1
|
Garelja M, Alexander T, Walker C, Hay D. Extracellular bimolecular fluorescence complementation for investigating membrane protein dimerization: a proof of concept using class B GPCRs. Biosci Rep 2024; 44:BSR20240449. [PMID: 39361899 PMCID: PMC11499381 DOI: 10.1042/bsr20240449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024] Open
Abstract
Bimolecular fluorescence complementation (BiFC) methodology uses split fluorescent proteins to detect interactions between proteins in living cells. To date, BiFC has been used to investigate receptor dimerization by splitting the fluorescent protein between the intracellular portions of different receptor components. We reasoned that attaching these split proteins to the extracellular N-terminus instead may improve the flexibility of this methodology and reduce the likelihood of impaired intracellular signal transduction. As a proof-of-concept, we used receptors for calcitonin gene-related peptide, which comprise heterodimers of either the calcitonin or calcitonin receptor-like receptor in complex with an accessory protein (receptor activity-modifying protein 1). We created fusion constructs in which split mVenus fragments were attached to either the C-termini or N-termini of receptor subunits. The resulting constructs were transfected into Cos7 and HEK293S cells, where we measured cAMP production in response to ligand stimulation, cell surface expression of receptor complexes, and BiFC fluorescence. Additionally, we investigated ligand-dependent internalization in HEK293S cells. We found N-terminal fusions were better tolerated with regards to cAMP signaling and receptor internalization. N-terminal fusions also allowed reconstitution of functional fluorescent mVenus proteins; however, fluorescence yields were lower than with C-terminal fusion. Our results suggest that BiFC methodologies can be applied to the receptor N-terminus, thereby increasing the flexibility of this approach, and enabling further insights into receptor dimerization.
Collapse
Affiliation(s)
- Michael L. Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Tyla I. Alexander
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Christopher S. Walker
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Debbie L. Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Saeedi BJ, Carr HE, Higgins PDR, Steiner CA. AXL: A novel therapeutic target in IBD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:141-157. [PMID: 39521598 DOI: 10.1016/bs.apha.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Inflammatory bowel diseases (IBD) and their sequela (colitis-associate carcinoma and fibrostenotic complications) remain a significant clinical challenge and novel therapeutic targets are desperately needed. AXL, a receptor tyrosine kinase, has been implicated in myriad cellular functions central to the pathogenesis of IBD. These include facilitating epithelial-to-mesenchymal transition, dampening of Toll-like receptor and natural killer cell mediated immune responses, driving proliferation, and propagating fibrogenic signaling. The vast majority of preclinical research on AXL has focused on its role in cancer. As such, pharmacologic AXL inhibitors are currently in clinical trials, but the indications remain limited to malignancy. In this chapter, we summarize the current preclinical data of AXL in IBD, colitis associated carcinoma, and fibrostenotic disease, and highlight its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Bejan J Saeedi
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States.
| | - Hannah E Carr
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Peter D R Higgins
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, United States
| | - Calen A Steiner
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
3
|
Vandewalle N, De Beule N, De Becker A, De Bruyne E, Menu E, Vanderkerken K, Breckpot K, Devoogdt N, De Veirman K. AXL as immune regulator and therapeutic target in Acute Myeloid Leukemia: from current progress to novel strategies. Exp Hematol Oncol 2024; 13:99. [PMID: 39367387 PMCID: PMC11453060 DOI: 10.1186/s40164-024-00566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Until recently, treatment options for patients diagnosed with Acute Myeloid Leukemia (AML) were limited and predominantly relied on various combinations, dosages, or schedules of traditional chemotherapeutic agents. Patients with advanced age, relapsed/refractory disease or comorbidities were often left without effective treatment options. Novel advances in the understanding of leukemogenesis at the molecular and genetic levels, alongside recent progress in drug development, have resulted in the emergence of novel therapeutic agents and strategies for AML patients. Among these innovations, the receptor tyrosine kinase AXL has been established as a promising therapeutic target for AML. AXL is a key regulator of several cellular functions, including epithelial-to-mesenchymal transition in tumor cells, immune regulation, apoptosis, angiogenesis and the development of chemoresistance. Clinical studies of AXL inhibitors, as single agents and in combination therapy, have demonstrated promising efficacy in treating AML. Additionally, novel AXL-targeted therapies, such as AXL-specific antibodies or antibody fragments, present potential solutions to overcome the limitations associated with traditional small-molecule AXL inhibitors or multikinase inhibitors. This review provides a comprehensive overview of the structure and biological functions of AXL under normal physiological conditions, including its role in immune regulation. We also summarize AXL's involvement in cancer, with a specific emphasis on its role in the pathogenesis of AML, its contribution to immune evasion and drug resistance. Moreover, we discuss the AXL inhibitors currently undergoing (pre)clinical evaluation for the treatment of AML.
