1
|
Srivastava N, Hu H, Peterson OJ, Vomund AN, Stremska M, Zaman M, Giri S, Li T, Lichti CF, Zakharov PN, Zhang B, Abumrad NA, Chen YG, Ravichandran KS, Unanue ER, Wan X. CXCL16-dependent scavenging of oxidized lipids by islet macrophages promotes differentiation of pathogenic CD8 + T cells in diabetic autoimmunity. Immunity 2024; 57:1629-1647.e8. [PMID: 38754432 PMCID: PMC11236520 DOI: 10.1016/j.immuni.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/18/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
The pancreatic islet microenvironment is highly oxidative, rendering β cells vulnerable to autoinflammatory insults. Here, we examined the role of islet resident macrophages in the autoimmune attack that initiates type 1 diabetes. Islet macrophages highly expressed CXCL16, a chemokine and scavenger receptor for oxidized low-density lipoproteins (OxLDLs), regardless of autoimmune predisposition. Deletion of Cxcl16 in nonobese diabetic (NOD) mice suppressed the development of autoimmune diabetes. Mechanistically, Cxcl16 deficiency impaired clearance of OxLDL by islet macrophages, leading to OxLDL accumulation in pancreatic islets and a substantial reduction in intra-islet transitory (Texint) CD8+ T cells displaying proliferative and effector signatures. Texint cells were vulnerable to oxidative stress and diminished by ferroptosis; PD-1 blockade rescued this population and reversed diabetes resistance in NOD.Cxcl16-/- mice. Thus, OxLDL scavenging in pancreatic islets inadvertently promotes differentiation of pathogenic CD8+ T cells, presenting a paradigm wherein tissue homeostasis processes can facilitate autoimmune pathogenesis in predisposed individuals.
Collapse
Affiliation(s)
- Neetu Srivastava
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Hao Hu
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Orion J Peterson
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Anthony N Vomund
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Marta Stremska
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohammad Zaman
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Shilpi Giri
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Tiandao Li
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Pavel N Zakharov
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nada A Abumrad
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kodi S Ravichandran
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; VIB/UGent Inflammation Research Centre and Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Emil R Unanue
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Wang Y, Liu Z, Ma X. MNMST: topology of cell networks leverages identification of spatial domains from spatial transcriptomics data. Genome Biol 2024; 25:133. [PMID: 38783355 PMCID: PMC11112797 DOI: 10.1186/s13059-024-03272-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Advances in spatial transcriptomics provide an unprecedented opportunity to reveal the structure and function of biology systems. However, current algorithms fail to address the heterogeneity and interpretability of spatial transcriptomics data. Here, we present a multi-layer network model for identifying spatial domains in spatial transcriptomics data with joint learning. We demonstrate that spatial domains can be precisely characterized and discriminated by the topological structure of cell networks, facilitating identification and interpretability of spatial domains, which outperforms state-of-the-art baselines. Furthermore, we prove that network model offers an effective and efficient strategy for integrative analysis of spatial transcriptomics data from various platforms.
Collapse
Affiliation(s)
- Yu Wang
- School of Computer Science and Technology, Xidian University, No.2 South Taibai Road, Xi'an, 710071, Shaanxi, China
- Key Laboratory of Smart Human-Computer Interaction and Wearable Technology of Shaanxi Province, Xidian University, No.2 South Taibai Road, Xi'an, 710071, Shaanxi, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China
| | - Xiaoke Ma
- School of Computer Science and Technology, Xidian University, No.2 South Taibai Road, Xi'an, 710071, Shaanxi, China.
- Key Laboratory of Smart Human-Computer Interaction and Wearable Technology of Shaanxi Province, Xidian University, No.2 South Taibai Road, Xi'an, 710071, Shaanxi, China.
| |
Collapse
|
3
|
Yuan J, Yu Z, Zhang P, Luo K, Xu Y, Lan T, Zhang M, Chen Y, Lu Z. DDAH1 recruits peroxiredoxin 1 and sulfiredoxin 1 to preserve its activity and regulate intracellular redox homeostasis. Redox Biol 2024; 70:103080. [PMID: 38354630 PMCID: PMC10876909 DOI: 10.1016/j.redox.2024.103080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Growing evidence suggests that dimethylarginine dimethylaminohydrolase 1 (DDAH1), a crucial enzyme for the degradation of asymmetric dimethylarginine (ADMA), is closely related to oxidative stress during the development of multiple diseases. However, the underlying mechanism by which DDAH1 regulates the intracellular redox state remains unclear. In the present study, DDAH1 was shown to interact with peroxiredoxin 1 (PRDX1) and sulfiredoxin 1 (SRXN1), and these interactions could be enhanced by oxidative stress. In HepG2 cells, H2O2-induced downregulation of DDAH1 and accumulation of ADMA were attenuated by overexpression of PRDX1 or SRXN1 but exacerbated by knockdown of PRDX1 or SRXN1. On the other hand, DDAH1 also maintained the expression of PRDX1 and SRXN1 in H2O2-treated cells. Furthermore, global knockout of Ddah1 (Ddah1-/-) or liver-specific knockout of Ddah1 (Ddah1HKO) exacerbated, while overexpression of DDAH1 alleviated liver dysfunction, hepatic oxidative stress and downregulation of PRDX1 and SRXN1 in CCl4-treated mice. Overexpression of liver PRDX1 improved liver function, attenuated hepatic oxidative stress and DDAH1 downregulation, and diminished the differences between wild type and Ddah1-/- mice after CCl4 treatment. Collectively, our results suggest that the regulatory effect of DDAH1 on cellular redox homeostasis under stress conditions is due, at least in part, to the interaction with PRDX1 and SRXN1.
Collapse
Affiliation(s)
- Juntao Yuan
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuoran Yu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Zhang
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, 55455, USA
| | - Kai Luo
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Xu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Lan
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Zhang
- Department of Nephrology, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, 100020, China.
| | - Yingjie Chen
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Fan C, Yuan S, Zhang Y, Nie Y, Xiang L, Luo T, Xi Q, Zhang Y, Gu Z, Wang P, Zhou H. Peroxiredoxin-1 as a molecular chaperone that regulates glutathione S-transferase P1 activity and drives mutidrug resistance in ovarian cancer cells. Biochem Biophys Rep 2024; 37:101639. [PMID: 38288281 PMCID: PMC10823101 DOI: 10.1016/j.bbrep.2024.101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/31/2024] Open
Abstract
Ovarian cancer is among the most prevalent gynecological malignancies around the globe. Nonetheless, chemoresistance continues to be one of the greatest obstacles in the treatment of ovarian cancer. Therefore, understanding the mechanisms of chemoresistance and identifying new treatment options for ovarian cancer patients is urgently required. In this study, we found that the mRNA and protein expression levels of PRDX1 were significantly increased in cisplatin resistant A2780/CDDP cells. Cell survival assays revealed that PRDX1 depletion substantially increased ovarian cancer cell sensitivity to cisplatin, docetaxel, and doxorubicin. Additionally, PRDX1 significantly increased GSTP1 activity, resulting in multidrug resistance. Biochemical experiments showed that PRDX1 interacted with GSTP1 through Cysteine 83, which regulated GSTP1 activity as well as chemotherapy resistance in ovarian cancer cells. Our findings indicate that the molecular chaperone activity of PRDX1 is a promising new therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Chengling Fan
- Baoying Maternity and Child Health Care Hospital, 118 Anyi East Road, Baoying County, Yangzhou, China
| | - Shubin Yuan
- Jiangsu Yinfeng Science and Technology Association, No. 7, Yongfeng Avenue, Qinhuai District, Nanjing, China
| | - Yuemei Zhang
- Baoying Maternity and Child Health Care Hospital, 118 Anyi East Road, Baoying County, Yangzhou, China
| | - Yinmei Nie
- Baoying Maternity and Child Health Care Hospital, 118 Anyi East Road, Baoying County, Yangzhou, China
| | - Li Xiang
- Baoying Maternity and Child Health Care Hospital, 118 Anyi East Road, Baoying County, Yangzhou, China
| | - Tianchao Luo
- Baoying Maternity and Child Health Care Hospital, 118 Anyi East Road, Baoying County, Yangzhou, China
| | - Qi Xi
- Jiangsu Yinfeng Science and Technology Association, No. 7, Yongfeng Avenue, Qinhuai District, Nanjing, China
| | - Yaqin Zhang
- Jiangsu Yinfeng Science and Technology Association, No. 7, Yongfeng Avenue, Qinhuai District, Nanjing, China
| | - Zixiang Gu
- Jiangsu Yinfeng Science and Technology Association, No. 7, Yongfeng Avenue, Qinhuai District, Nanjing, China
| | - Peng Wang
- Jiangsu Yinfeng Science and Technology Association, No. 7, Yongfeng Avenue, Qinhuai District, Nanjing, China
| | - Hongxia Zhou
- Baoying Maternity and Child Health Care Hospital, 118 Anyi East Road, Baoying County, Yangzhou, China
| |
Collapse
|
5
|
Zhang Y, Zhang X, Zhang M, Zhang F, Chen T, Zha J, Shen Q, Wang D, Hou C. Hepatocytes-derived Prdx1 regulates macrophage phenotypes via TLR4 activation in acute liver injury. Int Immunopharmacol 2024; 127:111439. [PMID: 38159556 DOI: 10.1016/j.intimp.2023.111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Acute liver injury (ALI) is a significant causative factor for multiple hepatic diseases. The excessive inflammatory response triggers proinflammatory immune cells recruitment, infiltration and differentiation, further contributing to inflammatory injuries in liver. As a proinflammatory factor, circulating Peroxiredoxin 1 (Prdx1) is elevated in ALI patients and mice. In this study, through carbon tetrachloride (CCl4) and cecal puncture and ligation (CLP)-induced liver injury mice model, we found hepatocytes-derived Prdx1 expression was increased in ALI. After AAV8-Prdx1-mediated Prdx1 knockdown, CCl4 and CLP-induced ALI was alleviated, along with the reduced proinflammatory cytokines, suppressed myeloid cells recruitment, decreased proportions of hepatic macrophages and neutrophils, restrained proinflammatory macrophage differentiation and infiltration. Mechanistically, hepatocyte-derived Prdx1 regulated macrophages through paracrine activation of the TLR4 signal. Our data support the immune and inflammatory regulatory role of Prdx1 in ALI pathological process to suggest its potential therapeutic application and clinical value.
Collapse
Affiliation(s)
- Yujing Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xinru Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Mingxun Zhang
- The First Affiliated Hospital of University of Science and Technology of China, China
| | - Fanrong Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Tong Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jingjing Zha
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Qiying Shen
- The First Affiliated Hospital of Anhui Medical University, China.
| | - Dong Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Chao Hou
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
6
|
Guan X, Ruan Y, Che X, Feng W. Dual role of PRDX1 in redox-regulation and tumorigenesis: Past and future. Free Radic Biol Med 2024; 210:120-129. [PMID: 37977211 DOI: 10.1016/j.freeradbiomed.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Tumour cells often display an active metabolic profile, leading to the intracellular accumulation of reactive oxygen species. As a member of the peroxidase family, peroxiredoxin 1 (PRDX1) functions generally in protecting against cell damage caused by H2O2. Additionally, PRDX1 plays a role as a molecular chaperone in various malignant tumours, exhibiting either tumour-promoting or tumour-suppressing effects. Currently, PRDX1-targeting drugs have demonstrated in vitro anticancer effects, indicating the potential of PRDX1 as a molecular target. Here we discussed the diverse functions of PRDX1 in tumour biology and provided a comprehensive analysis of the therapeutic potential of targeting PRDX1 signalling across various types of cancer.
Collapse
Affiliation(s)
- Xin Guan
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiyin Ruan
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxia Che
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Weiwei Feng
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Ali R, Alhaj Sulaiman A, Memon B, Pradhan S, Algethami M, Aouida M, McKay G, Madhusudan S, Abdelalim EM, Ramotar D. Altered Regulation of the Glucose Transporter GLUT3 in PRDX1 Null Cells Caused Hypersensitivity to Arsenite. Cells 2023; 12:2682. [PMID: 38067110 PMCID: PMC10705171 DOI: 10.3390/cells12232682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Targeting tumour metabolism through glucose transporters is an attractive approach. However, the role these transporters play through interaction with other signalling proteins is not yet defined. The glucose transporter SLC2A3 (GLUT3) is a member of the solute carrier transporter proteins. GLUT3 has a high affinity for D-glucose and regulates glucose uptake in the neurons, as well as other tissues. Herein, we show that GLUT3 is involved in the uptake of arsenite, and its level is regulated by peroxiredoxin 1 (PRDX1). In the absence of PRDX1, GLUT3 mRNA and protein expression levels are low, but they are increased upon arsenite treatment, correlating with an increased uptake of glucose. The downregulation of GLUT3 by siRNA or deletion of the gene by CRISPR cas-9 confers resistance to arsenite. Additionally, the overexpression of GLUT3 sensitises the cells to arsenite. We further show that GLUT3 interacts with PRDX1, and it forms nuclear foci, which are redistributed upon arsenite exposure, as revealed by immunofluorescence analysis. We propose that GLUT3 plays a role in mediating the uptake of arsenite into cells, and its homeostatic and redox states are tightly regulated by PRDX1. As such, GLUT3 and PRDX1 are likely to be novel targets for arsenite-based cancer therapy.
Collapse
Affiliation(s)
- Reem Ali
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar; (R.A.); (A.A.S.); (B.M.); (M.A.); (E.M.A.)
| | - Abdallah Alhaj Sulaiman
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar; (R.A.); (A.A.S.); (B.M.); (M.A.); (E.M.A.)
| | - Bushra Memon
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar; (R.A.); (A.A.S.); (B.M.); (M.A.); (E.M.A.)
