliferation, and differentiation, establishing an additional signaling mode for the cleavable RTKs. On the other hand, the same process can facilitate RTK turnover and proteasomal degradation. In this review we focus on the regulation of RTK shedding and gamma-secretase cleavage, as well as signaling promoted by the soluble RTK ICDs. In addition, therapeutic implications of increased knowledge on RTK cleavage on cancer drug development are discussed.
Collapse
Affiliation(s)
- Johannes A M Merilahti
- Institute of Biomedicine, University of Turku, 20520, Turku, Finland.,Medicity Research Laboratory, University of Turku, 20520, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, 20520, Turku, Finland
| | - Klaus Elenius
- Institute of Biomedicine, University of Turku, 20520, Turku, Finland. .,Medicity Research Laboratory, University of Turku, 20520, Turku, Finland. .,Department of Oncology, Turku University Hospital, 20520, Turku, Finland.
| |
Collapse
|
11
|
Kreitman M, Noronha A, Yarden Y. Irreversible modifications of receptor tyrosine kinases. FEBS Lett 2018; 592:2199-2212. [PMID: 29790151 DOI: 10.1002/1873-3468.13095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 01/18/2023]
Abstract
Each group of the 56 receptor tyrosine kinases (RTK) binds with one or more soluble growth factors and coordinates a vast array of cellular functions. These outcomes are tightly regulated by inducible post-translational events, such as tyrosine phosphorylation, ubiquitination, ectodomain shedding, and regulated intramembrane proteolysis. Because of the delicate balance required for appropriate RTK function, cells may become pathogenic upon dysregulation of RTKs themselves or their post-translational covalent modifications. For example, reduced ectodomain shedding and decreased ubiquitination of the cytoplasmic region, both of which enhance growth factor signals, characterize malignant cells. Whereas receptor phosphorylation and ubiquitination are reversible, proteolytic cleavage events are irreversible, and either modification might alter the subcellular localization of RTKs. Herein, we focus on ectodomain shedding by metalloproteinases (including ADAM family proteases), cleavage within the membrane or cytoplasmic regions of RTKs (by gamma-secretases and caspases, respectively), and complete receptor proteolysis in lysosomes and proteasomes. Roles of irreversible modifications in RTK signaling, pathogenesis, and pharmacology are highlighted.
Collapse
Affiliation(s)
- Matthew Kreitman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ashish Noronha
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Yamaguchi K, Mezaki H, Fujiwara M, Hara Y, Kawasaki T. Arabidopsis ubiquitin ligase PUB12 interacts with and negatively regulates Chitin Elicitor Receptor Kinase 1 (CERK1). PLoS One 2017; 12:e0188886. [PMID: 29182677 PMCID: PMC5705137 DOI: 10.1371/journal.pone.0188886] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022] Open
Abstract
In Arabidopsis, fungal chitin is recognized as a pathogen-associated molecular pattern (PAMP) by the chitin receptor complex containing the lysin-motif (LysM) receptor-like kinases CERK1 and LYK5. Upon the perception of chitin, CERK1 phosphorylates the receptor-like cytoplasmic kinase, PBL27, which activates the intracellular mitogen-activated protein kinase (MAPK) cascade. However, the mechanisms by which the CERK1-PBL27 complex is regulated remain largely unknown. We identified ubiquitin ligase PUB12 as a component of the PBL27 complex using co-immunoprecipitation and mass spectrometry. However, PUB12 did not interact directly with PBL27. Instead, the ARM domains of PUB12 and its paralog PUB13 interacted with the intracellular domain of CERK1 in a manner that was dependent on its autophosphorylation, suggesting that the phosphorylation-based auto-activation of CERK1 may be required for its interaction with PUB12. The co-expression of PUB12 in Nicotiana benthamiana reduced the accumulation of CERK1. The pub12 pub13 mutant exhibited enhanced chitin-induced immune responses such as ROS production, MAPK activation, and callose deposition. These results suggest that PUB12 and PUB13 are involved in the negative regulation of the chitin receptor complex, which may contribute to the transient desensitization of chitin-induced responses.
Collapse
Affiliation(s)
- Koji Yamaguchi
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara, Japan
| | - Hirohisa Mezaki
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara, Japan
| | - Masayuki Fujiwara
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Yuki Hara
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara, Japan
| | - Tsutomu Kawasaki
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara, Japan
| |
Collapse
|
13
|
Merilahti JAM, Ojala VK, Knittle AM, Pulliainen AT, Elenius K. Genome-wide screen of gamma-secretase-mediated intramembrane cleavage of receptor tyrosine kinases. Mol Biol Cell 2017; 28:3123-3131. [PMID: 28904208 PMCID: PMC5662267 DOI: 10.1091/mbc.e17-04-0261] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/11/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) have been demonstrated to signal via regulated intramembrane proteolysis, in which ectodomain shedding and subsequent intramembrane cleavage by gamma-secretase leads to release of a soluble intracellular receptor fragment with functional activity. For most RTKs, however, it is unknown whether they can exploit this new signaling mechanism. Here we used a system-wide screen to address the frequency of susceptibility to gamma-secretase cleavage among human RTKs. The screen covering 45 of the 55 human RTKs identified 12 new as well as all nine previously published gamma-secretase substrates. We biochemically validated the screen by demonstrating that the release of a soluble intracellular fragment from endogenous AXL was dependent on the sheddase disintegrin and metalloprotease 10 (ADAM10) and the gamma-secretase component presenilin-1. Functional analysis of the cleavable RTKs indicated that proliferation promoted by overexpression of the TAM family members AXL or TYRO3 depends on gamma-secretase cleavage. Taken together, these data indicate that gamma-secretase-mediated cleavage provides an additional signaling mechanism for numerous human RTKs.
