1
|
Jo MY, Jeong YJ, Song KH, Choi YH, Kwon TK, Chang YC. 4-O-Methylascochlorin Synergistically Enhances 5-Fluorouracil-Induced Apoptosis by Inhibiting the Wnt/β-Catenin Signaling Pathway in Colorectal Cancer Cells. Int J Mol Sci 2024; 25:5746. [PMID: 38891932 PMCID: PMC11172374 DOI: 10.3390/ijms25115746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
4-O-Methyl-ascochlorin (MAC), a derivative of the prenyl-phenol antibiotic ascochlorin extracted from the fungus Ascochyta viciae, shows anticarcinogenic effects on various cancer cells. 5-Fluorouracil (5-FU) is used to treat colorectal cancer (CRC); however, its efficacy must be enhanced. In this study, we investigated the molecular mechanisms by which MAC acts synergistically with 5-FU to inhibit cell proliferation and induce apoptosis in CRC cells. MAC enhanced the cytotoxic effects of 5-FU by suppressing the Akt/mTOR/p70S6K and Wnt/β-catenin signaling pathways. It also reduced the viability of 5-FU-resistant (5-FU-R) cells. Furthermore, expression of anti-apoptosis-related proteins and cancer stem-like cell (CSC) markers by 5-FU-R cells decreased in response to MAC. Similar to MAC, the knockdown of CTNNB1 induced apoptosis and reduced expression of mRNA encoding CRC markers in 5-FU-R cells. In summary, these results suggest that MAC and other β-catenin modulators may be useful in overcoming the 5-FU resistance of CRC cells.
Collapse
Affiliation(s)
- Min-Young Jo
- Research Institute of Biomedical Engineering and Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea
| | - Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea
| | - Kwon-Ho Song
- Research Institute of Biomedical Engineering and Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea
| |
Collapse
|
2
|
Chan WH, Micati D, Engel RM, Kerr G, Akhtar R, Jardé T, Abud HE. Modeling Intestinal Carcinogenesis Using In Vitro Organoid Cultures. Methods Mol Biol 2023; 2691:55-69. [PMID: 37355537 DOI: 10.1007/978-1-0716-3331-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Mouse models of intestinal carcinogenesis are very powerful tools for studying the impact of specific mutations on tumor initiation and progression. Mutations can be studied both singularly and in combination using conditional alleles that can be induced in a temporal manner. The steps in intestinal carcinogenesis are complex and can be challenging to image in live animals at a cellular level. The ability to culture intestinal epithelial tissue in three-dimensional organoids in vitro provides an accessible system that can be genetically manipulated and easily visualized to assess specific biological impacts in living tissue. Here, we describe methodology for conditional mutation of genes in organoids from genetically modified mice via induction of Cre recombinase induced by tamoxifen or by transient exposure to TAT-Cre protein and subsequent phenotyping of the organoids. This methodology provides a rapid platform for assessing the cellular changes induced by specific mutations in intestinal tissue.
Collapse
Affiliation(s)
- Wing Hei Chan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Diana Micati
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Rebekah M Engel
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Melbourne, VIC, Australia
| | - Genevieve Kerr
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Reyhan Akhtar
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia.
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia.
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia.
| |
Collapse
|
3
|
Jacquemin G, Wurmser A, Huyghe M, Sun W, Homayed Z, Merle C, Perkins M, Qasrawi F, Richon S, Dingli F, Arras G, Loew D, Vignjevic D, Pannequin J, Fre S. Paracrine signalling between intestinal epithelial and tumour cells induces a regenerative programme. eLife 2022; 11:e76541. [PMID: 35543624 PMCID: PMC9094746 DOI: 10.7554/elife.76541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
Tumours are complex ecosystems composed of different types of cells that communicate and influence each other. While the critical role of stromal cells in affecting tumour growth is well established, the impact of mutant cancer cells on healthy surrounding tissues remains poorly defined. Here, using mouse intestinal organoids, we uncover a paracrine mechanism by which intestinal cancer cells reactivate foetal and regenerative YAP-associated transcriptional programmes in neighbouring wildtype epithelial cells, rendering them adapted to thrive in the tumour context. We identify the glycoprotein thrombospondin-1 (THBS1) as the essential factor that mediates non-cell-autonomous morphological and transcriptional responses. Importantly, Thbs1 is associated with bad prognosis in several human cancers. This study reveals the THBS1-YAP axis as the mechanistic link mediating paracrine interactions between epithelial cells in intestinal tumours.
Collapse
Affiliation(s)
- Guillaume Jacquemin
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215ParisFrance
- Sorbonne University, UPMC University of Paris VIParisFrance
| | - Annabelle Wurmser
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215ParisFrance
| | - Mathilde Huyghe
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215ParisFrance
| | - Wenjie Sun
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215ParisFrance
| | - Zeinab Homayed
- IGF, University of Montpellier, CNRS, INSERMMontpellierFrance
| | - Candice Merle
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215ParisFrance
| | - Meghan Perkins
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215ParisFrance
| | - Fairouz Qasrawi
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215ParisFrance
| | - Sophie Richon
- Institut Curie, PSL Research University, CNRS UMR 144ParisFrance
| | - Florent Dingli
- Institut Curie, PSL Research University, Laboratory of Mass Spectrometry and ProteomicsParisFrance
| | - Guillaume Arras
- Institut Curie, PSL Research University, Laboratory of Mass Spectrometry and ProteomicsParisFrance
| | - Damarys Loew
- Institut Curie, PSL Research University, Laboratory of Mass Spectrometry and ProteomicsParisFrance
| | | | - Julie Pannequin
- IGF, University of Montpellier, CNRS, INSERMMontpellierFrance
| | - Silvia Fre
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215ParisFrance
| |
Collapse
|
4
|
Hiremath IS, Goel A, Warrier S, Kumar AP, Sethi G, Garg M. The multidimensional role of the Wnt/β-catenin signaling pathway in human malignancies. J Cell Physiol 2021; 237:199-238. [PMID: 34431086 DOI: 10.1002/jcp.30561] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
Several signaling pathways have been identified as important for developmental processes. One of such important cascades is the Wnt/β-catenin signaling pathway, which can regulate various physiological processes such as embryonic development, tissue homeostasis, and tissue regeneration; while its dysregulation is implicated in several pathological conditions especially cancers. Interestingly, deregulation of the Wnt/β-catenin pathway has been reported to be closely associated with initiation, progression, metastasis, maintenance of cancer stem cells, and drug resistance in human malignancies. Moreover, several genetic and experimental models support the inhibition of the Wnt/β-catenin pathway to answer the key issues related to cancer development. The present review focuses on different regulators of Wnt pathway and how distinct mutations, deletion, and amplification in these regulators could possibly play an essential role in the development of several cancers such as colorectal, melanoma, breast, lung, and leukemia. Additionally, we also provide insights on diverse classes of inhibitors of the Wnt/β-catenin pathway, which are currently in preclinical and clinical trial against different cancers.
Collapse
Affiliation(s)
- Ishita S Hiremath
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Arul Goel
- La Canada High School, La Canada Flintridge, California, USA
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India.,Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Manoj Garg
- Amity Institute of Biotechnology, Amity University, Manesar, Haryana, India
| |
Collapse
|
5
|
Kessler D, Mayer M, Zahn SK, Zeeb M, Wöhrle S, Bergner A, Bruchhaus J, Ciftci T, Dahmann G, Dettling M, Döbel S, Fuchs JE, Geist L, Hela W, Kofink C, Kousek R, Moser F, Puchner T, Rumpel K, Scharnweber M, Werni P, Wolkerstorfer B, Breitsprecher D, Baaske P, Pearson M, McConnell DB, Böttcher J. Getting a Grip on the Undrugged: Targeting β-Catenin with Fragment-Based Methods. ChemMedChem 2021; 16:1420-1424. [PMID: 33275320 PMCID: PMC8247886 DOI: 10.1002/cmdc.202000839] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Indexed: 12/20/2022]
Abstract
Aberrant WNT pathway activation, leading to nuclear accumulation of β-catenin, is a key oncogenic driver event. Mutations in the tumor suppressor gene APC lead to impaired proteasomal degradation of β-catenin and subsequent nuclear translocation. Restoring cellular degradation of β-catenin represents a potential therapeutic strategy. Here, we report the fragment-based discovery of a small molecule binder to β-catenin, including the structural elucidation of the binding mode by X-ray crystallography. The difficulty in drugging β-catenin was confirmed as the primary screening campaigns identified only few and very weak hits. Iterative virtual and NMR screening techniques were required to discover a compound with sufficient potency to be able to obtain an X-ray co-crystal structure. The binding site is located between armadillo repeats two and three, adjacent to the BCL9 and TCF4 binding sites. Genetic studies show that it is unlikely to be useful for the development of protein-protein interaction inhibitors but structural information and established assays provide a solid basis for a prospective optimization towards β-catenin proteolysis targeting chimeras (PROTACs) as alternative modality.