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha 34110, Qatar
| | - Singdhendubala Pradhan
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar; (S.P.); (G.M.)
| | - Mashael Algethami
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (M.A.); (S.M.)
| | - Mustapha Aouida
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar; (R.A.); (A.A.S.); (B.M.); (M.A.); (E.M.A.)
| | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar; (S.P.); (G.M.)
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (M.A.); (S.M.)
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Essam M. Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar; (R.A.); (A.A.S.); (B.M.); (M.A.); (E.M.A.)
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha 34110, Qatar
| | - Dindial Ramotar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar; (R.A.); (A.A.S.); (B.M.); (M.A.); (E.M.A.)
| |
Collapse
|
8
|
Cao M, Day AM, Galler M, Latimer HR, Byrne DP, Foy TW, Dwyer E, Bennett E, Palmer J, Morgan BA, Eyers PA, Veal EA. A peroxiredoxin-P38 MAPK scaffold increases MAPK activity by MAP3K-independent mechanisms. Mol Cell 2023; 83:3140-3154.e7. [PMID: 37572670 DOI: 10.1016/j.molcel.2023.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/19/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023]
Abstract
Peroxiredoxins (Prdxs) utilize reversibly oxidized cysteine residues to reduce peroxides and promote H2O2 signal transduction, including H2O2-induced activation of P38 MAPK. Prdxs form H2O2-induced disulfide complexes with many proteins, including multiple kinases involved in P38 MAPK signaling. Here, we show that a genetically encoded fusion between a Prdx and P38 MAPK is sufficient to hyperactivate the kinase in yeast and human cells by a mechanism that does not require the H2O2-sensing cysteine of the Prdx. We demonstrate that a P38-Prdx fusion protein compensates for loss of the yeast scaffold protein Mcs4 and MAP3K activity, driving yeast into mitosis. Based on our findings, we propose that the H2O2-induced formation of Prdx-MAPK disulfide complexes provides an alternative scaffold and signaling platform for MAPKK-MAPK signaling. The demonstration that formation of a complex with a Prdx is sufficient to modify the activity of a kinase has broad implications for peroxide-based signal transduction in eukaryotes.
Collapse
Affiliation(s)
- Min Cao
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alison M Day
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Martin Galler
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Heather R Latimer
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Dominic P Byrne
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Thomas W Foy
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Emilia Dwyer
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Elise Bennett
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jeremy Palmer
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Brian A Morgan
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Patrick A Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Elizabeth A Veal
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
9
|
Zhou M, Guo J, Li S, Li A, Fang Z, Zhao M, Zhang M, Wang X. Effect of peroxiredoxin 1 on the regulation of trophoblast function by affecting autophagy and oxidative stress in preeclampsia. J Assist Reprod Genet 2023:10.1007/s10815-023-02820-0. [PMID: 37227568 DOI: 10.1007/s10815-023-02820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/26/2023] [Indexed: 05/26/2023] Open
Abstract
PURPOSE PE is a pregnancy-specific syndrome and one of the main causes of maternal, fetal, and neonatal mortality. PRDX1 is an antioxidant that regulates cell proliferation, differentiation, and apoptosis. The aim of this study is to investigate the effect of PRDX1 on the regulation of trophoblast function by affecting autophagy and oxidative stress in preeclampsia. METHODS Western blotting, RT-qPCR, and immunofluorescence were used to examine the expression of PRDX1 in placentas. PRDX1-siRNA was transfected to knockdown PRDX1 in HTR-8/SVneo cells. The biological function of HTR-8/SVneo cells was detected by wound healing, invasion, tube formation, CCK-8, EdU, flow cytometry, and TUNEL assays. Western blotting was used to detect the protein expression of cleaved-Caspase3, Bax, LC3II, Beclin1, PTEN, and p-AKT. DCFH-DA staining was used to detect ROS levels by flow cytometry. RESULTS PRDX1 was significantly decreased in placental trophoblasts in PE patients. Following the exposure of HTR-8/SVneo cells to H2O2, PRDX1 expression was significantly decreased, LC3II and Beclin1 expression was notably increased, and ROS level was also markedly increased. PRDX1 knockdown impaired migration, invasion, and tube-formation abilities and promoted apoptosis, which was accompanied by an increased expression of cleaved-Caspase3 and Bax. PRDX1 knockdown induced a significant decrease in LC3II and Beclin1 expression, along with an elevated p-AKT expression and a decreased PTEN expression. PRDX1 knockdown increased intracellular ROS levels, and NAC attenuated PRDX1 knockdown-induced apoptosis. CONCLUSION PRDX1 regulated trophoblast function through the PTEN/AKT signaling pathway to affect cell autophagy and ROS level, which provided a potential target for the treatment of PE.
Collapse
Affiliation(s)
- Meijuan Zhou
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Junjun Guo
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Shuxian Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Anna Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Zhenya Fang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Man Zhao
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China.
| | - Xietong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China.
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Street, Jinan, 250021, Shandong, China.
| |
Collapse
|
10
|
Skoko JJ, Cao J, Gaboriau D, Attar M, Asan A, Hong L, Paulsen CE, Ma H, Liu Y, Wu H, Harkness T, Furdui CM, Manevich Y, Morrison CG, Brown ET, Normolle D, Spies M, Spies MA, Carroll K, Neumann CA. Redox regulation of RAD51 Cys319 and homologous recombination by peroxiredoxin 1. Redox Biol 2022; 56:102443. [PMID: 36058112 PMCID: PMC9450138 DOI: 10.1016/j.redox.2022.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022] Open
Abstract
RAD51 is a critical recombinase that functions in concert with auxiliary mediator proteins to direct the homologous recombination (HR) DNA repair pathway. We show that Cys319 RAD51 possesses nucleophilic characteristics and is important for irradiation-induced RAD51 foci formation and resistance to inhibitors of poly (ADP-ribose) polymerase (PARP). We have previously identified that cysteine (Cys) oxidation of proteins can be important for activity and modulated via binding to peroxiredoxin 1 (PRDX1). PRDX1 reduces peroxides and coordinates the signaling actions of protein binding partners. Loss of PRDX1 inhibits irradiation-induced RAD51 foci formation and represses HR DNA repair. PRDX1-deficient human breast cancer cells and mouse embryonic fibroblasts display disrupted RAD51 foci formation and decreased HR, resulting in increased DNA damage and sensitization of cells to irradiation. Following irradiation cells deficient in PRDX1 had increased incorporation of the sulfenylation probe DAz-2 in RAD51 Cys319, a functionally-significant, thiol that PRDX1 is critical for maintaining in a reduced state. Molecular dynamics (MD) simulations of dT-DNA bound to a non-oxidized RAD51 protein showed tight binding throughout the simulation, while dT-DNA dissociated from an oxidized Cys319 RAD51 filament. These novel data establish RAD51 Cys319 as a functionally-significant site for the redox regulation of HR and cellular responses to IR. A functionally-significant Cys319 was identified in RAD51 that possesses nucleophilic characteristics. RAD51 Cys319 plays a central role in RAD51-mediated repair of DNA double strand breaks (DSB). Loss of peroxiredoxin 1 (PRDX1) impairs DNA DSB repair by homologous recombination and results in DNA damage. PRDX1 is critical for maintaining RAD51 Cys319 in a reduced state. Molecular dynamic (MD) simulations suggest ssDNA to dissociate from sulfenylated and not reduced RAD51 Cys319.
Collapse
Affiliation(s)
- John J Skoko
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Juxiang Cao
- Department of Cell and Molecular Pharmacology, The Medical University of South Carolina, Charleston, SC, 29425, USA
| | - David Gaboriau
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland; Facility for Imaging By Light Microscopy, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Myriam Attar
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Alparslan Asan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Lisa Hong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Candice E Paulsen
- Department of Chemistry, Scripps Research Institute Florida, Jupiter, FL, 33458, USA
| | - Hongqiang Ma
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yang Liu
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Hanzhi Wu
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA; Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Trey Harkness
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA; Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yefim Manevich
- Department of Cell and Molecular Pharmacology, The Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ciaran G Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Erika T Brown
- Dartmouth Geisel School of Medicine, Hanover, NH, 03755, USA
| | - Daniel Normolle
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Maria Spies
- Department of Biochemistry and Molecular Biology, University of Iowa, IA, 52242, USA
| | - Michael Ashley Spies
- Department of Biochemistry and Molecular Biology, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, IA, 52242, USA
| | - Kate Carroll
- Department of Chemistry, Scripps Research Institute Florida, Jupiter, FL, 33458, USA
| | - Carola A Neumann
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
11
|
Zhang Q, Luo P, Zheng L, Chen J, Zhang J, Tang H, Liu D, He X, Shi Q, Gu L, Li J, Guo Q, Yang C, Wong YK, Xia F, Wang J. 18beta-Glycyrrhetinic acid induces ROS-mediated apoptosis to ameliorate hepatic fibrosis by targeting PRDX1/2 in activated HSCs. J Pharm Anal 2022; 12:570-582. [PMID: 36105163 PMCID: PMC9463498 DOI: 10.1016/j.jpha.2022.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 10/26/2022] Open
|
12
|
Hydroxyacid Oxidase 2 (HAO2) Inhibits the Tumorigenicity of Hepatocellular Carcinoma and Is Negatively Regulated by miR-615-5p. J Immunol Res 2022; 2022:5003930. [PMID: 35528616 PMCID: PMC9071856 DOI: 10.1155/2022/5003930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/09/2022] [Indexed: 12/30/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the sixth most common kind of cancer worldwide and the third leading cause of cancer mortality. Although a few studies have shown that hydroxyacid oxidase 2 (HAO2) may prevent HCC development, the molecular mechanism is unclear. Methods We examined the levels of HAO2 expression in 23 pairs of HCC/paracancerous tissues by quantitative real-time polymerase chain reaction (qRT-PCR) and evaluated HAO2's expression in The Cancer Genome Atlas (TCGA) database. Furthermore, we examined the biological activity of HAO2 utilizing cell-based functional assays. Additionally, we evaluated the relationship between miR-615-5p and HAO2 in Hep3B cells using a dual-luciferase reporter system and assessed the downstream regulatory mechanisms of miR-615-5p on HAO2. Finally, the nude mice tumor formation experiment was used to determine the impact of HAO2 on the tumorigenicity of HCC cells. Results HAO2 expression was considerably underexpression in HCC tissues and cells, and patients with low HAO2 expression had poorer disease-free survival. Inhibition of cell proliferation, migration, and invasion was observed when HAO2 was overexpressed. miR-615-5p had a negative relation with HAO2, and miR-615-5p restored HAO2's biological activity in HCC cells. Additionally, the tumor volume and weight were considerably reduced in the OV-HAO2 group compared to the OV-NC group. Conclusion HAO2 was found to be underexpressed in HCC tissues and cells, and HAO2 overexpression inhibited HCC cell motility, which was negatively regulated by miR-615-5p. Exogenous expression of HAO2 reduced the tumorigenicity of HCC cells in vivo in nude mice.
Collapse
|
13
|
Beaussart A, Canonico F, Mazon H, Hidalgo J, Cianférani S, Le Cordier H, Kriznik A, Rahuel-Clermont S. Probing the mechanism of the peroxiredoxin decamer interaction with its reductase sulfiredoxin from the single molecule to the solution scale. NANOSCALE HORIZONS 2022; 7:515-525. [PMID: 35234779 DOI: 10.1039/d2nh00037g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peroxiredoxins from the Prx1 subfamily (Prx) are highly regulated multifunctional proteins involved in oxidative stress response, redox signaling and cell protection. Prx is a homodimer that associates into a decamer. The monomer C-terminus plays intricate roles in Prx catalytic functions, decamer stability and interaction with its redox partner, the small reductase sulfiredoxin (Srx), that regulates the switching between Prx cellular functions. As only static structures of covalent Prx-Srx complexes have been reported, whether Srx binding dissociates the decameric assembly and how Prx subunit flexibility impacts complex formation are unknown. Here, we assessed the non-covalent interaction mechanism and dynamics in the solution of Saccharomyces cerevisiae Srx with the ten subunits of Prx Tsa1 at the decamer level via a combination of multiscale biophysical approaches including native mass spectrometry. We show that the ten subunits of the decamer can be saturated by ten Srx molecules and that the Tsa1 decamer in complex with Srx does not dissociate in solution. Furthermore, the binding events of atomic force microscopy (AFM) tip-grafted Srx molecules to Tsa1 individual subunits were relevant to the interactions between free molecules in solution. Combined with protein engineering and rapid kinetics, the observation of peculiar AFM force-distance signatures revealed that Tsa1 C-terminus flexibility controls Tsa1/Srx two-step binding and dynamics and determines the force-induced dissociation of Srx from each subunit of the decameric complex in a sequential or concerted mode. This combined approach from the solution to the single-molecule level offers promising prospects for understanding oligomeric protein interactions with their partners.