Collapse
Affiliation(s)
- Johannes A M Merilahti
- Department of Medical Biochemistry and Genetics, University of Turku, 20520 Turku, Finland.,Medicity Research Laboratory, University of Turku, 20520 Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, 20520 Turku, Finland
| | - Veera K Ojala
- Department of Medical Biochemistry and Genetics, University of Turku, 20520 Turku, Finland
| | - Anna M Knittle
- Department of Medical Biochemistry and Genetics, University of Turku, 20520 Turku, Finland
| | - Arto T Pulliainen
- Department of Medical Biochemistry and Genetics, University of Turku, 20520 Turku, Finland
| | - Klaus Elenius
- Department of Medical Biochemistry and Genetics, University of Turku, 20520 Turku, Finland .,Medicity Research Laboratory, University of Turku, 20520 Turku, Finland.,Department of Oncology, Turku University Hospital, 20520 Turku, Finland
| |
Collapse
|
14
|
Erwig J, Ghareeb H, Kopischke M, Hacke R, Matei A, Petutschnig E, Lipka V. Chitin-induced and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) phosphorylation-dependent endocytosis of Arabidopsis thaliana LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE5 (LYK5). THE NEW PHYTOLOGIST 2017; 215:382-396. [PMID: 28513921 DOI: 10.1111/nph.14592] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/23/2017] [Indexed: 05/21/2023]
Abstract
To detect potential pathogens, plants perceive the fungal polysaccharide chitin through receptor complexes containing lysin motif receptor-like kinases (LysM-RLKs). To investigate the ligand-induced spatial dynamics of chitin receptor components, we studied the subcellular behaviour of two Arabidopsis thaliana LysM-RLKs involved in chitin signalling, CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) and LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE5. We performed standard and quantitative confocal laser scanning microscopy on stably transformed A. thaliana plants expressing fluorescently tagged CERK1 and LYK5 from their native promoters. Microscopy approaches were complemented by biochemical analyses in plants and in vitro. Both CERK1 and LYK5 localized to the plasma membrane and showed constitutive endomembrane trafficking. After chitin treatment, however, CERK1 remained at the plasma membrane while LYK5 relocalized into mobile intracellular vesicles. Detailed analyses revealed that chitin perception transiently induced the internalization of LYK5 into late endocytic compartments. Plants that lacked CERK1 or expressed an enzymatically inactive CERK1 variant did not exhibit chitin-induced endocytosis of LYK5. CERK1 could phosphorylate LYK5 in vitro and chitin treatment induced CERK1-dependent phosphorylation of LYK5 in planta. Our results suggest that chitin-induced phosphorylation by CERK1 triggers LYK5 internalization. Thus, our work identifies phosphorylation as a key regulatory step in endocytosis of plant RLKs and also provides evidence for receptor complex dissociation after ligand perception.
Collapse
Affiliation(s)
- Jan Erwig
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Hassan Ghareeb
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
- Department of Plant Biotechnology, National Research Centre, El Buhouth St, Dokki, Cairo, Egypt
| | - Michaela Kopischke
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Ronja Hacke
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Alexandra Matei
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Elena Petutschnig
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| |
Collapse
|
15
|
Tejeda GS, Díaz-Guerra M. Integral Characterization of Defective BDNF/TrkB Signalling in Neurological and Psychiatric Disorders Leads the Way to New Therapies. Int J Mol Sci 2017; 18:ijms18020268. [PMID: 28134845 PMCID: PMC5343804 DOI: 10.3390/ijms18020268] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/15/2017] [Accepted: 01/23/2017] [Indexed: 11/23/2022] Open
Abstract
Enhancement of brain-derived neurotrophic factor (BDNF) signalling has great potential in therapy for neurological and psychiatric disorders. This neurotrophin not only attenuates cell death but also promotes neuronal plasticity and function. However, an important challenge to this approach is the persistence of aberrant neurotrophic signalling due to a defective function of the BDNF high-affinity receptor, tropomyosin-related kinase B (TrkB), or downstream effectors. Such changes have been already described in several disorders, but their importance as pathological mechanisms has been frequently underestimated. This review highlights the relevance of an integrative characterization of aberrant BDNF/TrkB pathways for the rational design of therapies that by combining BDNF and TrkB targets could efficiently promote neurotrophic signalling.
Collapse
Affiliation(s)
- Gonzalo S Tejeda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| | - Margarita Díaz-Guerra
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| |
Collapse
|
16
|
|
17
|
Náger M, Santacana M, Bhardwaj D, Valls J, Ferrer I, Nogués P, Cantí C, Herreros J. Nuclear phosphorylated Y142 β-catenin accumulates in astrocytomas and glioblastomas and regulates cell invasion. Cell Cycle 2016; 14:3644-55. [PMID: 26654598 DOI: 10.1080/15384101.2015.1104443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a fast growing brain tumor characterized by extensive infiltration into the surrounding tissue and one of the most aggressive cancers. GBM is the most common glioma (originating from glial-derived cells) that either evolves from a low grade astrocytoma or appears de novo. Wnt/β-catenin and Hepatocyte Growth Factor (HGF)/c-Met signaling are hyperactive in human gliomas, where they regulate cell proliferation, migration and stem cell behavior. We previously demonstrated that β-catenin is phosphorylated at Y142 by recombinant c-Met kinase and downstream of HGF signaling in neurons. Here we studied phosphoY142 (PY142) β-catenin and dephospho S/T β-catenin (a classical Wnt transducer) in glioma biopsies, GBM cell lines and biopsy-derived glioma cell cultures. We found that PY142 β-catenin mainly localizes in the nucleus and signals through transcriptional activation in GBM cells. Tissue microarray analysis confirmed strong nuclear PY142 β-catenin immunostaining in astrocytoma and GBM biopsies. By contrast, active β-catenin showed nuclear localization only in GBM samples. Western blot analysis of tumor biopsies further indicated that PY142 and active β-catenin accumulate independently, correlating with the expression of Snail/Slug (an epithelial-mesenchymal transition marker) and Cyclin-D1 (a regulator of cell cycle progression), respectively, in high grade astrocytomas and GBMs. Moreover, GBM cells stimulated with HGF showed increasing levels of PY142 β-catenin and Snail/Slug. Importantly, the expression of mutant Y142F β-catenin decreased cell detachment and invasion induced by HGF in GBM cell lines and biopsy-derived cell cultures. Our results identify PY142 β-catenin as a nuclear β-catenin signaling form that downregulates adhesion and promotes GBM cell invasion.