Collapse
Affiliation(s)
- Dirk Kessler
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Moriz Mayer
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Stephan K. Zahn
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Markus Zeeb
- Boehringer Ingelheim Pharma GmbH & Co KGBirkendorfer Straße 6588397BiberachGermany
| | - Simon Wöhrle
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Andreas Bergner
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Jens Bruchhaus
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Tuncay Ciftci
- Boehringer Ingelheim Pharma GmbH & Co KGBirkendorfer Straße 6588397BiberachGermany
| | - Georg Dahmann
- Boehringer Ingelheim Pharma GmbH & Co KGBirkendorfer Straße 6588397BiberachGermany
| | - Maike Dettling
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Sandra Döbel
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Julian E. Fuchs
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Leonhard Geist
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Wolfgang Hela
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Christiane Kofink
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Roland Kousek
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Franziska Moser
- Boehringer Ingelheim Pharma GmbH & Co KGBirkendorfer Straße 6588397BiberachGermany
| | - Teresa Puchner
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | | | - Patrick Werni
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | | | - Dennis Breitsprecher
- NanoTemper Technologies GmbHFloessergasse 481369MuenchenGermany
- Leica Microsystems AGMax Schmidheiny-Strasse 2019435HeerbruggSwitzerland
| | - Philipp Baaske
- NanoTemper Technologies GmbHFloessergasse 481369MuenchenGermany
| | - Mark Pearson
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Darryl B. McConnell
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| | - Jark Böttcher
- Boehringer Ingelheim RCV GmbH & Co KGDr.-Boehringer-Gasse 5–111121ViennaAustria
| |
Collapse
|
6
|
Young JC, Kerr G, Micati D, Nielsen JE, Rajpert-De Meyts E, Abud HE, Loveland KL. WNT signalling in the normal human adult testis and in male germ cell neoplasms. Hum Reprod 2021; 35:1991-2003. [PMID: 32667987 DOI: 10.1093/humrep/deaa150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION Is WNT signalling functional in normal and/or neoplastic human male germ cells? SUMMARY ANSWER Regulated WNT signalling component synthesis in human testes indicates that WNT pathway function changes during normal spermatogenesis and is active in testicular germ cell tumours (TGCTs), and that WNT pathway blockade may restrict seminoma growth and migration. WHAT IS KNOWN ALREADY Regulated WNT signalling governs many developmental processes, including those affecting male fertility during early germ cell development at embryonic and adult (spermatogonial) ages in mice. In addition, although many cancers arise from WNT signalling alterations, the functional relevance and WNT pathway components in TGCT, including germ cell neoplasia in situ (GCNIS), are unknown. STUDY DESIGN, SIZE, DURATION The cellular distribution of transcripts and proteins in WNT signalling pathways was assessed in fixed human testis sections with normal spermatogenesis, GCNIS and seminoma (2-16 individuals per condition). Short-term (1-7 h) ligand activation and long-term (1-5 days) functional outcomes were examined using the well-characterised seminoma cell line, TCam-2. Pathway inhibition used siRNA or chemical exposures over 5 days to assess survival and migration. PARTICIPANTS/MATERIALS, SETTING, METHODS The cellular localisation of WNT signalling components was determined using in situ hybridisation and immunohistochemistry on Bouin's- and formalin-fixed human testis sections with complete spermatogenesis or germ cell neoplasia, and was also assessed in TCam-2 cells. Pathway function tests included exposure of TCam-2 cells to ligands, small molecules and siRNAs. Outcomes were measured by monitoring beta-catenin (CTNNB1) intracellular localisation, cell counting and gap closure measurements. MAIN RESULTS AND THE ROLE OF CHANCE Detection of nuclear-localised beta-catenin (CTNNB1), and key WNT signalling components (including WNT3A, AXIN2, TCF7L1 and TCF7L2) indicate dynamic and cell-specific pathway activity in the adult human testis. Their presence in germ cell neoplasia and functional analyses in TCam-2 cells indicate roles for active canonical WNT signalling in TGCT relating to viability and migration. All data were analysed to determine statistical significance. LARGE SCALE DATA No large-scale datasets were generated in this study. LIMITATIONS, REASONS FOR CAUTION As TGCTs are rare and morphologically heterogeneous, functional studies in primary cancer cells were not performed. Functional analysis was performed with the only well-characterised, widely accepted seminoma-derived cell line. WIDER IMPLICATIONS OF THE FINDINGS This study demonstrated the potential sites and involvement of the WNT pathway in human spermatogenesis, revealing similarities with murine testis that suggest the potential for functional conservation during normal spermatogenesis. Evidence that inhibition of canonical WNT signalling leads to loss of viability and migratory activity in seminoma cells suggests that potential treatments using small molecule or siRNA inhibitors may be suitable for patients with metastatic TGCTs. STUDY FUNDING AND COMPETING INTEREST(S) This study was funded by National Health and Medical Research Council of Australia (Project ID 1011340 to K.L.L. and H.E.A., and Fellowship ID 1079646 to K.L.L.) and supported by the Victorian Government's Operational Infrastructure Support Program. None of the authors have any competing interests.
Collapse
Affiliation(s)
- Julia C Young
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, 3800 Australia
| | - Genevieve Kerr
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, 3800 Australia
| | - Diana Micati
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, 3800 Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton 3168, Australia
| | - John E Nielsen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
| | - Ewa Rajpert-De Meyts
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, 3800 Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, 3800 Australia
| | - Kate L Loveland
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, 3800 Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton 3168, Australia.,Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, 3168, Australia
| |
Collapse
|
7
|
Liu Z, Wang P, Wold EA, Song Q, Zhao C, Wang C, Zhou J. Small-Molecule Inhibitors Targeting the Canonical WNT Signaling Pathway for the Treatment of Cancer. J Med Chem 2021; 64:4257-4288. [PMID: 33822624 DOI: 10.1021/acs.jmedchem.0c01799] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Canonical WNT signaling is an important developmental pathway that has attracted increased attention for anticancer drug discovery. From the production and secretion of WNT ligands, their binding to membrane receptors, and the β-catenin destruction complex to the expansive β-catenin transcriptional complex, multiple components have been investigated as drug targets to modulate WNT signaling. Significant progress in developing WNT inhibitors such as porcupine inhibitors, tankyrase inhibitors, β-catenin/coactivators, protein-protein interaction inhibitors, casein kinase modulators, DVL inhibitors, and dCTPP1 inhibitors has been made, with several candidates (e.g., LGK-974, PRI-724, and ETC-159) in human clinical trials. Herein we summarize recent progress in the drug discovery and development of small-molecule inhibitors targeting the canonical WNT pathway, focusing on their specific target proteins, in vitro and in vivo activities, physicochemical properties, and therapeutic potential. The relevant opportunities and challenges toward maintaining the balance between efficacy and toxicity in effectively targeting this pathway are also highlighted.
Collapse
Affiliation(s)
- Zhiqing Liu
- Institute of Evolution and Marine Biodiversity, College of Food Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Eric A Wold
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Qiaoling Song
- Institute of Evolution and Marine Biodiversity, College of Food Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chenyang Zhao
- Institute of Evolution and Marine Biodiversity, College of Food Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Changyun Wang
- Institute of Evolution and Marine Biodiversity, College of Food Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| |
Collapse
|
8
|
Badder LM, Hollins AJ, Herpers B, Yan K, Ewan KB, Thomas M, Shone JR, Badder DA, Naven M, Ashelford KE, Hargest R, Clarke AR, Esdar C, Buchstaller HP, Treherne JM, Boj S, Ramezanpour B, Wienke D, Price LS, Shaw PH, Dale TC. 3D imaging of colorectal cancer organoids identifies responses to Tankyrase inhibitors. PLoS One 2020; 15:e0235319. [PMID: 32810173 PMCID: PMC7433887 DOI: 10.1371/journal.pone.0235319] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 06/12/2020] [Indexed: 12/30/2022] Open
Abstract
Aberrant activation of the Wnt signalling pathway is required for tumour initiation and survival in the majority of colorectal cancers. The development of inhibitors of Wnt signalling has been the focus of multiple drug discovery programs targeting colorectal cancer and other malignancies associated with aberrant pathway activation. However, progression of new clinical entities targeting the Wnt pathway has been slow. One challenge lies with the limited predictive power of 2D cancer cell lines because they fail to fully recapitulate intratumoural phenotypic heterogeneity. In particular, the relationship between 2D cancer cell biology and cancer stem cell function is poorly understood. By contrast, 3D tumour organoids provide a platform in which complex cell-cell interactions can be studied. However, complex 3D models provide a challenging platform for the quantitative analysis of drug responses of therapies that have differential effects on tumour cell subpopulations. Here, we generated tumour organoids from colorectal cancer patients and tested their responses to inhibitors of Tankyrase (TNKSi) which are known to modulate Wnt signalling. Using compounds with 3 orders of magnitude difference in cellular mechanistic potency together with image-based assays, we demonstrate that morphometric analyses can capture subtle alterations in organoid responses to Wnt inhibitors that are consistent with activity against a cancer stem cell subpopulation. Overall our study highlights the value of phenotypic readouts as a quantitative method to asses drug-induced effects in a relevant preclinical model.