Collapse
Affiliation(s)
| | | | - Hortense Mazon
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Jorge Hidalgo
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS CEA, 67087 Strasbourg, France
| | | | - Alexandre Kriznik
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
- Université de Lorraine, CNRS, INSERM, UMS2008 IBSLor, Biophysics and Structural Biology core facility, F-54000 Nancy, France.
| | - Sophie Rahuel-Clermont
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
- Université de Lorraine, CNRS, INSERM, UMS2008 IBSLor, Biophysics and Structural Biology core facility, F-54000 Nancy, France.
| |
Collapse
|
14
|
Bramel EE, Creamer TJ, Saqib M, Camejo Nunez WA, Bagirzadeh R, Roker LA, Goff LA, MacFarlane EG. Postnatal Smad3 Inactivation in Murine Smooth Muscle Cells Elicits a Temporally and Regionally Distinct Transcriptional Response. Front Cardiovasc Med 2022; 9:826495. [PMID: 35463747 PMCID: PMC9033237 DOI: 10.3389/fcvm.2022.826495] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Heterozygous, loss of function mutations in positive regulators of the Transforming Growth Factor-β (TGF-β) pathway cause hereditary forms of thoracic aortic aneurysm. It is unclear whether and how the initial signaling deficiency triggers secondary signaling upregulation in the remaining functional branches of the pathway, and if this contributes to maladaptive vascular remodeling. To examine this process in a mouse model in which time-controlled, partial interference with postnatal TGF-β signaling in vascular smooth muscle cells (VSMCs) could be assessed, we used a VSMC-specific tamoxifen-inducible system, and a conditional allele, to inactivate Smad3 at 6 weeks of age, after completion of perinatal aortic development. This intervention induced dilation and histological abnormalities in the aortic root, with minor involvement of the ascending aorta. To analyze early and late events associated with disease progression, we performed a comparative single cell transcriptomic analysis at 10- and 18-weeks post-deletion, when aortic dilation is undetectable and moderate, respectively. At the early time-point, Smad3-inactivation resulted in a broad reduction in the expression of extracellular matrix components and critical components of focal adhesions, including integrins and anchoring proteins, which was reflected histologically by loss of connections between VSMCs and elastic lamellae. At the later time point, however, expression of several transcripts belonging to the same functional categories was normalized or even upregulated; this occurred in association with upregulation of transcripts coding for TGF-β ligands, and persistent downregulation of negative regulators of the pathway. To interrogate how VSMC heterogeneity may influence this transition, we examined transcriptional changes in each of the four VSMC subclusters identified, regardless of genotype, as partly reflecting the proximal-to-distal anatomic location based on in situ RNA hybridization. The response to Smad3-deficiency varied depending on subset, and VSMC subsets over-represented in the aortic root, the site most vulnerable to dilation, most prominently upregulated TGF-β ligands and pro-pathogenic factors such as thrombospondin-1, angiotensin converting enzyme, and pro-inflammatory mediators. These data suggest that Smad3 is required for maintenance of focal adhesions, and that loss of contacts with the extracellular matrix has consequences specific to each VSMC subset, possibly contributing to the regional susceptibility to dilation in the aorta.
Collapse
Affiliation(s)
- Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Muzna Saqib
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wendy A. Camejo Nunez
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rustam Bagirzadeh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - LaToya Ann Roker
- School of Medicine Microscope Facility, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Loyal A. Goff
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
15
|
Jaiswal S, Joshi B, Chen J, Wang F, Dame MK, Spence JR, Newsome GM, Katz EL, Shah YM, Ramakrishnan SK, Li G, Lee M, Appelman HD, Kuick R, Wang TD. Membrane Bound Peroxiredoxin-1 Serves as a Biomarker for In Vivo Detection of Sessile Serrated Adenomas. Antioxid Redox Signal 2022; 36:39-56. [PMID: 34409853 PMCID: PMC8792500 DOI: 10.1089/ars.2020.8244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aim: Sessile serrated adenomas (SSAs) are premalignant lesions driven by the BRAFV600E mutation to give rise to colorectal cancers (CRCs). They are often missed during white light colonoscopy because of their subtle appearance. Previously, a fluorescently labeled 7mer peptide KCCFPAQ was shown to detect SSAs in vivo. We aim to identify the target of this peptide. Results: Peroxiredoxin-1 (Prdx1) was identified as the binding partner of the peptide ligand. In vitro binding assays and immunofluorescence staining of human colon specimens ex vivo supported this result. Prdx1 was overexpressed on the membrane of cells with the BRAFV600E mutation, and this effect was dependent on oxidative stress. RKO cells harboring the BRAFV600E mutation and human SSA specimens showed higher oxidative stress as well as elevated levels of Prdx1 on the cell membrane. Innovation and Conclusion: These results suggest that Prdx1 is overexpressed on the cell surface in the presence of oxidative stress and can serve as an imaging biomarker for in vivo detection of SSAs. Antioxid. Redox Signal. 36, 39-56.
Collapse
Affiliation(s)
- Sangeeta Jaiswal
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Bishnu Joshi
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jing Chen
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Fa Wang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael K Dame
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason R Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gina M Newsome
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Erica L Katz
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yatrik M Shah
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sadeesh K Ramakrishnan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gaoming Li
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Miki Lee
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Henry D Appelman
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rork Kuick
- Department of Biostatistics, and University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas D Wang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.,Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Demasi M, Augusto O, Bechara EJH, Bicev RN, Cerqueira FM, da Cunha FM, Denicola A, Gomes F, Miyamoto S, Netto LES, Randall LM, Stevani CV, Thomson L. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond. Antioxid Redox Signal 2021; 35:1016-1080. [PMID: 33726509 DOI: 10.1089/ars.2020.8176] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The systematic investigation of oxidative modification of proteins by reactive oxygen species started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-toxicity and cellular homeostasis disruption. Recent Advances: Previously, protein oxidation was associated exclusively to damage. However, not all oxidative modifications are necessarily associated with damage, as with Met and Cys protein residue oxidation. In these cases, redox state changes can alter protein structure, catalytic function, and signaling processes in response to metabolic and/or environmental alterations. This review aims to integrate the present knowledge on redox modifications of proteins with their fate and role in redox signaling and human pathological conditions. Critical Issues: It is hypothesized that protein oxidation participates in the development and progression of many pathological conditions. However, no quantitative data have been correlated with specific oxidized proteins or the progression or severity of pathological conditions. Hence, the comprehension of the mechanisms underlying these modifications, their importance in human pathologies, and the fate of the modified proteins is of clinical relevance. Future Directions: We discuss new tools to cope with protein oxidation and suggest new approaches for integrating knowledge about protein oxidation and redox processes with human pathophysiological conditions. Antioxid. Redox Signal. 35, 1016-1080.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Renata N Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda M Cerqueira
- CENTD, Centre of Excellence in New Target Discovery, Instituto Butantan, São Paulo, Brazil
| | - Fernanda M da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Denicola
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lía M Randall
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Leonor Thomson
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
17
|
Govatati S, Pichavaram P, Mani AM, Kumar R, Sharma D, Dienel A, Meena S, Puchowicz MA, Park EA, Rao GN. Novel role of xanthine oxidase-dependent H 2O 2 production in 12/15-lipoxygenase-mediated de novo lipogenesis, triglyceride biosynthesis and weight gain. Redox Biol 2021; 47:102163. [PMID: 34655995 PMCID: PMC8577505 DOI: 10.1016/j.redox.2021.102163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
12/15-lipoxygenase (12/15-LOX) plays an essential role in oxidative conversion of polyunsaturated fatty acids into various bioactive lipid molecules. Although 12/15-LOX's role in the pathophysiology of various human diseases has been well studied, its role in weight gain is controversial and poorly clarified. Here, we demonstrated the role of 12/15-LOX in high-fat diet (HFD)-induced weight gain in a mouse model. We found that 12/15-LOX mediates HFD-induced de novo lipogenesis (DNL), triglyceride (TG) biosynthesis and the transport of TGs from the liver to adipose tissue leading to white adipose tissue (WAT) expansion and weight gain via xanthine oxidase (XO)-dependent production of H2O2. 12/15-LOX deficiency leads to cullin2-mediated ubiquitination and degradation of XO, thereby suppressing H2O2 production, DNL and TG biosynthesis resulting in reduced WAT expansion and weight gain. These findings infer that manipulation of 12/15-LOX metabolism may manifest a potential therapeutic target for weight gain and obesity. 12/15-LOX-12(S)-HETE axis via activation of CREB-Egr1 enhances TG biosynthesis. 12/15-LOX-12(S)-HETE axis via activation of SREBP1c triggers DNL. H2O2 mediates 12/15-LOX-12(S)-HETE axis-induced DNL and TG biosynthesis. 12/15-LOX via TG biosynthesis leads to WAT expansion and body weight gain. Downstream to 12/15-LOX, H2O2-mediates WAT expansion and body weight gain.
Collapse
Affiliation(s)
- Suresh Govatati
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Prahalathan Pichavaram
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Arul M Mani
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Deepti Sharma
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Ari Dienel
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sunita Meena
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Michelle A Puchowicz
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Edwards A Park
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
18
|
Xu S, Ma Y, Tong Q, Yang J, Liu J, Wang Y, Li G, Zeng J, Fang S, Li F, Xie X, Zhang J. Cullin-5 neddylation-mediated NOXA degradation is enhanced by PRDX1 oligomers in colorectal cancer. Cell Death Dis 2021; 12:265. [PMID: 33712558 PMCID: PMC7954848 DOI: 10.1038/s41419-021-03557-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 01/03/2023]
Abstract
NOXA, a BH3-only proapoptotic protein involved in regulating cell death decisions, is highly expressed but short-lived in colorectal cancer (CRC). Neddylated cullin-5 (CUL5)-mediated ubiquitination and degradation of NOXA is crucial to prevent its overaccumulation and maintain an appropriate action time. However, how this process is manipulated by CRC cells commonly exposed to oxidative stress remain unknown. The peroxiredoxin PRDX1, a conceivable antioxidant overexpressed in CRC tissues, has been shown to inhibit apoptosis and TRAF6 ubiquitin-ligase activity. In this study, we found that PRDX1 inhibits CRC cell apoptosis by downregulating NOXA. Mechanistically, PRDX1 promotes NOXA ubiquitination and degradation, which completely depend on CUL5 neddylation. Further studies have demonstrated that PRDX1 oligomers bind with both the Nedd8-conjugating enzyme UBE2F and CUL5 and that this tricomplex is critical for CUL5 neddylation, since silencing PRDX1 or inhibiting PRDX1 oligomerization greatly dampens CUL5 neddylation and NOXA degradation. An increase in reactive oxygen species (ROS) is not only a hallmark of cancer cells but also the leading driving force for PRDX1 oligomerization. As shown in our study, although ROS play a role in upregulating NOXA mRNA transcription, ROS scavenging in CRC cells by N-acetyl-L-cysteine (NAC) can significantly reduce CUL5 neddylation and extend the NOXA protein half-life. Therefore, in CRC, PRDX1 plays a key role in maintaining intracellular homeostasis under conditions of high metabolic activity by reinforcing UBE2F-CUL5-mediated degradation of NOXA, which is also evidenced in the resistance of CRC cells to etoposide treatment. Based on these findings, targeting PRDX1 could be an effective strategy to overcome the resistance of CRC to DNA damage-inducing chemotherapeutics.
Collapse
Affiliation(s)
- Shoufang Xu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Yilei Ma
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Qingchao Tong
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Jun Yang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Cytopathology, Ningbo Diagnostic Pathology Center, Ningbo, Zhejiang, P.R. China
- Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, P. R. China
| | - Jia Liu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Yanzhong Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Guoli Li
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Jin Zeng
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Sining Fang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Fengying Li
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China.
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China.
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China.
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
19
|
Hao Z, Li Z, Huo J, Li J, Liu F, Yin P. Effects of Chinese wolfberry and Astragalus extract on the antioxidant capacity of Tibetan pig liver. PLoS One 2021; 16:e0245749. [PMID: 33503027 PMCID: PMC7840052 DOI: 10.1371/journal.pone.0245749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/07/2021] [Indexed: 11/19/2022] Open
Abstract
The objective of this study is to determine the effect of Chinese wolfberry (Lycium barbarum) and Astragalus (Astragalus membranaceus) extract (WAE) on the antioxidant capacity of Tibetan pig liver, and discussed the regulatory effect of WAE on the liver antioxidant mechanism. Twelve healthy 120-day-old Tibetan black pigs (35±2 kg) were divided randomly into two groups. The WAE group was fed a basal diet supplemented with 1% WAE for 90 days. The control group was fed the same diet, but without the WAE. We found that liver superoxide dismutase 1 (SOD1) activity (P<0.05), total antioxidative capacity (T-AOC) (P<0.05), and catalase (CAT) activity (P<0.01) significantly increased in the WAE group compared with the control group; malondialdehyde (MDA) content decreased, but this was not significant (P >0.05). Transcriptome sequencing analysis detected 106 differentially expressed genes (DEGs) related to oxidative stress. GO enrichment analysis showed these DEGs were involved in the positive regulation of reactive oxygen metabolism and biosynthesis, process regulation, and regulation of the oxidative stress response. KEGG Pathway enrichment analysis showed they were enriched in the PI3K-Akt, AMPK, Rap1, and peroxisome signaling pathways. The expression levels of key peroxisome biosynthesis genes (e.g., PEX3 and PEX11B) and key antioxidant genes (e.g., CAT and SOD1) were significantly higher in the WAE group than in the control group. The PRDX1 and PRDX5 content also was significantly higher in the WAE group. This study showed that the WAE regulated the antioxidant and anti-stress ability of Tibetan pig liver through a "peroxisome antioxidant-oxidant stress" signaling pathway.
