1
|
Beielstein AC, Izquierdo E, Blakemore S, Nickel N, Michalik M, Chawan S, Brinker R, Bartel HH, Vorholt D, Albert L, Nolte JL, Linke R, Costa Picossi CR, Sáiz J, Picard F, Florin A, Meinel J, Büttner R, Diefenhardt P, Brähler S, Villaseñor A, Winkels H, Hallek M, Krüger M, Barbas C, Pallasch CP. Macrophages are activated toward phagocytic lymphoma cell clearance by pentose phosphate pathway inhibition. Cell Rep Med 2024; 5:101830. [PMID: 39603243 PMCID: PMC11722127 DOI: 10.1016/j.xcrm.2024.101830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/27/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
Macrophages in the B cell lymphoma microenvironment represent a functional node in progression and therapeutic response. We assessed metabolic regulation of macrophages in the context of therapeutic antibody-mediated phagocytosis. Pentose phosphate pathway (PPP) inhibition induces increased phagocytic lymphoma cell clearance by macrophages in vitro, in primary human chronic lymphocytic leukemia (CLL) patient co-cultures, and in mouse models. Addition of the PPP inhibitor S3 to antibody therapy achieves significantly prolonged overall survival in an aggressive B cell lymphoma mouse model. PPP inhibition induces metabolic activation and pro-inflammatory polarization of macrophages while it decreases macrophages' support for survival of lymphoma cells empowering anti-lymphoma function. As a mechanism of macrophage repolarization, the link between PPP and immune regulation was identified. PPP inhibition causes decreased glycogen level and subsequent modulation of the immune modulatory uridine diphosphate glucose (UDPG)-Stat1-Irg1-itaconate axis. Thus, we hypothesize the PPP as a key regulator and targetable modulator of macrophage activity in lymphoma to improve efficacy of immunotherapies and prolong survival.
Collapse
MESH Headings
- Pentose Phosphate Pathway/drug effects
- Animals
- Humans
- Macrophages/metabolism
- Macrophages/immunology
- Mice
- Phagocytosis
- Macrophage Activation/drug effects
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Cell Line, Tumor
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Anna C Beielstein
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Elena Izquierdo
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada - Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Stuart Blakemore
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Nadine Nickel
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Michael Michalik
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Samruddhi Chawan
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Reinhild Brinker
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Hans-Henrik Bartel
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Daniela Vorholt
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Lukas Albert
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Janica L Nolte
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Rebecca Linke
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Carolina Raíssa Costa Picossi
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Jorge Sáiz
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Felix Picard
- Department III of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Alexandra Florin
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Jörn Meinel
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Paul Diefenhardt
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Sebastian Brähler
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Alma Villaseñor
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Holger Winkels
- Department III of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Marcus Krüger
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Christian P Pallasch
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany.
| |
Collapse
|
2
|
Thakor P, Siddiqui MQ, Patel TR. Analysis of the interlink between glucose-6-phosphate dehydrogenase (G6PD) and lung cancer through multi-omics databases. Heliyon 2024; 10:e35158. [PMID: 39165939 PMCID: PMC11334843 DOI: 10.1016/j.heliyon.2024.e35158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Glucose-6-Phosphate Dehydrogenase (G6PD) is a crucial enzyme that executes the pentose phosphate pathway. Due to its critical nodal position in the metabolic network, it is associated with different forms of cancer tumorigeneses and progression. Nonetheless, its functional role and molecular mechanism in lung cancer remain unknown. The present study provides intricate information associated with G6PD and Lung Cancer. Varieties of public datasets were retrieved by us, including UALCAN, TCGA, cBioPortal, and the UCSC Xena browser. The data obtained were used to assess the expression of G6PD, its clinical features, epigenetic regulation, relationship with tumour infiltration, tumour mutation burden, microsatellite instability, tumour microenvironment, immune checkpoint genes, genomic alteration, and patient's overall survival rate. The present study revealed that the G6PD expression was correlated with the clinical features of lung cancer including disease stage, race, sex, age, smoking habits, and lymph node metastasis. Moreover, the expression profile of G6PD also imparts epigenetic changes by modulating the DNA promoter methylation activity. Methylation of promoters changes the expression of various transcription factors, genes leading to an influence on the immune system. These events linked with G6PD-related mutational gene alterations (FAM3A, LAG3, p53, KRAS). The entire circumstance influences the patient's overall survival rate and poor prognosis. Functional investigation using STRING, GO, and KEGG found that G6PD primarily engages in hallmark functions (metabolism, immunological responses, proliferation, apoptosis, p53, HIF-1, FOXO, PI3K-AKT signaling). This work provides a wide knowledge of G6PD's function in lung cancer, as well as a theoretical foundation for possible prognostic therapeutic markers.
Collapse
Affiliation(s)
- Parth Thakor
- Bapubhai Desaibhai Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, T1K 2E1, Canada
| | - M. Quadir Siddiqui
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, T1K 2E1, Canada
| | - Trushar R. Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, T1K 2E1, Canada
- Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| |
Collapse
|
3
|
Lu AL, Yin L, Huang Y, Islam ZH, Kanchetty R, Johnston C, Zhang K, Xie X, Park KH, Chalfant CE, Wang B. The role of 6-phosphogluconate dehydrogenase in vascular smooth muscle cell phenotypic switching and angioplasty-induced intimal hyperplasia. JVS Vasc Sci 2024; 5:100214. [PMID: 39318609 PMCID: PMC11420449 DOI: 10.1016/j.jvssci.2024.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/21/2024] [Indexed: 09/26/2024] Open
Abstract
Background Restenosis poses a significant challenge for individuals afflicted with peripheral artery diseases, often leading to considerable morbidity and necessitating repeated interventions. The primary culprit behind the pathogenesis of restenosis is intimal hyperplasia (IH), in which the hyperproliferative and migratory vascular smooth muscle cell (VSMC) accumulate excessively in the tunica intima. 6-Phosphogluconate dehydrogenase (6PGD), sometimes referred to as PGD, is one of the critical enzymes in pentose phosphate pathway (PPP). In this study, we sought to probe whether 6PGD is aberrantly regulated in IH and contributes to VSMC phenotypic switching. Methods We used clinical specimens of diseased human coronary arteries with IH lesions and observed robust upregulation of 6PGD at protein level in both the medial and intimal layers in comparison with healthy arterial segments. Results 6PGD activity and protein expression were profoundly stimulated upon platelet-derived growth factor-induced VSMC phenotypic switching. Using gain-of-function (dCas9-mediated transcriptional activation) and loss-of-function (small interfering RNA-mediated) silencing, we were able to demonstrate the pathogenic role of 6PGD in driving VSMC hyperproliferation, migration, dedifferentiation, and inflammation. Finally, we conducted a rat model of balloon angioplasty in the common carotid artery, with Pluronic hydrogel-assisted perivascular delivery of Physcion, a selective 6PGD inhibitor with poor systemic bioavailability, and observed effective mitigation of IH. Conclusions We contend that aberrant 6PGD expression and activity-indicative of a metabolic shift toward pentose phosphate pathway-could serve as a new disease-driving mechanism and, hence, an actionable target for the development of effective new therapies for IH and restenosis after endovascular interventions.
Collapse
Affiliation(s)
- Amy L. Lu
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Li Yin
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Zain Husain Islam
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Rohan Kanchetty
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Campbell Johnston
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Kaijie Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Xiujie Xie
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Ki Ho Park
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Charles E. Chalfant
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
4
|
Chen J, Ma B, Yang Y, Wang B, Hao J, Zhou X. Disulfidptosis decoded: a journey through cell death mysteries, regulatory networks, disease paradigms and future directions. Biomark Res 2024; 12:45. [PMID: 38685115 PMCID: PMC11059647 DOI: 10.1186/s40364-024-00593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Cell death is an important part of the life cycle, serving as a foundation for both the orderly development and the maintenance of physiological equilibrium within organisms. This process is fundamental, as it eliminates senescent, impaired, or aberrant cells while also promoting tissue regeneration and immunological responses. A novel paradigm of programmed cell death, known as disulfidptosis, has recently emerged in the scientific circle. Disulfidptosis is defined as the accumulation of cystine by cancer cells with high expression of the solute carrier family 7 member 11 (SLC7A11) during glucose starvation. This accumulation causes extensive disulfide linkages between F-actins, resulting in their contraction and subsequent detachment from the cellular membrane, triggering cellular death. The RAC1-WRC axis is involved in this phenomenon. Disulfidptosis sparked growing interest due to its potential applications in a variety of pathologies, particularly oncology, neurodegenerative disorders, and metabolic anomalies. Nonetheless, the complexities of its regulatory pathways remain elusive, and its precise molecular targets have yet to be definitively identified. This manuscript aims to meticulously dissect the historical evolution, molecular underpinnings, regulatory frameworks, and potential implications of disulfidptosis in various disease contexts, illuminating its promise as a groundbreaking therapeutic pathway and target.
Collapse
Affiliation(s)
- Jinyu Chen
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Boyuan Ma
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yubiao Yang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Bitao Wang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jian Hao
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Xianhu Zhou
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
5
|
Thakkar AB, Subramanian RB, Thakkar SS, Thakkar VR, Thakor P. Biochanin A - A G6PD inhibitor: In silico and in vitro studies in non-small cell lung cancer cells (A549). Toxicol In Vitro 2024; 96:105785. [PMID: 38266663 DOI: 10.1016/j.tiv.2024.105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Secondary metabolites from medicinal plants have a well-established therapeutic potential, with many of these chemicals having specialized medical uses. Isoflavonoids, a type of secondary metabolite, have little cytotoxicity against healthy human cells, making them interesting candidates for cancer treatment. Extensive research has been conducted to investigate the chemo-preventive benefits of flavonoids in treating various cancers. Biochanin A (BA), an isoflavonoid abundant in plants such as red clover, soy, peanuts, and chickpeas, was the subject of our present study. This study aimed to determine how BA affected glucose-6-phosphate dehydrogenase (G6PD) in human lung cancer cells. The study provides meaningful insight and a significant impact of BA on the association between metastasis, inflammation, and G6PD inhibition in A549 cells. Comprehensive in vitro tests revealed that BA has anti-inflammatory effects. Molecular docking experiments shed light on BA's high binding affinity for the G6PD receptor. BA substantially decreased the expression of G6PD and other inflammatory and metastasis-related markers. In conclusion, our findings highlight the potential of BA as a therapeutic agent in cancer treatment, specifically by targeting G6PD and related pathways. BA's varied effects, which range from anti-inflammatory capabilities to metastasis reduction, make it an appealing option for future investigation in the development of new cancer therapeutics.
