1
|
Adasheva DA, Serebryanaya DV. IGF Signaling in the Heart in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1402-1428. [PMID: 39245453 DOI: 10.1134/s0006297924080042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 09/10/2024]
Abstract
One of the most vital processes of the body is the cardiovascular system's proper operation. Physiological processes in the heart are regulated by the balance of cardioprotective and pathological mechanisms. The insulin-like growth factor system (IGF system, IGF signaling pathway) plays a pivotal role in regulating growth and development of various cells and tissues. In myocardium, the IGF system provides cardioprotective effects as well as participates in pathological processes. This review summarizes recent data on the role of IGF signaling in cardioprotection and pathogenesis of various cardiovascular diseases, as well as analyzes severity of these effects in various scenarios.
Collapse
Affiliation(s)
- Daria A Adasheva
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Daria V Serebryanaya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
2
|
Zhang Y, Zhou F, Zhang MY, Feng LN, Guan JL, Dong RN, Huang YJ, Xia SH, Liao JZ, Zhao K. N6-methyladenosine methylation regulates the tumor microenvironment of Epstein-Barr virus-associated gastric cancer. World J Gastrointest Oncol 2024; 16:2543-2558. [DOI: 10.4251/wjgo.v16.i6.2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/18/2024] [Accepted: 04/08/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) methylation modification exists in Epstein-Barr virus (EBV) primary infection, latency, and lytic reactivation. It also modifies EBV latent genes and lytic genes. EBV-associated gastric cancer (EBVaGC) is a distinctive molecular subtype of GC. We hypothesized EBV and m6A methylation regulators interact with each other in EBVaGC to differentiate it from other types of GC.
AIM To investigate the mechanisms of m6A methylation regulators in EBVaGC to determine the differentiating factors from other types of GC.
METHODS First, The Cancer Gene Atlas and Gene Expression Omnibus databases were used to analyze the expression pattern of m6A methylation regulators between EBVaGC and EBV-negative GC (EBVnGC). Second, we identified Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment of m6A-related differentially expressed genes. We quantified the relative abundance of immune cells and inflammatory factors in the tumor microenvironment (TME). Finally, cell counting kit-8 cell proliferation test, transwell test, and flow cytometry were used to verify the effect of insulin-like growth factor binding protein 1 (IGFBP1) in EBVaGC cell lines.
RESULTS m6A methylation regulators were involved in the occurrence and development of EBVaGC. Compared with EBVnGC, the expression levels of m6A methylation regulators Wilms tumor 1-associated protein, RNA binding motif protein 15B, CBL proto-oncogene like 1, leucine rich pentatricopeptide repeat containing, heterogeneous nuclear ribonucleoprotein A2B1, IGFBP1, and insulin-like growth factor 2 binding protein 1 were significantly downregulated in EBVaGC (P < 0.05). The overall survival rate of EBVaGC patients with a lower expression level of IGFBP1 was significantly higher (P = 0.046). GO and KEGG functional enrichment analyses showed that the immunity pathways were significantly activated and rich in immune cell infiltration in EBVaGC. Compared with EBVnGC, the infiltration of activated CD4+ T cells, activated CD8+ T cells, monocytes, activated dendritic cells, and plasmacytoid dendritic cells were significantly upregulated in EBVaGC (P < 0.001). In EBVaGC, the expression level of proinflammatory factors interleukin (IL)-17, IL-21, and interferon-γ and immunosuppressive factor IL-10 were significantly increased (P < 0.05). In vitro experiments demonstrated that the expression level of IGFBP1 was significantly lower in an EBVaGC cell line (SNU719) than in an EBVnGC cell line (AGS) (P < 0.05). IGFBP1 overexpression significantly attenuated proliferation and migration and promoted the apoptosis levels in SNU719. Interfering IGFBP1 significantly promoted proliferation and migration and attenuated the apoptosis levels in AGS.
CONCLUSION m6A regulators could remodel the TME of EBVaGC, which is classified as an immune-inflamed phenotype and referred to as a “hot” tumor. Among these regulators, we demonstrated that IGFBP1 affected proliferation, migration, and apoptosis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fang Zhou
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan 430030, Hubei Province, China
| | - Ming-Yu Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Li-Na Feng
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jia-Lun Guan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Ruo-Nan Dong
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yu-Jie Huang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Su-Hong Xia
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jia-Zhi Liao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Kai Zhao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
3
|
Zhang Y, Zhou F, Zhang MY, Feng LN, Guan JL, Dong RN, Huang YJ, Xia SH, Liao JZ, Zhao K. N6-methyladenosine methylation regulates the tumor microenvironment of Epstein-Barr virus-associated gastric cancer. World J Gastrointest Oncol 2024; 16:2555-2570. [PMID: 38994134 PMCID: PMC11236235 DOI: 10.4251/wjgo.v16.i6.2555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/18/2024] [Accepted: 04/08/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) methylation modification exists in Epstein-Barr virus (EBV) primary infection, latency, and lytic reactivation. It also modifies EBV latent genes and lytic genes. EBV-associated gastric cancer (EBVaGC) is a distinctive molecular subtype of GC. We hypothesized EBV and m6A methylation regulators interact with each other in EBVaGC to differentiate it from other types of GC. AIM To investigate the mechanisms of m6A methylation regulators in EBVaGC to determine the differentiating factors from other types of GC. METHODS First, The Cancer Gene Atlas and Gene Expression Omnibus databases were used to analyze the expression pattern of m6A methylation regulators between EBVaGC and EBV-negative GC (EBVnGC). Second, we identified Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment of m6A-related differentially expressed genes. We quantified the relative abundance of immune cells and inflammatory factors in the tumor microenvironment (TME). Finally, cell counting kit-8 cell proliferation test, transwell test, and flow cytometry were used to verify the effect of insulin-like growth factor binding protein 1 (IGFBP1) in EBVaGC cell lines. RESULTS m6A methylation regulators were involved in the occurrence and development of EBVaGC. Compared with EBVnGC, the expression levels of m6A methylation regulators Wilms tumor 1-associated protein, RNA binding motif protein 15B, CBL proto-oncogene like 1, leucine rich pentatricopeptide repeat containing, heterogeneous nuclear ribonucleoprotein A2B1, IGFBP1, and insulin-like growth factor 2 binding protein 1 were significantly downregulated in EBVaGC (P < 0.05). The overall survival rate of EBVaGC patients with a lower expression level of IGFBP1 was significantly higher (P = 0.046). GO and KEGG functional enrichment analyses showed that the immunity pathways were significantly activated and rich in immune cell infiltration in EBVaGC. Compared with EBVnGC, the infiltration of activated CD4+ T cells, activated CD8+ T cells, monocytes, activated dendritic cells, and plasmacytoid dendritic cells were significantly upregulated in EBVaGC (P < 0.001). In EBVaGC, the expression level of proinflammatory factors interleukin (IL)-17, IL-21, and interferon-γ and immunosuppressive factor IL-10 were significantly increased (P < 0.05). In vitro experiments demonstrated that the expression level of IGFBP1 was significantly lower in an EBVaGC cell line (SNU719) than in an EBVnGC cell line (AGS) (P < 0.05). IGFBP1 overexpression significantly attenuated proliferation and migration and promoted the apoptosis levels in SNU719. Interfering IGFBP1 significantly promoted proliferation and migration and attenuated the apoptosis levels in AGS. CONCLUSION m6A regulators could remodel the TME of EBVaGC, which is classified as an immune-inflamed phenotype and referred to as a "hot" tumor. Among these regulators, we demonstrated that IGFBP1 affected proliferation, migration, and apoptosis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fang Zhou
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan 430030, Hubei Province, China
| | - Ming-Yu Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Li-Na Feng
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jia-Lun Guan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Ruo-Nan Dong
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yu-Jie Huang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Su-Hong Xia
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jia-Zhi Liao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Kai Zhao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
4
|
Huang BL, Wei LF, Lin YW, Huang LS, Qu QQ, Li XH, Chu LY, Xu YW, Wang WD, Peng YH, Wu FC. Serum IGFBP-1 as a promising diagnostic and prognostic biomarker for colorectal cancer. Sci Rep 2024; 14:1839. [PMID: 38246959 PMCID: PMC10800337 DOI: 10.1038/s41598-024-52220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Our previous study showed that levels of circulating insulin-like growth factor binding protein-1 (IGFBP-1) has potential diagnostic value for early-stage upper gastrointestinal cancers. This study aimed to assess whether serum IGFBP-1 is a potential diagnostic and prognostic biomarker for CRC patients. IGFBP-1 mRNA expression profile data of peripheral blood in colorectal cancer (CRC) patients were downloaded and analyzed from Gene Expression Omnibus database. We detected serum IGFBP-1 in 138 CRC patients and 190 normal controls using enzyme-linked immunosorbent assay. Blood IGFBP-1 mRNA levels were higher in CRC patients than those in normal controls (P = 0.027). In addition, serum IGFBP-1 protein levels in the CRC group were significantly higher than those in normal control group (P < 0.0001). Serum IGFBP-1 demonstrated better diagnostic accuracy for all CRC and early-stage CRC, respectively, when compared with carcinoembryonic antigen (CEA), carbohydrate antigen19-9 (CA 19-9) or the combination of CEA and CA19-9. Furthermore, Cox multivariate analysis revealed that serum IGFBP-1 was an independent prognostic factor for OS (HR = 2.043, P = 0.045). Our study demonstrated that serum IGFBP-1 might be a potential biomarker for the diagnosis and prognosis of CRC. In addition, the nomogram might be helpful to predict the prognosis of CRC.
Collapse
Affiliation(s)
- Bin-Liang Huang
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
| | - Lai-Feng Wei
- Department of Clinical Laboratory Medicine, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, China
| | - Yi-Wei Lin
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
| | - Li-Sheng Huang
- Department of Radiation Oncology, The Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Qi-Qi Qu
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
| | - Xin-Hao Li
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
| | - Ling-Yu Chu
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Wei-Dong Wang
- Department of Bone and Soft Tissue Oncology Surgery, The Cancer Hospital of Shantou University Medical College, Shantou, China.
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, China.
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China.
- Guangdong Esophageal Cancer Institute, Guangzhou, China.
| | - Fang-Cai Wu
- Department of Radiation Oncology, The Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China.