Collapse
Affiliation(s)
- Luned M. Badder
- Cardiff University School of Biosciences, Cardiff, Wales, United Kingdom
- European Cancer Stem Cell Research Institute (ECSCRI), Cardiff University, Cardiff, Wales, United Kingdom
| | - Andrew J. Hollins
- Cardiff University School of Biosciences, Cardiff, Wales, United Kingdom
- European Cancer Stem Cell Research Institute (ECSCRI), Cardiff University, Cardiff, Wales, United Kingdom
| | | | - Kuan Yan
- OcellO B.V., Leiden, The Netherlands
| | - Kenneth B. Ewan
- Cardiff University School of Biosciences, Cardiff, Wales, United Kingdom
| | - Mairian Thomas
- Cellesce Ltd, Cardiff Medicentre, Heath Park, Cardiff, United Kingdom
| | - Jennifer R. Shone
- Cardiff University School of Biosciences, Cardiff, Wales, United Kingdom
| | - Delyth A. Badder
- Cellular Pathology Department, University Hospital for Wales, Cardiff, United Kingdom
| | - Marc Naven
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kevin E. Ashelford
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Rachel Hargest
- Department of Colorectal Surgery, University Hospital of Wales, Cardiff, United Kingdom
- Division of Cancer and Genetics, CCMRC, Henry Wellcome Building, Cardiff University, Cardiff, United Kingdom
| | - Alan R. Clarke
- European Cancer Stem Cell Research Institute (ECSCRI), Cardiff University, Cardiff, Wales, United Kingdom
| | - Christina Esdar
- Biopharma, Merck Healthcare KGaA, Research & Development, Darmstadt, Germany
| | | | - J. Mark Treherne
- Cellesce Ltd, Cardiff Medicentre, Heath Park, Cardiff, United Kingdom
| | - Sylvia Boj
- Hubrecht Organoid Technology, Utrecht, The Netherlands
| | | | - Dirk Wienke
- Biopharma, Merck Healthcare KGaA, Research & Development, Darmstadt, Germany
| | | | - Paul H. Shaw
- Velindre Cancer Centre, Cardiff, Wales, United Kingdom
| | - Trevor C. Dale
- European Cancer Stem Cell Research Institute (ECSCRI), Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
9
|
Jardé T, Chan WH, Rossello FJ, Kaur Kahlon T, Theocharous M, Kurian Arackal T, Flores T, Giraud M, Richards E, Chan E, Kerr G, Engel RM, Prasko M, Donoghue JF, Abe SI, Phesse TJ, Nefzger CM, McMurrick PJ, Powell DR, Daly RJ, Polo JM, Abud HE. Mesenchymal Niche-Derived Neuregulin-1 Drives Intestinal Stem Cell Proliferation and Regeneration of Damaged Epithelium. Cell Stem Cell 2020; 27:646-662.e7. [PMID: 32693086 DOI: 10.1016/j.stem.2020.06.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Epidermal growth factor (EGF) maintains intestinal stem cell (ISC) proliferation and is a key component of organoid growth media yet is dispensable for intestinal homeostasis, suggesting roles for multiple EGF family ligands in ISC function. Here, we identified neuregulin 1 (NRG1) as a key EGF family ligand that drives tissue repair following injury. NRG1, but not EGF, is upregulated upon damage and is expressed in mesenchymal stromal cells, macrophages, and Paneth cells. NRG1 deletion reduces proliferation in intestinal crypts and compromises regeneration capacity. NRG1 robustly stimulates proliferation in crypts and induces budding in organoids, in part through elevated and sustained activation of mitogen-activated protein kinase (MAPK) and AKT. Consistently, NRG1 treatment induces a proliferative gene signature and promotes organoid formation from progenitor cells and enhances regeneration following injury. These data suggest mesenchymal-derived NRG1 is a potent mediator of tissue regeneration and may inform the development of therapies for enhancing intestinal repair after injury.
Collapse
Affiliation(s)
- Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
| | - Wing Hei Chan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Fernando J Rossello
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Tanvir Kaur Kahlon
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Mandy Theocharous
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia; Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Teni Kurian Arackal
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Tracey Flores
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Mégane Giraud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Elizabeth Richards
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Eva Chan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Genevieve Kerr
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Rebekah M Engel
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern, VIC 3144, Australia
| | - Mirsada Prasko
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Jacqueline F Donoghue
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Royal Women's Hospital, Melbourne University, Melbourne, VIC 3052, Australia
| | - Shin-Ichi Abe
- Center for Education, Kumamoto Health Science University, Kumamoto 861-5598, Japan
| | - Toby J Phesse
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Christian M Nefzger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Paul J McMurrick
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern, VIC 3144, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Monash University, Clayton, VIC 3800, Australia
| | - Roger J Daly
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia; Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia.
| |
Collapse
|
10
|
Liu X, Liu C, Chen C, Sun W, Ci Y, Li Q, Song Y. Combination of Inositol Hexaphosphate and Inositol Inhibits Liver Metastasis of Colorectal Cancer in Mice Through the Wnt/β-Catenin Pathway. Onco Targets Ther 2020; 13:3223-3235. [PMID: 32368081 PMCID: PMC7170648 DOI: 10.2147/ott.s247646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/25/2020] [Indexed: 01/10/2023] Open
Abstract
Introduction Colorectal cancer, one of the most common tumors, is mainly fatal because of the occurrence of liver metastasis. Inositol hexaphosphate (IP6) and inositol (INS) were found, both, in vitro and in vivo to play an anti-tumor effect, whereas the combination of IP6 and INS was more effective than IP6 or INS alone. Materials and Methods The inhibitory effects of IP6, INS and the combination of IP6+INS on tumor progression and liver metastasis of colorectal cancer were investigated in an orthotopic transplantation model of colorectal cancer. The tumor-bearing mice were selected by in vivo bioluminescence imaging and were treated with IP6, INS, and IP6 combined with INS, respectively. All mice were sacrificed after 6 weeks of treatment. The cancer development and metastasis were compared among the groups. The expression of genes related to the Wnt/β-catenin in the model was analyzed. Results The results demonstrated that liver metastasis was inhibited after treatment with IP6, INS, and IP6+INS. Compared to that of the M_G, survival period was extended, and tumor weight was lowered in IP6_G, INS_G, and IP6+INS_G. Besides, the liver metastatic area of mice in IP6+INS_G was relatively smaller than that in M_G, IP6_G, or INS_G. The results of RNA-seq analysis showed that the expressions of Wnt10b, Tcf7, and c-Myc were significantly downregulated in IP6+INS_G compared to that in M_G (P<0.05). Results of real-time PCR and Western blot showed that mRNA and protein expressions of β-catenin, Wnt10b, Tcf7, and c-Myc were significantly lower in IP6+INS_G compared to that in M_G (P<0.05). Discussion IP6+INS was more effective in inhibiting liver metastasis of colorectal cancer than IP6 or INS alone. The better inhibition effect may be accomplished through regulating the mutation of Wnt/β-catenin signaling pathway by inhibiting Wnt10b, Tcf7, β-catenin, and c-Myc from abnormally high expression.
Collapse
Affiliation(s)
- Xiaohan Liu
- School of Public Health, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Cuiping Liu
- School of Nursing, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Chen Chen
- School of Public Health, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wenna Sun
- Outpatient Department, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, People's Republic of China
| | - Yifan Ci
- School of Public Health, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Qianqian Li
- School of Public Health, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Yang Song
- Medical College, Qingdao University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
11
|
Clostridioides difficile infection damages colonic stem cells via TcdB, impairing epithelial repair and recovery from disease. Proc Natl Acad Sci U S A 2020; 117:8064-8073. [PMID: 32198200 DOI: 10.1073/pnas.1915255117] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal infections often induce epithelial damage that must be repaired for optimal gut function. While intestinal stem cells are critical for this regeneration process [R. C. van der Wath, B. S. Gardiner, A. W. Burgess, D. W. Smith, PLoS One 8, e73204 (2013); S. Kozar et al., Cell Stem Cell 13, 626-633 (2013)], how they are impacted by enteric infections remains poorly defined. Here, we investigate infection-mediated damage to the colonic stem cell compartment and how this affects epithelial repair and recovery from infection. Using the pathogen Clostridioides difficile, we show that infection disrupts murine intestinal cellular organization and integrity deep into the epithelium, to expose the otherwise protected stem cell compartment, in a TcdB-mediated process. Exposure and susceptibility of colonic stem cells to intoxication compromises their function during infection, which diminishes their ability to repair the injured epithelium, shown by altered stem cell signaling and a reduction in the growth of colonic organoids from stem cells isolated from infected mice. We also show, using both mouse and human colonic organoids, that TcdB from epidemic ribotype 027 strains does not require Frizzled 1/2/7 binding to elicit this dysfunctional stem cell state. This stem cell dysfunction induces a significant delay in recovery and repair of the intestinal epithelium of up to 2 wk post the infection peak. Our results uncover a mechanism by which an enteric pathogen subverts repair processes by targeting stem cells during infection and preventing epithelial regeneration, which prolongs epithelial barrier impairment and creates an environment in which disease recurrence is likely.