Collapse
Affiliation(s)
- Niels Vandewalle
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Nathan De Beule
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Hematology Department, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Ann De Becker
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Hematology Department, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Elke De Bruyne
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Eline Menu
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Karin Vanderkerken
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Karine Breckpot
- Translational Oncology Research Center (TORC), Team Laboratory of Cellular and Molecular Therapy (LMCT), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Nick Devoogdt
- Laboratory of Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Kim De Veirman
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium.
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Hematology Department, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels, 1090, Belgium.
| |
Collapse
|
4
|
Dave F, Herrera K, Lockley A, van de Weijer LL, Henderson S, Sofela AA, Hook L, Adams CL, Ercolano E, Hilton DA, Maze EA, Kurian KM, Ammoun S, Hanemann CO. Targeting MERTK on tumour cells and macrophages: a potential intervention for sporadic and NF2-related meningioma and schwannoma tumours. Oncogene 2024; 43:3049-3061. [PMID: 39179860 PMCID: PMC11458476 DOI: 10.1038/s41388-024-03131-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
Meningioma and schwannoma are common tumours of the nervous system. They occur sporadically or as part of the hereditary NF2-related schwannomatosis syndrome. There is an unmet need for new effective drug treatments for both tumour types. In this paper, we demonstrate overexpression/activation of TAM (TYRO3/AXL/MERTK) receptors (TAMs) and overexpression/release of ligand GAS6 in patient-derived meningioma tumour cells and tissue. For the first time, we reveal the formation of MERTK/TYRO3 heterocomplexes in meningioma and schwannoma tissue. We demonstrate the dependence of AXL and TYRO3 expression on MERTK in both tumour types, as well as interdependency of MERTK and AXL expression in meningioma. We show that MERTK and AXL contribute to increased proliferation and survival of meningioma and schwannoma cells, which we inhibited in vitro using the MERTK/FLT3 inhibitor UNC2025 and the AXL inhibitor BGB324. UNC2025 was effective in both tumour types with superior efficacy over BGB324. Finally, we found that TAMs are expressed by tumour-associated macrophages in meningioma and schwannoma tumours and that UNC2025 strongly depleted macrophages in both tumour types.
Collapse
Affiliation(s)
- Foram Dave
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Kevin Herrera
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Alex Lockley
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Laurien L van de Weijer
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Summer Henderson
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Agbolahan A Sofela
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Laura Hook
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Claire L Adams
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Emanuela Ercolano
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - David A Hilton
- Department of Cellular and Anatomical Pathology, University Hospitals Plymouth NHS Trust, Derriford, Plymouth, PL6 8DH, UK
| | - Emmanuel A Maze
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Kathreena M Kurian
- University of Bristol Medical School & North Bristol Trust, Southmead Hospital, Bristol, BS1 0NB UK, Bristol, BS1 0NB, UK
| | - Sylwia Ammoun
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK.
| | - C Oliver Hanemann
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK.
| |
Collapse
|
5
|
Anghel SA, Dinu-Pirvu CE, Costache MA, Voiculescu AM, Ghica MV, Anuța V, Popa L. Receptor Pharmacogenomics: Deciphering Genetic Influence on Drug Response. Int J Mol Sci 2024; 25:9371. [PMID: 39273318 PMCID: PMC11395000 DOI: 10.3390/ijms25179371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The paradigm "one drug fits all" or "one dose fits all" will soon be challenged by pharmacogenetics research and application. Drug response-efficacy or safety-depends on interindividual variability. The current clinical practice does not include genetic screening as a routine procedure and does not account for genetic variation. Patients with the same illness receive the same treatment, yielding different responses. Integrating pharmacogenomics in therapy would provide critical information about how a patient will respond to a certain drug. Worldwide, great efforts are being made to achieve a personalized therapy-based approach. Nevertheless, a global harmonized guideline is still needed. Plasma membrane proteins, like receptor tyrosine kinase (RTK) and G protein-coupled receptors (GPCRs), are ubiquitously expressed, being involved in a diverse array of physiopathological processes. Over 30% of drugs approved by the FDA target GPCRs, reflecting the importance of assessing the genetic variability among individuals who are treated with these drugs. Pharmacogenomics of transmembrane protein receptors is a dynamic field with profound implications for precision medicine. Understanding genetic variations in these receptors provides a framework for optimizing drug therapies, minimizing adverse reactions, and advancing the paradigm of personalized healthcare.