Collapse
Affiliation(s)
- Anjali B Thakkar
- P. G. Department of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Bakrol-Vadtal Road, Bakrol, Anand, Gujarat, India; P. G. Department of Applied and Interdisciplinary Sciences (IICISST), Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Ramalingam B Subramanian
- P. G. Department of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Bakrol-Vadtal Road, Bakrol, Anand, Gujarat, India
| | - Sampark S Thakkar
- AKASHGANGA, Shree Kamdhenu Electronics Pvt. Ltd., Vallabh Vidyanagar, Gujarat, India
| | - Vasudev R Thakkar
- P. G. Department of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Bakrol-Vadtal Road, Bakrol, Anand, Gujarat, India
| | - Parth Thakor
- Bapubhai Desaibhai Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, Changa, Gujarat, India.
| |
Collapse
|
6
|
Xu J, Ren G, Cheng Q. Inhibition of 6-Phosphogluconate Dehydrogenase Reverses Epirubicin Resistance Through Metabolic Reprograming in Triple-Negative Breast Cancer Cells. Technol Cancer Res Treat 2023; 22:15330338231190737. [PMID: 37559469 PMCID: PMC10416659 DOI: 10.1177/15330338231190737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/15/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
At present, chemotherapy is the most effective strategy for treating triple-negative breast cancer (TNBC), but its efficacy was limited by the development of chemo-resistance. The exact mechanism of chemoresistance still remains unclear. This study aims to examine whether 6-phosphogluconate dehydrogenase (6PGD), a key enzyme in the oxidative pentose phosphate pathway (PPP), could promote the resistance of TNBC cells to epirubicin. A TNBC epirubicin-resistant cell line was developed by increasing concentration and the effectiveness was tested. The expression and knockdown efficiency of 6PGD were further validated by performing quantitative real-time PCR (qPCR) and Western blot. The effects of 6PGD on parental and drug-resistant TNBC cell lines were verified based on proliferation and apoptosis experiments. Finally, nicotinamide adenine dinucleotide phosphate (NADPH) and lactate quantitative experiments were performed to examine the mechanism of 6PGD in promoting drug resistance. Epirubicin-resistant cancer cells exhibited a higher level of 6PGD in contrast to epirubicin-sensitive cells. In addition, 6PGD inhibited by genetic and pharmacological approaches significantly suppressed the growth and survival of both epirubicin-sensitive and epirubicin-resisteant TNBC cells. It should be noted that 6PGD inhibition sensitized epirubicin-resistant TNBC cells to epirubicin treatment. Moreover, it was also found that the levels of NADPH and lactate increased in epirubicin-resistant TNBC cells but decreased in response to 6PGD inhibition. The present results indicated that 6PGD inhibition disrupted metabolic reprogramming in epirubicin-resistant TNBC cells. Our work demonstrated that 6PGD inhibition reversed the resistance of TNBC cells to epirubicin, providing an alternative therapeutic choice to tackle the challenge of epirubicin resistance in TNBC treatment.
Collapse
Affiliation(s)
- Jiali Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiao Cheng
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Khan GB, Qasim M, Rasul A, Ashfaq UA, Alnuqaydan AM. Identification of Lignan Compounds as New 6-Phosphogluconate Dehydrogenase Inhibitors for Lung Cancer. Metabolites 2022; 13:metabo13010034. [PMID: 36676959 PMCID: PMC9864769 DOI: 10.3390/metabo13010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
Targeting pentose phosphate pathway (PPP) enzymes has emerged as a promising strategy to combat cancer. 6-Phosphogluconate dehydrogenase (6-PGD), the third critical enzyme of the PPP, catalyzes oxidative decarboxylation of 6-phosphogluconate (6-PG) to produce ribulose-5-phosphate (Ru-5-P) and CO2. Overexpression of 6-PGD has been reported in multiple cancers and is recognized as a potential anticancer drug target. The current study is focused on the utilization of indispensable virtual screening tools for structure-based drug discovery. During the study, 17,000 natural compounds were screened against the 3-phosphoglycerate (3-PG) binding site of 6-PGD through a molecular operating environment (MOE), which revealed 115 inhibitors with higher selectivity and binding affinity. Out of the 115 best-fit compounds within the 6-PGD binding cavity, 15 compounds were selected and optimized through stringent in silico ADMET assessment models that justified the desirable pharmacokinetic, pharmacodynamic and physicochemical profiles of 5 ligands. Further protein−ligand stability assessment through molecular dynamics (MD) simulation illustrated three potential hits, secoisolariciresinol, syringaresinol and cleomiscosin A, with stable confirmation. Moreover, 6-PGD inhibitor validation was performed by an in vitro enzymatic assay using human erythrocytes purified 6-PGD protein and A549 cell lysate protein. The results of the in vitro assays supported the in silico findings. In order to gain insight into the anticancer activity of the aforementioned compounds, they were subjected to CLC-Pred, an in silico cytotoxicity browsing tool, which proved their anticancer activity against several cancer cell lines at Pa > 0.5. Additionally, a confirmation for in silico cytotoxicity was made by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for commercially available hits syringaresinol and cleomiscosin A against lung cancer (A549) cells. The results demonstrated that syringaresinol has an IC50 value of 36.9 μg/mL, while cleomiscosin A has an IC50 value of 133 μg/mL. After MTT, flow cytometry analysis confirmed that compounds induced apoptosis in A549 cells in a dose-dependent manner. This study suggested that the respective lignan compounds can serve as lead candidates for lung cancer therapy via 6-PGD inhibition. Furthermore, in vivo experiments need to be conducted to confirm their efficacy.
Collapse
Affiliation(s)
- Gul Bushra Khan
- Department of Bioinformatics and Biotechnology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
- Correspondence: (M.Q.); (A.M.A.); Tel.: +966-63800050 (ext. 15411) (A.M.A.)
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Abdullah M. Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
- Correspondence: (M.Q.); (A.M.A.); Tel.: +966-63800050 (ext. 15411) (A.M.A.)
| |
Collapse
|
8
|
Pinson A, Xing L, Namba T, Kalebic N, Peters J, Oegema CE, Traikov S, Reppe K, Riesenberg S, Maricic T, Derihaci R, Wimberger P, Pääbo S, Huttner WB. Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals. Science 2022; 377:eabl6422. [PMID: 36074851 DOI: 10.1126/science.abl6422] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neanderthal brains were similar in size to those of modern humans. We sought to investigate potential differences in neurogenesis during neocortex development. Modern human transketolase-like 1 (TKTL1) differs from Neanderthal TKTL1 by a lysine-to-arginine amino acid substitution. Using overexpression in developing mouse and ferret neocortex, knockout in fetal human neocortical tissue, and genome-edited cerebral organoids, we found that the modern human variant, hTKTL1, but not the Neanderthal variant, increases the abundance of basal radial glia (bRG) but not that of intermediate progenitors (bIPs). bRG generate more neocortical neurons than bIPs. The hTKTL1 effect requires the pentose phosphate pathway and fatty acid synthesis. Inhibition of these metabolic pathways reduces bRG abundance in fetal human neocortical tissue. Our data suggest that neocortical neurogenesis in modern humans differs from that in Neanderthals.
Collapse
Affiliation(s)
- Anneline Pinson
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Nereo Kalebic
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jula Peters
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | - Sofia Traikov
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Katrin Reppe
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Stephan Riesenberg
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Tomislav Maricic
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Razvan Derihaci
- Technische Universität Dresden, Universitätsklinikum Carl Gustav Carus, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, 01307 Dresden, Germany
| | - Pauline Wimberger
- Technische Universität Dresden, Universitätsklinikum Carl Gustav Carus, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, 01307 Dresden, Germany
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
9
|
Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Huang H, Liu Z, Qi X, Gao N, Chang J, Yang M, Na S, Liu Y, Song R, Li L, Chen G, Zhou H. Rhubarb granule promotes diethylnitrosamine-induced liver tumorigenesis by activating the oxidative branch of pentose phosphate pathway via G6PD in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114479. [PMID: 34343647 DOI: 10.1016/j.jep.2021.114479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhubarb is a natural herbal medicine widely used clinically with numerous pharmacological activities including anti-cancer. Specifically, several studies reported that free anthraquinones from Rhubarb suppressed the proliferation of hepatoma cells. Nonetheless, recent studies revealed that Rhubarb caused hepatotoxicity in vivo, confirming its "two-way" effect on the liver. Therefore, the efficacy and safety of Rhubarb in the in vivo treatment of liver cancer should be further elucidated. AIM OF THE STUDY This study investigated the presence of hepatoprotection or hepatotoxicity of Rhubarb in diethylnitrosamine (DEN)-induced hepatocarcinogenesis. MATERIAL AND METHODS A total of 112 male Sprague-Dawley rats weighing 190-250 g were enrolled. The rats were induced hepatocarcinogenesis using diethylnitrosamine (0.002 g/rat) until 17 weeks. Starting at week 11, Rhubarb granules (4 g/kg and 8 g/kg) were intragastrically administered daily for 7 weeks. All rats were euthanized at week 20 and the livers were analyzed via non-targeted metabolomics analysis. We established hepatic glucose 6 phosphate (6PG) levels and glucose 6 phosphate dehydrogenase (G6PD) activities to assess the pentose phosphate pathway (PPP). And the liver injuries of rats were analyzed via histological changes, hepatic function, as well as hepatic protein levels of alpha-fetoprotein (AFP), pyruvate kinase isozyme type M2 (PKM2), and proliferating cell nuclear antigen (PCNA). Furthermore, polydatin (0.1 g/kg/d) as a specific inhibitor of G6PD was used to treat rats. Notably, their histological changes, hepatic function, hepatic 6PG levels, hepatic G6PD activities, PCNA levels, and PKM2 levels were recorded. RESULTS Non-targeted metabolomics revealed that Rhubarb regulated the PPP in the liver of Rhubarb-DEN-treated rats. Besides, Rhubarb activated the oxidative branch of the PPP by activating G6PD (a rate-limiting enzyme in the oxidative PPP) in the liver of Rhubarb-DEN-treated rats. Meanwhile, Rhubarb promoted DEN-induced hepatocarcinogenesis. Moreover, polydatin attenuated the promoting effect of Rhubarb on DEN-induced hepatocarcinogenesis. CONCLUSIONS Rhubarb promoted DEN-induced hepatocarcinogenesis by activating the PPP, indicating that the efficacy and safety of Rhubarb in the treatment of liver cancer deserve to be deliberated.
Collapse
Affiliation(s)
- Hongwu Huang
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Zhenzhen Liu
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Xiaoru Qi
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Nailong Gao
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, PR China
| | - Jianguo Chang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, PR China
| | - Miaomiao Yang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province, PR China; Clinical Pathology Center, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, PR China
| | - Sha Na
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Yanyan Liu
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Rui Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Lu Li
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China; Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui Province, PR China.
| | - Guangliang Chen
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui Province, PR China.
| | - Hui Zhou
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China.
| |
Collapse
|
11
|
Saleh-E-In MM, Choi YE. Anethum sowa Roxb. ex fleming: A review on traditional uses, phytochemistry, pharmacological and toxicological activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:113967. [PMID: 33640440 DOI: 10.1016/j.jep.2021.113967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anethum sowa Roxb. ex Fleming (Syn. Peucedanum sowa Roxb. ex Fleming, Family: Apiaceae) is a pharmacologically important as aromatic and medicinal plant. Various parts of this plant are used in traditional medicine systems for carminative, uterine and colic pain, digestion disorder, flatulence in babies, appetite-stimulating agent and used to treat mild flue and cough. The essential oil is used for aromatherapy. It is also used as a spice for food flavouring and culinary preparations in many Asian and European countries. AIM OF THE REVIEW This review aims to provide a comprehensive and critical assessment from the reported traditional and pharmaceutical uses and pharmacological activities of the extracts, essential oil and phytoconstituents with emphasis on its therapeutic potential as well as toxicological evaluation of A. sowa. MATERIALS AND METHODS Online search engines such as SciFinder®, GoogleScholar®, ResearchGate®, Web of Science®, Scopus®, PubMed and additional data from books, proceedings and local prints were searched using relevant keywords and terminologies related to A. sowa for critical analyses. RESULTS The literature studies demonstrated that A. sowa possesses several ethnopharmacological activities, including pharmaceutical prescriptions, traditional applications, and spice in food preparations. The phytochemical investigation conducted on crude extracts has been characterized and identified various classes of compounds, including coumarins, anthraquinone, terpenoids, alkaloid, benzodioxoles, phenolics, polyphenols, phenolic and polyphenols, fatty acids, phthalides and carotenoids. The extracts and compounds from the different parts of A. sowa showed diverse in vitro and in vivo biological activities including antioxidant, antiviral, antibacterial, analgesic and anti-inflammatory, Alzheimer associating neuromodulatory, cytotoxic, anticancer, antidiabetes, insecticidal and larvicidal. CONCLUSION A. sowa is a valuable medicinal plant which is especially used in food flavouring and culinary preparations. This review summarized the pertinent information on A. sowa and its traditional and culinary uses, as well as potential pharmacological properties of essential oils, extracts and isolated compounds. The traditional uses of A. sowa are supported by in vitro/vivo pharmacological studies; however, further investigation on A. sowa should be focused on isolation and identification of more active compounds and establish the links between the traditional uses and reported pharmacological activities with active compounds, as well as structure-activity relationship and in vivo mechanistic studies before integrated into the medicine. The toxicological report confirmed its safety. Nonetheless, pharmacokinetic evaluation tests to validate its bioavailability should be encouraged.