Collapse
|
12
|
Rudloff I, Jardé T, Bachmann M, Elgass KD, Kerr G, Engel R, Richards E, Oliva K, Wilkins S, McMurrick PJ, Abud HE, Mühl H, Nold MF. Molecular signature of interleukin-22 in colon carcinoma cells and organoid models. Transl Res 2020; 216:1-22. [PMID: 31734267 DOI: 10.1016/j.trsl.2019.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022]
Abstract
Interleukin (IL)-22 activates STAT (signal transducer and activator of transcription) 3 and antiapoptotic and proproliferative pathways; but beyond this, the molecular mechanisms by which IL-22 promotes carcinogenesis are poorly understood. Characterizing the molecular signature of IL-22 in human DLD-1 colon carcinoma cells, we observed increased expression of 26 genes, including NNMT (nicotinamide N-methyltransferase, ≤10-fold) and CEA (carcinoembryonic antigen, ≤7-fold), both known to promote intestinal carcinogenesis. ERP27 (endoplasmic reticulum protein-27, function unknown, ≤5-fold) and the proinflammatory ICAM1 (intercellular adhesion molecule-1, ≤4-fold) were also increased. The effect on CEA was partly STAT3-mediated, as STAT3-silencing reduced IL-22-induced CEA by ≤56%. Silencing of CEA or NNMT inhibited IL-22-induced proliferation/migration of DLD-1, Caco-2, and SW480 colon carcinoma cells. To validate these results in primary tissues, we assessed IL-22-induced gene expression in organoids from human healthy colon and colon cancer patients, and from normal mouse small intestine and colon. Gene regulation by IL-22 was similar in DLD-1 cells and human and mouse healthy organoids. CEA was an exception with no induction by IL-22 in organoids, indicating the 3-dimensional organization of the tissue may produce signals absent in 2D cell culture. Importantly, augmentation of NNMT was 5-14-fold greater in human cancerous compared to normal organoids, supporting a role for NNMT in IL-22-mediated colon carcinogenesis. Thus, NNMT and CEA emerge as mediators of the tumor-promoting effects of IL-22 in the intestine. These data advance our understanding of the multifaceted role of IL-22 in the gut and suggest the IL-22 pathway may represent a therapeutic target in colon cancer.
Collapse
Affiliation(s)
- Ina Rudloff
- Department of Paediatrics, Monash University, Clayton, Melbourne, Australia; Ritchie Centre, Hudson Institute of Medical Research, Clayton, Melbourne, Australia; Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt am Main, Frankfurt am Main, Germany.
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Australia; Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia; Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Melbourne, Australia
| | - Malte Bachmann
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Kirstin D Elgass
- Monash Micro Imaging, Hudson Institute of Medical Research, Clayton, Melbourne, Australia
| | - Genevieve Kerr
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Australia; Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - Rebekah Engel
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Australia; Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia; Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern, Melbourne, Australia
| | - Elizabeth Richards
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Australia; Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - Karen Oliva
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern, Melbourne, Australia
| | - Simon Wilkins
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern, Melbourne, Australia; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Paul J McMurrick
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern, Melbourne, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Australia; Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Marcel F Nold
- Department of Paediatrics, Monash University, Clayton, Melbourne, Australia; Ritchie Centre, Hudson Institute of Medical Research, Clayton, Melbourne, Australia.
| |
Collapse
|
13
|
Koveitypour Z, Panahi F, Vakilian M, Peymani M, Seyed Forootan F, Nasr Esfahani MH, Ghaedi K. Signaling pathways involved in colorectal cancer progression. Cell Biosci 2019; 9:97. [PMID: 31827763 PMCID: PMC6889432 DOI: 10.1186/s13578-019-0361-4] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the fourth leading cause of the worldwide cancer mortality. Different molecular mechanisms have been attributed to the development and progress of CRC. In this review, we will focus on the mitogen-activated protein kinase (MAPK) cascades downstream of the epidermal growth factor receptor (EGFR), Notch, PI3K/AKT pathway, transforming growth factor-β (TGF-β), and Wnt signaling pathways. Various mutations in the components of these signaling pathways have been linked to the development of CRC. Accordingly, numerous efforts have been carried out to target the signaling pathways to develop novel therapeutic approaches. Herein, we review the signaling pathways involved in the incidence and progression of CRC, and the strategies for the therapy targeting components of signaling pathways in CRC.
Collapse
Affiliation(s)
- Zahra Koveitypour
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Farnoush Panahi
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Mehrdad Vakilian
- 6Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,7Department of Cellular Biology, Genetics and Physiology, Faculty of Science, University of Malaga (UMA), Malaga, Spain
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, P.O. Box: 88137-33395, Shahrekord, Iran.,4Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box: 816513-1378, Isfahan, Iran
| | - Farzad Seyed Forootan
- 4Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box: 816513-1378, Isfahan, Iran.,Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Mohammad Hossein Nasr Esfahani
- 4Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box: 816513-1378, Isfahan, Iran
| | - Kamran Ghaedi
- 3Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.,4Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box: 816513-1378, Isfahan, Iran
| |
Collapse
|
14
|
Wnt Signaling in the Regulation of Immune Cell and Cancer Therapeutics. Cells 2019; 8:cells8111380. [PMID: 31684152 PMCID: PMC6912555 DOI: 10.3390/cells8111380] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022] Open
Abstract
Wnt signaling is one of the important pathways to play a major role in various biological processes, such as embryonic stem-cell development, tissue regeneration, cell differentiation, and immune cell regulation. Recent studies suggest that Wnt signaling performs an essential function in immune cell modulation and counteracts various disorders. Nonetheless, the emerging role and mechanism of action of this signaling cascade in immune cell regulation, as well as its involvement in various cancers, remain debatable. The Wnt signaling in immune cells is very diverse, e.g., the tolerogenic role of dendritic cells, the development of natural killer cells, thymopoiesis of T cells, B-cell-driven initiation of T-cells, and macrophage actions in tissue repair, regeneration, and fibrosis. The purpose of this review is to highlight the current therapeutic targets in (and the prospects of) Wnt signaling, as well as the potential suitability of available modulators for the development of cancer immunotherapies. Although there are several Wnt inhibitors relevant to cancer, it would be worthwhile to extend this approach to immune cells.
Collapse
|
15
|
Zhao Y, Song G, Ren J, Li Q, Zhong S, Cui Z. Sleeping beauty transposon-mediated poly(A)-trapping and insertion mutagenesis in mouse embryonic stem cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:687-697. [PMID: 30280432 DOI: 10.1002/em.22234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Saturation mutagenesis of all endogenous genes within the mouse genome remains a challenging task, although a plenty of gene-editing approaches are available for this purpose. Here, a poly(A)-trap vector was generated for insertion mutagenesis in mouse embryonic stem (mES) cells. This vector contains an expression cassette of neomycin (Neo)-resistant gene lacking a poly(A) signal and flanked by two inverted terminal repeats of the Sleeping Beauty (SB) transposon. The whole poly(A)-trap cassette can transpose into target TA dinucleotides, properly splice with endogenous genes and effectively interrupt the transcription of trapped genes in mES cells after transient induction of SB expression by doxycycline (DOX)-treatment at 1 μg/ml, leading to the formation of multiple geneticin (G418)-resistant cell clones. In the first round of mutation screening, we identified six transposition events from 23 cell clones, including four inserted into an endogenous gene and two landed between endogenous genes. The abilities of self-renewal, totipotency, genetic stability and differentiation of syngap1+/- cells were not affected by DOX-treatment and G418-selection. These findings suggest that this SB transposon-mediated poly(A)-trap vector can be used as an alternative tool for a large-scale screening of mES cells with a gene mutation and for further generation of mutant mouse strains. Environ. Mol. Mutagen. 59:687-697, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jing Ren
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shan Zhong
- Department of Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
16
|
Jardé T, Kerr G, Akhtar R, Abud HE. Modelling Intestinal Carcinogenesis Using In Vitro Organoid Cultures. Methods Mol Biol 2018; 1725:41-52. [PMID: 29322407 DOI: 10.1007/978-1-4939-7568-6_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mouse models of intestinal carcinogenesis are very powerful for studying the impact of specific mutations on tumour initiation and progression. Mutations can be studied both singularly and in combination using conditional alleles that can be induced in a temporal manner. The steps in intestinal carcinogenesis are complex and can be challenging to image in live animals at a cellular level. The ability to culture intestinal epithelial tissue in three-dimensional organoids in vitro provides an accessible system that can be genetically manipulated and easily visualised to assess specific biological impacts in living tissue. Here, we describe methodology for conditional mutation of genes in organoids from genetically modified mice via induction of Cre recombinase induced by tamoxifen or by transient exposure to TAT-Cre protein. This methodology provides a rapid platform for assessing the cellular changes induced by specific mutations in intestinal tissue.