Collapse
Affiliation(s)
- Mireia Náger
- a Departments of Basic Medical Sciences & Experimental Medicine ; University of Lleida & IRBLleida ; Lleida , Spain
| | - Maria Santacana
- b Immunohistochemical and Biostatistics and Epidemiology Units; IRBLleida ; Lleida , Spain
| | - Deepshikha Bhardwaj
- a Departments of Basic Medical Sciences & Experimental Medicine ; University of Lleida & IRBLleida ; Lleida , Spain
| | - Joan Valls
- b Immunohistochemical and Biostatistics and Epidemiology Units; IRBLleida ; Lleida , Spain
| | - Isidre Ferrer
- c Institute of Neuropathology; Hospital de Bellvitge-IDIBELL ; Barcelona , Spain
| | - Pere Nogués
- d Neurosurgery Unit; Hospital Arnau de Vilanova ; Lleida , Spain
| | - Carles Cantí
- a Departments of Basic Medical Sciences & Experimental Medicine ; University of Lleida & IRBLleida ; Lleida , Spain
| | - Judit Herreros
- a Departments of Basic Medical Sciences & Experimental Medicine ; University of Lleida & IRBLleida ; Lleida , Spain
| |
Collapse
|
18
|
Polanska H, Raudenska M, Hudcová K, Gumulec J, Svobodova M, Heger Z, Fojtu M, Binkova H, Horakova Z, Kostrica R, Adam V, Kizek R, Masarik M. Evaluation of EGFR as a prognostic and diagnostic marker for head and neck squamous cell carcinoma patients. Oncol Lett 2016; 12:2127-2132. [PMID: 27602151 DOI: 10.3892/ol.2016.4896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/26/2016] [Indexed: 11/06/2022] Open
Abstract
Approximately 90% of all head and neck tumors are squamous cell carcinomas. The overall survival of patients with head and neck squamous cell carcinoma (HNSCC) is low (≤50%). A non-invasive marker of disease progression is sorely required. The present study focused on the plasmatic levels of epidermal growth factor receptor (EGFR) in HNSCC patients (N=92) compared with healthy (N=29) and diabetic [type 2 diabetes mellitus (T2DM); N=26] controls. Enzyme-linked immunosorbent assay using antibodies against the extracellular region of EGFR (L25-S645) was performed. No significant changes were observed between diabetic and healthy controls. However, there were significantly higher EGFR plasma levels in HNSCC patients compared with both control groups (P=0.001 and 0.005, respectively). Receiver operating characteristic curve analysis identified a sensitivity of 76.09%, a specificity of 67.27% and an area under curve of 0.727 for this comparison. No significant association was observed between EGFR plasma levels and tumor stage, tumor grade, lymph node or distant metastasis occurrence, smoking habit or hypertension. However, the presence of human papillomavirus infection and T2DM in HNSCC patients had borderline effect on the plasma EGFR levels. Survival analysis revealed no significant influence of plasmatic EGFR levels on the overall and disease-specific survival of HNSCC patients. In conclusion, EGFR plasma levels appear to be a relatively promising diagnostic, but poor prognostic, HNSCC marker.
Collapse
Affiliation(s)
- Hana Polanska
- Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Martina Raudenska
- Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Kristyna Hudcová
- Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Jaromir Gumulec
- Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Marketa Svobodova
- Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic
| | - Michaela Fojtu
- Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Hana Binkova
- Department of Otorhinolaryngology and Head and Neck Surgery, St. Anne's Faculty Hospital, CZ-656 91 Brno, Czech Republic
| | - Zuzana Horakova
- Department of Otorhinolaryngology and Head and Neck Surgery, St. Anne's Faculty Hospital, CZ-656 91 Brno, Czech Republic
| | - Rom Kostrica
- Department of Otorhinolaryngology and Head and Neck Surgery, St. Anne's Faculty Hospital, CZ-656 91 Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic
| | - Rene Kizek
- Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic
| | - Michal Masarik
- Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| |
Collapse
|
19
|
Bae SY, Hong JY, Lee HJ, Park HJ, Lee SK. Targeting the degradation of AXL receptor tyrosine kinase to overcome resistance in gefitinib-resistant non-small cell lung cancer. Oncotarget 2016; 6:10146-60. [PMID: 25760142 PMCID: PMC4496346 DOI: 10.18632/oncotarget.3380] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 02/14/2015] [Indexed: 11/25/2022] Open
Abstract
Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib, remains a major problem in non-small cell lung cancer (NSCLC) treatment. Increased activation of AXL has been identified as a novel mechanism for acquired resistance to EGFR-TKIs in NSCLC treatment. However, the cause of uncontrolled AXL expression is not fully understood. Here, we first demonstrate that AXL is overexpressed in an acquired gefitinib-resistant cell line (H292-Gef) as a result of slow turnover and that AXL is degraded by presenilin-dependent regulated intramembrane proteolysis (PS-RIP). Based on the findings, we attempted to enhance AXL degradation to overcome acquired gefitinib-resistance by the treatment of gefitinib-resistant NSCLC cells with yuanhuadine (YD), a potent antitumor agent in NSCLC. Treatment with YD effectively suppressed the cancer cell survival in vitro and in vivo. Mechanistically, YD accelerated the turnover of AXL by PS-RIP and resulted in the down-regulation of the full-length AXL. Therefore, the modulation of the proteolytic process through degradation of overexpressed AXL may be an attractive therapeutic strategy for the treatment of NSCLC and EGFR-TKI-resistant NSCLC.