Collapse
Affiliation(s)
- Sorina Andreea Anghel
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Cristina-Elena Dinu-Pirvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Mihaela-Andreea Costache
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Ana Maria Voiculescu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
6
|
Blomquist MR, Eghlimi R, Beniwal A, Grief D, Nascari DG, Inge L, Sereduk CP, Tuncali S, Roos A, Inforzato H, Sharma R, Pirrotte P, Mehta S, Ensign SPF, Loftus JC, Tran NL. EGFRvIII Confers Sensitivity to Saracatinib in a STAT5-Dependent Manner in Glioblastoma. Int J Mol Sci 2024; 25:6279. [PMID: 38892466 PMCID: PMC11172708 DOI: 10.3390/ijms25116279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, with few effective treatments. EGFR alterations, including expression of the truncated variant EGFRvIII, are among the most frequent genomic changes in these tumors. EGFRvIII is known to preferentially signal through STAT5 for oncogenic activation in GBM, yet targeting EGFRvIII has yielded limited clinical success to date. In this study, we employed patient-derived xenograft (PDX) models expressing EGFRvIII to determine the key points of therapeutic vulnerability within the EGFRvIII-STAT5 signaling axis in GBM. Our findings reveal that exogenous expression of paralogs STAT5A and STAT5B augments cell proliferation and that inhibition of STAT5 phosphorylation in vivo improves overall survival in combination with temozolomide (TMZ). STAT5 phosphorylation is independent of JAK1 and JAK2 signaling, instead requiring Src family kinase (SFK) activity. Saracatinib, an SFK inhibitor, attenuates phosphorylation of STAT5 and preferentially sensitizes EGFRvIII+ GBM cells to undergo apoptotic cell death relative to wild-type EGFR. Constitutively active STAT5A or STAT5B mitigates saracatinib sensitivity in EGFRvIII+ cells. In vivo, saracatinib treatment decreased survival in mice bearing EGFR WT tumors compared to the control, yet in EGFRvIII+ tumors, treatment with saracatinib in combination with TMZ preferentially improves survival.
Collapse
Affiliation(s)
- Mylan R. Blomquist
- Mayo Clinic Alix School of Medicine, Mayo Clinic Arizona, Phoenix, AZ 85054, USA; (M.R.B.); (D.G.N.)
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
| | - Ryan Eghlimi
- Mayo Clinic Alix School of Medicine, Mayo Clinic Arizona, Phoenix, AZ 85054, USA; (M.R.B.); (D.G.N.)
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
| | - Angad Beniwal
- Mayo Clinic Alix School of Medicine, Mayo Clinic Arizona, Phoenix, AZ 85054, USA; (M.R.B.); (D.G.N.)
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
| | - Dustin Grief
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
| | - David G. Nascari
- Mayo Clinic Alix School of Medicine, Mayo Clinic Arizona, Phoenix, AZ 85054, USA; (M.R.B.); (D.G.N.)
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
| | - Landon Inge
- Ventana Medical Systems, Roche Diagnostics, Tucson, AZ 85755, USA
| | - Christopher P. Sereduk
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
| | - Serdar Tuncali
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
| | - Alison Roos
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
| | - Hannah Inforzato
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
| | - Ritin Sharma
- Collaborative Center for Translational Mass Spectrometry, The Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (R.S.)
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, The Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (R.S.)
| | - Shwetal Mehta
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Shannon P. Fortin Ensign
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
- Department of Hematology and Oncology, Mayo Clinic Arizona, Phoenix, AZ 85054, USA
| | - Joseph C. Loftus
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
| | - Nhan L. Tran
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
- Department of Neurological Surgery, Mayo Clinic Arizona, Phoenix, AZ 85013, USA
| |
Collapse
|
7
|
De Rosa L, Di Stasi R, Fusco V, D'Andrea LD. AXL receptor as an emerging molecular target in colorectal cancer. Drug Discov Today 2024; 29:104005. [PMID: 38685399 DOI: 10.1016/j.drudis.2024.104005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
AXL receptor tyrosine kinase (AXL) is a receptor tyrosine kinase whose aberrant expression has recently been associated with colorectal cancer (CRC), contributing to tumor growth, epithelial-mesenchymal transition (EMT), increased invasiveness, metastatic spreading, and the development of drug resistance. In this review we summarize preclinical data, the majority of which are limited to recent years, convincingly linking the AXL receptor to CRC. These findings support the value of targeting AXL with molecules in drug discovery, offering novel and advanced therapeutic or diagnostic tools for CRC management.