Collapse
Affiliation(s)
- Zhuang Hao
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Zhen Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jinjin Huo
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jiandong Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Fenghua Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Peng Yin
- Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Madusanka RK, Tharuka MDN, Madhuranga WSP, Lee S, Lee J. Transcriptional modifications and the cytoprotective, DNA protective, and wound healing effects of peroxiredoxin-1 from Sebastes schlegelii. FISH & SHELLFISH IMMUNOLOGY 2020; 107:73-83. [PMID: 33031901 DOI: 10.1016/j.fsi.2020.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Peroxiredoxins are a group of thiol-specific antioxidant proteins that take six isoforms in vertebrates and allow the innate immune system to sense and detoxify reactive oxygen species. In this study, we identified and characterized the perxiredoxin-1 (SsPrdx1) cDNA sequence from the rockfish, Sebastes schlegelii. In silico analysis revealed that SsPrdx1 contained a 594 bp long open reading frame (ORF) encoding a protein of 198 amino acids, with a predicted molecular weight and theoretical isoelectric point of 21.97 kDa and 6.30, respectively. The SsPrdx1 gene comprised six exons linked by five introns, while peroxiredoxin signature motifs were found in the highly conserved third, fourth, and fifth exons. Phylogenetic analysis and sequence alignment suggested that SsPrdx1 is evolutionarily conserved and that its most closely related counterpart is Salarias fasciatus. Recombinant SsPrdx1 (rSsPrdx1) displayed supercoiled DNA protection and insulin disulfide reduction activities in a concentration-dependent manner, while cells transiently transfected with pcDNA3.1 (+)/SsPrdx1 exhibited significant cytoprotective effects under oxidative stress and wound healing activity. SsPrdx1 transcripts were constitutively expressed under normal physiological conditions, with the highest expression observed in the blood. Moreover, SsPrdx1 expression increased in the blood, spleen, and liver following immune provocation by LPS, poly I:C, and Streptococcus iniae injection. Thus, this study provides insights into the role of SsPrdx1 in rockfish immune protection.
Collapse
Affiliation(s)
- Rajamanthrilage Kasun Madusanka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - M D Neranjan Tharuka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - W S P Madhuranga
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Seongdo Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
21
|
Li J, Li W, Wang Z, Khalique A, Wang J, Yang M, Ni X, Zeng D, Zhang D, Zeng Y, Luo Q, Jing B, Pan K. Screening of immune-related differentially expressed genes from primary lymphatic organs of broilers fed with probiotic bacillus cereus PAS38 based on suppression subtractive hybridization. PLoS One 2020; 15:e0235476. [PMID: 32609751 PMCID: PMC7329121 DOI: 10.1371/journal.pone.0235476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
To explore the molecular mechanism of the effect of Bacillus cereus PAS38 on the immunity of broilers, sixty 7-day-old broilers were divided into two groups with three replicates. The control group was fed with basal diet, and the treatment group was fed with basal diet containing Bacillus cereus PAS38 1×106 CFU/g. Thymus and bursa of fabricius were taken from two groups of broilers at the age of 42 days, total RNA was extracted, differential gene library was constructed by SSH technology, and immune-related differential genes were screened. Then, we used siRNA to interfere with the expression of some differential genes in the original generation lymphocytes of broiler blood to detect the change of cytokines mRNA expression level. A total of 42 immune-related differentially expressed genes were screened, including 22 up-regulated genes and 20 down-regulated genes. When 7 differentially up-regulated genes associated with enhanced immune function were interfered with in lymphocytes, some immune-promoting cytokines were down-regulated. These results showed that Bacillus cereus PAS38 might up-regulate the expression of JCHAIN, PRDX1, CD3E, CDK6 and other genes in immune organs of broilers, thereby affecting the development of immune organs, the expression of various cytokines and the transduction of immune signals, improving the immune capacity of broilers.
Collapse
Affiliation(s)
- Jiajun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Wanqiang Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Zhenhua Wang
- Branch of Animal Husbandry and Veterinary Medicine, Chengdu Vocational College of Agricultural Science and Technology, Chengdu, Sichuan Province, China
| | - Abdul Khalique
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Junrui Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Miao Yang
- Technology Centre of Chengdu Custom, Chengdu, Sichuan Province, China
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yan Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Qihui Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Bo Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
- * E-mail:
| |
Collapse
|
22
|
Thiol Peroxidases as Major Regulators of Intracellular Levels of Peroxynitrite in Live Saccharomyces cerevisiae Cells. Antioxidants (Basel) 2020; 9:antiox9050434. [PMID: 32429358 PMCID: PMC7278867 DOI: 10.3390/antiox9050434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/27/2022] Open
Abstract
Thiol peroxidases (TP) are ubiquitous and abundant antioxidant proteins of the peroxiredoxin and glutathione peroxidase families that can catalytically and rapidly reduce biologically relevant peroxides, such as hydrogen peroxide and peroxynitrite. However, the TP catalytic cycle is complex, depending on multiple redox reactions and partners, and is subjected to branching and competition points that may limit their peroxide reductase activity in vivo. The goals of the present study were to demonstrate peroxynitrite reductase activity of TP members in live cells in real time and to evaluate its catalytic characteristics. To these ends, we developed a simple fluorescence assay using coumarin boronic acid (CBA), exploiting that fact that TP and CBA compete for peroxynitrite, with the expectation that higher TP peroxynitrite reductase activity will lower the CBA oxidation. TP peroxynitrite reductase activity was evaluated by comparing CBA oxidation in live wild type and genetically modified Δ8 (TP-deficient strain) and Δ8+TSA1 (Δ8 strain that expresses only one TP member, the TSA1 gene) Saccharomyces cerevisiae strains. The results showed that CBA oxidation decreased with cell density and increased with increasing peroxynitrite availability. Additionally, the rate of CBA oxidation decreased in the order Δ8 > Δ8+TSA1 > WT strains both in control and glycerol-adapted (expressing higher TP levels) cells, showing that the CBA competition assay could reliably detect peroxynitrite in real time in live cells, comparing CBA oxidation in strains with reduced and increased TP expression. Finally, there were no signs of compromised TP peroxynitrite reductase activity during experimental runs, even at the highest peroxynitrite levels tested. Altogether, the results show that TP is a major component in the defense of yeast against peroxynitrite insults under basal and increasing stressful conditions.
Collapse
|
23
|
Transcriptomic profiling of peroxisome-related genes reveals a novel prognostic signature in hepatocellular carcinoma. Genes Dis 2020; 9:116-127. [PMID: 35005112 PMCID: PMC8720664 DOI: 10.1016/j.gendis.2020.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/25/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence suggests that peroxisomes play a role in the regulation of tumorigenesis and cancer progression. However, the prognostic value of peroxisome-related genes has been rarely investigated. This study aimed to establish a peroxisome-related gene signature for overall survival (OS) prediction in patients with hepatocellular carcinoma (HCC). First, univariate Cox regression analysis was employed to identify prognostic peroxisome-related genes in The Cancer Genome Atlas liver cancer cohort, and least absolute shrinkage and selection operator Cox regression analysis was used to construct a 10-gene signature. The risk score based on the signature was positively correlated with poor prognosis (HR = 4.501, 95% CI = 3.021–6.705, P = 1.39e−13). Second, multivariate Cox regression incorporating additional characteristics revealed that the signature was an independent predictor. Time-dependent ROC curves demonstrated good performance of the signature in predicting the OS of HCC patients. The prognostic performance was validated using International Cancer Genome Consortium HCC cohort data. Gene set enrichment analysis revealed that the signature-related alterations in biological processes mainly involved peroxisomal functions. Finally, we developed a nomogram model based on the gene signature and TNM stage, which showed a superior prognostic power (C-index = 0.702). Thus, our study revealed a novel peroxisome-related gene signature that may help improve personalized OS prediction in HCC patients.
Collapse
|
24
|
Kriznik A, Libiad M, Le Cordier H, Boukhenouna S, Toledano MB, Rahuel-Clermont S. Dynamics of a Key Conformational Transition in the Mechanism of Peroxiredoxin Sulfinylation. ACS Catal 2020; 10:3326-3339. [PMID: 32363077 PMCID: PMC7189429 DOI: 10.1021/acscatal.9b04471] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/14/2020] [Indexed: 12/11/2022]
Abstract
![]()
Peroxiredoxins from
the Prx1 subfamily (Prx) are moonlighting peroxidases
that operate in peroxide signaling and are regulated by sulfinylation.
Prxs offer a major model of protein–thiol oxidative modification.
They react with H2O2 to form a sulfenic acid
intermediate that either engages into a disulfide bond, committing
the enzyme into its peroxidase cycle, or again reacts with peroxide
to produce a sulfinic acid that inactivates the enzyme. Sensitivity
to sulfinylation depends on the kinetics of these two competing reactions
and is critically influenced by a structural transition from a fully
folded (FF) to locally unfolded (LU) conformation. Analysis of the
reaction of the Tsa1 Saccharomyces cerevisiae Prx with H2O2 by Trp fluorescence-based rapid
kinetics revealed a process linked to the FF/LU transition that is
kinetically distinct from disulfide formation and suggested that sulfenate
formation facilitates local unfolding. Use of mutants of distinctive
sensitivities and of different peroxide substrates showed that sulfinylation
sensitivity is not coupled to the resolving step kinetics but depends
only on the sulfenic acid oxidation and FF-to-LU transition rate constants.
In addition, stabilization of the active site FF conformation, the
determinant of sulfinylation kinetics, is only moderately influenced
by the Prx C-terminal tail dynamics that determine the FF →
LU kinetics. From these two parameters, the relative sensitivities
of Prxs toward hyperoxidation with different substrates can be predicted,
as confirmed by in vitro and in vivo patterns of sulfinylation.
Collapse
Affiliation(s)
- Alexandre Kriznik
- IMoPA, Université de Lorraine, CNRS, Biopole, Campus Biologie Sante′, F-54000 Nancy, France
- UMS2008 IBSLor, Biophysics and Structural Biology Core Facility, Université de Lorraine, CNRS, INSERM, Biopole, Campus Biologie Sante′, F-54000 Nancy, France
| | - Marouane Libiad
- Laboratoire Stress oxydant et Cancer, Institute for Integrative Biology of the Cell (I2BC), UMR9198, CNRS, CEA-Saclay, Université Paris-Saclay, iBiTecS/SBIGEM, Bat 142, F-91198 Gif-sur-Yvette Cedex, France
| | - Hélène Le Cordier
- IMoPA, Université de Lorraine, CNRS, Biopole, Campus Biologie Sante′, F-54000 Nancy, France
| | - Samia Boukhenouna
- IMoPA, Université de Lorraine, CNRS, Biopole, Campus Biologie Sante′, F-54000 Nancy, France
| | - Michel B. Toledano
- Laboratoire Stress oxydant et Cancer, Institute for Integrative Biology of the Cell (I2BC), UMR9198, CNRS, CEA-Saclay, Université Paris-Saclay, iBiTecS/SBIGEM, Bat 142, F-91198 Gif-sur-Yvette Cedex, France
| | - Sophie Rahuel-Clermont
- IMoPA, Université de Lorraine, CNRS, Biopole, Campus Biologie Sante′, F-54000 Nancy, France
- UMS2008 IBSLor, Biophysics and Structural Biology Core Facility, Université de Lorraine, CNRS, INSERM, Biopole, Campus Biologie Sante′, F-54000 Nancy, France
| |
Collapse
|
25
|
Zhang X, Gao F, Li N, Zhang J, Dai L, Yang H. Peroxiredoxins and Immune Infiltrations in Colon Adenocarcinoma: Their Negative Correlations and Clinical Significances, an In Silico Analysis. J Cancer 2020; 11:3124-3143. [PMID: 32231717 PMCID: PMC7097948 DOI: 10.7150/jca.38057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/04/2020] [Indexed: 01/05/2023] Open
Abstract
Background: Peroxiredoxins (PRDXs) were reported to be associated with inflammation response in previous studies. In colon adenocarcinoma (COAD), however, their correlations and clinical significance were unclear. Methods: The RNA-seq data of 452 COAD patients with clinical information was downloaded from The Cancer Genome Atlas (TCGA) and transcripts per million (TPM) normalized. Comparisons of relative expressions of PRDXs between COAD tumor and normal controls were applied. PRDXs dy-regulations in COAD were validated via Oncomine, Human Protein Atlas (HPA) and Gene Expression Omnibus (GEO) repository. Through Tumor Immune Estimation Resource (TIMER), the immune estimation of TCGA-COAD patients was downloaded and the dy-regulated PRDXs were analyzed for their correlations with immune infiltrations in COAD. The TCGA-COAD patients were divided into younger group (age≤65 years) and older group (age>65 years) to investigate the prognostic roles of age, TNM stage, dy-regulated PRDXs and the immune infiltrations in different age groups through Kaplan-Meier survival and Cox regression analyses. Results: Three of the PRDX members showed their expressional differences both at protein and mRNA level. PRDX2 was consistently up-regulated while PRDX6 down-regulated in COAD. PRDX1 was overexpressed (mRNA) while nuclear absent (protein) in the tumor tissues. PRDX1 overexpression and PRDX6 under-expression were also shown in the stem-like colonospheres from colon cancer cells. Via TIMER, PRDX1, PRDX2, and PRDX6 were found to be negatively correlated with the immune infiltrations in COAD. Both in the younger and older patients, TNM stage had prognostic effects on their overall survival (OS) and recurrence-free survival (RFS). CD4+ T cell had independent unfavorable effects on OS of the younger patients while age had similar effects on RFS of the older ones. CD8+ T cell was independently prognostic for RFS in the two groups. Conclusions: Late diagnosis indicated poor prognosis in COAD and dy-regulated PRDXs w might be new markers for its early diagnosis. Age was prognostic and should be considered in the treatments of the older patients. Dy-regulated PRDXs were negatively correlated with immune infiltration levels. CD4+ T cell and CD8+ T cell infiltrations were prognostic in COAD and their potential as immune targets needed further investigation.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, Henan Province, China.,Medical Laboratory Center, Henan Medical College, Zhengzhou, Henan Province, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Fenglan Gao
- Department of Pathology, Henan Medical College, Zhengzhou, Henan Province, China
| | - Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, Henan Province, China
| | - Jinzhong Zhang
- Medical Laboratory Center, Henan Medical College, Zhengzhou, Henan Province, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hongmei Yang
- Department of Pathology, Henan Medical College, Zhengzhou, Henan Province, China.,Medical Laboratory Center, Henan Medical College, Zhengzhou, Henan Province, China
| |
Collapse
|
26
|
Wang G, Zhong WC, Bi YH, Tao SY, Zhu H, Zhu HX, Xu AM. The Prognosis Of Peroxiredoxin Family In Breast Cancer. Cancer Manag Res 2019; 11:9685-9699. [PMID: 31814764 PMCID: PMC6861534 DOI: 10.2147/cmar.s229389] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/02/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose PRDX (Peroxiredoxin) family has involved in breast cancer tumorigenesis from the evidence obtained from cell lines, human tissues and mouse models. Nonetheless, the diversified expression patterns, coupled with the prognostic values of PRDX family, still require explanation. This study aimed at investigating the clinical importance and biological of PRDXs in breast cancer. Patients and methods Specimens of paraffin sections used for immunohistochemistry were collected from the hospital and the remaining patient information was retrieved from online databases. The expression and survival data of PRDXs in patients with breast cancer were from ONCOMINE, GEPIA, Kaplan–Meier Plotter. cBioPortal, Metascape, String, Cytoscape and DAVID were used to predict functions and pathways of the changes in PRDXs and their frequently altered neighbor genes. Immunohistochemistry was used to detect the expression of PRDXs in breast cancer. Results We discovered the expression levels of PRDX1-5 were higher in breast cancer tissues than in normal tissues, whereas the expression level of PRDX6 was observed as lower in the former one in comparison with that of the latter one. There existed a correlation between the expression levels of PRDX4, 5 and the advanced tumor stage. Survival analysis revealed that the expression of PRDXs were all associated with relapse-free survival (RFS) in all of the patients with breast cancer. Eventually, we discovered significant regulation of the cellular oxidant detoxification and detoxification of ROS by the PRDX changes, together with obtaining the core modules of genes (TXN, TXN2, TXNRD1, TXNRD2, GPX1 and GPX2) linked to the PRDX family of genes in breast cancer. Conclusion The PRDX family is widely involved in the development of breast cancer and affects the prognosis of patients. The functions and pathways of the changes in PRDXs and their frequently altered neighbor genes can be further verified by wet experiments.