Collapse
Affiliation(s)
- Md Moshfekus Saleh-E-In
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Yong Eui Choi
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, 200-701, Republic of Korea.
| |
Collapse
|
12
|
Siddiqui AJ, Khan MF, Hamadou WS, Goyal M, Jahan S, Jamal A, Ashraf SA, Sharma P, Sachidanandan M, Badraoui R, Chaubey KK, Snoussi M, Adnan M. Molecular Docking and Dynamics Simulation Revealed Ivermectin as Potential Drug against Schistosoma-Associated Bladder Cancer Targeting Protein Signaling: Computational Drug Repositioning Approach. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1058. [PMID: 34684095 PMCID: PMC8539496 DOI: 10.3390/medicina57101058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 12/29/2022]
Abstract
Urogenital schistosomiasis is caused by Schistosoma haematobium (S. haematobium) infection, which has been linked to the development of bladder cancer. In this study, three repurposing drugs, ivermectin, arteether and praziquantel, were screened to find the potent drug-repurposing candidate against the Schistosoma-associated bladder cancer (SABC) in humans by using computational methods. The biology of most glutathione S-transferases (GSTs) proteins and vascular endothelial growth factor (VEGF) is complex and multifaceted, according to recent evidence, and these proteins actively participate in many tumorigenic processes such as cell proliferation, cell survival and drug resistance. The VEGF and GSTs are now widely acknowledged as an important target for antitumor therapy. Thus, in this present study, ivermectin displayed promising inhibition of bladder cancer cells via targeting VEGF and GSTs signaling. Moreover, molecular docking and molecular dynamics (MD) simulation analysis revealed that ivermectin efficiently targeted the binding pockets of VEGF receptor proteins and possessed stable dynamics behavior at binding sites. Therefore, we proposed here that these compounds must be tested experimentally against VEGF and GST signaling in order to control SABC. Our study lies within the idea of discovering repurposing drugs as inhibitors against the different types of human cancers by targeting essential pathways in order to accelerate the drug development cycle.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail 2440, Saudi Arabia; (W.S.H.); (A.J.); (R.B.); (M.S.); (M.A.)
| | - Mohammad Faheem Khan
- Department of Biotechnology, Era’s Lucknow Medical College, Era University, Lucknow 226003, India;
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, Hail 2440, Saudi Arabia; (W.S.H.); (A.J.); (R.B.); (M.S.); (M.A.)
| | - Manish Goyal
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; (M.G.); (P.S.)
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia;
| | - Arshad Jamal
- Department of Biology, College of Science, University of Hail, Hail 2440, Saudi Arabia; (W.S.H.); (A.J.); (R.B.); (M.S.); (M.A.)
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail 2440, Saudi Arabia;
| | - Pankaj Sharma
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; (M.G.); (P.S.)
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail 2440, Saudi Arabia;
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail 2440, Saudi Arabia; (W.S.H.); (A.J.); (R.B.); (M.S.); (M.A.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, Tunis 1017, Tunisia
| | - Kundan Kumar Chaubey
- Department of Biotechnology, Academic Block VI, GLA University, Mathura 281406, India;
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail 2440, Saudi Arabia; (W.S.H.); (A.J.); (R.B.); (M.S.); (M.A.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddas BP74, Monastir 5000, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail 2440, Saudi Arabia; (W.S.H.); (A.J.); (R.B.); (M.S.); (M.A.)
| |
Collapse
|
13
|
Gillis JL, Hinneh JA, Ryan NK, Irani S, Moldovan M, Quek LE, Shrestha RK, Hanson AR, Xie J, Hoy AJ, Holst J, Centenera MM, Mills IG, Lynn DJ, Selth LA, Butler LM. A feedback loop between the androgen receptor and 6-phosphogluoconate dehydrogenase (6PGD) drives prostate cancer growth. eLife 2021; 10:62592. [PMID: 34382934 PMCID: PMC8416027 DOI: 10.7554/elife.62592] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Alterations to the androgen receptor (AR) signalling axis and cellular metabolism are hallmarks of prostate cancer. This study provides insight into both hallmarks by uncovering a novel link between AR and the pentose phosphate pathway (PPP). Specifically, we identify 6-phosphogluoconate dehydrogenase (6PGD) as an androgen-regulated gene that is upregulated in prostate cancer. AR increased the expression of 6PGD indirectly via activation of sterol regulatory element binding protein 1 (SREBP1). Accordingly, loss of 6PGD, AR or SREBP1 resulted in suppression of PPP activity as revealed by 1,2-13C2 glucose metabolic flux analysis. Knockdown of 6PGD also impaired growth and elicited death of prostate cancer cells, at least in part due to increased oxidative stress. We investigated the therapeutic potential of targeting 6PGD using two specific inhibitors, physcion and S3, and observed substantial anti-cancer activity in multiple models of prostate cancer, including aggressive, therapy-resistant models of castration-resistant disease as well as prospectively collected patient-derived tumour explants. Targeting of 6PGD was associated with two important tumour-suppressive mechanisms: first, increased activity of the AMP-activated protein kinase (AMPK), which repressed anabolic growth-promoting pathways regulated by acetyl-CoA carboxylase 1 (ACC1) and mammalian target of rapamycin complex 1 (mTORC1); and second, enhanced AR ubiquitylation, associated with a reduction in AR protein levels and activity. Supporting the biological relevance of positive feedback between AR and 6PGD, pharmacological co-targeting of both factors was more effective in suppressing the growth of prostate cancer cells than single-agent therapies. Collectively, this work provides new insight into the dysregulated metabolism of prostate cancer and provides impetus for further investigation of co-targeting AR and the PPP as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Joanna L Gillis
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Josephine A Hinneh
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia.,Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Natalie K Ryan
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Swati Irani
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Max Moldovan
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Lake-Ee Quek
- School of Mathematics and Statistics, Charles Perkins Centre, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Raj K Shrestha
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Flinders Health and Medical Research Institute, Flinders University, College of Medicine and Public Health, Bedford Park, Australia.,Dame Roma Mitchell Cancer Research Laboratories, University of Adelaide, Adelaide, Australia.,Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, Australia
| | - Adrienne R Hanson
- Flinders Health and Medical Research Institute, Flinders University, College of Medicine and Public Health, Bedford Park, Australia
| | - Jianling Xie
- Flinders Health and Medical Research Institute, Flinders University, College of Medicine and Public Health, Bedford Park, Australia
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Jeff Holst
- School of Medical Sciences and Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Margaret M Centenera
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia.,Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, Australia
| | - Ian G Mills
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, United Kingdom.,Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - David J Lynn
- South Australian Health and Medical Research Institute, Adelaide, Australia.,Flinders Health and Medical Research Institute, Flinders University, College of Medicine and Public Health, Bedford Park, Australia
| | - Luke A Selth
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Flinders Health and Medical Research Institute, Flinders University, College of Medicine and Public Health, Bedford Park, Australia.,Dame Roma Mitchell Cancer Research Laboratories, University of Adelaide, Adelaide, Australia.,Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, Australia
| | - Lisa M Butler
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia.,Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, Australia
| |
Collapse
|
14
|
Adnan M, Rasul A, Hussain G, Shah MA, Sarfraz I, Nageen B, Riaz A, Khalid R, Asrar M, Selamoglu Z, Adem Ş, Sarker SD. Physcion and Physcion 8-O-β-D-glucopyranoside: Natural Anthraquinones with Potential Anticancer Activities. Curr Drug Targets 2021; 22:488-504. [PMID: 33050858 DOI: 10.2174/1389450121999201013154542] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 11/22/2022]
Abstract
Nature has provided prodigious reservoirs of pharmacologically active compounds for drug development since times. Physcion and physcion 8-O-β-D-glucopyranoside (PG) are bioactive natural anthraquinones which exert anti-inflammatory and anticancer properties with minimum or no adverse effects. Moreover, physcion also exhibits anti-microbial and hepatoprotective properties, while PG is known to have anti-sepsis as well as ameliorative activities against dementia. This review aims to highlight the natural sources and anticancer activities of physcion and PG, along with associated mechanisms of actions. On the basis of the literature, physcion and PG regulate multitudinous cell signaling pathways through the modulation of various regulators of cell cycle, protein kinases, microRNAs, transcriptional factors, and apoptosis linked proteins resulting in the effective killing of cancerous cells in vitro as well as in vivo. Both compounds effectively suppress metastasis, furthermore, physcion acts as an inhibitor of 6PGD and also plays an important role in chemosensitization. This review article suggests that physcion and PG are potent anticancer drug candidates, but further investigations on their mechanism of action and pre-clinical trials are mandatory in order to comprehend the full potential of these natural cancer killers in anticancer remedies.