Collapse
Affiliation(s)
- Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, via P. Castellino, 111 - 80131 Naples, Italy.
| | - Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, via P. Castellino, 111 - 80131 Naples, Italy
| | - Virginia Fusco
- Istituto di Biostrutture e Bioimmagini, CNR, via P. Castellino, 111 - 80131 Naples, Italy
| | - Luca D D'Andrea
- Istituto di Scienze e Tecnologie Chimiche 'G. Natta', CNR, via M. Bianco, 9 - 20131 Milan, Italy.
| |
Collapse
|
8
|
Kumar R, Hong W. Hippo Signaling at the Hallmarks of Cancer and Drug Resistance. Cells 2024; 13:564. [PMID: 38607003 PMCID: PMC11011035 DOI: 10.3390/cells13070564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Originally identified in Drosophila melanogaster in 1995, the Hippo signaling pathway plays a pivotal role in organ size control and tumor suppression by inhibiting proliferation and promoting apoptosis. Large tumor suppressors 1 and 2 (LATS1/2) directly phosphorylate the Yki orthologs YAP (yes-associated protein) and its paralog TAZ (also known as WW domain-containing transcription regulator 1 [WWTR1]), thereby inhibiting their nuclear localization and pairing with transcriptional coactivators TEAD1-4. Earnest efforts from many research laboratories have established the role of mis-regulated Hippo signaling in tumorigenesis, epithelial mesenchymal transition (EMT), oncogenic stemness, and, more recently, development of drug resistances. Hippo signaling components at the heart of oncogenic adaptations fuel the development of drug resistance in many cancers for targeted therapies including KRAS and EGFR mutants. The first U.S. food and drug administration (US FDA) approval of the imatinib tyrosine kinase inhibitor in 2001 paved the way for nearly 100 small-molecule anti-cancer drugs approved by the US FDA and the national medical products administration (NMPA). However, the low response rate and development of drug resistance have posed a major hurdle to improving the progression-free survival (PFS) and overall survival (OS) of cancer patients. Accumulating evidence has enabled scientists and clinicians to strategize the therapeutic approaches of targeting cancer cells and to navigate the development of drug resistance through the continuous monitoring of tumor evolution and oncogenic adaptations. In this review, we highlight the emerging aspects of Hippo signaling in cross-talk with other oncogenic drivers and how this information can be translated into combination therapy to target a broad range of aggressive tumors and the development of drug resistance.
Collapse
Affiliation(s)
- Ramesh Kumar
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore;
| | | |
Collapse
|
9
|
Tutusaus A, Morales A, García de Frutos P, Marí M. GAS6/TAM Axis as Therapeutic Target in Liver Diseases. Semin Liver Dis 2024; 44:99-114. [PMID: 38395061 PMCID: PMC11027478 DOI: 10.1055/a-2275-0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
TAM (TYRO3, AXL, and MERTK) protein tyrosine kinase membrane receptors and their vitamin K-dependent ligands GAS6 and protein S (PROS) are well-known players in tumor biology and autoimmune diseases. In contrast, TAM regulation of fibrogenesis and the inflammation mechanisms underlying metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and, ultimately, liver cancer has recently been revealed. GAS6 and PROS binding to phosphatidylserine exposed in outer membranes of apoptotic cells links TAMs, particularly MERTK, with hepatocellular damage. In addition, AXL and MERTK regulate the development of liver fibrosis and inflammation in chronic liver diseases. Acute hepatic injury is also mediated by the TAM system, as recent data regarding acetaminophen toxicity and acute-on-chronic liver failure have uncovered. Soluble TAM-related proteins, mainly released from activated macrophages and hepatic stellate cells after hepatic deterioration, are proposed as early serum markers for disease progression. In conclusion, the TAM system is becoming an interesting pharmacological target in liver pathology and a focus of future biomedical research in this field.
Collapse
Affiliation(s)
- Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Cardiovasculares (CIBERCV), Barcelona, Comunidad de Madrid, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| |
Collapse
|
10
|
Huang HN, Hung PF, Chen YP, Lee CH. Leucine Zipper Downregulated in Cancer-1 Interacts with Clathrin Adaptors to Control Epidermal Growth Factor Receptor (EGFR) Internalization and Gefitinib Response in EGFR-Mutated Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:1374. [PMID: 38338651 PMCID: PMC10855387 DOI: 10.3390/ijms25031374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The epidermal growth factor receptor (EGFR) is a common driver of non-small cell lung cancer (NSCLC). Clathrin-mediated internalization (CMI) sustains EGFR signaling. AXL is associated with resistance to EGFR-tyrosine kinase inhibitors (TKIs) in EGFR-mutated (EGFRM) NSCLC. We investigated the effects of Leucine zipper downregulated in cancer-1 (LDOC1) on EGFR CMI and NSCLC treatment. Coimmunoprecipitation, double immunofluorescence staining, confocal microscopy analysis, cell surface labelling assays, and immunohistochemistry studies were conducted. We revealed that LDOC1 interacts with clathrin adaptors through binding motifs. LDOC1 depletion promotes internalization and plasma membrane recycling of EGFR in EGFRM NSCLC PC9 and HCC827 cells. Membranous and cytoplasmic EGFR decreased and increased, respectively, in LDOC1 (-) NSCLC tumors. LDOC1 depletion enhanced and sustained activation of EGFR, AXL, and HER2 and enhanced activation of HER3 in PC9 and HCC827 cells. Sensitivity to first-generation EGFR-TKIs (gefitinib and erlotinib) was significantly reduced in LDOC1-depleted PC9 and HCC827 cells. Moreover, LDOC1 downregulation was significantly associated (p < 0.001) with poor overall survival in patients with EGFRM NSCLC receiving gefitinib (n = 100). In conclusion, LDOC1 may regulate the efficacy of first-generation EGFR-TKIs by participating in the CMI of EGFR. Accordingly, LDOC1 may function as a prognostic biomarker for EGFRM NSCLC.