Collapse
Affiliation(s)
- Song Yi Bae
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Ji-Young Hong
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Hye-Jung Lee
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Hyen Joo Park
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
20
|
Abstract
Communication between cells in a multicellular organism occurs by the production of ligands (proteins, peptides, fatty acids, steroids, gases, and other low-molecular-weight compounds) that are either secreted by cells or presented on their surface, and act on receptors on, or in, other target cells. Such signals control cell growth, migration, survival, and differentiation. Signaling receptors can be single-span plasma membrane receptors associated with tyrosine or serine/threonine kinase activities, proteins with seven transmembrane domains, or intracellular receptors. Ligand-activated receptors convey signals into the cell by activating signaling pathways that ultimately affect cytosolic machineries or nuclear transcriptional programs or by directly translocating to the nucleus to regulate transcription.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Benson Lu
- The Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, California 92037
| | - Ron Evans
- The Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, California 92037
| | - J Silvio Gutkind
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-4340
| |
Collapse
|
21
|
Tejeda GS, Ayuso-Dolado S, Arbeteta R, Esteban-Ortega GM, Vidaurre OG, Díaz-Guerra M. Brain ischaemia induces shedding of a BDNF-scavenger ectodomain from TrkB receptors by excitotoxicity activation of metalloproteinases and γ-secretases. J Pathol 2016; 238:627-40. [PMID: 26712630 DOI: 10.1002/path.4684] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/02/2015] [Accepted: 12/20/2015] [Indexed: 12/19/2022]
Abstract
Stroke remains a leading cause of death and disability in the world with limited therapies available to restrict brain damage or improve functional recovery after cerebral ischaemia. A promising strategy currently under investigation is the promotion of brain-derived neurotrophic factor (BDNF) signalling through tropomyosin-related kinase B (TrkB) receptors, a pathway essential for neuronal survival and function. However, TrkB and BDNF-signalling are impaired by excitotoxicity, a primary pathological process in stroke also associated with neurodegenerative diseases. Pathological imbalance of TrkB isoforms is critical in neurodegeneration and is caused by calpain processing of BDNF high affinity full-length receptor (TrkB-FL) and an inversion of the transcriptional pattern of the Ntrk2 gene, to favour expression of the truncated isoform TrkB-T1 over TrkB-FL. We report here that both TrkB-FL and neuronal TrkB-T1 also undergo ectodomain shedding by metalloproteinases activated after ischaemic injury or excitotoxic damage of cortical neurons. Subsequently, the remaining membrane-bound C-terminal fragments (CTFs) are cleaved by γ-secretases within the transmembrane region, releasing their intracellular domains (ICDs) into the cytosol. Therefore, we identify TrkB-FL and TrkB-T1 as new substrates of regulated intramembrane proteolysis (RIP), a mechanism that highly contributes to TrkB-T1 regulation in ischaemia but is minor for TrkB-FL which is mainly processed by calpain. However, since the secreted TrkB ectodomain acts as a BDNF scavenger and significantly alters BDNF/TrkB signalling, the mechanism of RIP could contribute to neuronal death in excitotoxicity. These results are highly relevant since they reveal new targets for the rational design of therapies to treat stroke and other pathologies with an excitotoxic component.
Collapse
Affiliation(s)
- Gonzalo S Tejeda
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Sara Ayuso-Dolado
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Raquel Arbeteta
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Gema M Esteban-Ortega
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Oscar G Vidaurre
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Margarita Díaz-Guerra
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| |
Collapse
|
22
|
Abstract
Fibroblast Growth Factor Receptor 3 (FGFR3) is one of four high-affinity receptors for canonical FGF ligands. It acts in many tissues and plays a special role in skeletal development, especially post-embryonic bone growth, where it inhibits chondrocyte proliferation and differentiation. Gain of function mutations cause the most common forms of dwarfism in humans, and they are also detected in cancer. Triggered by ligand binding or in some cases mutation, FGFR3 activation involves dimerization of receptor monomers, phosphorylation of specific tyrosine residues in the receptor's kinase domain and in the tightly linked scaffold protein Fibroblast Receptor Factor Substrate 2 (FRS2). Signaling molecules recruited to these phosphorylation sites propagate signals through cascades that are subject to modulation. Signal output is also regulated by the fate of the receptor and the interval between its activation and degradation. Trafficking pathways have been identified for both lysosomal and proteasomal degradation, as well as, an alternative fate that involves intramembrane cleavage that produces an intracellular domain fragment capable of nuclear transport and potential function.