Collapse
Affiliation(s)
- Thierry Jardé
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Genevieve Kerr
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Reyhan Akhtar
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Helen E Abud
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
17
|
Dietrich L, Rathmer B, Ewan K, Bange T, Heinrichs S, Dale TC, Schade D, Grossmann TN. Cell Permeable Stapled Peptide Inhibitor of Wnt Signaling that Targets β-Catenin Protein-Protein Interactions. Cell Chem Biol 2017; 24:958-968.e5. [PMID: 28757184 DOI: 10.1016/j.chembiol.2017.06.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/31/2017] [Accepted: 06/27/2017] [Indexed: 12/30/2022]
Abstract
The Wnt signaling pathway plays a critical role in cell proliferation and differentiation, thus it is often associated with diseases such as cancers. Unfortunately, although attractive, developing anti-cancer strategy targeting Wnt signaling has been challenging given that the most attractive targets are involved in protein-protein interactions (PPIs). Here, we develop a stapled peptide inhibitor that targets the interaction between β-catenin and T cell factor/lymphoid enhancer-binding factor transcription factors, which are crucially involved in Wnt signaling. Our integrative approach combines peptide stapling to optimize proteolytic stability, with lessons learned from cell-penetrating peptide (CPP) design to maximize cellular uptake resulting in NLS-StAx-h, a selective, cell permeable, stapled peptide inhibitor of oncogenic Wnt signaling that efficiently inhibits β-catenin-transcription factor interactions. We expect that this type of integrative strategy that endows stapled peptides with CPP features will be generally useful for developing inhibitors of intracellular PPIs.
Collapse
Affiliation(s)
- Laura Dietrich
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany; Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Bernd Rathmer
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Kenneth Ewan
- School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK
| | - Tanja Bange
- Department of Mechanistic Cell Biology, Max-Planck-Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, 45147 Essen, Germany
| | - Trevor C Dale
- School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK
| | - Dennis Schade
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany; Institute of Pharmacy, Department of Pharmaceutical & Medicinal Chemistry, University of Greifswald, 17489 Greifswald, Germany
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany; Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, 1081 HZ Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Szwarc MM, Kommagani R, Peavey MC, Hai L, Lonard DM, Lydon JP. A bioluminescence reporter mouse that monitors expression of constitutively active β-catenin. PLoS One 2017; 12:e0173014. [PMID: 28253313 PMCID: PMC5333872 DOI: 10.1371/journal.pone.0173014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/13/2017] [Indexed: 01/13/2023] Open
Abstract
This short technical report describes the generation and characterization of a bioluminescence reporter mouse that is engineered to detect and longitudinally monitor the expression of doxycycline-induced constitutively active β-catenin. The new responder transgenic mouse contains the TetO-ΔN89β-CatTMILA transgene, which consists of the tet-operator followed by a bicistronic sequence encoding a stabilized form of active β-catenin (ΔN89β-catenin), an internal ribosome entry site, and the firefly luciferase gene. To confirm that the transgene operates as designed, TetO-ΔN89β-CatTMILA transgenic mouse lines were crossed with an effector mouse that harbors the mouse mammary tumor virus-reverse tetracycline transactivator (MMTV-rtTA) transgene (termed MTB hereon), which primarily targets rtTA expression to the mammary epithelium. Following doxycycline administration, the resultant MTB/CatTMILA bigenic reporter exhibited precocious lobuloalveologenesis, ductal hyperplasia, and mammary adenocarcinomas, which were visualized and monitored by in vivo bioluminescence detection. Therefore, we predict that the TetO-ΔN89β-CatTMILA transgenic responder mouse-when crossed with the appropriate effector transgenic-will have wide-applicability to non-invasively monitor the influence of constitutively active β-catenin expression on cell-fate specification, proliferation, differentiation, and neoplastic transformation in a broad spectrum of target tissues.
Collapse
Affiliation(s)
- Maria M. Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Ramakrishna Kommagani
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Mary C. Peavey
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States of America
| | - Lan Hai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
19
|
Abstract
The WNT signaling pathway is a critical mediator of tissue homeostasis and repair, and frequently co-opted during tumor development. Almost all colorectal cancers (CRC) demonstrate hyperactivation of the WNT pathway, which in many cases is believed to be the initiating and driving event. In this short review, we provide a focused overview of recent developments in our understanding of the WNT pathway in CRC, describe new research tools that are enabling a deeper understanding of WNT biology, and outline ongoing efforts to target this pathway therapeutically.
Collapse
Affiliation(s)
- Emma M Schatoff
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, 10021.,Weill Cornell/Rockefeller/Sloan Kettering Tri-I MD-PhD program, New York, 10065
| | - Benjamin I Leach
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, 10021.,New York Presbyterian Hospital, New York, 10021
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, 10021.,Department of Medicine, Weill Cornell Medicine, New York, 10021.,Department of Biochemistry, Weill Cornell Medicine, New York, 10021
| |
Collapse
|
20
|
Clarke PA, Ortiz-Ruiz MJ, TePoele R, Adeniji-Popoola O, Box G, Court W, Czasch S, El Bawab S, Esdar C, Ewan K, Gowan S, De Haven Brandon A, Hewitt P, Hobbs SM, Kaufmann W, Mallinger A, Raynaud F, Roe T, Rohdich F, Schiemann K, Simon S, Schneider R, Valenti M, Weigt S, Blagg J, Blaukat A, Dale TC, Eccles SA, Hecht S, Urbahns K, Workman P, Wienke D. Assessing the mechanism and therapeutic potential of modulators of the human Mediator complex-associated protein kinases. eLife 2016; 5:e20722. [PMID: 27935476 PMCID: PMC5224920 DOI: 10.7554/elife.20722] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022] Open
Abstract
Mediator-associated kinases CDK8/19 are context-dependent drivers or suppressors of tumorigenesis. Their inhibition is predicted to have pleiotropic effects, but it is unclear whether this will impact on the clinical utility of CDK8/19 inhibitors. We discovered two series of potent chemical probes with high selectivity for CDK8/19. Despite pharmacodynamic evidence for robust on-target activity, the compounds exhibited modest, though significant, efficacy against human tumor lines and patient-derived xenografts. Altered gene expression was consistent with CDK8/19 inhibition, including profiles associated with super-enhancers, immune and inflammatory responses and stem cell function. In a mouse model expressing oncogenic beta-catenin, treatment shifted cells within hyperplastic intestinal crypts from a stem cell to a transit amplifying phenotype. In two species, neither probe was tolerated at therapeutically-relevant exposures. The complex nature of the toxicity observed with two structurally-differentiated chemical series is consistent with on-target effects posing significant challenges to the clinical development of CDK8/19 inhibitors.
Collapse
Affiliation(s)
- Paul A Clarke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Maria-Jesus Ortiz-Ruiz
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Robert TePoele
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Olajumoke Adeniji-Popoola
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Gary Box
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Will Court
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | | | | | | | - Ken Ewan
- School of Bioscience, Cardiff University, Cardiff, United Kingdom
| | - Sharon Gowan
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Alexis De Haven Brandon
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | | | - Stephen M Hobbs
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | | | - Aurélie Mallinger
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Florence Raynaud
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Toby Roe
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | | | | | | | | | - Melanie Valenti
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | | | - Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | | | - Trevor C Dale
- School of Bioscience, Cardiff University, Cardiff, United Kingdom
| | - Suzanne A Eccles
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | | | | | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | | |
Collapse
|
21
|
Jardé T, Lloyd-Lewis B, Thomas M, Kendrick H, Melchor L, Bougaret L, Watson PD, Ewan K, Smalley MJ, Dale TC. Wnt and Neuregulin1/ErbB signalling extends 3D culture of hormone responsive mammary organoids. Nat Commun 2016; 7:13207. [PMID: 27782124 PMCID: PMC5095178 DOI: 10.1038/ncomms13207] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 09/13/2016] [Indexed: 12/22/2022] Open
Abstract
The development of in vitro culture systems quantitatively and qualitatively recapitulating normal breast biology is key to the understanding of mammary gland biology. Current three-dimensional mammary culture systems have not demonstrated concurrent proliferation and functional differentiation ex vivo in any system for longer than 2 weeks. Here, we identify conditions including Neuregulin1 and R-spondin 1, allowing maintenance and expansion of mammary organoids for 2.5 months in culture. The organoids comprise distinct basal and luminal compartments complete with functional steroid receptors and stem/progenitor cells able to reconstitute a complete mammary gland in vivo. Alternative conditions are also described that promote enrichment of basal cells organized into multiple layers surrounding a keratinous core, reminiscent of structures observed in MMTV-Wnt1 tumours. These conditions comprise a unique tool that should further understanding of normal mammary gland development, the molecular mechanism of hormone action and signalling events whose deregulation leads to breast tumourigenesis.
Collapse
Affiliation(s)
- Thierry Jardé
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- Cancer Program, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria 3800, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Bethan Lloyd-Lewis
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Mairian Thomas
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Howard Kendrick
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Lorenzo Melchor
- Division of Breast Cancer Research, Breast Cancer Now, Institute of Cancer Research, London SW3 6JB, UK
| | - Lauriane Bougaret
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Peter D. Watson
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Kenneth Ewan
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Matthew J. Smalley
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Trevor C. Dale
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
22
|
Jackstadt R, Sansom OJ. Mouse models of intestinal cancer. J Pathol 2016; 238:141-51. [PMID: 26414675 PMCID: PMC4832380 DOI: 10.1002/path.4645] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/19/2022]
Abstract
Murine models of intestinal cancer are powerful tools to recapitulate human intestinal cancer, understand its biology and test therapies. With recent developments identifying the importance of the tumour microenvironment and the potential for immunotherapy, autochthonous genetically engineered mouse models (GEMMs) will remain an important part of preclinical studies for the foreseeable future. This review will provide an overview of the current mouse models of intestinal cancer, from the Apc(Min/+) mouse, which has been used for over 25 years, to the latest 'state-of-the-art' organoid models. We discuss here how these models have been used to define fundamental processes involved in tumour initiation and the attempts to generate metastatic models, which is the ultimate cause of cancer mortality. Together these models will provide key insights to understand this complex disease and hopefully will lead to the discovery of new therapeutic strategies.