Collapse
Affiliation(s)
- Muhammad Adnan
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Bushra Nageen
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ammara Riaz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Rida Khalid
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Asrar
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Campus 51240, Turkey
| | - Şevki Adem
- Department of Chemistry, Faculty of Sciences, Cankiri Karatekin University, UluyazI Campus Cankiri, Turkey
| | - Satyajit D Sarker
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, England, United Kingdom
| |
Collapse
|
15
|
Akiel M, Alsughayyir J, Basudan AM, Alamri HS, Dera A, Barhoumi T, Al Subayyil AM, Basmaeil YS, Aldakheel FM, Alakeel R, Ghneim HK, Al-Sheikh YA, Alraey Y, Asiri S, Alfhili MA. Physcion Induces Hemolysis and Premature Phosphatidylserine Externalization in Human Erythrocytes. Biol Pharm Bull 2021; 44:372-378. [DOI: 10.1248/bpb.b20-00744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Maaged Akiel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdullah International Research Center (KAIMRC)
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University
| | - Ahmed M. Basudan
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University
| | - Hassan S. Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdullah International Research Center (KAIMRC)
| | - Ayed Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University
- Research Center of Advanced Materials, King Khalid University
| | - Tlili Barhoumi
- Medical Core Facility and Research Platforms, King Abdullah International Research Center (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)
| | - Abdullah M. Al Subayyil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Research Center (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)
| | - Yasser S. Basmaeil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Research Center (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)
| | - Fahad M. Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University
| | - Raid Alakeel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University
| | - Hazem K. Ghneim
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University
| | - Yazeed A. Al-Sheikh
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University
| | - Yasser Alraey
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University
| | - Saeed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University
| | - Mohammad A. Alfhili
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University
| |
Collapse
|
16
|
Zhang H, Peng D, Shu Y, Zhu D, Hu W, Yu C, Zhang J, Liu S, Wan K, Yuan Z, Liu H, Wang D, Jiang T, Yu J, Zhang P, Zou L. Integrative identification of the pathogenic role of a novel G6PD missense mutation c.697G>C. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:194. [PMID: 33708821 PMCID: PMC7940930 DOI: 10.21037/atm-20-3941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a hereditary disease caused by pathogenic mutations of G6PD. While most of the pathogenic variants of G6PD have been annotated, hemolysis of unknown etiology but analogous to that in G6PD deficiency persists, implying the existence of undocumented pathogenic variants. In our previous study, we reported four novel G6PD variants in China, for which the pathogenicity remains to be verified. Methods The variants were verified by exogenous expression in HEK-293 cells, and their functions were predicted by PolyPhen-2 and SIFT. The CRISPR/Cas9 system was exploited to edit the G6PD c.697G>C variant in HEK-293 cells and K562 cells. The expression of G6PD was detected by quantitative PCR (qPCR) and western blotting. The cell growth capacity was detected by the CCK-8 assay and crystal violet staining. The G6PD enzyme activity was reflected by the G6P/6PG ratio test. The apoptosis of cells was detected by Annexin V-APC/7-AAD staining. The secondary and crystallographic structures were denoted according to the literature and PyMOL software. The G6PD protein was purified from lysis of transformed Escherichia coli (E. coli) cell with Ni-charged Resin Column. The enzymatic activity was detected at different temperatures. Results The G6PD activity of exogenous G6PD c.697G>C in HEK-293 cells was significantly lower than that of wild type (WT) G6PD, a finding that was consistent with the observation in clinical samples. The functional predictions conducted by different algorithms indicated the damage role of the G6PD c.697G>C variant in its enzymatic activity. We recapitulated the G6PD c.697G>C variant both in HEK-293 cells and K562 cells by adapting the CRISPR/Cas9 strategy. Using distinct cell lines expressing the G6PD c.697G>C variant endogenously, we confirmed the deteriorative role of the G6PD c.697G>C variant in its enzymatic activity. Regarding the secondary and crystallographic structure, we found a mutated amino acid approaching the structural NADP+ binding site. Finally, we demonstrated the c.697G>C variant compromised the thermal stability of G6PD protein. Conclusions Our data delineated the pathogenic role of G6PD c.697G>C variant for G6PD deficiency, implying the wide usage of CRISPR/Cas9 for genetic disease research.
Collapse
Affiliation(s)
- Hongyang Zhang
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Danyi Peng
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China.,Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Shu
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Dan Zhu
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Weiwei Hu
- Department of respiratory and critical care medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chaowen Yu
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Juan Zhang
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Shan Liu
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Kexing Wan
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Zhaojian Yuan
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Hao Liu
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Dongjuan Wang
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Tingting Jiang
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Jie Yu
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Hematology, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Penghui Zhang
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Center of Clinical Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Zou
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| |
Collapse
|
17
|
Ivanova D, Yaneva Z, R. Bakalova RB, Semkova S, Zhelev Z. The antimalaria drug artemisinin displays strong cytotoxic effect on leukaemia lymphocytes in combination with vitamin C and pro-vitamin K3. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2019-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study investigated the anticancer effect of the anti-parasitic drug artemisinin in combination with two redox modulators: vitamin C and pro-vitamin K3 (C/K3) The experiments were conducted on leukaemia cells Jurkat. Cells were treated with either artemisinin or C/K3 alone and with all three compounds. Cell proliferation and viability were analysed using trypan blue stating and automated cell counting. The results showed that artemisinin (>10 mM) suppressed cell proliferation activity, but did not induce cell death up to 500 mM. The drug demonstrated a clear cytostatic effect at concentrations 250- 500 mM – Jurkat cells did not proliferate, but were alive. The combination C/K3 (200:2, 300:3 mM/mM) applied alone did not affect cell proliferation and viability. Vitamins C/K3 in concentration ratio 500:5 (μM/mM) decreased cell proliferation activity by ~10%. The triple combination artemisinin/C/K3 manifested synergistic anti-proliferative effects at all concentration ratios analysed. This synergistic effect increased with increasing C/K3 concentration. Based on literature data, it was assumed that the anti-proliferative effect of the triple combination was mediated by changes in the redox-homeostasis of cancer cells. The C/K3 redox system likely acted on cancer mitochondria and increased superoxide production and activation of pro-apoptotic signals, specific for cancer cells. On the other hand, artemisinin could generate hydroxyl radicals as a result of activation of Fenton reactions, depleting intracellular reducing equivalents. Both redox mechanisms lead to activation of signal pathways for induction of cancer cell death.
Collapse
Affiliation(s)
- D. Ivanova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Z. Yaneva
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - R. Bakalova R. Bakalova
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences (NIRS)
| | - S. Semkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Zh. Zhelev
- Department of Medicinal Chemistry and Biochemistry, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
18
|
Mancuso RI, Foglio MA, Olalla Saad ST. Artemisinin-type drugs for the treatment of hematological malignancies. Cancer Chemother Pharmacol 2020; 87:1-22. [PMID: 33141328 DOI: 10.1007/s00280-020-04170-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022]
Abstract
Qinghaosu, known as artemisinin (ARS), has been for over two millennia, one of the most common herbs prescribed in traditional Chinese medicine (TCM). ARS was developed as an antimalarial drug and currently belongs to the established standard treatments of malaria as a combination therapy worldwide. In addition to the antimalarial bioactivity of ARS, anticancer activities have been shown both in vitro and in vivo. Like other natural products, ARS acts in a multi-specific manner also against hematological malignancies. The chemical structure of ARS is a sesquiterpene lactone, which contains an endoperoxide bridge essential for activity. The main mechanism of action of ARS and its derivatives (artesunate, dihydroartemisinin, artemether) toward leukemia, multiple myeloma, and lymphoma cells comprises oxidative stress response, inhibition of proliferation, induction of various types of cell death as apoptosis, autophagy, ferroptosis, inhibition of angiogenesis, and signal transducers, as NF-κB, MYC, amongst others. Therefore, new pharmaceutically active compounds, dimers, trimers, and hybrid molecules, could enhance the existing therapeutic alternatives in combating hematologic malignancies. Owing to the high potency and good tolerance without side effects of ARS-type drugs, combination therapies with standard chemotherapies could be applied in the future after further clinical trials in hematological malignancies.
Collapse
Affiliation(s)
- R I Mancuso
- Hematology and Hemotherapy Center, University of Campinas, HEMOCENTRO UNICAMP, Campinas, São Paulo, Brazil
| | - M A Foglio
- Faculty of Pharmaceutical Science, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - S T Olalla Saad
- Hematology and Hemotherapy Center, University of Campinas, HEMOCENTRO UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
19
|
Network pharmacology-based investigation on the mechanisms of action of Morinda officinalis How. in the treatment of osteoporosis. Comput Biol Med 2020; 127:104074. [PMID: 33126122 DOI: 10.1016/j.compbiomed.2020.104074] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Osteoporosis is a systemic skeletal disease that leads to a high risk for bone fractures. Morinda officinalis How. has been used as osteoporosis treatment in China. However, its mechanism of action as an anti-osteoporotic herb remains unknown. METHODS A network pharmacology approach was applied to explore the potential mechanisms of action of M. officinalis in osteoporosis treatment. The active compounds of M. officinalis and their potential osteoporosis-related targets were retrieved from TCMSP, TCMID, SwissTargetPrediction, DrugBank, DisGeNET, GeneCards, OMIM, and TTD databases. A protein-protein interaction network was built to analyze the target interactions. The Metascape database was used to carry out GO enrichment analysis and KEGG pathway analysis. Moreover, interactions between active compounds and potential targets were investigated through molecular docking. RESULTS A total of 17 active compounds and 93 anti-osteoporosis targets of M. officinalis were selected for analysis. The GO enrichment analysis results indicated that the anti-osteoporosis targets of M. officinalis mainly play a role in the response to steroid hormone. The KEGG pathway enrichment analysis showed that M. officinalis prevents osteoporosis through the ovarian steroidogenesis signaling pathway. Moreover, the molecular docking results indicated that bioactive compounds (morindon, ohioensin A, and physcion) demonstrated a good binding ability with IGF1R, INSR, ESR1, and MMP9. CONCLUSION M. officinalis contains potential anti-osteoporotic active compounds. These compounds function by regulating the proteins implicated in ovarian steroidogenesis-related pathways that are crucial in estrogen biosynthesis. Our study provides new insights into the development of a natural therapy for the prevention and treatment of osteoporosis.
Collapse
|
20
|
NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. Signal Transduct Target Ther 2020; 5:231. [PMID: 33028807 PMCID: PMC7542157 DOI: 10.1038/s41392-020-00326-0] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/09/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms, and provides the reducing power for anabolic reactions and redox balance. NADPH homeostasis is regulated by varied signaling pathways and several metabolic enzymes that undergo adaptive alteration in cancer cells. The metabolic reprogramming of NADPH renders cancer cells both highly dependent on this metabolic network for antioxidant capacity and more susceptible to oxidative stress. Modulating the unique NADPH homeostasis of cancer cells might be an effective strategy to eliminate these cells. In this review, we summarize the current existing literatures on NADPH homeostasis, including its biological functions, regulatory mechanisms and the corresponding therapeutic interventions in human cancers, providing insights into therapeutic implications of targeting NADPH metabolism and the associated mechanism for cancer therapy.
Collapse
|
21
|
Xu C, Zhang H, Mu L, Yang X. Artemisinins as Anticancer Drugs: Novel Therapeutic Approaches, Molecular Mechanisms, and Clinical Trials. Front Pharmacol 2020; 11:529881. [PMID: 33117153 PMCID: PMC7573816 DOI: 10.3389/fphar.2020.529881] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Artemisinin and its derivatives have shown broad-spectrum antitumor activities in vitro and in vivo. Furthermore, outcomes from a limited number of clinical trials provide encouraging evidence for their excellent antitumor activities. However, some problems such as poor solubility, toxicity and controversial mechanisms of action hamper their use as effective antitumor agents in the clinic. In order to accelerate the use of ARTs in the clinic, researchers have recently developed novel therapeutic approaches including developing novel derivatives, manufacturing novel nano-formulations, and combining ARTs with other drugs for cancer therapy. The related mechanisms of action were explored. This review describes ARTs used to induce non-apoptotic cell death containing oncosis, autophagy, and ferroptosis. Moreover, it highlights the ARTs-caused effects on cancer metabolism, immunosuppression and cancer stem cells and discusses clinical trials of ARTs used to treat cancer. The review provides additional insight into the molecular mechanism of action of ARTs and their considerable clinical potential.