Collapse
Affiliation(s)
- Jyoti Narayana
- a Shriners Research Center, Shriners Hospitals for Children, Oregon Health & Science University , Portland , OR , USA
| | - William A Horton
- a Shriners Research Center, Shriners Hospitals for Children, Oregon Health & Science University , Portland , OR , USA
| |
Collapse
|
23
|
Chen MK, Hung MC. Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases. FEBS J 2015; 282:3693-721. [PMID: 26096795 DOI: 10.1111/febs.13342] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/18/2015] [Accepted: 06/09/2015] [Indexed: 01/18/2023]
Abstract
Intracellular localization has been reported for over three-quarters of receptor tyrosine kinase (RTK) families in response to environmental stimuli. Internalized RTK may bind to non-canonical substrates and affect various cellular processes. Many of the intracellular RTKs exist as fragmented forms that are generated by γ-secretase cleavage of the full-length receptor, shedding, alternative splicing, or alternative translation initiation. Soluble RTK fragments are stabilized and intracellularly transported into subcellular compartments, such as the nucleus, by binding to chaperone or transcription factors, while membrane-bound RTKs (full-length or truncated) are transported from the plasma membrane to the ER through the well-established Rab- or clathrin adaptor protein-coated vesicle retrograde trafficking pathways. Subsequent nuclear transport of membrane-bound RTK may occur via two pathways, INFS or INTERNET, with the former characterized by release of receptors from the ER into the cytosol and the latter characterized by release of membrane-bound receptor from the ER into the nucleoplasm through the inner nuclear membrane. Although most non-canonical intracellular RTK signaling is related to transcriptional regulation, there may be other functions that have yet to be discovered. In this review, we summarize the proteolytic processing, intracellular trafficking and nuclear functions of RTKs, and discuss how they promote cancer progression, and their clinical implications.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mien-Chie Hung
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center of Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
24
|
Rovida E, Dello Sbarba P. Possible mechanisms and function of nuclear trafficking of the colony-stimulating factor-1 receptor. Cell Mol Life Sci 2014; 71:3627-31. [PMID: 24972636 PMCID: PMC11113589 DOI: 10.1007/s00018-014-1668-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/28/2014] [Accepted: 06/11/2014] [Indexed: 02/03/2023]
Abstract
Receptor tyrosine kinases (RTK) have long being studied with respect to the "canonical" signaling. This includes ligand-induced activation of a receptor tyrosine kinase at the cell surface that leads to receptor dimerization, followed by its phosphorylation in the intracellular domain and activation. The activated receptor then recruits cytoplasmic signaling molecules including other kinases. Activation of the downstream signaling cascade frequently leads to changes in gene expression following nuclear translocation of downstream targets. However, RTK themselves may localize within the nucleus, as either full-length molecules or cleaved fragments, with or without their ligands. Significant differences in this mechanism have been reported depending on the individual RTK, cellular context or disease. Accumulating evidences indicate that the colony-stimulating factor-1 receptor (CSF-1R) may localize within the nucleus. To date, however, little is known about the mechanism of CSF-1R nuclear shuttling, as well as the functional role of nuclear CSF-1R.
Collapse
Affiliation(s)
- Elisabetta Rovida
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Sezione di Patologia e Oncologia Sperimentali, Istituto Toscano Tumori, Università degli Studi di Firenze, Viale G.B. Morgagni 50, 50134, Florence, Italy,
| | | |
Collapse
|
25
|
Jerónimo-Santos A, Vaz SH, Parreira S, Rapaz-Lérias S, Caetano AP, Buée-Scherrer V, Castrén E, Valente CA, Blum D, Sebastião AM, Diógenes MJ. Dysregulation of TrkB Receptors and BDNF Function by Amyloid-β Peptide is Mediated by Calpain. Cereb Cortex 2014; 25:3107-21. [PMID: 24860020 DOI: 10.1093/cercor/bhu105] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its high-affinity full-length (FL) receptor, TrkB-FL, play a central role in the nervous system by providing trophic support to neurons and regulating synaptic plasticity and memory. TrkB and BDNF signaling are impaired in Alzheimer's disease (AD), a neurodegenerative disease involving accumulation of amyloid-β (Aβ) peptide. We recently showed that Aβ leads to a decrease of TrkB-FL receptor and to an increase of truncated TrkB receptors by an unknown mechanism. In the present study, we found that (1) Aβ selectively increases mRNA levels for the truncated TrkB isoforms without affecting TrkB-FL mRNA levels, (2) Aβ induces a calpain-mediated cleavage on TrkB-FL receptors, downstream of Shc-binding site, originating a new truncated TrkB receptor (TrkB-T') and an intracellular fragment (TrkB-ICD), which is also detected in postmortem human brain samples, (3) Aβ impairs BDNF function in a calpain-dependent way, as assessed by the inability of BDNF to modulate neurotransmitter (GABA and glutamate) release from hippocampal nerve terminals, and long-term potentiation in hippocampal slices. It is concluded that Aβ-induced calpain activation leads to TrkB cleavage and impairment of BDNF neuromodulatory actions.
Collapse
Affiliation(s)
- André Jerónimo-Santos
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - Sandra Henriques Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - Sara Parreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - Sofia Rapaz-Lérias
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - António P Caetano
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - Valérie Buée-Scherrer
- Université Lille-Nord de France, UDSL, Lille, France Inserm U837, Jean-Pierre Aubert Research Centre, IMPRT, Lille, France CHRU-Lille, F-59000, Lille, France
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Claudia A Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - David Blum
- Université Lille-Nord de France, UDSL, Lille, France Inserm U837, Jean-Pierre Aubert Research Centre, IMPRT, Lille, France CHRU-Lille, F-59000, Lille, France
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| |
Collapse
|
26
|
Abstract
To date, 18 distinct receptor tyrosine kinases (RTKs) are reported to be trafficked from the cell surface to the nucleus in response to ligand binding or heterologous agonist exposure. In most cases, an intracellular domain (ICD) fragment of the receptor is generated at the cell surface and translocated to the nucleus, whereas for a few others the intact receptor is translocated to the nucleus. ICD fragments are generated by several mechanisms, including proteolysis, internal translation initiation, and messenger RNA (mRNA) splicing. The most prevalent mechanism is intramembrane cleavage by γ-secretase. In some cases, more than one mechanism has been reported for the nuclear localization of a specific RTK. The generation and use of RTK ICD fragments to directly communicate with the nucleus and influence gene expression parallels the production of ICD fragments by a number of non-RTK cell-surface molecules that also influence cell proliferation. This review will be focused on the individual RTKs and to a lesser extent on other growth-related cell-surface transmembrane proteins.