- Guangdong Esophageal Cancer Institute, Guangzhou, China.
| |
Collapse
|
5
|
Suzuki H, Iwamoto H, Seki T, Nakamura T, Masuda A, Sakaue T, Tanaka T, Imamura Y, Niizeki T, Nakano M, Shimose S, Shirono T, Noda Y, Kamachi N, Sakai M, Morita K, Nakayama M, Yoshizumi T, Kuromatsu R, Yano H, Cao Y, Koga H, Torimura T. Tumor-derived insulin-like growth factor-binding protein-1 contributes to resistance of hepatocellular carcinoma to tyrosine kinase inhibitors. Cancer Commun (Lond) 2023; 43:415-434. [PMID: 36825684 PMCID: PMC10091105 DOI: 10.1002/cac2.12411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/07/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Antiangiogenic tyrosine kinase inhibitors (TKIs) provide one of the few therapeutic options for effective treatment of hepatocellular carcinoma (HCC). However, patients with HCC often develop resistance toward antiangiogenic TKIs, and the underlying mechanisms are not understood. The aim of this study was to determine the mechanisms underlying antiangiogenic TKI resistance in HCC. METHODS We used an unbiased proteomic approach to define proteins that were responsible for the resistance to antiangiogenic TKIs in HCC patients. We evaluated the prognosis, therapeutic response, and serum insulin-like growth factor-binding protein-1 (IGFBP-1) levels of 31 lenvatinib-treated HCC patients. Based on the array of results, a retrospective clinical study and preclinical experiments using mouse and human hepatoma cells were conducted. Additionally, in vivo genetic and pharmacological gain- and loss-of-function experiments were performed. RESULTS In the patient cohort, IGFBP-1 was identified as the signaling molecule with the highest expression that was inversely associated with overall survival. Mechanistically, antiangiogenic TKI treatment markedly elevated tumor IGFBP-1 levels via the hypoxia-hypoxia inducible factor signaling. IGFBP-1 stimulated angiogenesis through activation of the integrin α5β1-focal adhesion kinase pathway. Consequently, loss of IGFBP-1 and integrin α5β1 by genetic and pharmacological approaches re-sensitized HCC to lenvatinib treatment. CONCLUSIONS Together, our data shed light on mechanisms underlying acquired resistance of HCC to antiangiogenic TKIs. Antiangiogenic TKIs induced an increase of tumor IGFBP-1, which promoted angiogenesis through activating the IGFBP-1-integrin α5β1 pathway. These data bolster the application of a new therapeutic concept by combining antiangiogenic TKIs with IGFBP-1 inhibitors.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume City, Fukuoka, Japan.,Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume City, Fukuoka, Japan
| | - Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume City, Fukuoka, Japan.,Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume City, Fukuoka, Japan.,Iwamoto Internal Medicine Clinic, Kitakyushu City, Fukuoka, Japan
| | - Takahiro Seki
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Toru Nakamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume City, Fukuoka, Japan.,Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume City, Fukuoka, Japan
| | - Atsutaka Masuda
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume City, Fukuoka, Japan.,Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume City, Fukuoka, Japan
| | - Takahiko Sakaue
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume City, Fukuoka, Japan.,Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume City, Fukuoka, Japan
| | - Toshimitsu Tanaka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume City, Fukuoka, Japan.,Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume City, Fukuoka, Japan
| | - Yasuko Imamura
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume City, Fukuoka, Japan
| | - Takashi Niizeki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume City, Fukuoka, Japan
| | - Masahito Nakano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume City, Fukuoka, Japan
| | - Shigeo Shimose
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume City, Fukuoka, Japan
| | - Tomotake Shirono
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume City, Fukuoka, Japan
| | - Yu Noda
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume City, Fukuoka, Japan
| | - Naoki Kamachi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume City, Fukuoka, Japan
| | - Miwa Sakai
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume City, Fukuoka, Japan
| | - Kazutoyo Morita
- Department of Surgery and Science, Graduate School of Medical Science, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Masamichi Nakayama
- Department of Pathology, Kurume University School of Medicine, Kurume City, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Science, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Ryoko Kuromatsu
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume City, Fukuoka, Japan.,Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume City, Fukuoka, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume City, Fukuoka, Japan
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume City, Fukuoka, Japan.,Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume City, Fukuoka, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume City, Fukuoka, Japan.,Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume City, Fukuoka, Japan
| |
Collapse
|
6
|
Li X, Li C, Wang Y, Cai J, Zhao L, Su Z, Ye H. IGFBP1 inhibits the invasion, migration, and apoptosis of HTR-8/SVneo trophoblast cells in preeclampsia. Hypertens Pregnancy 2022; 41:53-63. [PMID: 35168459 DOI: 10.1080/10641955.2022.2033259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To investigate the effects and underlying mechanisms of IGFBP1 on the biological functions of trophoblasts in simulated preeclampsia. METHODS IGFBP1 expression in placenta was determined by immunohistochemistry. HTR-8/SVneo cells were stimulated with/without IGFBP1-overexpression and hypoxia-reoxygenation, and the proliferation, invasion, migration, and apoptosis were detected by CCK8, transwell, and flow cytometry, respectively. RESULTS IGFBP1 expression was increased in placenta of preeclampsia. IGFBP1 overexpression inhibited proliferation, invasion, migration, and apoptosis of HTR-8/SVneo cells and induced MMP-26 expression with/without hypoxia-reoxygenation challenge. CONCLUSION IGFBP1 affects biological functions of trophoblasts, and it may play a role in pathophysiology of preeclampsia by inducing MMP-26.
Collapse
Affiliation(s)
- Xiujuan Li
- Department of Clinical Laboratory, Women and Children's Hospital, Xiamen University, School of Medicine, Xiamen, PR China
| | - Chenxi Li
- Department of Clinical Laboratory, Women and Children's Hospital, Xiamen University, School of Medicine, Xiamen, PR China
| | - Ye Wang
- Department of Clinical Laboratory, Women and Children's Hospital, Xiamen University, School of Medicine, Xiamen, PR China
| | - Jianxing Cai
- Department of Clinical Laboratory, Women and Children's Hospital, Xiamen University, School of Medicine, Xiamen, PR China
| | - Li Zhao
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Zhiying Su
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, PR China
| | - Huiming Ye
- Department of Clinical Laboratory, Women and Children's Hospital, Xiamen University, School of Medicine, Xiamen, PR China
| |
Collapse
|
7
|
Maze EA, Agit B, Reeves S, Hilton DA, Parkinson DB, Laraba L, Ercolano E, Kurian KM, Hanemann CO, Belshaw RD, Ammoun S. Human endogenous retrovirus type K promotes proliferation and confers sensitivity to anti-retroviral drugs in Merlin-negative schwannoma and meningioma. Cancer Res 2021; 82:235-247. [PMID: 34853069 DOI: 10.1158/0008-5472.can-20-3857] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/04/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
Deficiency of the tumour suppressor Merlin causes development of schwannoma, meningioma, and ependymoma tumours, which can occur spontaneously or in the hereditary disease neurofibromatosis type 2 (NF2). Merlin mutations are also relevant in a variety of other tumours. Surgery and radiotherapy are current first-line treatments; however, tumours frequently recur with limited treatment options. Here, we use human Merlin-negative schwannoma and meningioma primary cells to investigate the involvement of the endogenous retrovirus HERV-K in tumour development. HERV-K proteins previously implicated in tumorigenesis were overexpressed in schwannoma and all meningioma grades, and disease-associated CRL4DCAF1 and YAP/TEAD pathways were implicated in this overexpression. In normal Schwann cells, ectopic overexpression of HERV-K Env increased proliferation and upregulated expression of c-Jun and pERK1/2, which are key components of known tumorigenic pathways in schwannoma, JNK/c-Jun and RAS/RAF/MEK/ERK. Furthermore, FDA-approved retroviral protease inhibitors ritonavir, atazanavir, and lopinavir reduced proliferation of schwannoma and grade I meningioma cells. These results identify HERV-K as a critical regulator of progression in Merlin-deficient tumours and offer potential strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Emmanuel A Maze
- School of Biomedical Sciences, Faculty of Health Medicine, Dentistry and Human Sciences, Plymouth University
| | - Bora Agit
- Faculty of Health Medicine, Dentistry and Human Sciences, Plymouth University
| | - Shona Reeves
- Faculty of Health Medicine, Dentistry and Human Sciences, Plymouth University
| | - David A Hilton
- Faculty of Health Medicine, Dentistry and Human Sciences, Plymouth University
| | - David B Parkinson
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry
| | - Liyam Laraba
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry
| | | | - Kathreena M Kurian
- Department of Neuropathology, Brain Tumour Research Group, Frenchay Hospital, University of Bristol
| | - C Oliver Hanemann
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry
| | | | - Sylwia Ammoun
- Faculty of Health Medicine, Dentistry and Human Sciences, Plymouth University
| |
Collapse
|
8
|
Tang X, Jiang H, Lin P, Zhang Z, Chen M, Zhang Y, Mo J, Zhu Y, Liu N, Chen X. Insulin-like growth factor binding protein-1 regulates HIF-1α degradation to inhibit apoptosis in hypoxic cardiomyocytes. Cell Death Discov 2021; 7:242. [PMID: 34531382 PMCID: PMC8445926 DOI: 10.1038/s41420-021-00629-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 08/22/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is important in ischemic heart disease. Excessive Insulin-like growth factor binding protein-1 (IGFBP-1) amounts are considered to harm cardiomyocytes in acute myocardial infarction. However, the mechanisms by which IGFBP-1 affects cardiomyocytes remain undefined. The present study demonstrated that hypoxia up-regulates IGFBP-1 and HIF-1α protein expression in cardiomyocytes. Subsequent assays showed that IGFBP-1 suppression decreased HIF-1α expression and inhibited hypoxia-induced apoptosis in cardiomyocytes, which was reversed by HIF-1α overexpression, indicating that HIF-1α is essential to IGFBP-1 function in cellular apoptosis. In addition, we showed that IGFBP-1 regulated HIF-1α stabilization through interacting with VHL. The present findings suggest that IGFBP-1–HIF-1α could be targeted for treating ischemic heart disease.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Huilin Jiang
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Peiyi Lin
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Zhenhui Zhang
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Meiting Chen
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Yi Zhang
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Junrong Mo
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Yongcheng Zhu
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Ningning Liu
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China. .,Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China.
| | - Xiaohui Chen
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Lay AC, Hale LJ, Stowell-Connolly H, Pope RJP, Nair V, Ju W, Marquez E, Rollason R, Hurcombe JA, Hayes B, Roberts T, Gillam L, Allington J, Nelson RG, Kretzler M, Holly JMP, Perks CM, McArdle CA, Welsh GI, Coward RJM. IGFBP-1 expression is reduced in human type 2 diabetic glomeruli and modulates β1-integrin/FAK signalling in human podocytes. Diabetologia 2021; 64:1690-1702. [PMID: 33758952 PMCID: PMC8187213 DOI: 10.1007/s00125-021-05427-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/14/2021] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Podocyte loss or injury is one of the earliest features observed in the pathogenesis of diabetic kidney disease (DKD), which is the leading cause of end-stage renal failure worldwide. Dysfunction in the IGF axis, including in IGF binding proteins (IGFBPs), is associated with DKD, particularly in the early stages of disease progression. The aim of this study was to investigate the potential roles of IGFBPs in the development of type 2 DKD, focusing on podocytes. METHODS IGFBP expression was analysed in the Pima DKD cohort, alongside data from the Nephroseq database, and in ex vivo human glomeruli. Conditionally immortalised human podocytes and glomerular endothelial cells were studied in vitro, where IGFBP-1 expression was analysed using quantitative PCR and ELISAs. Cell responses to IGFBPs were investigated using migration, cell survival and adhesion assays; electrical cell-substrate impedance sensing; western blotting; and high-content automated imaging. RESULTS Data from the Pima DKD cohort and from the Nephroseq database demonstrated a significant reduction in glomerular IGFBP-1 in the early stages of human type 2 DKD. In the glomerulus, IGFBP-1 was predominantly expressed in podocytes and controlled by phosphoinositide 3-kinase (PI3K)-forkhead box O1 (FoxO1) activity. In vitro, IGFBP-1 signalled to podocytes via β1-integrins, resulting in increased phosphorylation of focal-adhesion kinase (FAK), increasing podocyte motility, adhesion, electrical resistance across the adhesive cell layer and cell viability. CONCLUSIONS/INTERPRETATION This work identifies a novel role for IGFBP-1 in the regulation of podocyte function and that the glomerular expression of IGFBP-1 is reduced in the early stages of type 2 DKD, via reduced FoxO1 activity. Thus, we hypothesise that strategies to maintain glomerular IGFBP-1 levels may be beneficial in maintaining podocyte function early in DKD.