Collapse
Affiliation(s)
- Gang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230001, People's Republic of China
| | - Wan-Chao Zhong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yi-Hui Bi
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei 230001, People's Republic of China
| | - Si-Yue Tao
- Department of Orthopaedics, Anhui Provincial Hospital Affiliated with Anhui Medical University, Hefei, Anhui 230001, People's Republic of China
| | - Hai Zhu
- Department of Gastrointestinal Surgery, Department Of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230001, People's Republic of China
| | - Hai-Xing Zhu
- Department of Gastrointestinal Surgery, Anhui Provincial Cancer Hospital, Hefei 230001, People's Republic of China
| | - A-Man Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230001, People's Republic of China
| |
Collapse
|
27
|
Elko EA, Cunniff B, Seward DJ, Chia SB, Aboushousha R, van de Wetering C, van der Velden J, Manuel A, Shukla A, Heintz NH, Anathy V, van der Vliet A, Janssen-Heininger YMW. Peroxiredoxins and Beyond; Redox Systems Regulating Lung Physiology and Disease. Antioxid Redox Signal 2019; 31:1070-1091. [PMID: 30799628 PMCID: PMC6767868 DOI: 10.1089/ars.2019.7752] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Significance: The lung is a unique organ, as it is constantly exposed to air, and thus it requires a robust antioxidant defense system to prevent the potential damage from exposure to an array of environmental insults, including oxidants. The peroxiredoxin (PRDX) family plays an important role in scavenging peroxides and is critical to the cellular antioxidant defense system. Recent Advances: Exciting discoveries have been made to highlight the key features of PRDXs that regulate the redox tone. PRDXs do not act in isolation as they require the thioredoxin/thioredoxin reductase/NADPH, sulfiredoxin (SRXN1) redox system, and in some cases glutaredoxin/glutathione, for their reduction. Furthermore, the chaperone function of PRDXs, controlled by the oxidation state, demonstrates the versatility in redox regulation and control of cellular biology exerted by this class of proteins. Critical Issues: Despite the long-known observations that redox perturbations accompany a number of pulmonary diseases, surprisingly little is known about the role of PRDXs in the etiology of these diseases. In this perspective, we review the studies that have been conducted thus far to address the roles of PRDXs in lung disease, or experimental models used to study these diseases. Intriguing findings, such as the secretion of PRDXs and the formation of autoantibodies, raise a number of questions about the pathways that regulate secretion, redox status, and immune response to PRDXs. Future Directions: Further understanding of the mechanisms by which individual PRDXs control lung inflammation, injury, repair, chronic remodeling, and cancer, and the importance of PRDX oxidation state, configuration, and client proteins that govern these processes is needed.
Collapse
Affiliation(s)
- Evan A Elko
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - David J Seward
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Shi Biao Chia
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Reem Aboushousha
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Cheryl van de Wetering
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Allison Manuel
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Arti Shukla
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Nicholas H Heintz
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
28
|
The interactome of 2-Cys peroxiredoxins in Plasmodium falciparum. Sci Rep 2019; 9:13542. [PMID: 31537845 PMCID: PMC6753162 DOI: 10.1038/s41598-019-49841-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
AbstractPeroxiredoxins (Prxs) are crucially involved in maintaining intracellular H2O2homeostasis via their peroxidase activity. However, more recently, this class of proteins was found to also transmit oxidizing equivalents to selected downstream proteins, which suggests an important function of Prxs in the regulation of cellular protein redox relays. Using a pull-down assay based on mixed disulfide fishing, we characterized the thiol-dependent interactome of cytosolic Prx1a and mitochondrial Prx1m from the apicomplexan malaria parasitePlasmodium falciparum(Pf). Here, 127 cytosolic and 20 mitochondrial proteins that are components of essential cellular processes were found to interact withPfPrx1a andPfPrx1m, respectively. Notably, our data obtained with active-site mutants suggests that reducing equivalents might also be transferred from Prxs to target proteins. Initial functional analyses indicated that the interaction with Prx can strongly impact the activity of target proteins. The results provide initial insights into the interactome of Prxs at the level of a eukaryotic whole cell proteome. Furthermore, they contribute to our understanding of redox regulatory principles and thiol-dependent redox relays of Prxs in subcellular compartments.
Collapse
|
29
|
Liu Q, Zhang Y. PRDX1 enhances cerebral ischemia-reperfusion injury through activation of TLR4-regulated inflammation and apoptosis. Biochem Biophys Res Commun 2019; 519:453-461. [PMID: 31526567 DOI: 10.1016/j.bbrc.2019.08.077] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
Stroke is still a leading cause of death across the world. Despite various signals or molecules that contribute to the pathophysiological process have been investigated, the exact molecular mechanisms revealing stroke damage still remain to be explored. Peroxiredoxin 1 (PRDX1) has been identified as a stress-induced macrophage redox protein with multiple functions. Although PRDX1 is a critical factor related to the regulation of immunity, inflammation, apoptosis and oxidative stress, its effects on cerebral ischemia-reperfusion (I-R) injury were presently unclear. In the study, by using a mouse model of I-R injury, we found that PRDX1 expression was up-regulated during I-R injury in a time-dependent manner. Additionally, PRDX1-knockout mice showed reduced infarction area and alleviated neuropathological scores with decreased brain water contents. Furthermore, cell death and inflammatory response in mice with cerebral I-R injury were markedly attenuated by PRDX1 knockout, which were associated with the blockage of Caspase-3 and nuclear factor-κB (NF-κB) signaling pathways. Mechanistically, PRDX1-regulated cerebral I-R injury was through the promotion of toll-like receptor-4 (TLR4), as proved by the evidence that TLR4 suppression abrogated the exacerbated effect of TLR4 on inflammatory response and apoptosis in oxygen and glucose deprivation (OGD)-treated primary microglial cells. These data demonstrated that PRDX1 contributed to cerebral stroke by interacting with TLR4, providing an effective therapeutic approach for cerebral I-R injury.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neurology, Yan'an University Affiliated Hospital, Yan'an, Shannxi, 716000, China
| | - Yuan Zhang
- Department of EMG Evoked Potential Chamber, Heze Municipal Hospital, Shandong Province, Heze City, Shandong Province, 274000, China.
| |
Collapse
|
30
|
Kim EK, Lee SY, Kim Y, Ahn SM, Jang HH. Peroxiredoxin 1 post-transcriptionally regulates snoRNA expression. Free Radic Biol Med 2019; 141:1-9. [PMID: 31158443 DOI: 10.1016/j.freeradbiomed.2019.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 11/28/2022]
Abstract
Peroxiredoxin 1 (Prx1) is a member of the Prx family that detoxifies various peroxide substrates through conserved catalytic cysteine residues with the use of reducing equivalents. In addition to this well-known role of Prx1, we have previously demonstrated that Prx1 also has RNA-binding properties, but its function as an RNA-binding protein (RBP) remains unknown. To characterize the role of Prx1 as an RBP, we pulled down Prx1-RNA complexes and sequenced the target RNAs of Prx1. Through sequencing and further validation studies, we revealed that Prx1 binds to a specific subset of small nucleolar RNAs (snoRNAs) and regulates these molecules at the post-transcriptional level. We also found that active cysteine residues provide a structural and functional link between these two distinct functions of Prx1 (i.e., ROS scavenging and RNA-binding activities). Prx1 functions as a snoRNA-binding protein in its reduced state, and post-transcriptionally regulates the expression of a set of snoRNAs. However, when the active cysteine residues are oxidized, Prx1 loses its activity as a snoRNA-binding protein. This study is the first report describing the novel role of Prx1 as a post-transcriptional regulator of snoRNAs.
Collapse
Affiliation(s)
- Eun-Kyung Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Sun Young Lee
- Center for Cancer Genome Discovery, Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Yosup Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
| | - Sung-Min Ahn
- Department of Genome Medicine and Science, College of Medicine, Gachon University, Incheon, 21936, Republic of Korea; Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, 21565, Republic of Korea.
| | - Ho Hee Jang
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
31
|
Jezierska-Drutel A, Attaran S, Hopkins BL, Skoko JJ, Rosenzweig SA, Neumann CA. The peroxidase PRDX1 inhibits the activated phenotype in mammary fibroblasts through regulating c-Jun N-terminal kinases. BMC Cancer 2019; 19:812. [PMID: 31419957 PMCID: PMC6697950 DOI: 10.1186/s12885-019-6031-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/12/2019] [Indexed: 01/11/2023] Open
Abstract
Background Reactive oxygen species (ROS), including hydrogen peroxide, drive differentiation of normal fibroblasts into activated fibroblasts, which can generate high amounts of hydrogen peroxide themselves, thereby increasing oxidative stress in the microenvironment. This way, activated fibroblasts can transition into cancer-associated fibroblasts (CAFs). Methods Mammary fibroblasts from either female 8 weeks old PRDX1 knockout and wildtype mice or Balb/c mice were studied for characteristic protein expression using immunofluorescence and immunoblotting. Cancer-associated fibroblasts was examined by transwell migration and invasion assays. The binding of PRDX1 to JNK1 was assessed by co-immuneprecipitation and JNK regulation of CAF phenotypes was examined using the JNK inhibitor SP600125. Extracellular hydrogen peroxide levels were measured by chemiluminescence via the reaction between hypochlorite and luminol. Statistical analyses were done using Students t-test. Results We show here PRDX1 activity as an essential switch in regulating the activated phenotype as loss of PRDX1 results in the development of a CAF-like phenotype in mammary fibroblasts. We also show that PRDX1 regulates JNK kinase signaling thereby inhibiting CAF-like markers and CAF invasion. Inhibition of JNK activity reduced these behaviors. Conclusions These data suggest that PRDX1 repressed the activated phenotype of fibroblasts in part through JNK inhibition which may present a novel therapeutic option for CAF-enriched cancers such as breast cancer. Electronic supplementary material The online version of this article (10.1186/s12885-019-6031-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Agnieszka Jezierska-Drutel
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Shireen Attaran
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Barbara L Hopkins
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - John J Skoko
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Steven A Rosenzweig
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Carola A Neumann
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
32
|
The Dual-Specificity Phosphatase 10 (DUSP10): Its Role in Cancer, Inflammation, and Immunity. Int J Mol Sci 2019; 20:ijms20071626. [PMID: 30939861 PMCID: PMC6480380 DOI: 10.3390/ijms20071626] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 12/22/2022] Open
Abstract
Cancer is one of the most diagnosed diseases in developed countries. Inflammation is a common response to different stress situations including cancer and infection. In those processes, the family of mitogen-activated protein kinases (MAPKs) has an important role regulating cytokine secretion, proliferation, survival, and apoptosis, among others. MAPKs regulate a large number of extracellular signals upon a variety of physiological as well as pathological conditions. MAPKs activation is tightly regulated by phosphorylation/dephosphorylation events. In this regard, the dual-specificity phosphatase 10 (DUSP10) has been described as a MAPK phosphatase that negatively regulates p38 MAPK and c-Jun N-terminal kinase (JNK) in several cellular types and tissues. Several studies have proposed that extracellular signal-regulated kinase (ERK) can be also modulated by DUSP10. This suggests a complex role of DUSP10 on MAPKs regulation and, in consequence, its impact in a wide variety of responses involved in both cancer and inflammation. Here, we review DUSP10 function in cancerous and immune cells and studies in both mouse models and patients that establish a clear role of DUSP10 in different processes such as inflammation, immunity, and cancer.