Collapse
Affiliation(s)
- Graham Carpenter
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | | |
Collapse
|
27
|
Fu HL, Sohail A, Valiathan RR, Wasinski BD, Kumarasiri M, Mahasenan KV, Bernardo MM, Tokmina-Roszyk D, Fields GB, Mobashery S, Fridman R. Shedding of discoidin domain receptor 1 by membrane-type matrix metalloproteinases. J Biol Chem 2013; 288:12114-29. [PMID: 23519472 DOI: 10.1074/jbc.m112.409599] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discoidin domain receptors (DDRs) are receptor tyrosine kinases that upon binding to collagens undergo receptor phosphorylation, which in turn activates signal transduction pathways that regulate cell-collagen interactions. We report here that collagen-dependent DDR1 activation is partly regulated by the proteolytic activity of the membrane-anchored collagenases, MT1-, MT2-, and MT3-matrix metalloproteinase (MMP). These collagenases cleave DDR1 and attenuate collagen I- and IV-induced receptor phosphorylation. This effect is not due to ligand degradation, as it proceeds even when the receptor is stimulated with collagenase-resistant collagen I (r/r) or with a triple-helical peptide harboring the DDR recognition motif in collagens. Moreover, the secreted collagenases MMP-1 and MMP-13 and the glycosylphosphatidylinositol-anchored membrane-type MMPs (MT4- and MT6-MMP) have no effect on DDR1 cleavage or activation. N-terminal sequencing of the MT1-MMP-mediated cleaved products and mutational analyses show that cleavage of DDR1 takes place within the extracellular juxtamembrane region, generating a membrane-anchored C-terminal fragment. Metalloproteinase inhibitor studies show that constitutive shedding of endogenous DDR1 in breast cancer HCC1806 cells is partly mediated by MT1-MMP, which also regulates collagen-induced receptor activation. Taken together, these data suggest a role for the collagenase of membrane-type MMPs in regulation of DDR1 cleavage and activation at the cell-matrix interface.
Collapse
Affiliation(s)
- Hsueh-Liang Fu
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ancot F, Leroy C, Muharram G, Lefebvre J, Vicogne J, Lemiere A, Kherrouche Z, Foveau B, Pourtier A, Melnyk O, Giordano S, Chotteau-Lelievre A, Tulasne D. Shedding-generated Met receptor fragments can be routed to either the proteasomal or the lysosomal degradation pathway. Traffic 2012; 13:1261-72. [PMID: 22672335 DOI: 10.1111/j.1600-0854.2012.01384.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 05/29/2012] [Accepted: 06/07/2012] [Indexed: 01/05/2023]
Abstract
The receptor tyrosine kinase Met and its ligand, the hepatocyte growth factor/scatter factor, are essential for embryonic development, whereas deregulation of Met signaling pathways is associated with tumorigenesis and metastasis. The presenilin-regulated intramembrane proteolysis (PS-RIP) is involved in ligand-independent downregulation of Met. This proteolytic process involves shedding of the Met extracellular domain followed by γ-secretase cleavage, generating labile intracellular fragments degraded by the proteasome. We demonstrate here that upon shedding both generated Met N- and C-terminal fragments are degraded directly in the lysosome, with C-terminal fragments escaping γ-secretase cleavage. PS-RIP and lysosomal degradation are complementary, because their simultaneous inhibition induces synergistic accumulation of fragments. Met N-terminal fragments associate with the high-affinity domain of HGF/SF, confirming its decoy activity which could be reduced through their routing to the lysosome at the expense of extracellular release. Finally, the DN30 monoclonal antibody inducing Met shedding promotes receptor degradation through induction of both PS-RIP and the lysosomal pathway. Thus, we demonstrate that Met shedding initiates a novel lysosomal degradation which participates to ligand-independent downregulation of the receptor.
Collapse
Affiliation(s)
- Frédéric Ancot
- CNRS UMR 8161, Institut de Biologie de Lille, Institut Pasteur de Lille, Université de Lille 1, Université de Lille 2, Lille cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Soluble epidermal growth factor receptor isoforms in non-small cell lung cancer tissue and in blood. Lung Cancer 2012; 76:332-8. [DOI: 10.1016/j.lungcan.2011.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/10/2011] [Accepted: 11/23/2011] [Indexed: 11/23/2022]
|
30
|
Guillaudeau A, Durand K, Bessette B, Chaunavel A, Pommepuy I, Projetti F, Robert S, Caire F, Rabinovitch-Chable H, Labrousse F. EGFR soluble isoforms and their transcripts are expressed in meningiomas. PLoS One 2012; 7:e37204. [PMID: 22623992 PMCID: PMC3356382 DOI: 10.1371/journal.pone.0037204] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 04/18/2012] [Indexed: 12/04/2022] Open
Abstract
The EGFR (epidermal growth factor receptor) is involved in the oncogenesis of many tumors. In addition to the full-length EGFR (isoform a), normal and tumor cells produce soluble EGFR isoforms (sEGFR) that lack the intracellular domain. sEGFR isoforms b, c and d are encoded by EGFR variants 2 (v2), 3 (v3) and 4 (v4) mRNA resulting from gene alternative splicing. Accordingly, the results of EGFR protein expression analysis depend on the domain targeted by the antibodies. In meningiomas, EGFR expression investigations mainly focused on EGFR isoform a. sEGFR and EGFRvIII mutant, that encodes a constitutively active truncated receptor, have not been studied. In a 69 meningiomas series, protein expression was analyzed by immunohistochemistry using extracellular domain targeted antibody (ECD-Ab) and intracellular domain targeted antibody (ICD-Ab). EGFRv1 to v4 and EGFRvIII mRNAs were quantified by RT-PCR and EGFR amplification revealed by MLPA. Results were analyzed with respect to clinical data, tumor resection (Simpson grade), histological type, tumor grade, and patient outcome.Immunochemical staining was stronger with ECD-Ab than with ICD-Ab. Meningiomas expressed EGFRv1 to -v4 mRNAs but not EGFRvIII mutant. Intermediate or high ECD-Ab staining and high EGFRv1 to v4 mRNA levels were associated to a better progression free survival (PFS). PFS was also improved in women, when tumor resection was evaluated as Simpson 1 or 2, in grade I vs. grade II and III meningiomas and when Ki67 labeling index was lower than 10%.Our results suggest that, EGFR protein isoforms without ICD and their corresponding mRNA variants are expressed in meningiomas in addition to the whole isoform a. EGFRvIII was not expressed. High expression levels seem to be related to a better prognosis. These results indicate that the oncogenetic mechanisms involving the EGFR pathway in meningiomas could be different from other tumor types.