Collapse
Affiliation(s)
- Abigail C Lay
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lorna J Hale
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Robert J P Pope
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Eva Marquez
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ruth Rollason
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jenny A Hurcombe
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Bryony Hayes
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Timothy Roberts
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lawrence Gillam
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jonathan Allington
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Robert G Nelson
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jeff M P Holly
- IGFs and Metabolic Endocrinology Group, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claire M Perks
- IGFs and Metabolic Endocrinology Group, Bristol Medical School, University of Bristol, Bristol, UK
| | - Craig A McArdle
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Richard J M Coward
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
10
|
Lin YW, Weng XF, Huang BL, Guo HP, Xu YW, Peng YH. IGFBP-1 in cancer: expression, molecular mechanisms, and potential clinical implications. Am J Transl Res 2021; 13:813-832. [PMID: 33841624 PMCID: PMC8014352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/09/2020] [Indexed: 02/05/2023]
Abstract
Insulin-like growth factor binding protein-1 (IGFBP-1) belongs to the insulin-like growth factor (IGF) system, which plays an indispensable role in normal growth and development, and in the pathophysiology of various tumors. IGFBP-1 has been shown to be associated with the risk of various tumors, and has a vital function in regulating tumor behaviors such as proliferation, migration, invasion and adhesion through different molecular mechanisms. The biological actions of IGFBP-1 in cancer are found to be related to its phosphorylation state, and the IGF-dependent and -independent mechanisms. In this review, we provided an overview of IGFBP-1 in normal physiology, and its aberrantly expression and the underlying molecular mechanisms in a range of common tumors, as well as discussed the potential clinical implications of IGFBP-1 as diagnostic or prognostic biomarkers in cancer.
Collapse
Affiliation(s)
- Yi-Wei Lin
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
- Precision Medicine Research Center, Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
| | - Xue-Fen Weng
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
- Precision Medicine Research Center, Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
| | - Bin-Liang Huang
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
- Precision Medicine Research Center, Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
| | - Hai-Peng Guo
- Department of Head and Neck Surgery, The Cancer Hospital of Shantou University Medical CollegeShantou 515041, People’s Republic of China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
- Precision Medicine Research Center, Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
- Precision Medicine Research Center, Shantou University Medical CollegeShantou, Guangdong, People’s Republic of China
| |
Collapse
|
11
|
The Prognostic Values of the Insulin-Like Growth Factor Binding Protein Family in Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7658782. [PMID: 33282953 PMCID: PMC7685796 DOI: 10.1155/2020/7658782] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Purpose To assess the expression of insulin-like growth factor binding protein (IGFBP) family and its prognostic impact in ovarian cancer (OC) patients. Materials and Methods The mRNA expression and protein expression of individual IGFBPs in healthy ovarian samples and OC tissues were explored through Oncomine, Gene Expression Profiling Interactive Analysis, and Human Protein Atlas database. Additionally, the prognostic values of the six IGFBP members in patients with OC were evaluated by Kaplan-Meier plotter. Results IGFBP2 and IGFBP4 mRNA expression were remarkably upregulated in patients with OC. To be specific, the mRNA expression of IGFBP2 was upregulated in patients with serous ovarian cancer (SOC), while IGFBP1/3/4/5/6 mRNA levels were downregulated. In addition, the IGFBP4 protein expression was upregulated in SOC, and the IGFBP6 protein expression was upregulated in both of SOC and endometrioid ovarian cancer (EOC) tissues. High IGFBP1 mRNA levels showed favorable overall survival (OS) and progression-free survival (PFS) in all OC. Meanwhile, increased IGFBP5/6 mRNA levels revealed worsen OS and PFS in all OC patients. IGFBP4/6 mRNA levels predicted unfavorable OS and PFS only in SOC patients. Moreover, the aberrant mRNA expression of IGFBP1/2/4/5/6 was correlated with significantly prognosis in patients receiving different chemotherapeutic regimens. Conclusion This study indicates that the IGFBP family reveals distinct prognosis in patients with OC. IGFBP1/2/4/5/6 are useful prognostic predictors for chemotherapeutic effect in OC patients, and IGFBP2/4 are potential tumor markers for the diagnosis of OC.
Collapse
|
12
|
Amin R, Tripathi K, Sanderson RD. Nuclear Heparanase Regulates Chromatin Remodeling, Gene Expression and PTEN Tumor Suppressor Function. Cells 2020; 9:cells9092038. [PMID: 32899927 PMCID: PMC7564302 DOI: 10.3390/cells9092038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023] Open
Abstract
Heparanase (HPSE) is an endoglycosidase that cleaves heparan sulfate and has been shown in various cancers to promote metastasis, angiogenesis, osteolysis, and chemoresistance. Although heparanase is thought to act predominantly extracellularly or within the cytoplasm, it is also present in the nucleus, where it may function in regulating gene transcription. Using myeloma cell lines, we report here that heparanase enhances chromatin accessibility and confirm a previous report that it also upregulates the acetylation of histones. Employing the Multiple Myeloma Research Foundation CoMMpass database, we demonstrate that patients expressing high levels of heparanase display elevated expression of proteins involved in chromatin remodeling and several oncogenic factors compared to patients expressing low levels of heparanase. These signatures were consistent with the known function of heparanase in driving tumor progression. Chromatin opening and downstream target genes were abrogated by inhibition of heparanase. Enhanced levels of heparanase in myeloma cells led to a dramatic increase in phosphorylation of PTEN, an event known to stabilize PTEN, leading to its inactivity and loss of tumor suppressor function. Collectively, this study demonstrates that heparanase promotes chromatin opening and transcriptional activity, some of which likely is through its impact on diminishing PTEN tumor suppressor activity.
Collapse
|
13
|
Founds SA, Stolz DB. Gene expression of four targets in situ of the first trimester maternal-fetoplacental interface. Tissue Cell 2019; 64:101313. [PMID: 32473702 DOI: 10.1016/j.tice.2019.101313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/19/2019] [Accepted: 11/05/2019] [Indexed: 11/16/2022]
Abstract
EPAS1, FSTL3, IGFBP1, and SEMA3C were localized to determine whether expression is decidual, trophoblastic, or both in the human first trimester maternal-fetoplacental interface. Identified on global genome-wide microarray analysis of chorionic villus sampling tissues in preclinical preeclampsia, these targets were predicted to interact by bioinformatics pathways analysis. In situ hybridization (ISH) with mRNA of each gene was conducted in 10 cases of archived first trimester termination tissues. Randomly selected areas of cells by tissue type yielded the relative proportion of cells expressing mRNA signal in decidual and fetoplacental sites. Data were analyzed using Shapiro-Wilk and Kruskal-Wallis tests (p ≤ .05). The average gestational age was 10.2 weeks. Expression signal for each gene differed by cell type (p < .001). FSTL3 expression was 17 times higher in cells of anchoring columns than areas of decidua without ISH signal. SEMA3C was three times higher in cells of anchoring columns than in decidua. EPAS1 was 1.31 times higher in cells of anchoring columns than in areas of decidua. IGFBP1 was 20 times higher in some decidua versus cells in anchoring columns or villous trophoblast. While all targets were expressed by both maternal and fetoplacental cells, our localizations identified which compartment had relatively higher expression of each gene.
Collapse
Affiliation(s)
- Sandra A Founds
- School of Nursing, Member Magee-Womens Research Institute, University of Pittsburgh, 3500 Victoria St., 448 Victoria Building, Pittsburgh, PA, 15261, United States.
| | - Donna B Stolz
- Cell Biology Associate Director, Center for Biologic Imaging, University of Pittsburgh, United States
| |
Collapse
|
14
|
Wang J, Hu ZG, Li D, Xu JX, Zeng ZG. Gene expression and prognosis of insulin‑like growth factor‑binding protein family members in non‑small cell lung cancer. Oncol Rep 2019; 42:1981-1995. [PMID: 31545451 PMCID: PMC6787967 DOI: 10.3892/or.2019.7314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/09/2019] [Indexed: 01/03/2023] Open
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. Approximately 85% of all lung cancer cases are classified as non-small cell lung cancer (NSCLC). Currently, there is no standard method to predict the survival of patients with NSCLC. Insulin-like growth factor-binding proteins (IGFBPs) function as modulators of IGF signaling and are attracting increasing attention for their role in NSCLC. However, the prognostic values of individual IGFBPs in NSCLC, particularly at the mRNA level, remain unknown. In the present study, the distinct expression patterns and prognostic values of IGFBP family members in patients with NSCLC through bioinformatics analysis were reported using a series of databases, including Gene Expression Profiling Interactive Analysis, Kaplan-Meier Plotter, cBioPortal, GeneMANIA, and the Database for Annotation, Visualization and Integrated Discovery. In patients with NSCLC, IGFBP2 and IGFBP3 were significantly upregulated, while IGFBP6 was downregulated. High IGFBP1/2/4 expression was correlated with poor overall survival (OS) in all NSCLC types, especially adenocarcinoma; however, high IGFBP2/5 expression was significantly correlated with favorable OS only in patients with squamous cell carcinoma. In addition, aberrant IGFBP1/2/3/4/5 mRNA levels were associated with the prognosis of subsets of NSCLC with different clinicopathological features. These results indicated that various IGFBPs can serve as useful prognostic biomarkers and as potential targets for NSCLC therapies.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhi-Guo Hu
- Department of Critical Care Medicine, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Dan Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ji-Xion Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhen-Guo Zeng
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
15
|
Wang J, Luo XX, Tang YL, Xu JX, Zeng ZG. The prognostic values of insulin-like growth factor binding protein in breast cancer. Medicine (Baltimore) 2019; 98:e15561. [PMID: 31083221 PMCID: PMC6531130 DOI: 10.1097/md.0000000000015561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Insulin-like growth factor binding proteins (IGFBPs) are a family of proteins binding to insulin-like growth factors, generally consisting 6 high-affinity IGFBPs, namely IGFBP1 through IGFBP6. IGFBP family members have been indicated to be involved in the development and progression of tumors and may be useful prognostic biomarkers in various malignancies. However, the prognostic role of individual IGFBPs, especially at the mRNA level in breast cancer patients remains elusive.We accessed the prognostic roles of IGFBPs family (IGFBP1-6) in breast cancer through the "Kaplan-Meier plotter" online database and OncoLnc database.Our results showed that the high expression of IGFBP1 mRNA was associated with favorable relapsed free survival (RFS) in all breast cancer patients. The high expression of IGFBP2 mRNA was associated with favorable overall survival (OS) and RFS in all breast cancer patients. The high expression of IGFBP3 mRNA was significantly correlated to worsen RFS in all breast cancer patients. The high expression of IGFBP4 mRNA was associated with favorable OS, RFS, distant metastasis-free survival, and post-progression survival in all breast cancer patients.Our results indicated that expression of IGFBPs mRNA may have prognostic values in breast cancer patients, and have a benefit for developing tools to predict the prognosis more accurately.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanchang University
| | - Xin-Xin Luo
- Department of Pharmacy, Jiangxi Provincial People's Hospital
| | | | - Ji-Xion Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanchang University
| | - Zhen-Guo Zeng
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
16
|
Inactivation of Stat3 and crosstalk of miRNA155-5p and FOXO3a contribute to the induction of IGFBP1 expression by beta-elemene in human lung cancer. Exp Mol Med 2018; 50:1-14. [PMID: 30209296 PMCID: PMC6135838 DOI: 10.1038/s12276-018-0146-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022] Open
Abstract
β-Elemene, an active component of natural plants, has been shown to exhibit anticancer properties. However, the detailed mechanism underlying these effects has yet to be determined. In this study, we show that β-elemene inhibits the growth of lung cancer cells. Mechanistically, we found that β-elemene decreased the phosphorylation of signal transducer and activator of transcription 3 (Stat3) and miRNA155-5p mRNA but induced the protein expression of human forkhead box class O (FOXO)3a; the latter two were abrogated in cells with overexpressed Stat3. Notably, miRNA155-5p mimics reduced FOXO3a luciferase reporter activity in the 3-UTR region and protein expression, whereas overexpressed FOXO3a countered the reduction of the miRNA155-5p levels by β-elemene. Moreover, β-elemene increased the mRNA and protein expression levels as well as promoter activity of insulin-like growth factor-binding protein 1 (IGFBP1); this finding was not observed in cells with a silenced FOXO3a gene and miRNA155-5p mimics. Finally, silencing of IGFBP1 blocked β-elemene-inhibited cell growth. Similar findings were observed in vivo. In summary, our results indicate that β-elemene increases IGFBP1 gene expression via inactivation of Stat3 followed by a reciprocal interaction between miRNA155-5p and FOXO3a. This effect leads to inhibition of human lung cancer cell growth. These findings reveal a novel molecular mechanism underlying the inhibitory effects of β-elemene on lung cancer cells. A compound found in one Chinese medicinal herb inhibits the growth of lung cancer cells by indirectly activating a protein with anti-proliferative properties. Hann and colleagues from the Guangzhou University of Chinese Medicine, China, uncovered the molecular pathways by which β-elemene, a natural compound isolated from the Curcuma wenyujin plant, mediates the anti-cancer effects. They showed that β-elemene inactivates the two important regulatory molecules, one protein and another small RNA, while also inducing the expression of one protein that promotes in killing cancer cells. These changes lead to elevated levels of the protein that prevents cell invasion and spread. Collectively, this altered signaling inside the lung cancer cell lead to reduced growth, in both cell-based culture and mouse model. The findings help explain why β-elemene has potential as a therapeutic agent in lung cancer.