Collapse
|
33
|
Young D, Pedre B, Ezeriņa D, De Smet B, Lewandowska A, Tossounian MA, Bodra N, Huang J, Astolfi Rosado L, Van Breusegem F, Messens J. Protein Promiscuity in H 2O 2 Signaling. Antioxid Redox Signal 2019; 30:1285-1324. [PMID: 29635930 DOI: 10.1089/ars.2017.7013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Decrypting the cellular response to oxidative stress relies on a comprehensive understanding of the redox signaling pathways stimulated under oxidizing conditions. Redox signaling events can be divided into upstream sensing of oxidants, midstream redox signaling of protein function, and downstream transcriptional redox regulation. Recent Advances: A more and more accepted theory of hydrogen peroxide (H2O2) signaling is that of a thiol peroxidase redox relay, whereby protein thiols with low reactivity toward H2O2 are instead oxidized through an oxidative relay with thiol peroxidases. CRITICAL ISSUES These ultrareactive thiol peroxidases are the upstream redox sensors, which form the first cellular port of call for H2O2. Not all redox-regulated interactions between thiol peroxidases and cellular proteins involve a transfer of oxidative equivalents, and the nature of redox signaling is further complicated through promiscuous functions of redox-regulated "moonlighting" proteins, of which the precise cellular role under oxidative stress can frequently be obscured by "polygamous" interactions. An ultimate goal of redox signaling is to initiate a rapid response, and in contrast to prokaryotic oxidant-responsive transcription factors, mammalian systems have developed redox signaling pathways, which intersect both with kinase-dependent activation of transcription factors, as well as direct oxidative regulation of transcription factors through peroxiredoxin (Prx) redox relays. FUTURE DIRECTIONS We highlight that both transcriptional regulation and cell fate can be modulated either through oxidative regulation of kinase pathways, or through distinct redox-dependent associations involving either Prxs or redox-responsive moonlighting proteins with functional promiscuity. These protein associations form systems of crossregulatory networks with multiple nodes of potential oxidative regulation for H2O2-mediated signaling.
Collapse
Affiliation(s)
- David Young
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Brandan Pedre
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daria Ezeriņa
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Barbara De Smet
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Aleksandra Lewandowska
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Maria-Armineh Tossounian
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nandita Bodra
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jingjing Huang
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Leonardo Astolfi Rosado
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frank Van Breusegem
- 2 Brussels Center for Redox Biology, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Joris Messens
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
34
|
Hopkins BL, Neumann CA. Redoxins as gatekeepers of the transcriptional oxidative stress response. Redox Biol 2019; 21:101104. [PMID: 30690320 PMCID: PMC6351230 DOI: 10.1016/j.redox.2019.101104] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Transcription factors control the rate of transcription of genetic information from DNA to messenger RNA, by binding specific DNA sequences in promoter regions. Transcriptional gene control is a rate-limiting process that is tightly regulated and based on transient environmental signals which are translated into long-term changes in gene transcription. Post-translational modifications (PTMs) on transcription factors by phosphorylation or acetylation have profound effects not only on sub-cellular localization but also on substrate specificity through changes in DNA binding capacity. During times of cellular stress, specific transcription factors are in place to help protect the cell from damage by initiating the transcription of antioxidant response genes. Here we discuss PTMs caused by reactive oxygen species (ROS), such as H2O2, that can expeditiously regulate the activation of transcription factors involved in the oxidative stress response. Part of this rapid regulation are proteins involved in H2O2-related reduction and oxidation (redox) reactions such as redoxins, H2O2 scavengers described to interact with transcription factors. Redoxins have highly reactive cysteines of rate constants around 6–10−1 s−1 that engage in nucleophilic substitution of a thiol-disulfide with another thiol in inter-disulfide exchange reactions. We propose here that H2O2 signal transduction induced inter-disulfide exchange reactions between redoxin cysteines and cysteine thiols of transcription factors to allow for rapid and precise on and off switching of transcription factor activity. Thus, redoxins are essential modulators of stress response pathways beyond H2O2 scavenging capacity.
Collapse
Affiliation(s)
- Barbara L Hopkins
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA; Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | - Carola A Neumann
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|
35
|
Forshaw TE, Holmila R, Nelson KJ, Lewis JE, Kemp ML, Tsang AW, Poole LB, Lowther WT, Furdui CM. Peroxiredoxins in Cancer and Response to Radiation Therapies. Antioxidants (Basel) 2019; 8:antiox8010011. [PMID: 30609657 PMCID: PMC6356878 DOI: 10.3390/antiox8010011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/23/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022] Open
Abstract
Peroxiredoxins have a long-established cellular function as regulators of redox metabolism by catalyzing the reduction of peroxides (e.g., H2O2, lipid peroxides) with high catalytic efficiency. This activity is also critical to the initiation and relay of both phosphorylation and redox signaling in a broad range of pathophysiological contexts. Under normal physiological conditions, peroxiredoxins protect normal cells from oxidative damage that could promote oncogenesis (e.g., environmental stressors). In cancer, higher expression level of peroxiredoxins has been associated with both tumor growth and resistance to radiation therapies. However, this relationship between the expression of peroxiredoxins and the response to radiation is not evident from an analysis of data in The Cancer Genome Atlas (TCGA) or NCI60 panel of cancer cell lines. The focus of this review is to summarize the current experimental knowledge implicating this class of proteins in cancer, and to provide a perspective on the value of targeting peroxiredoxins in the management of cancer. Potential biases in the analysis of the TCGA data with respect to radiation resistance are also highlighted.
Collapse
Affiliation(s)
- Tom E Forshaw
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Reetta Holmila
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Kimberly J Nelson
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Joshua E Lewis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | - Melissa L Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | - Allen W Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - W Todd Lowther
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
36
|
Zheng MJ, Wang J, Wang HM, Gao LL, Li X, Zhang WC, Gou R, Guo Q, Nie X, Liu JJ, Lin B. Decreased expression of peroxiredoxin1 inhibits proliferation, invasion, and metastasis of ovarian cancer cell. Onco Targets Ther 2018; 11:7745-7761. [PMID: 30464523 PMCID: PMC6223347 DOI: 10.2147/ott.s175009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aim The aim of this study was to explore the expression of peroxiredoxin1 (PRDX1) in epithelial ovarian cancer, analyze the relationship between PRDX1 and clinicopathologic parameters of patients with ovarian cancer, including their prognosis, and describe changes and the mechanisms involved in malignant biologic behavior of ovarian cancer cells when PRDX1 expression is inhibited. Methods The expression of PRDX1 was detected immunohistochemically in 15 samples of normal ovarian tissue, 21 benign, 11 borderline, and 101 malignant epithelial ovarian tumors. Changes in ovarian cancer cell proliferation, invasion, and metastasis before and after inhibiting PRDX1 expression were assessed by cell function assay. Additionally, gene set enrichment analysis (GSEA) of PRDX1 was performed by the Cancer Genome Atlas database. A protein- protein interaction network was then constructed and a pathway function analysis of the genes in the network was conducted. Results PRDX1 expression was mainly localized to the cytoplasm, as well as the nucleus of cells. The expression rate of PRDX1 in epithelial ovarian malignant tissues (96.04%) was significantly higher than that in borderline (72.72%) and benign (57.14%) epithelial ovarian tumors, and normal ovarian tissue (20%; all P<0.05). Cox multivariate regression analysis indicated that advanced clinical stage, low tissue differentiation, and high expression of PRDX1 were independent risk factors affecting the prognosis of epithelial ovarian cancer (all P<0.05). Cell function assay verified that the decreased expression of PRDX1 inhibited ovarian cancer cell proliferation, invasion, and metastasis. GSEA analysis indicated that PRDX1 was significantly related to the Wnt signaling pathway. Western blot analysis confirmed that PRDX1 could regulate the expression of β-catenin in the Wnt pathway. Conclusion Decreased expression of PRDX1 can attenuate cell proliferation, invasion, and metastasis of ovarian cancer cells. The expression of PRDX1 is related to the prognosis of patients with ovarian cancer and can therefore be used as a biomarker.
Collapse
Affiliation(s)
- Ming-Jun Zheng
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Jing Wang
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Hui-Min Wang
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Ling-Ling Gao
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Xiao Li
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Wen-Chao Zhang
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Rui Gou
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Qian Guo
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Xin Nie
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Juan-Juan Liu
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Bei Lin
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| |
Collapse
|
37
|
Abstract
SIGNIFICANCE Peroxiredoxins (Prxs), a family of thiol-associated peroxidases, are purported to play a major role in sensing and managing hydrogen peroxide concentrations and transducing peroxide-derived signals. Recent Advances: Prxs can act as detoxifying factors and impart effects to cells that can be either sparing or suicidal. Advances have been made to address the qualitative changes in Prx function in response to quantitative changes in the signal level and to understand how Prx activity could be affected by their own substrates. Here we rationalize the basis for both positive and negative effects on signaling pathways and cell physiology, summarizing data from model organisms, including invertebrates. CRITICAL ISSUES Resolving the relationship between the promiscuous behavior of reactive oxygen species and the specificity of Prxs toward different targets in redox-sensitive signaling pathways is a key area of research. Attempts to understand Prx function and underlying mechanisms were conducted in vitro or in vivo under nonphysiological conditions, leaving the physiological relevance yet to be defined. Other issues: Why despite the high degree of homology and similarities in subcellular and tissue distribution between Prxs do they display differential effects on signaling? How is the specificity of post-translational protein modifications determined? Other than chaperone-like activity, how do hyperoxidized Prxs function? FUTURE DIRECTIONS Genetic models with mutated catalytic and resolving cysteines should be further exploited to dissect the functional significance of individual Prxs in their different states together with their alternative reducing partners. Such an analysis may then be extended to help identify Prx-specific targets.
Collapse
Affiliation(s)
- Svetlana N Radyuk
- Department of Biological Sciences, Southern Methodist University , Dallas, Texas
| | - William C Orr
- Department of Biological Sciences, Southern Methodist University , Dallas, Texas
| |
Collapse
|
38
|
Park YH, Kim HS, Lee JH, Choi SA, Kim JM, Oh GT, Kang SW, Kim SU, Yu DY. Peroxiredoxin I participates in the protection of reactive oxygen species-mediated cellular senescence. BMB Rep 2018; 50:528-533. [PMID: 28893373 PMCID: PMC5683823 DOI: 10.5483/bmbrep.2017.50.10.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 12/19/2022] Open
Abstract
Peroxiredoxin I (Prx I) plays an important role as a reactive oxygen species (ROS) scavenger in protecting and maintaining cellular homeostasis; however, the underlying mechanisms are not well understood. Here, we identified a critical role of Prx I in protecting cells against ROS-mediated cellular senescence by suppression of p16INK4a expression. Compared to wild-type mouse embryonic fibroblasts (WT-MEFs), Prx I−/− MEFs exhibited senescence-associated phenotypes. Moreover, the aged Prx I−/− mice showed an increased number of cells with senescence associated-β-galactosidase (SA-β-gal) activity in a variety of tissues. Increased ROS levels and SA-β-gal activity, and reduction of chemical antioxidant in Prx I−/− MEF further supported an essential role of Prx I peroxidase activity in cellular senescence that is mediated by oxidative stress. The up-regulation of p16INK4a expression in Prx I−/− and suppression by overexpression of Prx I indicate that Prx I possibly modulate cellular senescence through ROS/p16INK4a pathway.
Collapse
Affiliation(s)
- Young-Ho Park
- National Primate Research Center, and Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Hyun-Sun Kim
- Disease Model Research Laboratory, Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jong-Hee Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
| | - Seon-A Choi
- National Primate Research Center, and Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
| | - Jin-Man Kim
- College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Goo Taeg Oh
- Department of Life Sciences and Immune and Vascular Cell Network Research Center, Ewha Womans University, Seoul 03760, Korea
| | - Sang Won Kang
- Department of Life Sciences and Cell Homeostasis Research Center, Ewha Womans University, Seoul 03760, Korea
| | - Sun-Uk Kim
- National Primate Research Center, and Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Dae-Yeul Yu
- Disease Model Research Laboratory, Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
39
|
Yu W, Wu J, Ning ZL, Liu QY, Quan RL. High Expression of Peroxiredoxin 1 Is Associated with Epithelial-Mesenchymal Transition Marker and Poor Prognosis in Gastric Cancer. Med Sci Monit 2018; 24:2259-2270. [PMID: 29656298 PMCID: PMC5917825 DOI: 10.12659/msm.908722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Recent studies show that peroxiredoxin 1 (Prdx1) contributes to the progression and poor prognosis of carcinoma through multiple mechanisms. However, there is little information on its expression and prognostic value in gastric cancer. This study investigated the expression of Prdx1 in gastric cancer, along with evaluating its clinical-pathological and prognostic importance. Material/Methods A total of 189 pairs of gastric cancer and paracarcinomatous tissues were assessed for Prdx1 expression and its association with clinical characteristics. The molecular mechanism was further investigated through in vitro experimentation. Results The mRNA and protein levels of Prdx1 in the GC tissues were higher than in the peri-tumor tissues. We also found that high Prdx1 expression was positively correlated with the lymph node invasion and poor prognosis. It also served as an autonomous prognostic factor for patients with gastric cancer. Moreover, Prdx1 regulates the invasion and metastasis of GC cell lines through inhibiting E-Ca expression. Conclusions Prdx1 can promote epithelial-mesenchymal transition and gastric cancer progression. Therefore, it might be a therapeutic target and prognostic indicator for gastric cancer patients.