Collapse
Affiliation(s)
- Cangcang Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Huihui Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Lingli Mu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
22
|
Physcion Enhances Sensitivity of Pancreatic Adenocarcinoma and Lung Carcinoma Cell Lines to Cisplatin. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Feng Q, Li X, Sun W, Li Y, Yuan Y, Guan B, Zhang S. Discovery of Ebselen as an Inhibitor of 6PGD for Suppressing Tumor Growth. Cancer Manag Res 2020; 12:6921-6934. [PMID: 32801914 PMCID: PMC7415460 DOI: 10.2147/cmar.s254853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/09/2020] [Indexed: 01/07/2023] Open
Abstract
Introduction The 6-phosphogluconate dehydrogenase (6PGD) was upregulated in many solid cancers and plays an important role in tumorigenesis. In the present study, we want to discover an old drug as an inhibitor of 6PGD for suppressing tumor growth. Methods We determined the expression of 6PGD in cancer tissues using Gene Expression Omnibus (GEO) profiles and explored the importance of 6PGD expression in cancer progression by using Kaplan–Meier Plotter. We identified Ebselen as a 6PGD inhibitor by using 6PGD in vitro enzyme activity assay. Cell viability, cell proliferation, tumor growth and cell metabolism assay were used to explore the role of 6PGD and its inhibitor in cancer cells. Results We found that the expression of 6PGD was upregulated in different cancer tissues and it can promote tumorigenesis. Here, we analyzed our 6PGD inhibitor screening data again and found an old drug Ebselen, which blocks cancer cell proliferation and tumor growth by inhibiting 6PGD enzyme activity, while knocking down 6PGD would partially abolish the inhibition of Ebselen on cell proliferation and cell metabolism. Conclusion Our results suggested that the conventional drug Ebselen could serve as a novel inhibitor of 6PGD for suppressing cancer growth by inhibiting 6PGD enzyme activity.
Collapse
Affiliation(s)
- Qi Feng
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Xiuru Li
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Wenjing Sun
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Yubo Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Yu Yuan
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Baozhang Guan
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Shuai Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| |
Collapse
|
24
|
Alfarouk KO, Ahmed SBM, Elliott RL, Benoit A, Alqahtani SS, Ibrahim ME, Bashir AHH, Alhoufie STS, Elhassan GO, Wales CC, Schwartz LH, Ali HS, Ahmed A, Forde PF, Devesa J, Cardone RA, Fais S, Harguindey S, Reshkin SJ. The Pentose Phosphate Pathway Dynamics in Cancer and Its Dependency on Intracellular pH. Metabolites 2020; 10:E285. [PMID: 32664469 PMCID: PMC7407102 DOI: 10.3390/metabo10070285] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
The Pentose Phosphate Pathway (PPP) is one of the key metabolic pathways occurring in living cells to produce energy and maintain cellular homeostasis. Cancer cells have higher cytoplasmic utilization of glucose (glycolysis), even in the presence of oxygen; this is known as the "Warburg Effect". However, cytoplasmic glucose utilization can also occur in cancer through the PPP. This pathway contributes to cancer cells by operating in many different ways: (i) as a defense mechanism via the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) to prevent apoptosis, (ii) as a provision for the maintenance of energy by intermediate glycolysis, (iii) by increasing genomic material to the cellular pool of nucleic acid bases, (iv) by promoting survival through increasing glycolysis, and so increasing acid production, and (v) by inducing cellular proliferation by the synthesis of nucleic acid, fatty acid, and amino acid. Each step of the PPP can be upregulated in some types of cancer but not in others. An interesting aspect of this metabolic pathway is the shared regulation of the glycolytic and PPP pathways by intracellular pH (pHi). Indeed, as with glycolysis, the optimum activity of the enzymes driving the PPP occurs at an alkaline pHi, which is compatible with the cytoplasmic pH of cancer cells. Here, we outline each step of the PPP and discuss its possible correlation with cancer.
Collapse
Affiliation(s)
- Khalid O. Alfarouk
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
- American Biosciences Inc., New York, NY 10913, USA;
- Al-Ghad International College for Applied Medical Sciences, Al-Madinah Al-Munawarah 42316, Saudi Arabia
| | | | - Robert L. Elliott
- The Elliott-Elliott-Baucom Breast Cancer Research and Treatment Center, Baton Rouge, LA 70806, USA;
- The Sallie A. Burdine Breast Foundation, Baton Rouge, LA 70806, USA;
| | - Amanda Benoit
- The Sallie A. Burdine Breast Foundation, Baton Rouge, LA 70806, USA;
| | - Saad S. Alqahtani
- Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Muntaser E. Ibrahim
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan; (M.E.I.); (A.H.H.B.)
| | - Adil H. H. Bashir
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan; (M.E.I.); (A.H.H.B.)
| | - Sari T. S. Alhoufie
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munwarah 42353, Saudi Arabia;
| | - Gamal O. Elhassan
- Unaizah College of Pharmacy, Qassim University, Unaizah 56264, Saudi Arabia;
| | | | | | - Heyam S. Ali
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan;
| | - Ahmed Ahmed
- Department of Oesphogastric and General Surgery, University Hospitals of Leicester, Leicester LE5 4PW, UK;
| | - Patrick F. Forde
- CancerResearch@UCC, Western Gateway Building, University College Cork, Cork T12 XF62, Ireland;
| | - Jesus Devesa
- Scientific Direction, Foltra Medical Centre, Travesía de Montouto 24, 15886 Teo, Spain;
| | - Rosa A. Cardone
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (R.A.C.); (S.J.R.)
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Salvador Harguindey
- Department of Oncology, Institute for Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (R.A.C.); (S.J.R.)
| |
Collapse
|
25
|
Sarfraz I, Rasul A, Hussain G, Shah MA, Zahoor AF, Asrar M, Selamoglu Z, Ji XY, Adem Ş, Sarker SD. 6-Phosphogluconate dehydrogenase fuels multiple aspects of cancer cells: From cancer initiation to metastasis and chemoresistance. Biofactors 2020; 46:550-562. [PMID: 32039535 DOI: 10.1002/biof.1624] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/21/2020] [Indexed: 12/19/2022]
Abstract
Reprogrammed metabolism is key biochemical characteristic of malignant cells, which represents one of the emerging hallmarks of cancer. Currently, there is rising contemplation on oxidative pentose phosphate pathway (PPP) enzymes as potential therapeutic hits due to their affiliation with tumor metabolism. 6-Phosphogluconate dehydrogenase (6PGD), third oxidative decarboxylase of PPP, has received a great deal of attention during recent years due to its critical role in tumorigenesis and redox homeostasis. 6PGD has been reported to overexpress in number of cancer types and its hyperactivation is mediated through post-transcriptional and post-translational modifications by YTH domain family 2 (YTHDF2), Nrf2 (nuclear factor erythroid 2-related factor 2), EGFR (epidermal growth factor receptor) and via direct structural interactions with ME1 (malic enzyme 1). Upregulated expression of 6PGD provides metabolic as well as defensive advantage to cancer cells, thus, promoting their proliferative and metastatic potential. Moreover, enhanced 6PGD expression also performs key role in development of chemoresistance as well as radiation resistance in cancer. This review aims to discuss the historical timeline and cancer-specific role of 6PGD, pharmacological and genetic inhibitors of 6PGD and 6PGD as prognostic biomarker in order to explore its potential for therapeutic interventions. We anticipate that targeting this imperative supplier of NADPH might serve as tempting avenue to combat the deadly disease like cancer.
Collapse
Affiliation(s)
- Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Ghulam Hussain
- Neurochemical Biology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Faculty of Physical Sciences, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Asrar
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
| | - Xin-Ying Ji
- Henan International Joint Laboratory of Nuclear Protein Regulation, College of Medicine, Henan University, Kaifeng, China
| | - Şevki Adem
- Department of Chemistry, Faculty of Sciences, Çankırı Karatekin University, Çankırı, Turkey
| | - Satyajit D Sarker
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, London, UK
| |
Collapse
|
26
|
Cao J, Sun X, Zhang X, Chen D. 6PGD Upregulation is Associated with Chemo- and Immuno-Resistance of Renal Cell Carcinoma via AMPK Signaling-Dependent NADPH-Mediated Metabolic Reprograming. Am J Med Sci 2020; 360:279-286. [PMID: 32829780 DOI: 10.1016/j.amjms.2020.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/25/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The essential role of 6-phosphogluconate dehydrogenase (6PGD), the enzyme catalyzing the oxidative pentose phosphate pathway, in tumor growth and metabolism has garnered attention in recent years. In this work, we are the first to demonstrate that aberrant activation of 6PGD is a feature in renal cell carcinoma (RCC) and is critically involved in renal carcinogenesis and chemo- and immuno-resistance. MATERIALS AND METHODS 6PGD expression and activity were systematically analyzed in normal and malignant renal cells and tissues. The roles of 6PGD and its downstream mechanism were investigated using gain-of-function and loss-of-function approaches. RESULTS 6PGD expression and enzyme activity were increased in RCC cells and patients' samples. Activation of 6PGD via gain-of-function approach promoted growth of normal kidney but not RCC cells, and alleviated the efficacy of chemotherapeutic (e.g., 5-FU) and immunotherapeutic (e.g., IFN-α) agents. In contrast, 6PGD inhibition using siRNA knockdown and pharmacological inhibitor physcion augmented the inhibitory effects of 5-FU and IFN-α in RCC. Mechanistic studies demonstrated that 6PGD inhibition activated AMPK signaling, leading to ACC1 enzyme inhibition and reduction of lipid synthesis. In addition, 6PGD inhibition disrupted NADPH and NADH homeostasis in RCC cells as shown by the decreased level of NADPH and NADH, and suppressed SIRT-1 activity. AMPK inhibition by siRNA knockdown reversed the inhibitory effects of physcion, demonstrating that the effect of 6PGD inhibition is AMPK activation dependent. CONCLUSIONS Our work provides preclinical evidence that 6PGD inhibition may represent a potential therapeutic strategy to augment the efficacy of RCC standard of care drugs.
Collapse
Affiliation(s)
- Jun Cao
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, People's Republic of China
| | - Xiaosong Sun
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, People's Republic of China
| | - Xuejun Zhang
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, People's Republic of China
| | - Dehong Chen
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, People's Republic of China.
| |
Collapse
|
27
|
Kumar MS, Yadav TT, Khair RR, Peters GJ, Yergeri MC. Combination Therapies of Artemisinin and its Derivatives as a Viable Approach for Future Cancer Treatment. Curr Pharm Des 2020; 25:3323-3338. [PMID: 31475891 DOI: 10.2174/1381612825666190902155957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Many anticancer drugs have been developed for clinical usage till now, but the major problem is the development of drug-resistance over a period of time in the treatment of cancer. Anticancer drugs produce huge adverse effects, ultimately leading to death of the patient. Researchers have been focusing on the development of novel molecules with higher efficacy and lower toxicity; the anti-malarial drug artemisinin and its derivatives have exhibited cytotoxic effects. METHODS We have done extensive literature search for artemisinin for its new role as anti-cancer agent for future treatment. Last two decades papers were referred for deep understanding to strengthen its role. RESULT Literature shows changes at 9, 10 position in the artemisinin structure produces anticancer activity. Artemisinin shows anticancer activity in leukemia, hepatocellular carcinoma, colorectal and breast cancer cell lines. Artemisinin and its derivatives have been studied as combination therapy with several synthetic compounds, RNA interfaces, recombinant proteins and antibodies etc., for synergizing the effect of these drugs. They produce an anticancer effect by causing cell cycle arrest, regulating signaling in apoptosis, angiogenesis and cytotoxicity activity on the steroid receptors. Many novel formulations of artemisinin are being developed in the form of carbon nanotubes, polymer-coated drug particles, etc., for delivering artemisinin, since it has poor water/ oil solubility and is chemically unstable. CONCLUSION We have summarize the combination therapies of artemisinin and its derivatives with other anticancer drugs and also focussed on recent developments of different drug delivery systems in the last 10 years. Various reports and clinical trials of artemisinin type drugs indicated selective cytotoxicity along with minimal toxicity thus projecting them as promising anti-cancer agents in future cancer therapies.