Collapse
Affiliation(s)
- Hsien-Neng Huang
- Department of Pathology, National Taiwan University Hospital Hsin-Chu Branch, No. 25, Ln. 442, Section 1, Jingguo Road, North Dist., Hsinchu 300195, Taiwan;
- Department and Graduate Institute of Pathology, College of Medicine, National Taiwan University, No. 1 Jen Ai Road Section 1, Taipei 100225, Taiwan
| | - Pin-Feng Hung
- National Institute of Cancer Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan 350401, Taiwan; (P.-F.H.); (Y.-P.C.)
| | - Yai-Ping Chen
- National Institute of Cancer Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan 350401, Taiwan; (P.-F.H.); (Y.-P.C.)
| | - Chia-Huei Lee
- National Institute of Cancer Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan 350401, Taiwan; (P.-F.H.); (Y.-P.C.)
| |
Collapse
|
11
|
Jang TH, Lin SC, Yang YY, Wu SH, Kuo TH, Chuang SE. AXL transcriptionally up-regulates TMEM14A expression to mediate cell proliferation in non-small-cell lung cancer cells. Biochem Biophys Res Commun 2023; 682:365-370. [PMID: 37839105 DOI: 10.1016/j.bbrc.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
In non-small cell lung cancer (NSCLC), the receptor tyrosine kinase AXL has been identified as a potent activator of tumor progression and resistance to therapies. However, the molecular mechanisms behind AXL-mediated oncogenesis remain elusive. Current study thus aimed to uncover potential downstream genes regulated by AXL in NSCLC. Through transcriptomic RNA sequencing of AXL-silenced NSCLC cells, TMEM14A was identified as a significantly up-regulated gene. Clinical evaluations using GEPIA2 revealed that TMEM14A mRNA expression was notably higher in lung adenocarcinoma (LUAD) tumor tissues compared to normal tissues. Further, significantly increased TMEM14A levels were associated with poorer overall survival in LUAD patients. Experimentally, silencing TMEM14A in NSCLC cells led to reduced cellular proliferation and ATP levels, highlighting a key role of TMEM14A in NSCLC progression. Moreover, our promoter analysis demonstrated that AXL-mediated regulation of TMEM14A transcription could involve binding of transcription factors STAT and NF-κB to 5'-promoter of TMEM14A. Collectively, current study unveils TMEM14A as a novel downstream target of AXL, suggesting its potential as a therapeutic target to counteract resistance in future NSCLC patients undergoing AXL-targeted therapies.
Collapse
Affiliation(s)
- Te-Hsuan Jang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.
| | - Sheng-Chieh Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.
| | - Ya-Yu Yang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.
| | - Shu-Hui Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan.
| | - Tsu-Hsiang Kuo
- Jenteh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan.
| | - Shuang-En Chuang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
12
|
Gelebart P, Eriksen Gjerstad M, Benjaminsen S, Han J, Karlsen I, Safont MM, Leitch C, Fandalyuk Z, Popa M, Helgeland L, Papp B, Baran-Marszak F, McCormack E. Inhibition of a new AXL isoform, AXL3, induces apoptosis of mantle cell lymphoma cells. Blood 2023; 142:1478-1493. [PMID: 37339584 DOI: 10.1182/blood.2022015581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/08/2023] [Accepted: 06/04/2023] [Indexed: 06/22/2023] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin lymphoma having a poor overall survival that is in need for the development of new therapeutics. In this study, we report the identification and expression of a new isoform splice variant of the tyrosine kinase receptor AXL in MCL cells. This new AXL isoform, called AXL3, lacks the ligand-binding domain of the commonly described AXL splice variants and is constitutively activated in MCL cells. Interestingly, functional characterization of AXL3, using CRISPR inhibition, revealed that only the knock down of this isoform leads to apoptosis of MCL cells. Importantly, pharmacological inhibition of AXL activity resulted in a significant decrease in the activation of well-known proproliferative and survival pathways activated in MCL cells (ie, β-catenin, Ak strain transforming, and NF-κB). Therapeutically, preclinical studies using a xenograft mouse model of MCL indicated that bemcentinib is more effective than ibrutinib in reducing the tumor burden and to increase the overall survival. Our study highlights the importance of a previously unidentified AXL splice variant in cancer and the potential of bemcentinib as a targeted therapy for MCL.