Collapse
|
17
|
Zhao F, Yang Z, Chen Y, Zhou Q, Zhang J, Liu J, Wang B, He Q, Zhang L, Yu Y, Liu P. Deregulation of the Hippo Pathway Promotes Tumor Cell Proliferation Through YAP Activity in Human Sporadic Vestibular Schwannoma. World Neurosurg 2018; 117:e269-e279. [DOI: 10.1016/j.wneu.2018.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/21/2022]
|
18
|
Soini T, Eloranta K, Pihlajoki M, Kyrönlahti A, Akinrinade O, Andersson N, Lohi J, Pakarinen MP, Wilson DB, Heikinheimo M. Transcription factor GATA4 associates with mesenchymal-like gene expression in human hepatoblastoma cells. Tumour Biol 2018; 40:1010428318785498. [PMID: 30074440 DOI: 10.1177/1010428318785498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
GATA4, a transcription factor crucial for early liver development, has been implicated in the pathophysiology of hepatoblastoma, an embryonal tumor of childhood. However, the molecular and phenotypic consequences of GATA4 expression in hepatoblastoma are not fully understood. We surveyed GATA4 expression in 24 hepatoblastomas using RNA in situ hybridization and immunohistochemistry. RNA interference was used to inhibit GATA4 in human HUH6 hepatoblastoma cells, and changes in cell migration were measured with wound healing and transwell assays. RNA microarray hybridization was performed on control and GATA4 knockdown HUH6 cells, and differentially expressed genes were validated by quantitative polymerase chain reaction or immunostaining. Plasmid transfection was used to overexpress GATA4 in primary human hepatocytes and ensuring changes in gene expression were measured by quantitative polymerase chain reaction. We found that GATA4 expression was high in most hepatoblastomas but weak or negligible in normal hepatocytes. GATA4 gene silencing impaired HUH6 cell migration. We identified 106 differentially expressed genes (72 downregulated, 34 upregulated) in knockdown versus control HUH6 cells. GATA4 silencing altered the expression of genes associated with cytoskeleton organization, cell-to-cell adhesion, and extracellular matrix dynamics (e.g. ADD3, AHNAK, DOCK8, RHOU, MSF, IGFBP1, COL4A2). These changes in gene expression reflected a more epithelial (less malignant) phenotype. Consistent with this notion, there was reduced F-actin stress fiber formation in knockdown HUH6 cells. Forced expression of GATA4 in primary human hepatocytes triggered opposite changes in the expression of genes identified by GATA4 silencing in HUH6 cells. In conclusion, GATA4 is highly expressed in most hepatoblastomas and correlates with a mesenchymal, migratory phenotype of hepatoblastoma cells.
Collapse
Affiliation(s)
- Tea Soini
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Katja Eloranta
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjut Pihlajoki
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- 2 Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Antti Kyrönlahti
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- 2 Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Oyediran Akinrinade
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Noora Andersson
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jouko Lohi
- 3 Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko P Pakarinen
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- 4 Unit of Pediatric Surgery and Pediatric Liver and Gut Research Group, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - David B Wilson
- 2 Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- 5 Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Markku Heikinheimo
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- 2 Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
19
|
Petrilli AM, Garcia J, Bott M, Klingeman Plati S, Dinh CT, Bracho OR, Yan D, Zou B, Mittal R, Telischi FF, Liu XZ, Chang LS, Welling DB, Copik AJ, Fernández-Valle C. Ponatinib promotes a G1 cell-cycle arrest of merlin/NF2-deficient human schwann cells. Oncotarget 2018; 8:31666-31681. [PMID: 28427224 PMCID: PMC5458238 DOI: 10.18632/oncotarget.15912] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/20/2017] [Indexed: 02/04/2023] Open
Abstract
Neurofibromatosis type 2 (NF2) is a genetic syndrome that predisposes individuals to multiple benign tumors of the central and peripheral nervous systems, including vestibular schwannomas. Currently, there are no FDA approved drug therapies for NF2. Loss of function of merlin encoded by the NF2 tumor suppressor gene leads to activation of multiple mitogenic signaling cascades, including platelet-derived growth factor receptor (PDGFR) and SRC in Schwann cells. The goal of this study was to determine whether ponatinib, an FDA-approved ABL/SRC inhibitor, reduced proliferation and/or survival of merlin-deficient human Schwann cells (HSC). Merlin-deficient HSC had higher levels of phosphorylated PDGFRα/β, and SRC than merlin-expressing HSC. A similar phosphorylation pattern was observed in phospho-protein arrays of human vestibular schwannoma samples compared to normal HSC. Ponatinib reduced merlin-deficient HSC viability in a dose-dependent manner by decreasing phosphorylation of PDGFRα/β, AKT, p70S6K, MEK1/2, ERK1/2 and STAT3. These changes were associated with decreased cyclin D1 and increased p27Kip1levels, leading to a G1 cell-cycle arrest as assessed by Western blotting and flow cytometry. Ponatinib did not modulate ABL, SRC, focal adhesion kinase (FAK), or paxillin phosphorylation levels. These results suggest that ponatinib is a potential therapeutic agent for NF2-associated schwannomas and warrants further in vivo investigation.
Collapse
Affiliation(s)
- Alejandra M Petrilli
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| | - Jeanine Garcia
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| | - Marga Bott
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| | - Stephani Klingeman Plati
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| | - Christine T Dinh
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Olena R Bracho
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Denise Yan
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Bing Zou
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Rahul Mittal
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Fred F Telischi
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Xue-Zhong Liu
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Long-Sheng Chang
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - D Bradley Welling
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.,Current Affiliation: Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital and Harvard University, Boston, MA 02114, USA
| | - Alicja J Copik
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| | - Cristina Fernández-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| |
Collapse
|
20
|
Aziz A, Haywood NJ, Cordell PA, Smith J, Yuldasheva NY, Sengupta A, Ali N, Mercer BN, Mughal RS, Riches K, Cubbon RM, Porter KE, Kearney MT, Wheatcroft SB. Insulinlike Growth Factor-Binding Protein-1 Improves Vascular Endothelial Repair in Male Mice in the Setting of Insulin Resistance. Endocrinology 2018; 159:696-709. [PMID: 29186427 PMCID: PMC5776633 DOI: 10.1210/en.2017-00572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/21/2017] [Indexed: 12/19/2022]
Abstract
Insulin resistance is associated with impaired endothelial regeneration in response to mechanical injury. We recently demonstrated that insulinlike growth factor-binding protein-1 (IGFBP1) ameliorated insulin resistance and increased nitric oxide generation in the endothelium. In this study, we hypothesized that IGFBP1 would improve endothelial regeneration and restore endothelial reparative functions in the setting of insulin resistance. In male mice heterozygous for deletion of insulin receptors, endothelial regeneration after femoral artery wire injury was enhanced by transgenic expression of human IGFBP1 (hIGFBP1). This was not explained by altered abundance of circulating myeloid angiogenic cells. Incubation of human endothelial cells with hIGFBP1 increased integrin expression and enhanced their ability to adhere to and repopulate denuded human saphenous vein ex vivo. In vitro, induction of insulin resistance by tumor necrosis factor α (TNFα) significantly inhibited endothelial cell migration and proliferation. Coincubation with hIGFBP1 restored endothelial migratory and proliferative capacity. At the molecular level, hIGFBP1 induced phosphorylation of focal adhesion kinase, activated RhoA and modulated TNFα-induced actin fiber anisotropy. Collectively, the effects of hIGFBP1 on endothelial cell responses and acceleration of endothelial regeneration in mice indicate that manipulating IGFBP1 could be exploited as a putative strategy to improve endothelial repair in the setting of insulin resistance.