Collapse
Affiliation(s)
- Maushmi S Kumar
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Tanuja T Yadav
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Rohan R Khair
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Mayur C Yergeri
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| |
Collapse
|
28
|
Abstract
Artemisinin (ART) and its derivatives are one of the most important classes of antimalarial agents, originally derived from a Chinese medicinal plant called Artemisia annua L. Beyond their outstanding antimalarial and antischistosomal activities, ART and its derivatives also possess both in-vitro and in-vivo activities against various types of cancer. Their anticancer effects range from initiation of apoptotic cell death to inhibition of cancer proliferation, metastasis and angiogenesis, and even modulation of the cell signal transduction pathway. This review provides a comprehensive update on ART and its derivatives, their mechanisms of action, and their synergistic effects with other chemicals in targeting leukemia cells. Combined with limited evidence of drug resistance and low toxicity profile, we conclude that ART and its derivatives, including dimers, trimers, and hybrids, might be a potential therapeutic alternative to current chemotherapies in combating leukemia, although more studies are necessary before they can be applied clinically.
Collapse
|
29
|
Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL, Stern A, Chiu DTY. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer. Cells 2019; 8:cells8091055. [PMID: 31500396 PMCID: PMC6770671 DOI: 10.3390/cells8091055] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
The generation of reducing equivalent NADPH via glucose-6-phosphate dehydrogenase (G6PD) is critical for the maintenance of redox homeostasis and reductive biosynthesis in cells. NADPH also plays key roles in cellular processes mediated by redox signaling. Insufficient G6PD activity predisposes cells to growth retardation and demise. Severely lacking G6PD impairs embryonic development and delays organismal growth. Altered G6PD activity is associated with pathophysiology, such as autophagy, insulin resistance, infection, inflammation, as well as diabetes and hypertension. Aberrant activation of G6PD leads to enhanced cell proliferation and adaptation in many types of cancers. The present review aims to update the existing knowledge concerning G6PD and emphasizes how G6PD modulates redox signaling and affects cell survival and demise, particularly in diseases such as cancer. Exploiting G6PD as a potential drug target against cancer is also discussed.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan.
| | - Yi-Hsuan Wu
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Wei-Chen Yen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Hui-Ya Liu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Arnold Stern
- New York University School of Medicine, New York, NY, USA.
| | - Daniel Tsun-Yee Chiu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Department of Pediatric Hematology/Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
30
|
Physcion and physcion 8-O-β-glucopyranoside: A review of their pharmacology, toxicities and pharmacokinetics. Chem Biol Interact 2019; 310:108722. [DOI: 10.1016/j.cbi.2019.06.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/27/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022]
|
31
|
Stuani L, Sabatier M, Sarry JE. Exploiting metabolic vulnerabilities for personalized therapy in acute myeloid leukemia. BMC Biol 2019; 17:57. [PMID: 31319822 PMCID: PMC6637566 DOI: 10.1186/s12915-019-0670-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Changes in cell metabolism and metabolic adaptation are hallmark features of many cancers, including leukemia, that support biological processes involved into tumor initiation, growth, and response to therapeutics. The discovery of mutations in key metabolic enzymes has highlighted the importance of metabolism in cancer biology and how these changes might constitute an Achilles heel for cancer treatment. In this Review, we discuss the role of metabolic and mitochondrial pathways dysregulated in acute myeloid leukemia, and the potential of therapeutic intervention targeting these metabolic dependencies on the proliferation, differentiation, stem cell function and cell survival to improve patient stratification and outcomes.
Collapse
Affiliation(s)
- Lucille Stuani
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037, Toulouse, France.
| | - Marie Sabatier
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037, Toulouse, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037, Toulouse, France.
| |
Collapse
|
32
|
Role of coenzymes in cancer metabolism. Semin Cell Dev Biol 2019; 98:44-53. [PMID: 31176736 DOI: 10.1016/j.semcdb.2019.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 01/18/2023]
Abstract
Cancer is a heterogeneous set of diseases characterized by the rewiring of cellular signaling and the reprogramming of metabolic pathways to sustain growth and proliferation. In past decades, studies were focused primarily on the genetic complexity of cancer. Recently, increasing number of studies have discovered several mutations among metabolic enzymes in different tumor cells. Most of the enzymes are regulated by coenzymes, organic cofactors, that function as intermediate carrier of electrons or functional groups that are transferred during the reaction. However, the precise role of cofactors is not well elucidated. In this review, we discuss several metabolic enzymes associated to cancer metabolism rewiring, whose inhibition may represent a therapeutic target. Such enzymes, upon expression or inhibition, may impact also the coenzymes levels, but only in few cases, it was possible to direct correlate coenzymes changes with a specific enzyme. In addition, we also summarize an up-to-date information on biological role of some coenzymes, preclinical and clinical studies, that have been carried out in various cancers and their outputs.
Collapse
|
33
|
Pan X, Wang C, Zhang T. Physcion Synergistically Enhances the Cytotoxicity of Sorafenib in Hepatocellular Carcinoma. Anat Rec (Hoboken) 2019; 302:2171-2177. [PMID: 31120198 DOI: 10.1002/ar.24179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/16/2018] [Accepted: 12/26/2018] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common human malignancy. Physcion is a naturally occurring anthraquinone derivative found in plant and marine sources. Our previous studies have indicated that physcion could suppress tumor growth and induce apoptosis in HCC. This study was aimed to investigate the effect of a combination of physcion and sorafenib on HCC. Our findings indicated that physcion could significantly augment the antiproliferative and proapoptotic activities of sorafenib in vitro and in vivo. Mechanistically, the synergistic effect correlates with physcion-induced suppression of Notch3/AKT signaling. This preclinical evidence highlights the potential application of physcion in the treatment of HCC. Anat Rec, 302:2171-2177, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Xiaoping Pan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research for Cancer, Tianjin, China.,The People's Hospital of Wuhai, Inner Mongolia, China
| | - Chen Wang
- The People's Hospital of Wuhai, Inner Mongolia, China
| | - Ti Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research for Cancer, Tianjin, China
| |
Collapse
|
34
|
Isolation and in silico prediction of potential drug-like compounds from Anethum sowa L. root extracts targeted towards cancer therapy. Comput Biol Chem 2019; 78:242-259. [DOI: 10.1016/j.compbiolchem.2018.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/22/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
|
35
|
6PGD inhibition sensitizes hepatocellular carcinoma to chemotherapy via AMPK activation and metabolic reprogramming. Biomed Pharmacother 2019; 111:1353-1358. [PMID: 30841449 DOI: 10.1016/j.biopha.2019.01.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/25/2022] Open
Abstract
Better understanding of the molecular mechanism involved in hepatocellular carcinoma (HCC) progression is essential for the development of therapeutic strategies to overcome chemoresistance in HCC patients. In this work, we show that 6-phosphogluconate dehydrogenase (6PGD), a key enzyme of the oxidative pentose phosphate pathway, is important for HCC growth and survival. Compared to normal liver tissues, we demonstrate that 6PGD expression is upregulated in HCC tissues. 6PGD overexpression increases 6PGD activity and promotes growth in normal liver cells. In contrast, targeting 6PGD using both genetic and pharmacological approaches inhibits HCC growth and survival. Combination of chemotherapeutic agents with 6PGD inhibition achieves greater efficacy in inhibiting HCC growth and survival than chemotherapeutic agent alone. We further show that inhibition of 6PGD activates AMP-activated protein kinase (AMPK) and acetyl-coenzyme A carboxylase 1 (ACC1), and decreases level of NADPH/NAD + and NADH in HCC, leading to SIRT1 activity reduction and oxidative stress. Conversely, AMPK depletion significantly abolishes the effects of physcion (a selective small-molecule 6PGD inhibitor) in decreasing NADPH/NAD + ratio, growth and survival, confirming the role of AMPK as the relevant upstream activator with 6PGD inhibition in HCC cells. Our work is the first to demonstrate the upregulation of 6PGD and its critical involvement in growth and survival in HCC. Our findings suggest 6PGD as a promising therapeutic target to overcome chemoresistance in HCC.
Collapse
|
36
|
Haeussler K, Fritz-Wolf K, Reichmann M, Rahlfs S, Becker K. Characterization of Plasmodium falciparum 6-Phosphogluconate Dehydrogenase as an Antimalarial Drug Target. J Mol Biol 2018; 430:4049-4067. [DOI: 10.1016/j.jmb.2018.07.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022]
|
37
|
Inhibiting 6-phosphogluconate dehydrogenase enhances chemotherapy efficacy in cervical cancer via AMPK-independent inhibition of RhoA and Rac1. Clin Transl Oncol 2018; 21:404-411. [PMID: 30182212 DOI: 10.1007/s12094-018-1937-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/13/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND The oxidative pentose phosphate pathway (PPP) is essential for cancer metabolism and growth. However, the contribution of 6-phosphogluconate dehydrogenase (6PGD), a key enzyme of PPP, to cervical cancer development remains largely unknown. METHODS mRNA and protein levels of 6PGD were analyzed in cervical cancer cells and tissues derived from patients and compared to normal counterparts. Using cell culture system and xenograft mouse model, the functions of 6PGD in cervical cancer are determined and its molecular mechanism is analyzed. 6PGD inhibitor physcion and siRNA knockdown were used. RESULTS In this work, we demonstrate that 6PGD is aberrantly upregulated and activated in cervical cancer cells and patient tissues compared to normal counterparts. Using different approaches and preclinical models, we show that 6PGD inhibition decreases growth and migration, and enhances chemosensitivity in cervical cancer. Mechanistically, inhibition of 6PGD activates AMP-activated protein kinase (AMPK) and decreases RhoA and Rac1 activities. AMPK depletion significantly reduces the effects of 6PGD inhibition in decreasing RhoA and Rac1 activities, growth and migration in cervical cancer cells. CONCLUSIONS Our work is the first to demonstrate the aberrant expression of 6PGD and its predominant roles in cervical cancer cell growth and migration, via a AMPK-dependent activation. Our findings suggest 6PGD as a potential therapeutic target to enhance chemosensitivity in cervical cancer.