Collapse
Affiliation(s)
| | - Karine Durand
- Department of Pathology, Dupuytren University Hospital, Limoges, France
| | - Barbara Bessette
- Department of Cellular Homeostasis and Pathology, Dupuytren University Hospital, Limoges, France
| | - Alain Chaunavel
- Department of Pathology, Dupuytren University Hospital, Limoges, France
| | - Isabelle Pommepuy
- Department of Pathology, Dupuytren University Hospital, Limoges, France
| | - Fabrice Projetti
- Department of Pathology, Dupuytren University Hospital, Limoges, France
| | - Sandrine Robert
- Department of Pathology, Dupuytren University Hospital, Limoges, France
| | - François Caire
- Department of Neurosurgery, Dupuytren University Hospital, Limoges, France
| | | | - François Labrousse
- Department of Pathology, Dupuytren University Hospital, Limoges, France
- * E-mail:
| |
Collapse
|
31
|
Lefebvre J, Ancot F, Leroy C, Muharram G, Lemière A, Tulasne D. Met degradation: more than one stone to shoot a receptor down. FASEB J 2012; 26:1387-99. [PMID: 22223753 DOI: 10.1096/fj.11-197723] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The receptor tyrosine kinase Met and its high-affinity ligand, the hepatocyte growth factor/scatter factor (HGF/SF), are essential to embryonic development. Deregulation of their signaling is associated with tumorigenesis and metastasis, notably through receptor overexpression. It is thus important to understand the mechanisms controlling Met expression. The ligand-dependent internalization of Met and its subsequent degradation in the lysosomal compartment are well described. This process is known to attenuate downstream Met signaling pathways. Yet internalized Met takes part directly in intracellular signaling by chaperoning signaling factors in the course of its trafficking. Furthermore, recent studies describe various new degradation mechanisms of membrane-anchored Met, involving proteolytic cleavages or association with novel partners. Although all these degradations are ligand-independent, they share, to different extents, some common features with canonical HGF/SF-dependent degradation. Interestingly, activated Met variants display resistance to degradation, suggesting defective degradation is involved in tumorigenesis. Conversely, forced degradation of Met through reinduction of one or more degradation pathways is a promising therapeutic strategy.
Collapse
Affiliation(s)
- Jonathan Lefebvre
- CNRS UMR 8161, Institut de Biologie de Lille, Institut Pasteur de Lille, B.P.447, 59021 Lille, France
| | | | | | | | | | | |
Collapse
|
32
|
Degnin CR, Laederich MB, Horton WA. Ligand activation leads to regulated intramembrane proteolysis of fibroblast growth factor receptor 3. Mol Biol Cell 2011; 22:3861-73. [PMID: 21865593 PMCID: PMC3192865 DOI: 10.1091/mbc.e11-01-0080] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
FGFR3 is implicated in several human diseases. Following activation and endocytosis, FGFR3 undergoes sequential ectodomain and intramembrane cleavages to generate a soluble cytoplasmic fragment that can translocate to the nucleus. Fibroblast growth factor receptor 3 (FGFR3) is a major negative regulator of bone growth that inhibits the proliferation and differentiation of growth plate chondrocytes. Activating mutations of its c isoform cause dwarfism in humans; somatic mutations can drive oncogenic transformation in multiple myeloma and bladder cancer. How these distinct activities arise is not clear. FGFR3 was previously shown to undergo proteolytic cleavage in the bovine rib growth plate, but this was not explored further. Here, we show that FGF1 induces regulated intramembrane proteolysis (RIP) of FGFR3. The ectodomain is proteolytically cleaved (S1) in response to ligand-induced receptor activation, but unlike most RIP target proteins, it requires endocytosis and does not involve a metalloproteinase. S1 cleavage generates a C-terminal domain fragment that initially remains anchored in the membrane, is phosphorylated, and is spatially distinct from the intact receptor. Ectodomain cleavage is followed by intramembrane cleavage (S2) to generate a soluble intracellular domain that is released into the cytosol and can translocate to the nucleus. We identify the S1 cleavage site and show that γ-secretase mediates the S2 cleavage event. In this way we demonstrate a mechanism for the nuclear localization of FGFR3 in response to ligand activation, which may occur in both development and disease.
Collapse
Affiliation(s)
- Catherine R Degnin
- Research Center, Shriners Hospital for Children, Portland, OR 97239, USA
| | | | | |
Collapse
|
33
|
Grzelakowska-Sztabert B, Dudkowska M. Paradoxical action of growth factors: antiproliferative and proapoptotic signaling by HGF/c-MET. Growth Factors 2011; 29:105-18. [PMID: 21631393 DOI: 10.3109/08977194.2011.585609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (c-MET) signaling is usually associated with the promotion of cellular growth and often with progression of tumors. Nevertheless, under certain conditions HGF can also act as an antiproliferative and proapoptotic factor and can sensitize various cancer cells, treated with anticancer drugs, to apoptosis. Not only HGF but also its various truncated forms as well as intracellular fragments of its membrane receptor, c-MET, may act as antiproliferative and proapoptotic factors toward various cells. This review focuses on different mechanisms responsible for such paradoxical action of the known typical growth factor. It also points toward the possibilities of usage of this information in anticancer therapy.