Collapse
Affiliation(s)
- Wei Yu
- Department of Gastrointestinal Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China (mainland)
| | - Jing Wu
- Department of Pathology, Anhui Provincial Cancer Hospital, Hefei, Anhui, China (mainland)
| | - Zhong-Liang Ning
- Department of Gastrointestinal Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China (mainland)
| | - Qiao-Yu Liu
- Department of Gastrointestinal Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China (mainland)
| | - Rui-Liang Quan
- Department of Gastrointestinal Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China (mainland)
| |
Collapse
|
40
|
Veal EA, Underwood ZE, Tomalin LE, Morgan BA, Pillay CS. Hyperoxidation of Peroxiredoxins: Gain or Loss of Function? Antioxid Redox Signal 2018; 28:574-590. [PMID: 28762774 DOI: 10.1089/ars.2017.7214] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE In 2003, structural studies revealed that eukaryotic 2-Cys peroxiredoxins (Prx) have evolved to be sensitive to inactivation of their thioredoxin peroxidase activity by hyperoxidation (sulfinylation) of their peroxide-reacting catalytic cysteine. This was accompanied by the unexpected discovery, that the sulfinylation of this cysteine was reversible in vivo and the identification of a new enzyme, sulfiredoxin, that had apparently co-evolved specifically to reduce hyperoxidized 2-Cys Prx, restoring their peroxidase activity. Together, these findings have provided the impetus for multiple studies investigating the purpose of this reversible, Prx hyperoxidation. Recent Advances: It has been suggested that inhibition of the thioredoxin peroxidase activity by hyperoxidation can both promote and inhibit peroxide signal transduction, depending on the context. Prx hyperoxidation has also been proposed to protect cells against reactive oxygen species (ROS)-induced damage, by preserving reduced thioredoxin and/or by increasing non-peroxidase chaperone or signaling activities of Prx. CRITICAL ISSUES Here, we will review the evidence in support of each of these proposed functions, in view of the in vivo contexts in which Prx hyperoxidation occurs, and the role of sulfiredoxin. Thus, we will attempt to explain the basis for seemingly contradictory roles for Prx hyperoxidation in redox signaling. FUTURE DIRECTIONS We provide a rationale, based on modeling and experimental studies, for why Prx hyperoxidation should be considered a suitable, early biomarker for damaging levels of ROS. We discuss the implications that this has for the role of Prx in aging and the detection of hyperoxidized Prx as a conserved feature of circadian rhythms. Antioxid. Redox Signal. 28, 574-590.
Collapse
Affiliation(s)
- Elizabeth A Veal
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Newcastle University Institute for Ageing, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Zoe E Underwood
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Newcastle University Institute for Ageing, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Lewis E Tomalin
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Newcastle University Institute for Ageing, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Brian A Morgan
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Ché S Pillay
- 3 School of Life Sciences, University of KwaZulu-Natal , Pietermartizburg, South Africa
| |
Collapse
|
41
|
Hampton MB, Vick KA, Skoko JJ, Neumann CA. Peroxiredoxin Involvement in the Initiation and Progression of Human Cancer. Antioxid Redox Signal 2018; 28:591-608. [PMID: 29237274 PMCID: PMC9836708 DOI: 10.1089/ars.2017.7422] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SIGNIFICANCE It has been proposed that cancer cells are heavily dependent on their antioxidant defenses for survival and growth. Peroxiredoxins are a family of abundant thiol-dependent peroxidases that break down hydrogen peroxide, and they have a central role in the maintenance and response of cells to alterations in redox homeostasis. As such, they are potential targets for disrupting tumor growth. Recent Advances: Genetic disruption of peroxiredoxin expression in mice leads to an increased incidence of neoplastic disease, consistent with a role for peroxiredoxins in protecting genomic integrity. In contrast, many human tumors display increased levels of peroxiredoxin expression, suggesting that strengthened antioxidant defenses provide a survival advantage for tumor progression. Peroxiredoxin inhibitors are being developed and explored as therapeutic agents in different cancer models. CRITICAL ISSUES It is important to complement peroxiredoxin knockout and expression studies with an improved understanding of the biological function of the peroxiredoxins. Although current results can be interpreted within the context that peroxiredoxins scavenge hydroperoxides, some peroxiredoxin family members appear to have more complex roles in regulating the response of cells to oxidative stress through protein interactions with constituents of other signaling pathways. FUTURE DIRECTIONS Further mechanistic information is required for understanding the role of oxidative stress in cancer, the function of peroxiredoxins in normal versus cancer cells, and for the design and testing of specific peroxiredoxin inhibitors that display selectivity to malignant cells. Antioxid. Redox Signal. 28, 591-608.
Collapse
Affiliation(s)
- Mark B Hampton
- 1 Department of Pathology, Centre for Free Radical Research, University of Otago , Christchurch, Christchurch, New Zealand
| | - Kate A Vick
- 1 Department of Pathology, Centre for Free Radical Research, University of Otago , Christchurch, Christchurch, New Zealand
| | - John J Skoko
- 2 Womens Cancer Research Center, University of Pittsburgh Cancer Center , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Carola A Neumann
- 2 Womens Cancer Research Center, University of Pittsburgh Cancer Center , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Hopkins BL, Nadler M, Skoko JJ, Bertomeu T, Pelosi A, Shafaei PM, Levine K, Schempf A, Pennarun B, Yang B, Datta D, Bucur O, Ndebele K, Oesterreich S, Yang D, Giulia Rizzo M, Khosravi-Far R, Neumann CA. A Peroxidase Peroxiredoxin 1-Specific Redox Regulation of the Novel FOXO3 microRNA Target let-7. Antioxid Redox Signal 2018; 28:62-77. [PMID: 28398822 PMCID: PMC5695745 DOI: 10.1089/ars.2016.6871] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Precision in redox signaling is attained through posttranslational protein modifications such as oxidation of protein thiols. The peroxidase peroxiredoxin 1 (PRDX1) regulates signal transduction through changes in thiol oxidation of its cysteines. We demonstrate here that PRDX1 is a binding partner for the tumor suppressive transcription factor FOXO3 that directly regulates the FOXO3 stress response. Heightened oxidative stress evokes formation of disulfide-bound heterotrimers linking dimeric PRDX1 to monomeric FOXO3. Absence of PRDX1 enhances FOXO3 nuclear localization and transcription that are dependent on the presence of Cys31 or Cys150 within FOXO3. Notably, FOXO3-T32 phosphorylation is constitutively enhanced in these mutants, but nuclear translocation of mutant FOXO3 is restored with PI3K inhibition. Here we show that on H2O2 exposure, transcription of tumor suppressive miRNAs let-7b and let-7c is regulated by FOXO3 or PRDX1 expression levels and that let-7c is a novel target for FOXO3. Conjointly, inhibition of let-7 microRNAs increases let-7-phenotypes in PRDX1-deficient breast cancer cells. Altogether, these data ascertain the existence of an H2O2-sensitive PRDX1-FOXO3 signaling axis that fine tunes FOXO3 activity toward the transcription of gene targets in response to oxidative stress. Antioxid. Redox Signal. 28, 62-77.
Collapse
Affiliation(s)
- Barbara L Hopkins
- 1 Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Department of Pharmacology and Chemical Biology, Magee Womens Research Institute, University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| | - Monica Nadler
- 3 Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - John J Skoko
- 2 Department of Pharmacology and Chemical Biology, Magee Womens Research Institute, University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| | - Thierry Bertomeu
- 3 Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Andrea Pelosi
- 4 Oncogenomic and Epigenetic Unit, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area Regina Elena National Cancer Institute , Rome, Italy
| | - Parisa Mousavi Shafaei
- 2 Department of Pharmacology and Chemical Biology, Magee Womens Research Institute, University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| | - Kevin Levine
- 2 Department of Pharmacology and Chemical Biology, Magee Womens Research Institute, University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| | - Anja Schempf
- 2 Department of Pharmacology and Chemical Biology, Magee Womens Research Institute, University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| | - Bodvael Pennarun
- 3 Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Bo Yang
- 5 Department of Pharmaceutical Sciences, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Dipak Datta
- 3 Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Octavian Bucur
- 3 Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center , Boston, Massachusetts.,6 Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Kenneth Ndebele
- 3 Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Steffi Oesterreich
- 2 Department of Pharmacology and Chemical Biology, Magee Womens Research Institute, University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| | - Da Yang
- 5 Department of Pharmaceutical Sciences, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Maria Giulia Rizzo
- 4 Oncogenomic and Epigenetic Unit, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area Regina Elena National Cancer Institute , Rome, Italy
| | - Roya Khosravi-Far
- 3 Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Carola A Neumann
- 2 Department of Pharmacology and Chemical Biology, Magee Womens Research Institute, University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Abbadie C, Pluquet O, Pourtier A. Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses? Cell Mol Life Sci 2017; 74:4471-4509. [PMID: 28707011 PMCID: PMC11107641 DOI: 10.1007/s00018-017-2587-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023]
Abstract
Senescence is a cell state occurring in vitro and in vivo after successive replication cycles and/or upon exposition to various stressors. It is characterized by a strong cell cycle arrest associated with several molecular, metabolic and morphologic changes. The accumulation of senescent cells in tissues and organs with time plays a role in organismal aging and in several age-associated disorders and pathologies. Moreover, several therapeutic interventions are able to prematurely induce senescence. It is, therefore, tremendously important to characterize in-depth, the mechanisms by which senescence is induced, as well as the precise properties of senescent cells. For historical reasons, senescence is often studied with fibroblast models. Other cell types, however, much more relevant regarding the structure and function of vital organs and/or regarding pathologies, are regrettably often neglected. In this article, we will clarify what is known on senescence of epithelial cells and highlight what distinguishes it from, and what makes it like, replicative senescence of fibroblasts taken as a standard.
Collapse
Affiliation(s)
- Corinne Abbadie
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France.
| | - Olivier Pluquet
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| | - Albin Pourtier
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| |
Collapse
|
44
|
Wan L, Skoko J, Yu J, Ozdoganlar OB, LeDuc PR, Neumann CA. Mimicking Embedded Vasculature Structure for 3D Cancer on a Chip Approaches through Micromilling. Sci Rep 2017; 7:16724. [PMID: 29196753 PMCID: PMC5711800 DOI: 10.1038/s41598-017-16458-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/13/2017] [Indexed: 01/17/2023] Open
Abstract
The ability for cells to sense and respond to microenvironmental signals is influenced by their three dimensional (3D) surroundings, which includes the extracellular matrix (ECM). In the 3D environment, vascular structures supply cells with nutrients and oxygen thus affecting cell responses such as motility. Interpretation of cell motility studies though is often restricted by the applied approaches such as 2D conventional soft lithography methods that have rectangular channel cross-sectional morphology. To better simulate cell responses to vascular supply in 3D, we developed a cell on a chip system with microfluidic channels with curved cross-sections embedded within a 3D collagen matrix that emulates anatomical vasculature more closely than inorganic polymers, thus to mimic a more physiologically relevant 3D cellular environment. To accomplish this, we constructed perfusable microfluidic channels by embedding sacrificial circular gelatin vascular templates in collagen, which were removed through temperature control. Motile breast cancer cells were pre-seeded into the collagen matrix and when presented with a controlled chemical stimulation from the artificial vasculature, they migrated towards the vasculature structure. We believe this innovative vascular 3D ECM system can be used to provide novel insights into cellular dynamics during multidirectional chemokineses and chemotaxis that exist in cancer and other diseases.
Collapse
Affiliation(s)
- L Wan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15213, United States
| | - J Skoko
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Magee Womens Research Institute, Pittsburgh, 15261, United States
| | - J Yu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15213, United States
| | - O B Ozdoganlar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15213, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, 15213, United States
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, 15213, United States
| | - P R LeDuc
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15213, United States.
| | - C A Neumann
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Magee Womens Research Institute, Pittsburgh, 15261, United States.
| |
Collapse
|
45
|
Shi XJ, Ding L, Zhou W, Ji Y, Wang J, Wang H, Ma Y, Jiang G, Tang K, Ke Y, Zhao W, Liu HM. Pro-Apoptotic Effects of JDA-202, a Novel Natural Diterpenoid, on Esophageal Cancer Through Targeting Peroxiredoxin I. Antioxid Redox Signal 2017; 27:73-92. [PMID: 27650197 PMCID: PMC5510680 DOI: 10.1089/ars.2016.6703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIMS Esophageal cancer (EC) is an aggressive malignancy and the most common solid tumor of gastrointestinal tract all over the world, with high incidence in Asia. The current study was designed to investigate the anticancer efficacy and mechanism that is involved in the action of a natural ent-kaurene diterpenoid, JDA-202, targeting EC. RESULTS We found that an antioxidant protein peroxiredoxin I (Prx I) was upregulated in human EC tissues as well as in EC cell lines. JDA-202, a novel natural compound isolated from Isodon rubescens (Labiatae), was proved to possess strong anti-proliferative activities on those cell lines. Importantly, JDA-202 does not only bind to Prx I directly and markedly inhibit the activity of Prx I in vitro, but it also significantly induces hydrogen peroxide (H2O2)-related cell death. Furthermore, overexpression of Prx I significantly reversed EC109 cell apoptosis caused by JDA-202, whereas short interfering RNA (siRNA)-induced Prx I knockdown resulted in marked cell death even without JDA-202 pretreatment. On the other hand, the increased phosphorylation of mitogen-activated protein kinase (MAPK) proteins (c-Jun N-terminal kinase [JNK], p38, and extracellular signal-regulated kinase [ERK]) by JDA-202 was suppressed by N-acetylcysteine (NAC) or catalase, a known reactive oxygen species (ROS) or H2O2 scavenger. JDA-202 also significantly inhibited the growth of EC109 tumor xenograft, without significant body weight loss and multi-organ toxicities. Innovation and Conclusion: Our findings, for the first time, demonstrated that JDA-202 may serve as a lead compound, targeting the overexpressed Prx I in EC cell lines and ROS accumulation as well as inhibiting the activation of their downstream targets in MAPKs. Antioxid. Redox Signal. 27, 73-92.