Collapse
|
23
|
Dale T, Clarke PA, Esdar C, Waalboer D, Adeniji-Popoola O, Ortiz-Ruiz MJ, Mallinger A, Samant RS, Czodrowski P, Musil D, Schwarz D, Schneider K, Stubbs M, Ewan K, Fraser E, TePoele R, Court W, Box G, Valenti M, de Haven Brandon A, Gowan S, Rohdich F, Raynaud F, Schneider R, Poeschke O, Blaukat A, Workman P, Schiemann K, Eccles SA, Wienke D, Blagg J. A selective chemical probe for exploring the role of CDK8 and CDK19 in human disease. Nat Chem Biol 2015; 11:973-980. [PMID: 26502155 PMCID: PMC4677459 DOI: 10.1038/nchembio.1952] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 10/01/2015] [Indexed: 12/31/2022]
Abstract
There is unmet need for chemical tools to explore the role of the Mediator complex in human pathologies ranging from cancer to cardiovascular disease. Here we determine that CCT251545, a small-molecule inhibitor of the WNT pathway discovered through cell-based screening, is a potent and selective chemical probe for the human Mediator complex-associated protein kinases CDK8 and CDK19 with >100-fold selectivity over 291 other kinases. X-ray crystallography demonstrates a type 1 binding mode involving insertion of the CDK8 C terminus into the ligand binding site. In contrast to type II inhibitors of CDK8 and CDK19, CCT251545 displays potent cell-based activity. We show that CCT251545 and close analogs alter WNT pathway-regulated gene expression and other on-target effects of modulating CDK8 and CDK19, including expression of genes regulated by STAT1. Consistent with this, we find that phosphorylation of STAT1(SER727) is a biomarker of CDK8 kinase activity in vitro and in vivo. Finally, we demonstrate in vivo activity of CCT251545 in WNT-dependent tumors.
Collapse
Affiliation(s)
- Trevor Dale
- School of Bioscience, Cardiff University, Cardiff, UK
| | - Paul A. Clarke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | | | - Dennis Waalboer
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | | | - Maria-Jesus Ortiz-Ruiz
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | - Aurélie Mallinger
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | - Rahul S. Samant
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | | | | | | | | | - Mark Stubbs
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | - Ken Ewan
- School of Bioscience, Cardiff University, Cardiff, UK
| | | | - Robert TePoele
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | - Will Court
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | - Gary Box
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | - Melanie Valenti
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | - Alexis de Haven Brandon
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | - Sharon Gowan
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | | | - Florence Raynaud
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | | | | | | | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | | | - Suzanne A. Eccles
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | - Dirk Wienke
- Merck KGaA, Merck Serono, Darmstadt, Germany
| | - Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| |
Collapse
|
24
|
Parry L, Young M, El Marjou F, Clarke AR. Protocols for Analyzing the Role of Paneth Cells in Regenerating the Murine Intestine using Conditional Cre-lox Mouse Models. J Vis Exp 2015. [PMID: 26649885 PMCID: PMC4755722 DOI: 10.3791/53429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The epithelial surface of the mammalian intestine is a dynamic tissue that renews every 3 - 7 days. Understanding this renewal process identified a population of rapidly cycling intestinal stem cells (ISCs) characterized by their expression of the Lgr5 gene. These are supported by a quiescent stem cell population, marked by Bmi-1 expression, capable of replacing them in the event of injury. Investigating the interactions between these populations is crucial to understanding their roles in disease and cancer. The ISCs exist within crypts on the intestinal surface, these niches support the ISC in replenishing the epithelia. The interaction between active and quiescent ISCs likely involves other differentiated cells within the niche, as it has previously been demonstrated that the ‘‘stemness’’ of the Lgr5 ISC is closely tied to the presence of their neighboring Paneth cells. Using conditional cre-lox mouse models we tested the effect of deleting the majority of active ISCs in the presence or absence of the Paneth cells. Here we describe the techniques and analysis undertaken to characterize the intestine and demonstrate that the Paneth cells play a crucial role within the ISC niche in aiding recovery following substantial insult.
Collapse
Affiliation(s)
- Lee Parry
- European Cancer Stem Cell Research Institute, Cardiff University;
| | - Madeleine Young
- European Cancer Stem Cell Research Institute, Cardiff University
| | | | | |
Collapse
|
25
|
Guthrie ML, Sidhu PS, Hill EK, Horan TC, Nandhikonda P, Teske KA, Yuan NY, Sidorko M, Rodali R, Cook JM, Han L, Silvaggi NR, Bikle DD, Moore RG, Singh RK, Arnold LA. Antitumor Activity of 3-Indolylmethanamines 31B and PS121912. Anticancer Res 2015; 35:6001-6007. [PMID: 26504023 PMCID: PMC4633305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
AIM To investigate the in vivo effects of 3-indolylmethanamines 31B and PS121912 in treating ovarian cancer and leukemia, respectively. MATERIALS AND METHODS Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) and western blotting were applied to demonstrate the induction of apoptosis. Xenografted mice were investigated to show the antitumor effects of 3-indolylmethanamines. (13)C-Nuclear magnetic resource (NMR) and western blotting were used to demonstrate inhibition of glucose metabolism. RESULTS 31B inhibited ovarian cancer cell proliferation and activated caspase-3, cleaved poly (ADP-ribose) polymerase 1 (PARP1), and phosphorylated mitogen-activated protein kinases (MAPK), JUN N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38. 31B reduced ovarian cancer xenograft tumor growth and PS121912 inhibited the growth of HL-60-derived xenografts without any sign of toxicity. Compound 31B inhibited de novo glycolysis and lipogenesis mediated by the reduction of fatty acid synthase and lactate dehydrogenase-A expression. CONCLUSION 3-Indolylmethanamines represent a new class of antitumor agents. We have shown for the first time the in vivo anticancer effects of 3-indolylmethanamines 31B and PS121912.
Collapse
Affiliation(s)
- Margaret L Guthrie
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, WI, U.S.A. Milwaukee Institute of Drug Discovery, University of Wisconsin, Milwaukee, WI, U.S.A
| | - Preetpal S Sidhu
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, WI, U.S.A. Milwaukee Institute of Drug Discovery, University of Wisconsin, Milwaukee, WI, U.S.A
| | - Emily K Hill
- Molecular Therapeutics Laboratory, Program in Women's Oncology, Women and Infants' Hospital of Rhode Island, Alpert Medical School, Brown University, Providence, RI, U.S.A
| | - Timothy C Horan
- Molecular Therapeutics Laboratory, Program in Women's Oncology, Women and Infants' Hospital of Rhode Island, Alpert Medical School, Brown University, Providence, RI, U.S.A
| | - Premchendar Nandhikonda
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, WI, U.S.A. Milwaukee Institute of Drug Discovery, University of Wisconsin, Milwaukee, WI, U.S.A
| | - Kelly A Teske
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, WI, U.S.A. Milwaukee Institute of Drug Discovery, University of Wisconsin, Milwaukee, WI, U.S.A
| | - Nina Y Yuan
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, WI, U.S.A. Milwaukee Institute of Drug Discovery, University of Wisconsin, Milwaukee, WI, U.S.A
| | - Marina Sidorko
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, WI, U.S.A. Milwaukee Institute of Drug Discovery, University of Wisconsin, Milwaukee, WI, U.S.A
| | - Revathi Rodali
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, WI, U.S.A. Milwaukee Institute of Drug Discovery, University of Wisconsin, Milwaukee, WI, U.S.A
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, WI, U.S.A. Milwaukee Institute of Drug Discovery, University of Wisconsin, Milwaukee, WI, U.S.A
| | - Lanlan Han
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, WI, U.S.A. Milwaukee Institute of Drug Discovery, University of Wisconsin, Milwaukee, WI, U.S.A
| | - Nicholas R Silvaggi
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, WI, U.S.A. Milwaukee Institute of Drug Discovery, University of Wisconsin, Milwaukee, WI, U.S.A
| | - Daniel D Bikle
- Endocrine Research Unit, Department of Medicine, Veterans Affairs Medical Center, San Francisco, CA, U.S.A
| | - Richard G Moore
- Molecular Therapeutics Laboratory, Program in Women's Oncology, Women and Infants' Hospital of Rhode Island, Alpert Medical School, Brown University, Providence, RI, U.S.A
| | - Rakesh K Singh
- Molecular Therapeutics Laboratory, Program in Women's Oncology, Women and Infants' Hospital of Rhode Island, Alpert Medical School, Brown University, Providence, RI, U.S.A
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, WI, U.S.A. Milwaukee Institute of Drug Discovery, University of Wisconsin, Milwaukee, WI, U.S.A.