Collapse
Affiliation(s)
- Pascal Gelebart
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Hematology, Haukeland University Hospital, Bergen, Norway
| | | | | | - Jianhua Han
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ida Karlsen
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Calum Leitch
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Mihaela Popa
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars Helgeland
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Bela Papp
- INSERM, UMR U976, Institut Saint-Louis, Paris, France
- Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Paris, France
| | | | - Emmet McCormack
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Hematology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Center for Pharmacy, University of Bergen, Bergen, Norway
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Mohammadzadeh P, Roueinfar M, Amberg GC. AXL receptor tyrosine kinase modulates gonadotropin-releasing hormone receptor signaling. Cell Commun Signal 2023; 21:284. [PMID: 37828510 PMCID: PMC10568877 DOI: 10.1186/s12964-023-01313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/09/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Gonadotropin-releasing hormone (GnRH) receptors are essential for reproduction and are expressed in numerous urogenital, reproductive, and non-reproductive cancers. In addition to canonical G protein-coupled receptor signaling, GnRH receptors functionally interact with several receptor tyrosine kinases. AXL is a receptor tyrosine kinase expressed in numerous tissues as well as multiple tumors. Here we tested the hypothesis that AXL, along with its endogenous ligand Gas6, impacts GnRH receptor signaling. METHODS We used clonal murine pituitary αT3-1 and LβT2 gonadotrope cell lines to examine the effect of AXL activation on GnRH receptor-dependent signaling outcomes. ELISA and immunofluorescence were used to observe AXL and GnRH receptor expression in αT3-1 and LβT2 cells, as well as in murine and human pituitary sections. We also used ELISA to measure changes in ERK phosphorylation, pro-MMP9 production, and release of LHβ. Digital droplet PCR was used to measure the abundance of Egr-1 transcripts. A transwell migration assay was used to measure αT3-1 and LβT2 migration responses to GnRH and AXL. RESULTS We observed AXL, along with the GnRH receptor, expression in αT3-1 and LβT2 gonadotrope cell lines, as well as in murine and human pituitary sections. Consistent with a potentiating role of AXL, Gas6 enhanced GnRH-dependent ERK phosphorylation in αT3-1 and LβT2 cells. Further, and consistent with enhanced post-transcriptional GnRH receptor responses, we found that Gas6 increased the abundance of Egr-1 transcripts. Suggesting functional significance, in LβT2 cells, Gas6/AXL signaling stimulated LHβ production and enhanced GnRH receptor-dependent generation of pro-MMP9 protein and promoted cell migration. CONCLUSIONS Altogether, these data describe a novel role for AXL as a modulator of GnRH receptor signaling. Video Abstract.
Collapse
Affiliation(s)
- Pardis Mohammadzadeh
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Mina Roueinfar
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Gregory C Amberg
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO, 80523, USA.
| |
Collapse
|
14
|
Yang YY, Lin SC, Lay JD, Cho CY, Jang TH, Ku HY, Yao CJ, Chuang SE. Intervention of AXL in EGFR Signaling via Phosphorylation and Stabilization of MIG6 in Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:14879. [PMID: 37834326 PMCID: PMC10573631 DOI: 10.3390/ijms241914879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
About 80% of lung cancer patients are diagnosed with non-small cell lung cancer (NSCLC). EGFR mutation and overexpression are common in NSCLC, thus making EGFR signaling a key target for therapy. While EGFR kinase inhibitors (EGFR-TKIs) are widely used and efficacious in treatment, increases in resistance and tumor recurrence with alternative survival pathway activation, such as that of AXL and MET, occur frequently. AXL is one of the EMT (epithelial-mesenchymal transition) signature genes, and EMT morphological changes are also responsible for EGFR-TKI resistance. MIG6 is a negative regulator of ERBB signaling and has been reported to be positively correlated with EGFR-TKI resistance, and downregulation of MIG6 by miR-200 enhances EMT transition. While MIG6 and AXL are both correlated with EMT and EGFR signaling pathways, how AXL, MIG6 and EGFR interplay in lung cancer remains elusive. Correlations between AXL and MIG6 expression were analyzed using Oncomine or the CCLE. A luciferase reporter assay was used for determining MIG6 promoter activity. Ectopic overexpression, RNA interference, Western blot analysis, qRT-PCR, a proximity ligation assay and a coimmunoprecipitation assay were performed to analyze the effects of certain gene expressions on protein-protein interaction and to explore the underlying mechanisms. An in vitro kinase assay and LC-MS/MS were utilized to determine the phosphorylation sites of AXL. In this study, we demonstrate that MIG6 is a novel substrate of AXL and is stabilized upon phosphorylation at Y310 and Y394/395 by AXL. This study reveals a connection between MIG6 and AXL in lung cancer. AXL phosphorylates and stabilizes MIG6 protein, and in this way EGFR signaling may be modulated. This study may provide new insights into the EGFR regulatory network and may help to advance cancer treatment.