Collapse
|
38
|
Zhang Y, Xu G, Zhang S, Wang D, Saravana Prabha P, Zuo Z. Antitumor Research on Artemisinin and Its Bioactive Derivatives. NATURAL PRODUCTS AND BIOPROSPECTING 2018; 8:303-319. [PMID: 29633188 PMCID: PMC6102173 DOI: 10.1007/s13659-018-0162-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/27/2018] [Indexed: 05/02/2023]
Abstract
Cancer is the leading cause of human death which seriously threatens human life. The antimalarial drug artemisinin and its derivatives have been discovered with considerable anticancer properties. Simultaneously, a variety of target-selective artemisinin-related compounds with high efficiency have been discovered. Many researches indicated that artemisinin-related compounds have cytotoxic effects against a variety of cancer cells through pleiotropic effects, including inhibiting the proliferation of tumor cells, promoting apoptosis, inducing cell cycle arrest, disrupting cancer invasion and metastasis, preventing angiogenesis, mediating the tumor-related signaling pathways, and regulating tumor microenvironment. More importantly, artemisinins demonstrated minor side effects to normal cells and manifested the ability to overcome multidrug-resistance which is widely observed in cancer patients. Therefore, we concentrated on the new advances and development of artemisinin and its derivatives as potential antitumor agents in recent 5 years. It is our hope that this review could be helpful for further exploration of novel artemisinin-related antitumor agents.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowei Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuqun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - P Saravana Prabha
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, China.
| |
Collapse
|
39
|
Ma L, Cheng Q. Inhibiting 6-phosphogluconate dehydrogenase reverses doxorubicin resistance in anaplastic thyroid cancer via inhibiting NADPH-dependent metabolic reprogramming. Biochem Biophys Res Commun 2018. [PMID: 29534964 DOI: 10.1016/j.bbrc.2018.03.079] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive type of thyroid malignancies and resistant to chemotherapy. Little is known on the underlying mechanisms of ATC resistance to chemotherapy. In our work, we identified that 6-phosphogluconate dehydrogenase (6PGD) is critically involved in the development of ATC resistance to doxorubicin. We found that 6PGD mRNA, protein and enzyme activity levels are significantly upregulated in ATC cells during the prolonged exposure to doxorubicin in a time-dependent manner. 6PGD inhibition by genetic and pharmacological approaches significantly inhibits growth and survival of ATC cells that are highly resistant to doxorubicin. Consistently, 6PGD inhibition also sensitizes ATC cells to doxorubicin treatment. Of note, we observed the decreased level of NADPH, NADH and enzymatic activity of sirtuin-1 in response to 6PGD inhibition in doxorubicin-resistant ATC cells. Lactate level was also reduced by 6PGD inhibition. All these indicate that 6PGD inhibition disrupts metabolic reprogramming in doxorubicin-resistant ATC cells. Our work demonstrates 6PGD activation-mediated resistance in response to doxorubicin and provides an alternative therapeutic strategy to overcome resistance to chemotherapy for ATC treatment. Our findings also highlight the importance of metabolic reprogramming in ATC chemoresistance.
Collapse
Affiliation(s)
- Ling Ma
- Department of Endocrinology, First Affiliated Hospital, First Clinical Medical College, Yangtze University, Jingzhou, Hubei 434000, China
| | - Qiao Cheng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
40
|
Expression of Pentose Phosphate Pathway-Related Proteins in Breast Cancer. DISEASE MARKERS 2018; 2018:9369358. [PMID: 29682102 PMCID: PMC5845514 DOI: 10.1155/2018/9369358] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/17/2018] [Indexed: 11/18/2022]
Abstract
Purpose The purpose of this study was to assess the expression of pentose phosphate pathway- (PPP-) related proteins and their significance in clinicopathologic factors of breast cancer. Methods Immunohistochemical staining for PPP-related proteins (glucose-6-phosphate dehydrogenase [G6PDH], 6-phosphogluconolactonase [6PGL], 6-phosphogluconate dehydrogenase [6PGDH], and nuclear factor-erythroid 2-related factor 2 [NRF2]) was performed using tissue microarray (TMA) of 348 breast cancers. mRNA levels of these markers in publicly available data from the Cancer Genome Atlas project and Kaplan-Meier plotters were analyzed. Results Expression of G6PDH and 6PGL was higher in HER-2 type (p < 0.001 and p = 0.009, resp.) and lower in luminal A type. 6PGDH expression was detected only in TNBC subtype (p < 0.001). G6PDH positivity was associated with ER negativity (p = 0.001), PR negativity (p = 0.001), and HER-2 positivity (p < 0.001), whereas 6PGL positivity was associated with higher T stage (p = 0.004). The 562 expression profile from the TCGA database revealed increased expression of G6PDH and 6PG in the tumor compared with normal adjacent breast tissue. The expression of G6PDH was highest in HER-2 type. HER-2 and basal-like subtypes showed higher expression of 6PGDH than luminal types. Conclusion PPP-related proteins are differentially expressed in breast cancer according to molecular subtype, and higher expression of G6PDH and 6PGL was noted in HER-2 subtype.
Collapse
|
41
|
Hong W, Cai P, Xu C, Cao D, Yu W, Zhao Z, Huang M, Jin J. Inhibition of Glucose-6-Phosphate Dehydrogenase Reverses Cisplatin Resistance in Lung Cancer Cells via the Redox System. Front Pharmacol 2018; 9:43. [PMID: 29445340 PMCID: PMC5797786 DOI: 10.3389/fphar.2018.00043] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/15/2018] [Indexed: 12/18/2022] Open
Abstract
The pentose phosphate pathway (PPP), which branches from glycolysis, is correlated with cancer cell proliferation, survival and senescence. In this study, differences in the metabolic profile of the PPP and the redox status of human lung carcinoma A549 cells and cisplatin-induced multidrug-resistant A549/DDP cells were analyzed and evaluated. The results showed that A549/DDP cells exhibited differential PPP-derived metabolic features and redox-related molecules. A549/DDP cells exhibited increased expression and enzymatic activity of PPP enzyme glucose-6-phosphate dehydrogenase (G6PD). Furthermore, as demonstrated by the apoptotic rate, cell viability, and colony formation, inhibition of G6PD by siRNA or an inhibitor sensitized A549/DDP cells to cisplatin. Additionally, inhibition of G6PD restored the cisplatin sensitivity of A549/DDP cells by influencing redox homeostasis. In conclusion, overcoming cisplatin resistance through inhibition of G6PD could improve the understanding of the mechanisms underlying cisplatin-induced resistance in human lung cancer and may provide insights into the therapeutic potential of this treatment to combat resistance.
Collapse
Affiliation(s)
- Weipeng Hong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiheng Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuncao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Di Cao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weibang Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongxiang Zhao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
42
|
Yang X, Peng X, Huang J. Inhibiting 6-phosphogluconate dehydrogenase selectively targets breast cancer through AMPK activation. Clin Transl Oncol 2018; 20:1145-1152. [PMID: 29340974 DOI: 10.1007/s12094-018-1833-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/04/2018] [Indexed: 01/04/2023]
Abstract
PURPOSE 6-phosphogluconate dehydrogenase (6PGD), a key enzyme of the oxidative pentose phosphate pathway, is involved in tumor growth and metabolism. Although high 6PGD activity has been shown to be associated with poor prognosis, its role and therapeutic value in breast cancer remain unknown. METHODS The levels and roles of 6PGD were analyzed in breast cancer cells and their normal counterparts. The underlying mechanisms of 6PGD's roles are also analyzed. RESULTS We found that 6PGD is aberrantly activated in breast cancer as shown by its increased transcriptional and translational levels as well as enzyme activity in breast cancer tissues and cell lines compared to normal counterparts. Although similar degree of enzyme activity inhibition was achieved in both breast cancer and normal breast cells, 6PGD inhibition by siRNA-mediated knockdown or pharmacological inhibitor physcion is more effective in inhibiting growth and survival in breast cancer than normal breast cells. Moreover, inhibiting 6PGD significantly sensitizes breast cancer response to chemotherapeutic agents in in vitro cell culture system and in vivo xenograft breast cancer model. We further show that 6PGD inhibition activates AMPK and its downstream substrate ACC1, leading to reduction of ACC1 activity and lipid biosynthesis. AMPK depletion significantly reverses the inhibitory effects of physcion in breast cancer cells, confirming that 6PGD inhibition targets breast cancer cell via AMPK activation. CONCLUSIONS Our work provides experimental evidence on the association of 6PGD with poor prognosis in breast cancer and suggests that 6PGD inhibition may represent a potential therapeutic strategy to augment chemotherapy efficacy in breast cancer.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Oncology, Xiangyang No.1 People's Hospital, Xiangyang, Hubei, China
| | - Xiaochun Peng
- Department of Pathophysiology, Medical School of Yangtze University, Jingzhou, Hubei, China
| | - Jiangrong Huang
- Department of Integrative Medicine, Medical School of Yangtze University, Jianghan Rd 55, Shashi, Jingzhou, 434000, Hubei, China.
| |
Collapse
|
43
|
Li X, Gao Y, Zhang Q, Hu N, Han D, Ning S, Ao Z. Dihydroartemisinin-regulated mRNAs and lncRNAs in chronic myeloid leukemia. Oncotarget 2017; 9:2543-2552. [PMID: 29416790 PMCID: PMC5788658 DOI: 10.18632/oncotarget.23274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/04/2017] [Indexed: 02/02/2023] Open
Abstract
Chronic myelocytic leukemia (CML) is characterized by increased and unregulated growth of predominantly myeloid cells in the bone marrow, and accumulation of these cells in blood. We investigated the effects of an anti-malarial drug, dihydroartemisinin (DHA), on K562 CML cells. We identified 34 mRNAs and eight lncRNAs dysregulated following DHA treatment in pure and hemin-induced K562 cells. Up- or downregulation of these potential DHA targets increased with increasing DHA concentration. We also constructed and analyzed a DHA-related mRNA-lncRNA regulation network in K562 cells, and found that four DHA-modulated mRNAs regulated by four lncRNAs participated in the steroid biosynthesis pathway. Some estrogen-related drugs, such as tamoxifen, shared common targets with DHA. We inferred that DHA exerted anti-cancer effects on K562 cells by influencing estrogen levels. Our findings indicate that DHA has potential not only as an anti-malarial drug, but also as an anti-CML chemotherapeutic.
Collapse
Affiliation(s)
- Xiang Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Qiang Zhang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Nan Hu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,Department of Traditional Chinese Medicine, Chengde Medical University, Chengde 066000, China
| | - Dong Han
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Zhuo Ao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
44
|
Moreno-Sánchez R, Gallardo-Pérez JC, Rodríguez-Enríquez S, Saavedra E, Marín-Hernández Á. Control of the NADPH supply for oxidative stress handling in cancer cells. Free Radic Biol Med 2017; 112:149-161. [PMID: 28739529 DOI: 10.1016/j.freeradbiomed.2017.07.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/10/2023]
Abstract
It has not been systematically analyzed whether the NADPH supply is a limiting factor for oxidative stress management in cancer cells. In the present work, it was determined in non-cancer and cancer cells the protein contents and kinetomics of (i) the cytosolic enzymes responsible for the NADPH production (i.e., Glc6PDH, 6PGDH, ME, IDH-1); and (ii) the two main enzymes responsible for NADPH/NADP+ and GSH/GSSG recycling (GR, GPx-1) associated to oxidative stress management. With these data, kinetic models were built and further validated. Rat liver and hepatoma AS-30D cytosolic fractions exhibited greater Vmax for IDH-1 than for Glc6PDH and 6PGDH whereas human cancer cells and platelets showed greater Vmax for Glc6PDH than for 6PGDH and IDH-1. The ME activity was comparatively low in all cell types tested. The Km values for the respective specific substrates were all similar among the different cell types. Most activities were lower in AS-30D cells than in liver. In contrast, IDH-1, Glc6PDH and GR activities in human cancer cells were similar or greater to those of platelets, but GPx-1 activity was severely suppressed, despite showing similar GPx-1 protein content vs. platelets. Kinetic analysis and pathway modeling revealed a previously unveiled feedback IDH-1 regulation by GSH. The oxidative stress management in cancer cells (i) was mainly controlled by GPx-1 and the main NADPH provider was Glc6PDH; and (ii) modeling indicated that NADPH supply was not a controlling step. These data suggested that Glc6PDH and GPx-1 are adequate and promising targets for anti-cancer therapeutic intervention.