Collapse
Affiliation(s)
- Amir Aziz
- Leeds Institute of Cardiovascular and Metabolic Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Natalie J Haywood
- Leeds Institute of Cardiovascular and Metabolic Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Paul A Cordell
- Leeds Institute of Cardiovascular and Metabolic Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Jess Smith
- Leeds Institute of Cardiovascular and Metabolic Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Nadira Y Yuldasheva
- Leeds Institute of Cardiovascular and Metabolic Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Anshuman Sengupta
- Leeds Institute of Cardiovascular and Metabolic Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Noman Ali
- Leeds Institute of Cardiovascular and Metabolic Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Ben N Mercer
- Leeds Institute of Cardiovascular and Metabolic Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Romana S Mughal
- Leeds Institute of Cardiovascular and Metabolic Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Kirsten Riches
- School of Chemistry and Biosciences, University of Bradford, Bradford, United Kingdom
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Karen E Porter
- Leeds Institute of Cardiovascular and Metabolic Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular and Metabolic Medicine and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
21
|
Le A, Wang ZH, Dai XY, Xiao TH, Zhuo R, Zhang B, Xiao Z, Fan X. Icaritin inhibits decidualization of endometrial stromal cells. Exp Ther Med 2017; 14:5949-5955. [PMID: 29285144 PMCID: PMC5740763 DOI: 10.3892/etm.2017.5278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/28/2017] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate the effects of Icaritin on the proliferation and decidualization of endometrial stromal cells (ESCs). A total of 20 specimens of endometrium were collected during hysterectomy at the Gynecology Department of Shenzhen Nanshan People's Hospital (Shenzhen, China) between August 2014 and December 2015. The endometrium was digested with high concentrations of collagenase and DNase and filtered with meshes, and then the glandular epithelial and stromal cells were separated by the adhesion purification method. The purity of stromal cells was identified by vimetin and cytokeratin 7 immunostaining. The estradiol + progesterone (E2+P4) and/or cyclic adenosine monophosphate (cAMP) were added to induce an in vitro decidualization model, which was used to analyze the effect of Icaritin on the decidualization ability of the human ESCs. The decidualization markers of human ESCs, prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP-1), was analyzed by reverse-transcription quantitative polymerase chain reaction measurements of the mRNA levels, PRL immunostaining and ELISA analysis of the IGFBP-1 protein levels in the cells or cell culture supernatant separately. The results demonstrated that treatment with E2+P4 and/or cAMP for 96 h was able to induce decidualization in ESCs, and that the cells demonstrated polygon-shaped epithelioid changes. The cell nuclei revealed multinuclear changes, and the cells were also observed to be large and round in shape. The PRL expression and upregulated IGFBP-1 mRNA and protein levels in the E2+P4+cAMP treatment group indicated successful decidualization of the in vitro model. However, the addition of Icaritin inhibited the expression of PRL and IGFBP-1 mRNA, as well as IGFBP-1 protein in the induced ESCs compared with groups without Icaritin. These results suggest that Icaritin was able to inhibit the expression of decidualization-related genes in ESCs in vitro. However, the exact mechanisms require further investigation.
Collapse
Affiliation(s)
- Aiwen Le
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Nanshan People's Hospital of Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| | - Zhong Hai Wang
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Nanshan People's Hospital of Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| | - Xiao Yun Dai
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Nanshan People's Hospital of Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| | - Tian Hui Xiao
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Nanshan People's Hospital of Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| | - Rong Zhuo
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Nanshan People's Hospital of Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| | - Baozhen Zhang
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P.R. China
| | - Zhonglin Xiao
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P.R. China
| | - Xiujun Fan
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
22
|
Insulin-like growth factor binding protein-1 (IGFBP-1) upregulated by Helicobacter pylori and is associated with gastric cancer cells migration. Pathol Res Pract 2017; 213:1029-1036. [PMID: 28864349 DOI: 10.1016/j.prp.2017.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/26/2017] [Accepted: 08/20/2017] [Indexed: 12/24/2022]
Abstract
Insulin-like growth factor binding protein-1 (IGFBP-1), a secreted protein, implicated of various cells in mediating the proliferation, migration, invasion, adhesion, survival and so on. In this study, we assessed the expression and release of IGFBP-1 from gastric cancer cells with H. pylori 26695 infection and the biological functions of IGFBP-1 in gastric cancer cells. The results showed that the expression and release of IGFBP-1 were increased in gastric cancer cells (MGC-803, BGC-823, SGC-7901) infected with H. pylori 26695. In addition, the upregulation of IGFBP-1 was dose-dependent in BGC-823 cells infected with H. pylori 26695 but not time-dependent. The upregulation of IGFBP-1 got to peak at 12h after H. pylori 26695 infection and then decreased over time. Subsequently, we measured its functions by silencing and overexpressing IGFBP1 which suggested that overexpression of IGFBP-1 could inhibit the migration of BGC-823 and SGC-7901 cells. However, knocking down the IGFBP-1 could increase the migration of BGC-823 and SGC-7901 cells. Functional findings illustrated that IGFBP-1 was implicated in H. pylori 26695-induced MMP-9 expression in BGC-823 cells. In addition, overexpressing IGFBP1 reduce the promoting effect of MMP-9 on the BGC-823 cells migration. In summary, we demonstrated that IGFBP-1 suppress the migration of BGC-823 cells and play a protective role in the process of H. pylori-induced gastric cancer.
Collapse
|
23
|
Taylor RL, Zhang Y, Schöning JP, Deakin JE. Identification of candidate genes for devil facial tumour disease tumourigenesis. Sci Rep 2017; 7:8761. [PMID: 28821767 PMCID: PMC5562891 DOI: 10.1038/s41598-017-08908-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
Devil facial tumour (DFT) disease, a transmissible cancer where the infectious agent is the tumour itself, has caused a dramatic decrease in Tasmanian devil numbers in the wild. The purpose of this study was to take a candidate gene/pathway approach to identify potentially perturbed genes or pathways in DFT. A fusion of chromosome 1 and X is posited as the initial event leading to the development of DFT, with the rearranged chromosome 1 material now stably maintained as the tumour spreads through the population. This hypothesis makes chromosome 1 a prime chromosome on which to search for mutations involved in tumourigenesis. As DFT1 has a Schwann cell origin, we selected genes commonly implicated in tumour pathways in human nerve cancers, or cancers more generally, to determine whether they were rearranged in DFT1, and mapped them using molecular cytogenetics. Many cancer-related genes were rearranged, such as the region containing the tumour suppressor NF2 and a copy gain for ERBB3, a member of the epidermal growth factor receptor family of receptor tyrosine kinases implicated in proliferation and invasion of tumours in humans. Our mapping results have provided strong candidates not previously detected by sequencing DFT1 genomes.
Collapse
Affiliation(s)
- Robyn L Taylor
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Yiru Zhang
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Jennifer P Schöning
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Queensland, 4067, Australia
| | - Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2617, Australia.
| |
Collapse
|
24
|
Cellular prion protein (PrP C) in the development of Merlin-deficient tumours. Oncogene 2017; 36:6132-6142. [PMID: 28692055 DOI: 10.1038/onc.2017.200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/14/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022]
Abstract
Loss of function mutations in the neurofibromatosis Type 2 (NF2) gene, coding for a tumour suppressor, Merlin, cause multiple tumours of the nervous system such as schwannomas, meningiomas and ependymomas. These tumours may occur sporadically or as part of the hereditary condition neurofibromatosis Type 2 (NF2). Current treatment is confined to (radio) surgery and no targeted drug therapies exist. NF2 mutations and/or Merlin inactivation are also seen in other cancers including some mesothelioma, breast cancer, colorectal carcinoma, melanoma and glioblastoma. To study the relationship between Merlin deficiency and tumourigenesis, we have developed an in vitro model comprising human primary schwannoma cells, the most common Merlin-deficient tumour and the hallmark for NF2. Using this model, we show increased expression of cellular prion protein (PrPC) in schwannoma cells and tissues. In addition, a strong overexpression of PrPC is observed in human Merlin-deficient mesothelioma cell line TRA and in human Merlin-deficient meningiomas. PrPC contributes to increased proliferation, cell-matrix adhesion and survival in schwannoma cells acting via 37/67 kDa non-integrin laminin receptor (LR/37/67 kDa) and downstream ERK1/2, PI3K/AKT and FAK signalling pathways. PrPC protein is also strongly released from schwannoma cells via exosomes and as a free peptide suggesting that it may act in an autocrine and/or paracrine manner. We suggest that PrPC and its interactor, LR/37/67 kDa, could be potential therapeutic targets for schwannomas and other Merlin-deficient tumours.
Collapse
|
25
|
Parvaneh Tafreshi A, Talebi F, Ghorbani S, Bernard C, Noorbakhsh F. Altered expression of IGF-I system in neurons of the inflamed spinal cord during acute experimental autoimmune encephalomyelitis. J Comp Neurol 2017; 525:3072-3082. [PMID: 28617951 DOI: 10.1002/cne.24263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 11/09/2022]
Abstract
There is growing evidence that the impaired IGF-I system contributes to neurodegeneration. In this study, we examined the spinal cords of the EAE, the animal model of multiple sclerosis, to see if the expression of the IGF-I system is altered. To induce EAE, C57/BL6 mice were immunized with the Hooke lab MOG kit, sacrificed at the peak of the disease and their spinal cords were examined for the immunoreactivities (ir) of the IGF-I, IGF binding protein-1 (IGFBP-1) and glycogen synthase kinase 3β (GSK3β), as one major downstream molecule in the IGF-I signaling. Although neurons in the non EAE spinal cords did not show the IGF-I immunoreactivity, they were numerously positive for the IGFBP-1. In the inflamed EAE spinal cord however, the patterns of expressions were reversed, that is, a significant increased number of IGF-I expressing neurons versus a reduced number of IGFBP-1 positive neurons. Moreover, while nearly all IGF-I-ir neurons expressed GSK3β, some expressed it more intensely. Considering our previous finding where we showed a significant reduced number of the inactive (phosphorylated) but not that of the total GSK3β expressing neurons in the EAE spinal cord, it is conceivable that the intense total GSK3β expression in the IGF-I-ir neurons belongs to the active form of GSK3β known to exert neuroinflammatory effects. We therefore suggest that the altered expression of the IGF-I system including GSK3β in spinal cord neurons might involve in pathophysiological events during the EAE.