Collapse
Affiliation(s)
- Ya-Yu Yang
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 35053, Taiwan; (Y.-Y.Y.); (S.-C.L.); (C.-Y.C.); (T.-H.J.); (H.-Y.K.)
| | - Sheng-Chieh Lin
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 35053, Taiwan; (Y.-Y.Y.); (S.-C.L.); (C.-Y.C.); (T.-H.J.); (H.-Y.K.)
| | - Jong-Ding Lay
- Department of Nursing, National Taichung University of Science and Technology, Taichung 40343, Taiwan;
| | - Chun-Yu Cho
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 35053, Taiwan; (Y.-Y.Y.); (S.-C.L.); (C.-Y.C.); (T.-H.J.); (H.-Y.K.)
| | - Te-Hsuan Jang
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 35053, Taiwan; (Y.-Y.Y.); (S.-C.L.); (C.-Y.C.); (T.-H.J.); (H.-Y.K.)
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsiu-Ying Ku
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 35053, Taiwan; (Y.-Y.Y.); (S.-C.L.); (C.-Y.C.); (T.-H.J.); (H.-Y.K.)
| | - Chih-Jung Yao
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Shuang-En Chuang
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 35053, Taiwan; (Y.-Y.Y.); (S.-C.L.); (C.-Y.C.); (T.-H.J.); (H.-Y.K.)
| |
Collapse
|
15
|
Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S, Nice EC, Tang J, Huang C. Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci 2023; 15:44. [PMID: 37736748 PMCID: PMC10517027 DOI: 10.1038/s41368-023-00249-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) develops on the mucosal epithelium of the oral cavity. It accounts for approximately 90% of oral malignancies and impairs appearance, pronunciation, swallowing, and flavor perception. In 2020, 377,713 OSCC cases were reported globally. According to the Global Cancer Observatory (GCO), the incidence of OSCC will rise by approximately 40% by 2040, accompanied by a growth in mortality. Persistent exposure to various risk factors, including tobacco, alcohol, betel quid (BQ), and human papillomavirus (HPV), will lead to the development of oral potentially malignant disorders (OPMDs), which are oral mucosal lesions with an increased risk of developing into OSCC. Complex and multifactorial, the oncogenesis process involves genetic alteration, epigenetic modification, and a dysregulated tumor microenvironment. Although various therapeutic interventions, such as chemotherapy, radiation, immunotherapy, and nanomedicine, have been proposed to prevent or treat OSCC and OPMDs, understanding the mechanism of malignancies will facilitate the identification of therapeutic and prognostic factors, thereby improving the efficacy of treatment for OSCC patients. This review summarizes the mechanisms involved in OSCC. Moreover, the current therapeutic interventions and prognostic methods for OSCC and OPMDs are discussed to facilitate comprehension and provide several prospective outlooks for the fields.
Collapse
Affiliation(s)
- Yunhan Tan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Mengtong Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jing Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
16
|
Okamoto K, Ando T, Izumi H, Kobayashi SS, Shintani T, Gutkind JS, Yanamoto S, Miyauchi M, Kajiya M. AXL activates YAP through the EGFR-LATS1/2 axis and confers resistance to EGFR-targeted drugs in head and neck squamous cell carcinoma. Oncogene 2023; 42:2869-2877. [PMID: 37591955 DOI: 10.1038/s41388-023-02810-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
The Hippo signaling pathway and its downstream effector YAP play a central role in cell proliferation. Dysregulation of the Hippo pathway triggers YAP hyperactivation, thereby inducing head and neck squamous cell carcinoma (HNSCC). Recently, we reported that EGFR promotes tyrosine phosphorylation of MOB1 and subsequent LATS1/2 inactivation, which are core components of the Hippo pathway, resulting in YAP activation. However, EGFR-targeted monotherapy has shown a low response rate in HNSCC patients. Given that YAP is activated in patient samples refractory to EGFR-targeted therapy, EGFR inhibitors may temporarily inactivate YAP, but intrinsic hyperactivation or acquired reactivation of YAP may confer resistance to EGFR inhibitors in HNSCC cells. The mechanism by which YAP is activated in HNSCC resistant to EGFR inhibitors remains unclear. Comprehensive transcriptional analysis revealed that AXL activates YAP through a novel mechanism: AXL heterodimerizes with EGFR, thereby activating YAP via the EGFR-LATS1/2 axis. The combination of AXL and EGFR inhibitors synergistically inactivates YAP and suppresses the viability of HNSCC and lung adenocarcinoma cells. In turn, LATS1/2 knockout and YAP hyperactivation confer resistance to the synergistic effects of these inhibitors. Our findings suggest that co-targeting both AXL and EGFR represent a promising therapeutic approach in patients with EGFR-altered cancers.