Collapse
Affiliation(s)
- Rafael Moreno-Sánchez
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Ciudad de México, Tlalpan 14080, Mexico
| | | | - Sara Rodríguez-Enríquez
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Ciudad de México, Tlalpan 14080, Mexico
| | - Emma Saavedra
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Ciudad de México, Tlalpan 14080, Mexico
| | - Álvaro Marín-Hernández
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Ciudad de México, Tlalpan 14080, Mexico.
| |
Collapse
|
45
|
Gao F, Liu W, Guo Q, Bai Y, Yang H, Chen H. Physcion blocks cell cycle and induces apoptosis in human B cell precursor acute lymphoblastic leukemia cells by downregulating HOXA5. Biomed Pharmacother 2017; 94:850-857. [PMID: 28810515 DOI: 10.1016/j.biopha.2017.07.149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/17/2017] [Accepted: 07/30/2017] [Indexed: 01/01/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) presents the most common type of malignancy in children and ranks the third most common cancer in adults. This study is aimed to investigate the anti-leukemia activity of physcion in ALL. Our results have showed that physcion could significantly suppress cell growth, induce apoptosis and blocked cell cycle progression in vitro. Mechanistically, we found that physcion downregulated the expression of HOXA5, which is responsible for the anti-leukemia activity of physcion. To verify this finding, siRNA targeting HOXA5 and overexpressing plasmid were used to repress HOXA5 expression and introduce ectopic overexpression of HOXA5 in ALL cell lines, respectively. Our results showed that overexpression of HOXA5 significantly abrogated the inducing effect of physcion on apoptosis and cell cycle blockasde. In contrast, knockdown of HOXA5 by siRNA enhanced the anti-tumor effect of physcion on ALL cell lines. Our results provided experimental base for the use of physcion in the treatment of ALL.
Collapse
Affiliation(s)
- Fei Gao
- Department of Pediatrics, Affliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wenjun Liu
- Department of Pediatrics, Affliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Qulian Guo
- Department of Pediatrics, Affliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yongqi Bai
- Department of Pediatrics, Affliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Hong Yang
- Department of Pediatrics, Affliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Hongying Chen
- Department of Pediatrics, Affliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| |
Collapse
|
46
|
Cancer combination therapies with artemisinin-type drugs. Biochem Pharmacol 2017; 139:56-70. [DOI: 10.1016/j.bcp.2017.03.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/28/2017] [Indexed: 01/28/2023]
|
47
|
Arbe MF, Fondello C, Agnetti L, Álvarez GM, Tellado MN, Glikin GC, Finocchiaro LME, Villaverde MS. Inhibition of bioenergetic metabolism by the combination of metformin and 2-deoxyglucose highly decreases viability of feline mammary carcinoma cells. Res Vet Sci 2017; 114:461-468. [PMID: 28802138 DOI: 10.1016/j.rvsc.2017.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/19/2017] [Accepted: 07/31/2017] [Indexed: 01/05/2023]
Abstract
Feline mammary carcinoma (FMC) is a highly aggressive pathology that has been proposed as an interesting model of breast cancer disease, especially for the hormone refractory subgroup. Recently, cancer cell metabolism has been described as a hallmark of cancer cells. Here, we investigate the effects and mechanism of metabolic modulation by metformin (MET, anti-diabetic drug), 2-deoxyglucose (2DG, hexokinase inhibitor) or a combination of both drugs, MET/2DG on two established FMC cells lines: AlRB (HER2 (3+) and Ki67<5%) and AlRATN (HER2 (-) and Ki67>15%). We found that treatments significantly decreased both FMC cells viability by up to 80%. AlRB resulted more sensitive to 2DG than AlRATN (IC50: 3.15 vs 6.32mM, respectively). The combination of MET/2DG potentiated the effects of the individually added drugs on FMC cells. In addition, MET/2DG caused an increased in intracellular oxidants, autophagic vesicles and completely inhibited colony formation. Conversely, only MET significantly altered plasma membrane integrity, presented late apoptotic/necrotic cells and increased both glucose consumption and lactate concentration. Our results support further studies to investigate the potential use of this metabolic modulation approach in a clinical veterinary setting.
Collapse
Affiliation(s)
- María Florencia Arbe
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina
| | - Chiara Fondello
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina
| | - Lucrecia Agnetti
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina
| | - Gabriel Martín Álvarez
- Cátedra de Química Biológica, Facultad de Veterinaria, Universidad de Buenos, Ciudad Autónoma de Buenos Aires, Argentina
| | - Matías Nicolás Tellado
- Cátedra de Química Biológica, Facultad de Veterinaria, Universidad de Buenos, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gerardo Claudio Glikin
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina
| | - Liliana María Elena Finocchiaro
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina
| | - Marcela Solange Villaverde
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina.
| |
Collapse
|
48
|
Zheng W, Feng Q, Liu J, Guo Y, Gao L, Li R, Xu M, Yan G, Yin Z, Zhang S, Liu S, Shan C. Inhibition of 6-phosphogluconate Dehydrogenase Reverses Cisplatin Resistance in Ovarian and Lung Cancer. Front Pharmacol 2017; 8:421. [PMID: 28713273 PMCID: PMC5491617 DOI: 10.3389/fphar.2017.00421] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/14/2017] [Indexed: 01/25/2023] Open
Abstract
Cisplatin (DDP) is currently one of the most commonly used chemotherapeutic drugs for treating ovarian and lung cancer. However, resistance to cisplatin is common and it often leads to therapy failure. In addition, the precise mechanism of cisplatin resistance is still in its infancy. In this study, we demonstrated that the oxidative pentose phosphate pathway enzyme 6-phosphogluconate dehydrogenase (6PGD) promotes cisplatin resistance. We showed that cisplatin-resistant cancer cells (C13∗ and A549DDP), had higher levels of 6PGD compared to their cisplatin-sensitive counterparts (OV2008 and A549). Furthermore, ovarian and lung cancer patients with higher 6PGD levels have worse survival outcomes relative to patients with lower 6PGD expression. Interestingly, we found that the upregulation of 6PGD in cisplatin-resistant cells was due to the decreased expression of miR-206 and miR-613, which we found to target this enzyme. We further demonstrate that suppressing 6PGD using shRNA, inhibitor or miR-206/miR-613, either as single agents or in combination, could sensitize cisplatin-resistant cancer cells to cisplatin treatment and thereby improving the therapeutic efficacy of cisplatin. Taken together, our results suggest that 6PGD serves as a novel potential target to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Wujian Zheng
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan UniversityGuangzhou, China
| | - Qi Feng
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan UniversityGuangzhou, China
| | - Jiao Liu
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan UniversityGuangzhou, China
| | - Yanke Guo
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan UniversityGuangzhou, China
| | - Lvfen Gao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Jinan UniversityGuangzhou, China
| | - Ruiman Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Jinan UniversityGuangzhou, China
| | - Meng Xu
- Department of Oncology, The First Affiliated Hospital, Jinan UniversityGuangzhou, China
| | - Guizhen Yan
- Lixia District People's HospitalJinan, China
| | - Zhinan Yin
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan UniversityGuangzhou, China
| | - Shuai Zhang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan UniversityGuangzhou, China
| | - Shuangping Liu
- Department of Pathology, Medical School, Dalian UniversityDalian, China
| | - Changliang Shan
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan UniversityGuangzhou, China
| |
Collapse
|
49
|
Differential Site-Based Expression of Pentose Phosphate Pathway-Related Proteins among Breast Cancer Metastases. DISEASE MARKERS 2017; 2017:7062517. [PMID: 28260828 PMCID: PMC5312075 DOI: 10.1155/2017/7062517] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/22/2016] [Accepted: 01/15/2017] [Indexed: 12/13/2022]
Abstract
Purpose. We aimed to investigate the expression of pentose phosphate pathway- (PPP-) related proteins in metastatic breast cancer and its relationship with clinicopathologic factors. Methods. Tissue samples from 126 metastatic breast cancers were included in a tissue microarray. Expression of PPP-related proteins [glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconolactonase (6PGL), 6-phosphogluconate dehydrogenase (6PGDH), and nuclear factor erythroid 2-related factor (NRF2)] was determined by immunohistochemistry. Results. G6PDH (p = 0.011) and cytoplasmic NRF2 (p = 0.001) showed the highest expression in brain metastases. Human epidermal growth factor receptor (HER-2) positivity was associated with G6PDH (p < 0.001) and cytoplasmic NRF2 (p = 0.015) positivity. A high Ki-67 labeling index (LI) was correlated with nuclear NRF2 positivity (p = 0.037), and HER-2-positive luminal B type was associated with G6PDH positivity (p = 0.001). On multivariate Cox analysis, independent risk factors of short overall survival were 6PGL positivity in bone metastasis (HR 4.180, 95% CI 1.160–15.06, p = 0.029) and low Ki-67 LI in lung metastasis (HR 11.853, 95% CI 1.841–76.30, p = 0.009). Conclusion. Differential expression of PPP-related proteins correlated with different prognoses and metastatic sites, with the highest expression in brain metastases, and could be a potential therapeutic target.
Collapse
|
50
|
Martin AR, Ronco C, Demange L, Benhida R. Hypoxia inducible factor down-regulation, cancer and cancer stem cells (CSCs): ongoing success stories. MEDCHEMCOMM 2017; 8:21-52. [PMID: 30108689 PMCID: PMC6071925 DOI: 10.1039/c6md00432f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022]
Abstract
In cancers, hypoxia inducible factor 1 (HIF-1) is an over-expressed transcription factor, which regulates a large set of genes involved in tumour vascularization, metastases, and cancer stem cells (CSCs) formation and self-renewal. This protein has been identified as a relevant target in oncology and several HIF-1 modulators are now marketed or in advanced clinical trials. The purpose of this review is to summarize the advances in the understanding of its regulation and its inhibition, from the medicinal chemist point of view. To this end, we selected in the recent literature relevant examples of "hit" compounds, including small-sized organic molecules, pseudopeptides and nano-drugs, exhibiting in vitro and/or in vivo both anti-HIF-1 and anti-tumour activities. Whenever possible, a particular emphasis has been dedicated to compounds that selectively target CSCs.
Collapse
Affiliation(s)
- Anthony R Martin
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
| | - Cyril Ronco
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
| | - Luc Demange
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
- UFR des Sciences Pharmaceutiques , Université Paris Descartes , Sorbonne Paris Cité , 4 avenue de l'Observatoire , Paris Fr-75006 , France
- UFR Biomédicale des Saints Pères , 45 rue des Saints Pères , Paris Fr-75006 , France
| | - Rachid Benhida
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
| |
Collapse
|