| |
Collapse
|
26
|
Buchert M, Rohde F, Eissmann M, Tebbutt N, Williams B, Tan CW, Owen A, Hirokawa Y, Gnann A, Orend G, Orner G, Dashwood RH, Heath JK, Ernst M, Janssen KP. A hypermorphic epithelial β-catenin mutation facilitates intestinal tumorigenesis in mice in response to compounding WNT-pathway mutations. Dis Model Mech 2015; 8:1361-73. [PMID: 26398937 PMCID: PMC4631784 DOI: 10.1242/dmm.019844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/31/2015] [Indexed: 12/18/2022] Open
Abstract
Activation of the Wnt/β-catenin pathway occurs in the vast majority of colorectal cancers. However, the outcome of the disease varies markedly from individual to individual, even within the same tumor stage. This heterogeneity is governed to a great extent by the genetic make-up of individual tumors and the combination of oncogenic mutations. In order to express throughout the intestinal epithelium a degradation-resistant β-catenin (Ctnnb1), which lacks the first 131 amino acids, we inserted an epitope-tagged ΔN(1-131)-β-catenin-encoding cDNA as a knock-in transgene into the endogenous gpA33 gene locus in mice. The resulting gpA33(ΔN-Bcat) mice showed an increase in the constitutive Wnt/β-catenin pathway activation that shifts the cell fate towards the Paneth cell lineage in pre-malignant intestinal epithelium. Furthermore, 19% of all heterozygous and 37% of all homozygous gpA33(ΔN-Bcat) mice spontaneously developed aberrant crypt foci and adenomatous polyps, at frequencies and latencies akin to those observed in sporadic colon cancer in humans. Consistent with this, the Wnt target genes, MMP7 and Tenascin-C, which are most highly expressed in benign human adenomas and early tumor stages, were upregulated in pre-malignant tissue of gpA33(ΔN-Bcat) mice, but those Wnt target genes associated with excessive proliferation (i.e. Cdnn1, myc) were not. We also detected diminished expression of membrane-associated α-catenin and increased intestinal permeability in gpA33(ΔN-Bcat) mice in challenge conditions, providing a potential explanation for the observed mild chronic intestinal inflammation and increased susceptibility to azoxymethane and mutant Apc-dependent tumorigenesis. Collectively, our data indicate that epithelial expression of ΔN(1-131)-β-catenin in the intestine creates an inflammatory microenvironment and co-operates with other mutations in the Wnt/β-catenin pathway to facilitate and promote tumorigenesis.
Collapse
Affiliation(s)
- Michael Buchert
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Franziska Rohde
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Moritz Eissmann
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Niall Tebbutt
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Ben Williams
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Chin Wee Tan
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Alexander Owen
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Yumiko Hirokawa
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Alexandra Gnann
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Gertraud Orend
- Inserm U1109, MN3T team, 3 Av. Molière, Strasbourg 67200, France LabEx Medalis, Université de Strasbourg, Strasbourg 67200, France Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67200, France
| | - Gayle Orner
- University of Wisconsin, Madison, WI 53706, USA
| | - Rod H Dashwood
- Texas A&M Health Science Center, Center for Epigenetics and Disease Prevention, Houston, TX 77030-3303, USA
| | - Joan K Heath
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Matthias Ernst
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
27
|
Sinha S. Reproducibility of parameter learning with missing observations in naive Wnt Bayesian network trained on colorectal cancer samples and doxycycline-treated cell lines. MOLECULAR BIOSYSTEMS 2015; 11:1802-1819. [PMID: 25961654 DOI: 10.1039/c5mb00117j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
In this manuscript the reproducibility of parameter learning with missing observations in a naive Bayesian network and its effect on the prediction results for Wnt signaling activation in colorectal cancer is tested. The training of the network is carried out separately on doxycycline-treated LS174T cell lines (GSE18560) as well as normal and adenoma samples (GSE8671). A computational framework to test the reproducibility of the parameters is designed in order check the veracity of the prediction results. Detailed experimental analysis suggests that the prediction results are accurate and reproducible with negligible deviations. Anomalies in estimated parameters are accounted for due to the representation issues of the Bayesian network model. High prediction accuracies are reported for normal (N) and colon-related adenomas (AD), colorectal cancer (CRC), carcinomas (C), adenocarcinomas (ADC) and replication error colorectal cancer (RER CRC) test samples. Test samples from inflammatory bowel diseases (IBD) do not fare well in the prediction test. Also, an interesting case regarding hypothesis testing came up while proving the statistical significance of the different design setups of the Bayesian network model. It was found that hypothesis testing may not be the correct way to check the significance between design setups, especially when the structure of the model is the same, given that the model is trained on a single piece of test data. The significance test does have value when the datasets are independent. Finally, in comparison to the biologically inspired models, the naive Bayesian model may give accurate results, but this accuracy comes at the cost of a loss of crucial biological knowledge which might help reveal hidden relations among intra/extracellular factors affecting the Wnt pathway.
Collapse
Affiliation(s)
- Shriprakash Sinha
- Netherlands Bioinformatics Centre, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Hime GR, Horvay K, Jardé T, Casagranda F, Perreau VM, Abud HE. Microarray profiling to analyze the effect of Snai1 loss in mouse intestinal epithelium. GENOMICS DATA 2015; 5:106-8. [PMID: 27054090 PMCID: PMC4793732 DOI: 10.1016/j.gdata.2015.05.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 12/27/2022]
Abstract
Epithelial stem cells from a variety of tissues have
been shown to express genes linked to mesenchymal cell states. The Snail family
of transcriptional factors has long been regarded as a marker of mesenchymal
cells, however recent studies have indicated an involvement in regulation of
epithelial stem cell populations. Snai1 is expressed in the stem cell population
found at the base of the mouse small intestinal crypt that is responsible for
generating all differentiated cell types of the intestinal epithelium. We
utilized an inducible Cre recombinase approach in the intestinal epithelium
combined with a conditional floxed Snai1 allele to induce
knockout of gene function in the stem cell population. Loss of
Snai1 resulted in loss of crypt base columnar cells
and a failure to induce a proliferative response following radiation damage. We
induced Snai1 loss in cultured organoids that had been
derived from epithelial cells and compared gene expression to organoids with
functional Snai1. Here we describe in detail the methods
for generation of knockout organoids and analysis of microarray data that has
been deposited in Gene Expression Omnibus (GEO):GSE65005.
Collapse
Affiliation(s)
- Gary R Hime
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Vic 3010, Australia
| | - Katja Horvay
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic 3800, Australia
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic 3800, Australia
| | - Franca Casagranda
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Vic 3010, Australia
| | - Victoria M Perreau
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic 3010, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic 3800, Australia
| |
Collapse
|
29
|
Al Alam D, Danopoulos S, Schall K, Sala FG, Almohazey D, Fernandez GE, Georgia S, Frey MR, Ford HR, Grikscheit T, Bellusci S. Fibroblast growth factor 10 alters the balance between goblet and Paneth cells in the adult mouse small intestine. Am J Physiol Gastrointest Liver Physiol 2015; 308:G678-90. [PMID: 25721301 PMCID: PMC4398841 DOI: 10.1152/ajpgi.00158.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 02/12/2015] [Indexed: 01/31/2023]
Abstract
Intestinal epithelial cell renewal relies on the right balance of epithelial cell migration, proliferation, differentiation, and apoptosis. Intestinal epithelial cells consist of absorptive and secretory lineage. The latter is comprised of goblet, Paneth, and enteroendocrine cells. Fibroblast growth factor 10 (FGF10) plays a central role in epithelial cell proliferation, survival, and differentiation in several organs. The expression pattern of FGF10 and its receptors in both human and mouse intestine and their role in small intestine have yet to be investigated. First, we analyzed the expression of FGF10, FGFR1, and FGFR2, in the human ileum and throughout the adult mouse small intestine. We found that FGF10, FGFR1b, and FGFR2b are expressed in the human ileum as well as in the mouse small intestine. We then used transgenic mouse models to overexpress Fgf10 and a soluble form of Fgfr2b, to study the impact of gain or loss of Fgf signaling in the adult small intestine. We demonstrated that overexpression of Fgf10 in vivo and in vitro induces goblet cell differentiation while decreasing Paneth cells. Moreover, FGF10 decreases stem cell markers such as Lgr5, Lrig1, Hopx, Ascl2, and Sox9. FGF10 inhibited Hes1 expression in vitro, suggesting that FGF10 induces goblet cell differentiation likely through the inhibition of Notch signaling. Interestingly, Fgf10 overexpression for 3 days in vivo and in vitro increased the number of Mmp7/Muc2 double-positive cells, suggesting that goblet cells replace Paneth cells. Further studies are needed to determine the mechanism by which Fgf10 alters cell differentiation in the small intestine.