Collapse
Affiliation(s)
- Xiao-Jing Shi
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Lina Ding
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Wenjuan Zhou
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Yage Ji
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Junwei Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Huimin Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Yongcheng Ma
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Guozhong Jiang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Kai Tang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Yu Ke
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Wen Zhao
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Hong-Min Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| |
Collapse
|
46
|
Trzeciecka A, Klossowski S, Bajor M, Zagozdzon R, Gaj P, Muchowicz A, Malinowska A, Czerwoniec A, Barankiewicz J, Domagala A, Chlebowska J, Prochorec-Sobieszek M, Winiarska M, Ostaszewski R, Gwizdalska I, Golab J, Nowis D, Firczuk M. Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma. Oncotarget 2016; 7:1717-31. [PMID: 26636537 PMCID: PMC4811492 DOI: 10.18632/oncotarget.6435] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
Burkitt lymphoma is a fast-growing tumor derived from germinal center B cells. It is mainly treated with aggressive chemotherapy, therefore novel therapeutic approaches are needed due to treatment toxicity and developing resistance. Disturbance of red-ox homeostasis has recently emerged as an efficient antitumor strategy. Peroxiredoxins (PRDXs) are thioredoxin-family antioxidant enzymes that scavenge cellular peroxides and contribute to red-ox homeostasis. PRDXs are robustly expressed in various malignancies and critically involved in cell proliferation, differentiation and apoptosis. To elucidate potential role of PRDXs in lymphoma, we studied their expression level in B cell-derived primary lymphoma cells as well as in cell lines. We found that PRDX1 and PRDX2 are upregulated in tumor B cells as compared with normal counterparts. Concomitant knockdown of PRDX1 and PRDX2 significantly attenuated the growth rate of lymphoma cells. Furthermore, in human Burkitt lymphoma cell lines, we isolated dimeric 2-cysteine peroxiredoxins as targets for SK053, a novel thiol-specific small-molecule peptidomimetic with antitumor activity. We observed that treatment of lymphoma cells with SK053 triggers formation of covalent PRDX dimers, accumulation of intracellular reactive oxygen species, phosphorylation of ERK1/2 and AKT and leads to cell cycle arrest and apoptosis. Based on site-directed mutagenesis and modeling studies, we propose a mechanism of SK053-mediated PRDX crosslinking, involving double thioalkylation of active site cysteine residues. Altogether, our results suggest that peroxiredoxins are novel therapeutic targets in Burkitt lymphoma and provide the basis for new approaches to the treatment of this disease.
Collapse
Affiliation(s)
- Anna Trzeciecka
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Szymon Klossowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Bajor
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Radoslaw Zagozdzon
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland.,Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Gaj
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | | | - Agata Malinowska
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Czerwoniec
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Joanna Barankiewicz
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland.,Department of Hematology and Transfusion Medicine, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Antoni Domagala
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Justyna Chlebowska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland.,Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw, Warsaw, Poland
| | - Monika Prochorec-Sobieszek
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland.,Department of Pathology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | | | | | | | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Nowis
- Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw, Warsaw, Poland.,Genomic Medicine, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
47
|
Ding C, Fan X, Wu G. Peroxiredoxin 1 - an antioxidant enzyme in cancer. J Cell Mol Med 2016; 21:193-202. [PMID: 27653015 PMCID: PMC5192802 DOI: 10.1111/jcmm.12955] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/17/2016] [Indexed: 12/11/2022] Open
Abstract
Peroxiredoxins (PRDXs), a ubiquitous family of redox‐regulating proteins, are reported of potential to eliminate various reactive oxygen species (ROS). As a major member of the antioxidant enzymes, PRDX1 can become easily over‐oxidized on its catalytically active cysteine induced by a variety of stimuli in vitro and in vivo. In nucleus, oligomeric PRDX1 directly associates with p53 or transcription factors such as c‐Myc, NF‐κB and AR, and thus affects their bioactivities upon gene regulation, which in turn induces or suppresses cell death. Additionally, PRDX1 in cytoplasm has anti‐apoptotic potential through direct or indirect interactions with several ROS‐dependent (redox regulation) effectors, including ASK1, p66Shc, GSTpi/JNK and c‐Abl kinase. PRDX1 is proven to be a versatile molecule regulating cell growth, differentiation and apoptosis. Recent studies have found that PRDX1 and/or PRDX1‐regulated ROS‐dependent signalling pathways play an important role in the progression and metastasis of human tumours, particularly in breast, oesophageal and lung cancers. In this paper, we review the structure, effector functions of PRDX1, its role in cancer and the pivotal role of ROS in anticancer treatment.
Collapse
Affiliation(s)
- Chenbo Ding
- Medical School of Southeast University, Nanjing, China
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing, China
| | - Guoqiu Wu
- Medical School of Southeast University, Nanjing, China.,Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
48
|
Mantzaris MD, Bellou S, Skiada V, Kitsati N, Fotsis T, Galaris D. Intracellular labile iron determines H2O2-induced apoptotic signaling via sustained activation of ASK1/JNK-p38 axis. Free Radic Biol Med 2016; 97:454-465. [PMID: 27387771 DOI: 10.1016/j.freeradbiomed.2016.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/15/2016] [Accepted: 07/04/2016] [Indexed: 01/14/2023]
Abstract
Hydrogen peroxide (H2O2) acts as a second messenger in signal transduction participating in several redox regulated pathways, including cytokine and growth factor stimulated signals. However, the exact molecular mechanisms underlying these processes remain poorly understood and require further investigation. In this work, using Jurkat T lymphoma cells and primary human umbilical vein endothelial cells, it was observed that changes in intracellular "labile iron" were able to modulate signal transduction in H2O2-induced apoptosis. Chelation of intracellular labile iron by desferrioxamine rendered cells resistant to H2O2-induced apoptosis. In order to identify the exact points of iron action, we investigated selected steps in H2O2-mediated apoptotic pathway, focusing on mitogen activated protein kinases (MAPKs) JNK, p38 and ERK. It was observed that spatiotemporal changes in intracellular labile iron, induced by H2O2, influenced the oxidation pattern of the upstream MAP3K ASK1 and promoted the sustained activation of JNK-p38 axis in a defined time-dependent context. Moreover, we indicate that H2O2 induced spatiotemporal changes in intracellular labile iron, at least in part, by triggering the destabilization of lysosomal compartments, promoting a concomitant early response in proteins of iron homeostasis. These results raise the possibility that iron-mediated oxidation of distinct proteins may be implicated in redox signaling processes. Since labile iron can be pharmacologically modified in vivo, it may represent a promising target for therapeutic interventions in related pathological conditions.
Collapse
Affiliation(s)
- M D Mantzaris
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Greece
| | - S Bellou
- Foundation for Research & Technology-Hellas, Institute of Molecular Biology & Biotechnology, Department of Biomedical Research, Ioannina, Greece
| | - V Skiada
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Greece
| | - N Kitsati
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Greece
| | - T Fotsis
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Greece; Foundation for Research & Technology-Hellas, Institute of Molecular Biology & Biotechnology, Department of Biomedical Research, Ioannina, Greece
| | - D Galaris
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Greece.
| |
Collapse
|
49
|
Tomalin LE, Day AM, Underwood ZE, Smith GR, Dalle Pezze P, Rallis C, Patel W, Dickinson BC, Bähler J, Brewer TF, Chang CJL, Shanley DP, Veal EA. Increasing extracellular H2O2 produces a bi-phasic response in intracellular H2O2, with peroxiredoxin hyperoxidation only triggered once the cellular H2O2-buffering capacity is overwhelmed. Free Radic Biol Med 2016; 95:333-48. [PMID: 26944189 PMCID: PMC4891068 DOI: 10.1016/j.freeradbiomed.2016.02.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 11/30/2022]
Abstract
Reactive oxygen species, such as H2O2, can damage cells but also promote fundamental processes, including growth, differentiation and migration. The mechanisms allowing cells to differentially respond to toxic or signaling H2O2 levels are poorly defined. Here we reveal that increasing external H2O2 produces a bi-phasic response in intracellular H2O2. Peroxiredoxins (Prx) are abundant peroxidases which protect against genome instability, ageing and cancer. We have developed a dynamic model simulating in vivo changes in Prx oxidation. Remarkably, we show that the thioredoxin peroxidase activity of Prx does not provide any significant protection against external rises in H2O2. Instead, our model and experimental data are consistent with low levels of extracellular H2O2 being efficiently buffered by other thioredoxin-dependent activities, including H2O2-reactive cysteines in the thiol-proteome. We show that when extracellular H2O2 levels overwhelm this buffering capacity, the consequent rise in intracellular H2O2 triggers hyperoxidation of Prx to thioredoxin-resistant, peroxidase-inactive form/s. Accordingly, Prx hyperoxidation signals that H2O2 defenses are breached, diverting thioredoxin to repair damage.
Collapse
Affiliation(s)
- Lewis Elwood Tomalin
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alison Michelle Day
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Zoe Elizabeth Underwood
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Graham Robert Smith
- Bioinformatics Support Unit, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Piero Dalle Pezze
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Charalampos Rallis
- University College London, Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, Gower Street - Darwin Building, London WC1E 6BT, UK
| | - Waseema Patel
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | - Jürg Bähler
- University College London, Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, Gower Street - Darwin Building, London WC1E 6BT, UK
| | - Thomas Francis Brewer
- Howard Hughes Medical Institute and Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher Joh-Leung Chang
- Howard Hughes Medical Institute and Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daryl Pierson Shanley
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Elizabeth Ann Veal
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
50
|
Zhang J, Jing X, Niu W, Zhang M, Ge L, Miao C, Tang X. Peroxiredoxin 1 has an anti-apoptotic role via apoptosis signal-regulating kinase 1 and p38 activation in mouse models with oral precancerous lesions. Oncol Lett 2016; 12:413-420. [PMID: 27347160 DOI: 10.3892/ol.2016.4659] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/08/2016] [Indexed: 12/16/2022] Open
Abstract
Peroxiredoxin 1 (Prx1) is important in the protection of cells from oxidative damage and the regulation of cell proliferation and apoptosis. Prx1 is overexpressed in oral precancerous lesions of oral leukoplakia (OLK) and oral cancer; however, the association between Prx1 expression and OLK pathogenesis remains unknown. The present study investigated the role of Prx1 and its molecular mechanisms in oxidative stress-induced apoptosis during the pathogenesis of OLK. Wild-type and Prx1 knockout mice were treated with 50 µg/ml 4-nitroquinoline-1-oxide (4NQO) or 4NQO + H2O2 for 16 weeks to establish mouse models with tongue precancerous lesions. Apoptotic cells were detected using terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. The expression of Prx1, apoptosis signal-regulating kinase 1 (ASK1), phosphor-ASK1, p38 and phosphor-p38 was analyzed using immunohistochemical staining, and their mRNA expression levels were evaluated by reverse transcription quantitative polymerase chain reaction. The present results demonstrated that 4NQO or 4NQO + H2O2 induced the development of tongue precancerous lesions in Prx1 knockout and wild-type mice. Prx1 was overexpressed in tongue precancerous lesions compared with normal tongue mucosa. There was a significant decrease in the degree of moderate or severe epithelial dysplasia, and mild epithelial dysplasia was clearly elevated, in Prx1 knockout mice treated with 4NQO + H2O2 compared with wild-type mice treated with 4NQO + H2O2. Prx1 suppressed apoptosis and upregulated phosphor-ASK1 and phosphor-p38 expression in tongue precancerous lesions. The present results suggest that Prx1 suppresses oxidative stress-induced apoptosis via the ASK1/p38 signalling pathway in mouse tongue precancerous lesions. In conclusion, Prx1 and H2O2 have a coordination role in promoting the progression of tongue precancerous mucosa lesions. The present findings provide novel insight into Prx1 function and the mechanisms of Prx1 in OLK pathogenesis.
Collapse
Affiliation(s)
- Jianfei Zhang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Beijing Key Laboratory, Capital Medical University, Beijing 100050, P.R. China
| | - Xinying Jing
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Beijing Key Laboratory, Capital Medical University, Beijing 100050, P.R. China
| | - Wenwen Niu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Beijing Key Laboratory, Capital Medical University, Beijing 100050, P.R. China
| | - Min Zhang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Beijing Key Laboratory, Capital Medical University, Beijing 100050, P.R. China
| | - Lihua Ge
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Beijing Key Laboratory, Capital Medical University, Beijing 100050, P.R. China
| | - Congcong Miao
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Beijing Key Laboratory, Capital Medical University, Beijing 100050, P.R. China
| | - Xiaofei Tang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Beijing Key Laboratory, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|