Collapse
Affiliation(s)
- Azita Parvaneh Tafreshi
- Department of Molecular Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Farideh Talebi
- Department of Immunology, Faculty of Medicine, Tehran University of Medical, Sciences, Tehran, Iran
| | - Samira Ghorbani
- Department of Immunology, Faculty of Medicine, Tehran University of Medical, Sciences, Tehran, Iran
| | - Claude Bernard
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Farshid Noorbakhsh
- Department of Immunology, Faculty of Medicine, Tehran University of Medical, Sciences, Tehran, Iran
| |
Collapse
|
26
|
Tang Q, Wu J, Zheng F, Chen Y, Hann SS. WITHDRAWN: Emodin increases expression of insulin-like growth factor binding protein 1 through activation of MEK/ERK/AMPKα and interaction of PPARγ and Sp1 in lung cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2016:S0925-4439(16)30223-X. [PMID: 27615428 DOI: 10.1016/j.bbadis.2016.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/22/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
Abstract
Due to an error in the publishing process, this article has been withdrawn at the request of the editors. We wish to clarify that this is in no way related to the integrity of the authors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Qing Tang
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, China, 510120
| | - JingJing Wu
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, China, 510120
| | - Fang Zheng
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, China, 510120
| | - YuQing Chen
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, China, 510120
| | - Swei Sunny Hann
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, China, 510120.
| |
Collapse
|
27
|
Yang LJ, Tang Q, Wu J, Chen Y, Zheng F, Dai Z, Hann SS. Inter-regulation of IGFBP1 and FOXO3a unveils novel mechanism in ursolic acid-inhibited growth of hepatocellular carcinoma cells. J Exp Clin Cancer Res 2016; 35:59. [PMID: 27036874 PMCID: PMC4815122 DOI: 10.1186/s13046-016-0330-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/21/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ursolic acid (UA), a natural pentacyclic triterpenoid, exerts anti-tumor effects in various cancer types including hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying this remain largely unknown. METHODS Cell viability and cell cycle were examined by MTT and Flow cytometry assays. Western blot analysis was performed to measure the phosphorylation and protein expression of p38 MAPK, insulin-like growth factor (IGF) binding protein 1 (IGFBP1) and forkhead box O3A (FOXO3a). Quantitative real-time PCR (qRT-PCR) was used to examine the mRNA levels of IGFBP1 gene. Small interfering RNAs (siRNAs) method was used to knockdown IGFBP1 gene. Exogenous expressions of IGFBP1 and FOXO3a were carried out by transient transfection assays. IGFBP1 promoter activity was measured by Secrete-Pair™ Dual Luminescence Assay Kit . In vivo nude mice xenograft model and bioluminescent imaging system were used to confirm the findings in vitro. RESULTS We showed that UA stimulated phosphorylation of p38 MAPK. In addition, UA increased the protein, mRNA levels, and promoter activity of IGFBP1, which was abrogated by the specific inhibitor of p38 MAPK (SB203580). Intriguingly, we showed that UA increased the expression of FOXO3a and that overexpressed FOXO3a enhanced phosphorylation of p38 MAPK, all of which were not observed in cells silencing of endogenous IGFBP1 gene. Moreover, exogenous expressed IGFBP1 strengthened UA-induced phosphorylation of p38 MAPK and FOXO3a protein expression, and more importantly, restored the effect of UA-inhibited growth in cells silencing of endogenous IGFBP1 gene. Consistent with these, UA suppressed tumor growth and increased phosphorylation of p38 MAPK, protein expressions of IGFBP1 and FOXO3a in vivo. CONCLUSION Collectively, our results show that UA inhibits growth of HCC cells through p38 MAPK-mediated induction of IGFBP1 and FOXO3a expression. The interactions between IGFBP1 and FOXO3a, and feedback regulatory loop of p38 MAPK by IGFBP1 and FOXO3a resulting in reciprocal pathways, contribute to the overall effects of UA. This in vitro and in vivo study corroborates a potential novel mechanism by which UA controls HCC growth and implies that the rational targeting IGFBP1 and FOXO3a can be potential for the therapeutic strategy against HCC.
Collapse
Affiliation(s)
- Li Jun Yang
- />Laboratory of Tumor Biology and Target Therapy, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120 China
| | - Qing Tang
- />Laboratory of Tumor Biology and Target Therapy, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120 China
| | - Jingjing Wu
- />Laboratory of Tumor Biology and Target Therapy, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120 China
| | - Yuqing Chen
- />Laboratory of Tumor Biology and Target Therapy, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120 China
| | - Fang Zheng
- />Laboratory of Tumor Biology and Target Therapy, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120 China
| | - Zhenhui Dai
- />Department of Radiation Therapy, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120 China
| | - Swei Sunny Hann
- />Laboratory of Tumor Biology and Target Therapy, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120 China
- />No. 55, Neihuan West Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong Province 510006 P. R. China
| |
Collapse
|
28
|
Chinese Herbal Medicine Fuzheng Kang-Ai Decoction Inhibited Lung Cancer Cell Growth through AMPKα-Mediated Induction and Interplay of IGFBP1 and FOXO3a. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5060757. [PMID: 27057199 PMCID: PMC4757679 DOI: 10.1155/2016/5060757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/21/2015] [Indexed: 12/20/2022]
Abstract
The aim of this study is to investigate the actions of Chinese herbal medicine, called “Fuzheng Kang-Ai” (FZKA for short) decoction, against non-small cell lung cancer (NSCLC) and its mechanisms in vitro and in vivo. We showed that the effect of FZKA decoction significantly inhibited growth of A549 and PC9 cells. Furthermore, FZKA increased phosphorylation of AMP-activated protein kinase alpha (AMPKα) and induced protein expression of insulin-like growth factor (IGF) binding protein 1 (IGFBP1) and forkhead homeobox type O3a (FOXO3a). The specific inhibitor of AMPKα (Compound C) blocked FZKA-induced protein expression of IGFBP1 and FOXO3a. Interestingly, silencing of IGFBP1 and FOXO3a overcame the inhibitory effect of FZKA on cell growth. Moreover, silencing of IGFBP1 attenuated the effect of FZKA decoction on FOXO3a expression, and exogenous expression of FOXO3a enhanced the FZKA-stimulated phosphorylation of AMPKα. Accordingly, FZKA inhibited the tumor growth in xenograft nude mice model. Collectively, our results show that FZKA decoction inhibits proliferation of NSCLC cells through activation of AMPKα, followed by induction of IGFBP1 and FOXO3a proteins. Exogenous expression of FOXO3a feedback enhances FZKA decoction-stimulated IGFBP1 expression and phosphorylation of AMPKα. The reciprocal interplay of IGFBP1 and FOXO3a contribute to the overall responses of FAKA decoction.
Collapse
|
29
|
Tumor Biology of Vestibular Schwannoma: A Review of Experimental Data on the Determinants of Tumor Genesis and Growth Characteristics. Otol Neurotol 2016; 36:1128-36. [PMID: 26049313 DOI: 10.1097/mao.0000000000000788] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Provide an overview of the literature on vestibular schwannoma biology with special attention to tumor behavior and targeted therapy. BACKGROUND Vestibular schwannomas are benign tumors originating from the eighth cranial nerve and arise due to inactivation of the NF2 gene and its product merlin. Unraveling the biology of these tumors helps to clarify their growth pattern and is essential in identifying therapeutic targets. METHODS PubMed search for English-language articles on vestibular schwannoma biology from 1994 to 2014. RESULTS Activation of merlin and its role in cell signaling seem as key aspects of vestibular schwannoma biology. Merlin is regulated by proteins such as CD44, Rac, and myosin phosphatase-targeting subunit 1. The tumor-suppressive functions of merlin are related to receptor tyrosine kinases, such as the platelet-derived growth factor receptor and vascular endothelial growth factor receptor. Merlin mediates the Hippo pathway and acts within the nucleus by binding E3 ubiquiting ligase CRL4. Angiogenesis is an important mechanism responsible for the progression of these tumors and is affected by processes such as hypoxia and inflammation. Inhibiting angiogenesis by targeting vascular endothelial growth factor receptor seems to be the most successful pharmacologic strategy, but additional therapeutic options are emerging. CONCLUSION Over the years, the knowledge on vestibular schwannoma biology has significantly increased. Future research should focus on identifying new therapeutic targets by investigating vestibular schwannoma (epi)genetics, merlin function, and tumor behavior. Besides identifying novel targets, testing new combinations of existing treatment strategies can further improve vestibular schwannoma therapy.
Collapse
|
30
|
Brandt K, Grünler J, Brismar K, Wang J. Effects of IGFBP-1 and IGFBP-2 and their fragments on migration and IGF-induced proliferation of human dermal fibroblasts. Growth Horm IGF Res 2015; 25:34-40. [PMID: 25468444 DOI: 10.1016/j.ghir.2014.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/22/2014] [Accepted: 11/02/2014] [Indexed: 01/13/2023]
Abstract
OBJECTIVE A family of six insulin-like growth factor (IGF) binding-proteins (IGFBP) bind to IGF-I and IGF-II with high affinity and modulate their activity. We have recently shown that a neutrophil-derived protease activity cleaved IGFBP-1, -2 and -4. IGFBP-1 and IGFBP-2 have a C-terminal Arg-Gly-Asp (RGD) sequence, and IGFBP-1 has been shown by others to stimulate migration through binding of its RGD sequence to α5β1 integrin. The aim of this study was to determine the effect of this IGFBP protease on IGF-induced proliferation and the effect of IGFBP-1 and IGFBP-2 and their proteolytic fragments on migration in normal and high glucose of human dermal fibroblasts (HDF). DESIGN We investigated the effect of intact or cleaved IGFBP-1 and -2 on proliferation in cultured HDFs and on HDF migration in normal and high glucose. RESULTS Both IGFBP-1 and IGFBP-2 and their proteolytic fragments stimulated HDF migration and the stimulatory effect was abolished by pre-treating cells with a α5β1 integrin antibody. High glucose impaired migration of HDFs; however, the addition of IGFBP-1, IGFBP-2 or fragments increased migration to levels observed in normoglycemia. IGFBP-2 inhibited IGF-II induced proliferation; however, the inhibitory effect was reduced after being cleaved. Intact native IGFBP-1 showed either potentiating or inhibitory effects on IGF-I induced proliferation depending on the confluence of cells, and proteolysis of IGFBP-1 did not change these effects. IGFBP-1 was found to increase phosphorylation of FAK and ERK1/2 and this effect was inhibited by the monoclonal integrin a5β1 ab. CONCLUSIONS IGFBP-1 and -2 and their proteolytic fragments may improve tissue repair under inflammatory conditions, through effects on proliferation and migration of HDFs in normal and high glucose.
Collapse
Affiliation(s)
- Katrin Brandt
- Department of Molecular Medicine and Surgery, Karolinska Institute, Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Jacob Grünler
- Department of Molecular Medicine and Surgery, Karolinska Institute, Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden.
| | - Kerstin Brismar
- Department of Molecular Medicine and Surgery, Karolinska Institute, Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Jing Wang
- Department of Molecular Medicine and Surgery, Karolinska Institute, Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
31
|
Agnihotri S, Gugel I, Remke M, Bornemann A, Pantazis G, Mack SC, Shih D, Singh SK, Sabha N, Taylor MD, Tatagiba M, Zadeh G, Krischek B. Gene-expression profiling elucidates molecular signaling networks that can be therapeutically targeted in vestibular schwannoma. J Neurosurg 2014; 121:1434-45. [PMID: 25245477 DOI: 10.3171/2014.6.jns131433] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Vestibular schwannomas (VS) are common benign tumors of the vestibular nerve that cause significant morbidity. The current treatment strategies for VS include surgery or radiation, with each treatment option having associated complications and side effects. The transcriptional landscape of schwannoma remains largely unknown. METHODS In this study the authors performed gene-expression profiling of 49 schwannomas and 7 normal control vestibular nerves to identify tumor-specific gene-expression patterns. They also interrogated whether schwannomas comprise several molecular subtypes using several transcription-based clustering strategies. The authors also performed in vitro experiments testing therapeutic inhibitors of over-activated pathways in a schwannoma cell line, namely the PI3K/AKT/mTOR pathway. RESULTS The authors identified over 4000 differentially expressed genes between controls and schwannomas with network analysis, uncovering proliferation and anti-apoptotic pathways previously not implicated in VS. Furthermore, using several distinct clustering technologies, they could not reproducibly identify distinct VS subtypes or significant differences between sporadic and germline NF2-associated schwannomas, suggesting that they are highly similar entities. The authors identified overexpression of PI3K/AKT/mTOR signaling networks in their gene-expression study and evaluated this pathway for therapeutic targeting. Testing the compounds BEZ235 and PKI-587, both novel dual inhibitors of PI3K and mTOR, attenuated tumor growth in a preclinical cell line model of schwannoma (HEI-293). In vitro findings demonstrated that pharmacological inhibition of the PI3K/AKT/mTOR pathway with next-generation compounds led to decreased cell viability and increased cell death. CONCLUSIONS These findings implicate aberrant activation of the PI3K/AKT/mTOR pathway as a molecular mechanism of pathogenesis in VS and suggest inhibition of this pathway as a potential treatment strategy.