Collapse
Affiliation(s)
- Denise Al Alam
- Keck School of Medicine, University of Southern California, Los Angeles, California; Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Soula Danopoulos
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Kathy Schall
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Frederic G. Sala
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Dana Almohazey
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - G. Esteban Fernandez
- 1Keck School of Medicine, University of Southern California, Los Angeles, California;
| | - Senta Georgia
- 2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Mark R. Frey
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Henri R. Ford
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Tracy Grikscheit
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California;
| | - Saverio Bellusci
- 1Keck School of Medicine, University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California; ,3Department of Internal Medicine II, University of Giessen Lung Center and Member of the German Lung Center, Giessen, Germany; and ,4Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
30
|
Horvay K, Jardé T, Casagranda F, Perreau VM, Haigh K, Nefzger CM, Akhtar R, Gridley T, Berx G, Haigh JJ, Barker N, Polo JM, Hime GR, Abud HE. Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium. EMBO J 2015; 34:1319-35. [PMID: 25759216 DOI: 10.15252/embj.201490881] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/02/2015] [Indexed: 12/17/2022] Open
Abstract
Snail family members regulate epithelial-to-mesenchymal transition (EMT) during invasion of intestinal tumours, but their role in normal intestinal homeostasis is unknown. Studies in breast and skin epithelia indicate that Snail proteins promote an undifferentiated state. Here, we demonstrate that conditional knockout of Snai1 in the intestinal epithelium results in apoptotic loss of crypt base columnar stem cells and bias towards differentiation of secretory lineages. In vitro organoid cultures derived from Snai1 conditional knockout mice also undergo apoptosis when Snai1 is deleted. Conversely, ectopic expression of Snai1 in the intestinal epithelium in vivo results in the expansion of the crypt base columnar cell pool and a decrease in secretory enteroendocrine and Paneth cells. Following conditional deletion of Snai1, the intestinal epithelium fails to produce a proliferative response following radiation-induced damage indicating a fundamental requirement for Snai1 in epithelial regeneration. These results demonstrate that Snai1 is required for regulation of lineage choice, maintenance of CBC stem cells and regeneration of the intestinal epithelium following damage.
Collapse
Affiliation(s)
- Katja Horvay
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic., Australia
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic., Australia
| | - Franca Casagranda
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Vic., Australia
| | - Victoria M Perreau
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Vic., Australia
| | - Katharina Haigh
- Australian Centre for Blood Diseases, Monash University & Alfred Health, Melbourne, Vic., Australia Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christian M Nefzger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic., Australia Australian Regenerative Medicine Institute, Monash University, Clayton, Vic., Australia
| | - Reyhan Akhtar
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic., Australia
| | - Thomas Gridley
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Geert Berx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium Molecular and Cellular Oncology, Inflammation Research Center, VIB, Ghent, Belgium
| | - Jody J Haigh
- Australian Centre for Blood Diseases, Monash University & Alfred Health, Melbourne, Vic., Australia Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Nick Barker
- A*STAR Institute of Medical Biology, Singapore City, Singapore
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic., Australia Australian Regenerative Medicine Institute, Monash University, Clayton, Vic., Australia
| | - Gary R Hime
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Vic., Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic., Australia
| |
Collapse
|
31
|
Guo H, Nagy T, Pierce M. Post-translational glycoprotein modifications regulate colon cancer stem cells and colon adenoma progression in Apc(min/+) mice through altered Wnt receptor signaling. J Biol Chem 2014; 289:31534-49. [PMID: 25274627 DOI: 10.1074/jbc.m114.602680] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Deletion of GnT-V (MGAT5), which synthesizes N-glycans with β(1,6)-branched glycans, reduced the compartment of cancer stem cells (CSC) in the her-2 mouse model of breast cancer, leading to delay of tumor onset. Because GnT-V levels are also commonly up-regulated in colon cancer, we investigated their regulation of colon CSC and adenoma development. Anchorage-independent cell growth and tumor formation induced by injection of colon tumor cells into NOD/SCID mice were positively associated with GnT-V levels, indicating regulation of proliferation and tumorigenicity. Using Apc(min/+) mice with different GnT-V backgrounds, knock-out of GnT-V had no significant effect on the number of adenoma/mouse, but adenoma size was significantly reduced and accompanied increased survival of Apc(min/+) mice with GnT-V deletion (p < 0.01), suggesting an inhibition in the progression of colon adenoma caused by deletion of GnT-V. Decreased expression levels of GnT-V down-regulated the population of colon (intestine) CSC, affecting their ability for self-renewal and tumorigenicity in NOD/SCID mice. Furthermore, altered nuclear translocation of β-catenin and expression of Wnt target genes were positively associated with expression levels of GnT-V, indicating the regulation of canonical Wnt/β-catenin signaling. By overexpressing the Wnt receptor, FZD-7, in colon cancer cells, we found that FZD-7 receptors expressed N-linked β(1,6) branching, indicating that FZD-7 can be modified by GnT-V. The aberrant Wnt signaling observed after modulating GnT-V levels is likely to result from altered N-linked β(1,6) branching on FZD-7, thereby affecting Wnt signaling, the compartment of CSC, and tumor progression.
Collapse
Affiliation(s)
- Huabei Guo
- From the Departments of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center and
| | - Tamas Nagy
- Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602
| | - Michael Pierce
- From the Departments of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center and
| |
Collapse
|
32
|
Yeh ES, Vernon-Grey A, Martin H, Chodosh LA. Tetracycline-regulated mouse models of cancer. Cold Spring Harb Protoc 2014; 2014:pdb.top069823. [PMID: 25275112 DOI: 10.1101/pdb.top069823] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genetically engineered mouse models (GEMMs) have proven essential to the study of mammalian gene function in both development and disease. However, traditional constitutive transgenic mouse model systems are limited by the temporal and spatial characteristics of the experimental promoter used to drive transgene expression. To address this limitation, considerable effort has been dedicated to developing conditional and inducible mouse model systems. Although a number of approaches to generating inducible GEMMs have been pursued, several have been restricted by toxic or undesired physiological side effects of the compounds used to activate gene expression. The development of tetracycline (tet)-dependent regulatory systems has allowed for circumvention of these issues resulting in the widespread adoption of these systems as an invaluable tool for modeling the complex nature of cancer progression.
Collapse
Affiliation(s)
- Elizabeth S Yeh
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Ann Vernon-Grey
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Heather Martin
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Lewis A Chodosh
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
33
|
Germann M, Xu H, Malaterre J, Sampurno S, Huyghe M, Cheasley D, Fre S, Ramsay RG. Tripartite interactions between Wnt signaling, Notch and Myb for stem/progenitor cell functions during intestinal tumorigenesis. Stem Cell Res 2014; 13:355-66. [PMID: 25290188 DOI: 10.1016/j.scr.2014.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/09/2014] [Accepted: 08/02/2014] [Indexed: 01/22/2023] Open
Abstract
Deletion studies confirm Wnt, Notch and Myb transcriptional pathway engagement in intestinal tumorigenesis. Nevertheless, their contrasting and combined roles when activated have not been elucidated. This is important as these pathways are not ablated but rather are aberrantly activated during carcinogenesis. Using ApcMin/+ mice as a source of organoids we documented their transition, on a clone-by-clone basis, to cyst-like spheres with constitutively activated Wnt pathway, increased self-renewal and growth and reduced differentiation. We then looked at this transition when Myb and/or Notch1 are activated. Activated Notch promoted cyst-like organoids. Conversely growth and propagation of cyst-like, but not normal organoids were Notch-independent. Activated Myb promoted normal, but not cyst-like organoids. Interestingly the Wnt, Notch and Myb pathways were all involved in regulating the expression of the intestinal stem cell (ISC) gene Lgr5 in organoids, while ISC gene and Notch target Olfm4 was dominantly repressed by Wnt. These findings parallel mouse intestinal adenoma formation where Notch promoted the initiation, but not growth, of Wnt-driven Olfm4-repressed colon tumors. Also Myb was essential for colon tumor initiation and collateral mouse pathologies. These data reveal the complex interplay and hierarchy of transcriptional networks that operate in ISCs and uncover a shift in pathway-dependencies during tumor initiation.
Collapse
Affiliation(s)
- Markus Germann
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Huiling Xu
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Cancer Department of Oncology, University of Melbourne, Australia; Department of Pathology, The University of Melbourne, Australia
| | - Jordane Malaterre
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Cancer Department of Oncology, University of Melbourne, Australia
| | - Shienny Sampurno
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Cancer Department of Oncology, University of Melbourne, Australia
| | - Mathilde Huyghe
- Institut Curie, Centre de Recherche, Paris 75248, Cedex 05, France
| | - Dane Cheasley
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Cancer Department of Oncology, University of Melbourne, Australia
| | - Silvia Fre
- Institut Curie, Centre de Recherche, Paris 75248, Cedex 05, France
| | - Robert G Ramsay
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Cancer Department of Oncology, University of Melbourne, Australia; Department of Pathology, The University of Melbourne, Australia.
| |
Collapse
|
34
|
Rudge F, Dale T. Therapeutic Targetingof the Wnt Signaling Network. WNT SIGNALING IN DEVELOPMENT AND DISEASE 2014:421-444. [DOI: 10.1002/9781118444122.ch32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|