Collapse
|
34
|
Varshavsky A. The N-end rule pathway and regulation by proteolysis. Protein Sci 2011; 20:1298-345. [PMID: 21633985 PMCID: PMC3189519 DOI: 10.1002/pro.666] [Citation(s) in RCA: 527] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 01/12/2023]
Abstract
The N-end rule relates the regulation of the in vivo half-life of a protein to the identity of its N-terminal residue. Degradation signals (degrons) that are targeted by the N-end rule pathway include a set called N-degrons. The main determinant of an N-degron is a destabilizing N-terminal residue of a protein. In eukaryotes, the N-end rule pathway is a part of the ubiquitin system and consists of two branches, the Ac/N-end rule and the Arg/N-end rule pathways. The Ac/N-end rule pathway targets proteins containing N(α) -terminally acetylated (Nt-acetylated) residues. The Arg/N-end rule pathway recognizes unacetylated N-terminal residues and involves N-terminal arginylation. Together, these branches target for degradation a majority of cellular proteins. For example, more than 80% of human proteins are cotranslationally Nt-acetylated. Thus most proteins harbor a specific degradation signal, termed (Ac)N-degron, from the moment of their birth. Specific N-end rule pathways are also present in prokaryotes and in mitochondria. Enzymes that produce N-degrons include methionine-aminopeptidases, caspases, calpains, Nt-acetylases, Nt-amidases, arginyl-transferases and leucyl-transferases. Regulated degradation of specific proteins by the N-end rule pathway mediates a legion of physiological functions, including the sensing of heme, oxygen, and nitric oxide; selective elimination of misfolded proteins; the regulation of DNA repair, segregation and condensation; the signaling by G proteins; the regulation of peptide import, fat metabolism, viral and bacterial infections, apoptosis, meiosis, spermatogenesis, neurogenesis, and cardiovascular development; and the functioning of adult organs, including the pancreas and the brain. Discovered 25 years ago, this pathway continues to be a fount of biological insights.
Collapse
Affiliation(s)
- Alexander Varshavsky
- 1Division of Biology, California Institute of Technology, Pasadena, California 91125.
| |
Collapse
|
35
|
Guillou A, Romanò N, Bonnefont X, Le Tissier P, Mollard P, Martin AO. Modulation of the tyrosine kinase receptor Ret/glial cell-derived neurotrophic factor (GDNF) signaling: a new player in reproduction induced anterior pituitary plasticity? Endocrinology 2011; 152:515-25. [PMID: 21239429 DOI: 10.1210/en.2010-0673] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During gestation, parturition, and lactation, the endocrine axis of the dam must continually adapt to ensure the continual and healthy development of offspring. The anterior pituitary gland, which serves as the endocrine interface between the brain and periphery, undergoes adaptations that contribute to regulation of the reproductive axis. Growth factors and their receptors are potential candidates for intrapituitary and paracrine factors to participate in the functional and anatomical plasticity of the gland. We examined the involvement of the growth factor glial cell-derived neurotrophic factor (GDNF) and its receptor tyrosine kinase rearranged during transfection (Ret) in the physiological functional and anatomical plasticity of the anterior pituitary gland. We found that variations in both expression and subcellular localization of Ret during gestation and lactation are temporally correlated with changes in pituitary gland function. We showed that Ret/GDNF signaling could endorse two different functional roles depending on the physiological status. At the end of lactation and after weaning, Ret was colocalized with markers of apoptosis. We found that Ret could therefore act as a physiological dependence receptor capable of inducing apoptosis in the absence of GDNF. In addition, we identified the follicullostellate cell as a probable source for intrapituitary GDNF and proposed GDNF as a potential physiological modulator of endocrine cell function. During all stages studied, we showed that acute application of GDNF to pituitary slices was able to modulate both positively and negatively intracellular calcium activity. Altogether our results implicate Ret/GDNF as a potent pleiotropic factor able to influence pituitary physiology during a period of high plasticity.
Collapse
Affiliation(s)
- Anne Guillou
- Department of Endocrinology, Institute of Functional Genomics, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5203, Institut National de la Santé et de la Recherche Médicale Unité 661, and University of Montpellier, Montpellier 34094, France
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The trk family of receptor tyrosine kinases supports survival and differentiation in the nervous system. Paradoxically it has also been shown that members of the trk family can induce cell death in pediatric tumor cells of neuronal origin. Moreover, TrkA and TrkC serve as good prognostic indicators in neuroblastoma and medulloblatoma, respectively. Although the possible linkage between these observations was intriguing, until recently there was limited insight on the mechanisms involved. Recent findings suggest that TrkA might influence neuronal cell death through stimulation of p75 cleavage. An alternative p75-independent mechanism was suggested by a newly discovered interaction between TrkA and CCM2 (the protein product of the gene cerebral cavernous malformation 2). Coexpression of CCM2 with TrkA induces cell death in medulloblastoma and neuroblastoma cells, and CCM2 expression levels correlate with those of TrkA and with good prognosis in neuroblastoma patients. Thus, mechanistic clues to the enigma of trk-induced cell death have begun to emerge. Detailed elucidation of these mechanisms and their in vivo physiological significance will be of keen interest for future research.
Collapse
Affiliation(s)
- Liraz Harel
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | |
Collapse
|
37
|
Abstract
Kinases and proteases are responsible for two fundamental regulatory mechanisms--phosphorylation and proteolysis--that orchestrate the rhythms of life and death in all organisms. Recent studies have highlighted the elaborate interplay between both post-translational regulatory systems. Many intracellular or pericellular proteases are regulated by phosphorylation, whereas multiple kinases are activated or inactivated by proteolytic cleavage. The functional consequences of this regulatory crosstalk are especially relevant in the different stages of cancer progression. What are the clinical implications derived from the fertile dialogue between kinases and proteases in cancer?
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain.
| | | |
Collapse
|