Collapse
|
32
|
Ammoun S, Schmid MC, Zhou L, Hilton DA, Barczyk M, Hanemann CO. The p53/mouse double minute 2 homolog complex deregulation in merlin-deficient tumours. Mol Oncol 2014; 9:236-48. [PMID: 25217104 DOI: 10.1016/j.molonc.2014.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/14/2014] [Accepted: 08/14/2014] [Indexed: 11/28/2022] Open
Abstract
Deficiency of the tumour suppressor merlin leads to the development of schwannomas, meningiomas and ependymomas occurring spontaneously or as a part of the hereditary disease Neurofibromatosis type 2 (NF2). Merlin loss is also found in a proportion of other cancers like mesothelioma, melanoma, breast cancer and glioblastoma. The tumour suppressor/transcription factor p53 regulates proliferation, survival and differentiation and its deficiency plays a role in the development of many tumours. 53 can be negatively regulated by FAK, PI3K/AKT and MDM2 and possibly positively regulated by merlin in different cell lines. In this study we investigated the role of p53 in merlin-deficient tumours. Using our in vitro model of primary human schwannoma cells we have previously demonstrated that FAK is overexpressed/activated and localises into the nucleus of schwannoma cells increasing proliferation. AKT is strongly activated via platelet-derived growth factor (PDGF) - and insulin-like growth factor 1 (IGF1) - receptors increasing survival. Here we investigated p53 regulation and its role in proliferation and survival of human primary schwannoma cells using western blotting, immunocytochemistry, immunohistochemistry and proliferation, survival and transcription factor assays. In human primary schwannoma cells p53 was found to be downregulated while MDM2 was upregulated leading to increased cell proliferation and survival. p53 is regulated by merlin involving FAK, AKT and MDM2. Merlin reintroduction into schwannoma cells increased p53 levels and activity, and treatment with Nutlin-3, a drug which increases p53 stability by disrupting the p53/MDM2 complex, decreased tumour growth and reduced cell survival. These findings are important to dissect the mechanisms responsible for the development of merlin-deficient tumours and to identify new therapeutic targets. We suggest that Nutlin-3, possibly in combination with FAK or PI3K inhibitors, can be employed as a novel treatment for schwannoma and other merlin-deficient tumours.
Collapse
Affiliation(s)
- Sylwia Ammoun
- Plymouth University, Peninsula Schools of Medicine and Dentistry, The Institute of Translational and Stratified Medicine, The John Bull Building, Tamar Science Park, Research Way, Plymouth PL6 8BU, UK
| | - Marei Caroline Schmid
- Plymouth University, Peninsula Schools of Medicine and Dentistry, The Institute of Translational and Stratified Medicine, The John Bull Building, Tamar Science Park, Research Way, Plymouth PL6 8BU, UK
| | - Lu Zhou
- Plymouth University, Peninsula Schools of Medicine and Dentistry, The Institute of Translational and Stratified Medicine, The John Bull Building, Tamar Science Park, Research Way, Plymouth PL6 8BU, UK
| | - David A Hilton
- Department of Histopathology, Derriford Hospital, Plymouth, UK
| | - Magdalena Barczyk
- Plymouth University, Peninsula Schools of Medicine and Dentistry, The Institute of Translational and Stratified Medicine, The John Bull Building, Tamar Science Park, Research Way, Plymouth PL6 8BU, UK
| | - Clemens Oliver Hanemann
- Plymouth University, Peninsula Schools of Medicine and Dentistry, The Institute of Translational and Stratified Medicine, The John Bull Building, Tamar Science Park, Research Way, Plymouth PL6 8BU, UK.
| |
Collapse
|
33
|
Abstract
The six members of the family of insulin-like growth factor (IGF) binding proteins (IGFBPs) were originally characterized as passive reservoirs of circulating IGFs, but they are now understood to have many actions beyond their endocrine role in IGF transport. IGFBPs also function in the pericellular and intracellular compartments to regulate cell growth and survival - they interact with many proteins, in addition to their canonical ligands IGF-I and IGF-II. Intranuclear roles of IGFBPs in transcriptional regulation, induction of apoptosis and DNA damage repair point to their intimate involvement in tumour development, progression and resistance to treatment. Tissue or circulating IGFBPs might also be useful as prognostic biomarkers.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| |
Collapse
|
34
|
Lesma E, Ancona S, Sirchia SM, Orpianesi E, Grande V, Colapietro P, Chiaramonte E, Di Giulio AM, Gorio A. TSC2 epigenetic defect in primary LAM cells. Evidence of an anchorage-independent survival. J Cell Mol Med 2014; 18:766-79. [PMID: 24606538 PMCID: PMC4119383 DOI: 10.1111/jcmm.12237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/18/2013] [Indexed: 01/02/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is caused by mutations in TSC1 or TSC2 genes. Lymphangioleiomyomatosis (LAM) can be sporadic or associated with TSC and is characterized by widespread pulmonary proliferation of abnormal α-smooth muscle (ASM)-like cells. We investigated the features of ASM cells isolated from chylous thorax of a patient affected by LAM associated with TSC, named LAM/TSC cells, bearing a germline TSC2 mutation and an epigenetic defect causing the absence of tuberin. Proliferation of LAM/TSC cells is epidermal growth factor (EGF)-dependent and blockade of EGF receptor causes cell death as we previously showed in cells lacking tuberin. LAM/TSC cells spontaneously detach probably for the inactivation of the focal adhesion kinase (FAK)/Akt/mTOR pathway and display the ability to survive independently from adhesion. Non-adherent LAM/TSC cells show an extremely low proliferation rate consistent with tumour stem-cell characteristics. Moreover, LAM/TSC cells bear characteristics of stemness and secrete high amount of interleukin (IL)-6 and IL-8. Anti-EGF receptor antibodies and rapamycin affect proliferation and viability of non-adherent cells. In conclusion, the understanding of LAM/TSC cell features is important in the assessment of cell invasiveness in LAM and TSC and should provide a useful model to test therapeutic approaches aimed at controlling their migratory ability.
Collapse
Affiliation(s)
- Elena Lesma
- Laboratory of Pharmacology, Dept. of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hilton DA, Hanemann CO. Schwannomas and their pathogenesis. Brain Pathol 2014; 24:205-20. [PMID: 24450866 DOI: 10.1111/bpa.12125] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/16/2014] [Indexed: 12/18/2022] Open
Abstract
Schwannomas may occur spontaneously, or in the context of a familial tumor syndrome such as neurofibromatosis type 2 (NF2), schwannomatosis and Carney's complex. Schwannomas have a variety of morphological appearances, but they behave as World Health Organization (WHO) grade I tumors, and only very rarely undergo malignant transformation. Central to the pathogenesis of these tumors is loss of function of merlin, either by direct genetic change involving the NF2 gene on chromosome 22 or secondarily to merlin inactivation. The genetic pathways and morphological features of schwannomas associated with different genetic syndromes will be discussed. Merlin has multiple functions, including within the nucleus and at the cell membrane, and this review summarizes our current understanding of the mechanisms by which merlin loss is involved in schwannoma pathogenesis, highlighting potential areas for therapeutic intervention.
Collapse
Affiliation(s)
- David A Hilton
- Department of Cellular and Anatomical Pathology, Derriford Hospital, Plymouth, UK
| | | |
Collapse
|
36
|
Kim SW, Kim HW, Huang W, Okada M, Welge JA, Wang Y, Ashraf M. Cardiac stem cells with electrical stimulation improve ischaemic heart function through regulation of connective tissue growth factor and miR-378. Cardiovasc Res 2013; 100:241-51. [PMID: 24067999 DOI: 10.1093/cvr/cvt192] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIMS In this study, we investigated whether pre-conditioning (PC) by electrical stimulation (EleS) induces cytoprotective effect on cardiac stem cells (CSCs) and determined its underlying molecular mechanisms. METHODS AND RESULTS Sca-1(+) CSCs were isolated from male C57BL6 mice (12 weeks) hearts. PC of CSCs with EleS ((EleS)CSCs) was carried out for 3 h at 1.5 V followed by exposure to 300 µM H2O2 for 5 h. Cytoprotective effects and cell adhesion ability were significantly increased by EleS as evaluated by transferase-mediated dUTP nick-end labelling (TUNEL), lactate dehydrogenase (LDH) release assay, and adhesion assay. EleS increased phosphorylation of AKT, focal adhesion kinase (FAK), and glycogen synthase kinase (GSK3β), as well as decreased caspase-3 cleavage. Interestingly, inhibition of AKT or FAK abolished the pro-survival effects of EleS. We found that connective tissue growth factor (Ctgf) was responsible for EleS-induced CSC survival and adhesion.The survival rate of (EleS)CSCs after transplantation in the infarcted myocardium was significantly increased together with improvement in cardiac function. Importantly, knockdown of Ctgf abolished EleS-induced cytoprotective effects and recovery of cardiac function. Furthermore, we identified miR-378 as a potential Ctgf regulator in (EleS)CSCs. CONCLUSION EleS enhanced CSC survival in vitro and in vivo as well as functional recovery of the ischaemic heart through an AKT/FAK/CTGF signalling pathway. It is suggested that Ctgf and miR-378 are novel therapeutic targets for stem cell-based therapy.
Collapse
|
37
|
Wilisch-Neumann A, Kliese N, Pachow D, Schneider T, Warnke JP, Braunsdorf WE, Böhmer FD, Hass P, Pasemann D, Helbing C, Kirches E, Mawrin C. The integrin inhibitor cilengitide affects meningioma cell motility and invasion. Clin Cancer Res 2013; 19:5402-12. [PMID: 23948974 DOI: 10.1158/1078-0432.ccr-12-0299] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Meningiomas are frequent intracranial or spinal neoplasms, which recur frequently and can show aggressive clinical behaviour. We elucidated the impact of the integrin inhibitor cilengitide on migration, proliferation, and radiosensitization of meningioma cells. EXPERIMENTAL DESIGN We analyzed integrin expression in tissue microarrays of human meningiomas and the antimeningioma properties of cilengitide in cell cultures, subcutaneous and intracranial nude mouse models by measuring tumor volumes and survival times. RESULTS αvβ5 was the predominantly expressed integrin heterodimer in meningiomas, whereas αvβ3 was mainly detected in tumor blood vessels. Application of up to 100 μg/mL cilengitide resulted in only mildly reduced proliferation/survival of meningioma cell lines. Effects on cell survival could be enhanced by irradiation. One μg/mL cilengitide was sufficient to significantly inhibit meningioma cell migration and invasion in vitro. A daily dosage of 75 mg/kg did neither affect tumor volumes nor overall survival (P = 0.813, log-rank test), but suppressed brain invasion in a significant fraction of treated animals. A combination of 75 mg/kg cilengitide daily and irradiation (2 × 5 Gy) led to a 67% reduction of MRI-estimated tumor volumes in the intracranial model (P < 0.01), whereas the corresponding reduction reached by irradiation alone was only 55% (P < 0.05). CONCLUSIONS These data show that a monotherapy with cilengitide is not likely to achieve major responses in rapidly growing malignant meningiomas, although brain invasion may be reduced because of the strong antimigratory properties of the drug. The combination with radiotherapy warrants further attention.
Collapse
Affiliation(s)
- Annette Wilisch-Neumann
- Authors' Affiliations: Departments of Neuropathology, Neurosurgery and Radiotherapy, Otto vonGuericke University; Neurosurgery, City Hospital; Special Lab for Non-Invasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg; Neurosurgery, Paracelsus Hospital, Zwickau; and Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Doddrell RDS, Dun XP, Shivane A, Feltri ML, Wrabetz L, Wegner M, Sock E, Hanemann CO, Parkinson DB. Loss of SOX10 function contributes to the phenotype of human Merlin-null schwannoma cells. ACTA ACUST UNITED AC 2013; 136:549-63. [PMID: 23413263 PMCID: PMC3572932 DOI: 10.1093/brain/aws353] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Loss of the Merlin tumour suppressor causes abnormal de-differentiation and proliferation of Schwann cells and formation of schwannoma tumours in patients with neurofibromatosis type 2. Within the mature peripheral nerve the normal development, differentiation and maintenance of myelinating and non-myelinating Schwann cells is regulated by a network of transcription factors that include SOX10, OCT6 (now known as POU3F1), NFATC4 and KROX20 (also known as Egr2). We have examined for the first time how their regulation of Schwann cell development is disrupted in primary human schwannoma cells. We find that induction of both KROX20 and OCT6 is impaired, whereas enforced expression of KROX20 drives both myelin gene expression and cell cycle arrest in Merlin-null cells. Importantly, we show that human schwannoma cells have reduced expression of SOX10 protein and messenger RNA. Analysis of mouse SOX10-null Schwann cells shows they display many of the characteristics of human schwannoma cells, including increased expression of platelet derived growth factor receptor beta (PDGFRB) messenger RNA and protein, enhanced proliferation, increased focal adhesions and schwannoma-like morphology. Correspondingly, reintroduction of SOX10 into human Merlin-null cells restores the ability of these cells to induce KROX20 and myelin protein zero (MPZ), localizes NFATC4 to the nucleus, reduces cell proliferation and suppresses PDGFRB expression. Thus, we propose that loss of the SOX10 protein, which is vital for normal Schwann cell development, is also key to the pathology of Merlin-null schwannoma tumours.
Collapse
Affiliation(s)
- Robin D S Doddrell
- Peninsula School of Medicine and Dentistry, University of Plymouth, Devon, PL6 8BU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Axl/Gas6/NFκB signalling in schwannoma pathological proliferation, adhesion and survival. Oncogene 2013; 33:336-46. [PMID: 23318455 DOI: 10.1038/onc.2012.587] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/02/2012] [Accepted: 10/29/2012] [Indexed: 01/01/2023]
Abstract
TAM family receptor tyrosine kinases comprising Tyro3 (Sky), Axl, and Mer are overexpressed in some cancers, correlate with multidrug resistance and contribute to tumourigenesis by regulating invasion, angiogenesis, cell survival and tumour growth. Mutations in the gene coding for a tumour suppressor merlin cause development of multiple tumours of the nervous system such as schwannomas, meningiomas and ependymomas occurring spontaneously or as part of a hereditary disease neurofibromatosis type 2. The benign character of merlin-deficient tumours makes them less responsive to chemotherapy. We previously showed that, amongst other growth factor receptors, TAM family receptors (Tyro3, Axl and Mer) are significantly overexpressed in schwannoma tissues. As Axl is negatively regulated by merlin and positively regulated by E3 ubiquitin ligase CRL4DCAF1, previously shown to be a key regulator in schwannoma growth we hypothesized that Axl is a good target to study in merlin-deficient tumours. Moreover, Axl positively regulates the oncogene Yes-associated protein, which is known to be under merlin regulation in schwannoma and is involved in increased proliferation of merlin-deficient meningioma and mesothelioma. Here, we demonstrated strong overexpression and activation of Axl receptor as well as its ligand Gas6 in human schwannoma primary cells compared to normal Schwann cells. We show that Gas6 is mitogenic and increases schwannoma cell-matrix adhesion and survival acting via Axl in schwannoma cells. Stimulation of the Gas6/Axl signalling pathway recruits Src, focal adhesion kinase (FAK) and NFκB. We showed that NFκB mediates Gas6/Axl-mediated overexpression of survivin, cyclin D1 and FAK, leading to enhanced survival, cell-matrix adhesion and proliferation of schwannoma. We conclude that Axl/FAK/Src/NFκB pathway is relevant in merlin-deficient tumours and is a potential therapeutic target for schwannoma and other merlin-deficient tumours.
Collapse
|
40
|
Ammoun S, Schmid MC, Ristic N, Zhou L, Hilton D, Ercolano E, Carroll C, Hanemann CO. The role of insulin-like growth factors signaling in merlin-deficient human schwannomas. Glia 2012; 60:1721-33. [DOI: 10.1002/glia.22391] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/20/2012] [Accepted: 06/22/2012] [Indexed: 01/05/2023]
|
41
|
Lee EJ, Xu L, Kim GH, Kang SK, Lee SW, Park SH, Kim S, Choi TH, Kim HS. Regeneration of peripheral nerves by transplanted sphere of human mesenchymal stem cells derived from embryonic stem cells. Biomaterials 2012; 33:7039-46. [PMID: 22795857 DOI: 10.1016/j.biomaterials.2012.06.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 06/22/2012] [Indexed: 12/13/2022]
Abstract
In cell therapy, the most important factor for therapeutic efficacy is the stable supply of cells with best engraftment efficiency. To meet this requirement, we have developed a culture strategy such as three-dimensional sphere of human embryonic stem cell-derived mesenchymal stem cells (hESC-MSCs) in serum-free medium. To investigate the in vivo therapeutic efficacy of hESC-MSC spheres in nerve injury model, we transected the sciatic nerve in athymic nude mice and created a 2-mm gap. Transplantation of hESC-MSC as sphere repaired the injured nerve significantly better than transplantation of hESC-MSC as suspended single cells in regard to 1) nerve conduction (sphere; 28.81 ± 3.55 vs. single cells; 18.04 ± 2.10, p < 0.05) and 2) susceptibility of nerve stimulation at low voltage (sphere; 0.38 ± 0.08 vs. single cells; 0.66 ± 0.11, p < 0.05) at 8 weeks. Recovery after sphere transplantation was near-complete when compared with the data of normal control (sphere 28.81 ± 3.55 vs normal 32.62 ± 2.85 in nerve conduction : sphere 0.38 ± 0.08 vs normal 0.36 ± 0.67 in susceptibility of nerve stimulation, no significant difference, respectively). Recovery in function of the injured nerve was well corroborated by the histologic evidence of regenerated nerve. In the mechanistic analysis, the supernatant of sphere-forming hESC-MSC contains hepatocyte growth factor and insulin-like growth factor-binding protein-1 significantly more than the supernatant of the single cells of hESC-MSC has, which might be the key factors for the improved engraftment efficiency and greater regeneration of injured peripheral nerve.
Collapse
Affiliation(s)
- Eun Ju Lee
- National Research Laboratory for Stem Cell Niche and IRICT, Seoul National University Hospital, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhou L, Hanemann CO. Merlin, a multi-suppressor from cell membrane to the nucleus. FEBS Lett 2012; 586:1403-8. [PMID: 22595235 DOI: 10.1016/j.febslet.2012.03.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 01/07/2023]
Abstract
Recent evidence suggests that the neurofibromatosis type 2 (NF2) gene encoded protein merlin suppresses mitogenic signalling not only at the cell membrane but also in the nucleus. At the membrane, merlin inhibits signalling by integrins and tyrosine receptor kinases (RTKs) and the activation of downstream pathways, including the Ras/Raf/MEK/ERK, FAK/Src, PI3K/AKT, Rac/PAK/JNK, mTORC1, and Wnt/β-catenin pathways. In the nucleus, merlin suppresses the E3 ubiquitin ligase CRL4(DCAF1) to inhibit proliferation. Gene expression analysis suggested that CRL4(DCAF1) could also regulate the expression of integrins and RTKs. In this review, we explore the links between merlin function at the membrane and in the nucleus, and discuss the potential of targeting the master regulator CRL4 (DCAF1) to treat NF2 and other merlin-deficient tumours.
Collapse
Affiliation(s)
- Lu Zhou
- Clinical Neurobiology, Peninsula College of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | | |
Collapse
|
43
|
Carey CM, Bueno R, Gutierrez DA, Petro C, Lucena SE, Sanchez EE, Soto JG. Recombinant rubistatin (r-Rub), an MVD disintegrin, inhibits cell migration and proliferation, and is a strong apoptotic inducer of the human melanoma cell line SK-Mel-28. Toxicon 2011; 59:241-8. [PMID: 22192732 DOI: 10.1016/j.toxicon.2011.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/13/2011] [Accepted: 12/06/2011] [Indexed: 01/22/2023]
Abstract
Disintegrins are low molecular weight peptides isolated from viper venom. These peptides bind to integrin receptors using a conserved binding motif sequence containing an RGD or similar motif. As a consequence, disintegrins can inhibit platelet aggregation and inhibit cell migration, proliferation, and initiate apoptosis in cancer cell lines. Rubistatin is a MVD disintegrin cloned from a Crotalus ruber ruber venom gland. The biological activity of MVD disintegrins is poorly understood. Recombinant rubistatin (r-Rub) was cloned into a pET32b plasmid and expressed in reductase-deficient Escherichia coli. Expression was induced with IPTG and the resulting fusion peptide was affinity purified, followed by thrombin cleavage, and removal of vector coded sequences. r-Rub peptide inhibited ADP-induced platelet aggregation by 54% ± 6.38 in whole blood. We assessed the ability of r-Rub to initiate apoptosis in three human cancer cell lines. Cultures of SK-Mel-28, HeLA, and T24 cells were grown for 24 h with 2.5 μM r-Rub followed by Hoechst staining. Chromatin fragmentation was observed in treated SK-Mel-28, but not in T24 or HeLA cells. A TUNEL assay revealed that 51.55% ± 5.28 of SK-Mel-28 cells were apoptotic after 18 h of treatment with 3.5 μM of r-Rub. Cell migration and proliferation assays were performed in order to further characterize the biological effects of r-Rub on SK-Mel-28 cells. At 3 μM, r-Rub inhibited cell migration by 44.4% ± 0.5, while at 3.5 μM it was able to inhibit cell proliferation by 83% ± 6.0.
Collapse
Affiliation(s)
- Clayton M Carey
- Biological Sciences Department, San José State University, One Washington Square, DH 254, San José, CA 95192-0100, USA
| | | | | | | | | | | | | |
Collapse
|