Collapse
Affiliation(s)
- Kento Okamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshinori Ando
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan.
| | - Hiroki Izumi
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Susumu S Kobayashi
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tomoaki Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mikihito Kajiya
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
17
|
Gerritsen JS, Faraguna JS, Bonavia R, Furnari FB, White FM. Predictive data-driven modeling of C-terminal tyrosine function in the EGFR signaling network. Life Sci Alliance 2023; 6:e202201466. [PMID: 37169593 PMCID: PMC10176108 DOI: 10.26508/lsa.202201466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) has been studied extensively because of its critical role in cellular signaling and association with disease. Previous models have elucidated interactions between EGFR and downstream adaptor proteins or showed phenotypes affected by EGFR. However, the link between specific EGFR phosphorylation sites and phenotypic outcomes is still poorly understood. Here, we employed a suite of isogenic cell lines expressing site-specific mutations at each of the EGFR C-terminal phosphorylation sites to interrogate their role in the signaling network and cell biological response to stimulation. Our results demonstrate the resilience of the EGFR network, which was largely similar even in the context of multiple Y-to-F mutations in the EGFR C-terminal tail, while also revealing nodes in the network that have not previously been linked to EGFR signaling. Our data-driven model highlights the signaling network nodes associated with distinct EGF-driven cell responses, including migration, proliferation, and receptor trafficking. Application of this same approach to less-studied RTKs should provide a plethora of novel associations that should lead to an improved understanding of these signaling networks.
Collapse
Affiliation(s)
- Jacqueline S Gerritsen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph S Faraguna
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rudy Bonavia
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
- Department of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
18
|
Tang Y, Zang H, Wen Q, Fan S. AXL in cancer: a modulator of drug resistance and therapeutic target. J Exp Clin Cancer Res 2023; 42:148. [PMID: 37328828 DOI: 10.1186/s13046-023-02726-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023] Open
Abstract
AXL is a member of the TAM (TYRO3, AXL, and MERTK) receptor tyrosine kinases family (RTKs), and its abnormal expression has been linked to clinicopathological features and poor prognosis of cancer patients. There is mounting evidence supporting AXL's role in the occurrence and progression of cancer, as well as drug resistance and treatment tolerance. Recent studies revealed that reducing AXL expression can weaken cancer cells' drug resistance, indicating that AXL may be a promising target for anti-cancer drug treatment. This review aims to summarize the AXL's structure, the mechanisms regulating and activating it, and its expression pattern, especially in drug-resistant cancers. Additionally, we will discuss the diverse functions of AXL in mediating cancer drug resistance and the potential of AXL inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Yaoxiang Tang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
19
|
Mohammadzadeh P, Amberg GC. AXL/Gas6 signaling mechanisms in the hypothalamic-pituitary-gonadal axis. Front Endocrinol (Lausanne) 2023; 14:1212104. [PMID: 37396176 PMCID: PMC10310921 DOI: 10.3389/fendo.2023.1212104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
AXL is a receptor tyrosine kinase commonly associated with a variety of human cancers. Along with its ligand Gas6 (growth arrest-specific protein 6), AXL is emerging as an important regulator of neuroendocrine development and function. AXL signaling in response to Gas6 binding impacts neuroendocrine structure and function at the level of the brain, pituitary, and gonads. During development, AXL has been identified as an upstream inhibitor of gonadotropin receptor hormone (GnRH) production and also plays a key role in the migration of GnRH neurons from the olfactory placode to the forebrain. AXL is implicated in reproductive diseases including some forms of idiopathic hypogonadotropic hypogonadism and evidence suggests that AXL is required for normal spermatogenesis. Here, we highlight research describing AXL/Gas6 signaling mechanisms with a focus on the molecular pathways related to neuroendocrine function in health and disease. In doing so, we aim to present a concise account of known AXL/Gas6 signaling mechanisms to identify current knowledge gaps and inspire future research.
Collapse
|
20
|
Shao H, Teramae D, Wells A. Axl contributes to efficient migration and invasion of melanoma cells. PLoS One 2023; 18:e0283749. [PMID: 36989239 PMCID: PMC10057740 DOI: 10.1371/journal.pone.0283749] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Axl, a member of the TAM receptor family has been broadly suggested to play a key role in tumor metastasis. However, the function of Axl in the invasion and metastasis of melanoma, the most lethal skin cancer, remains largely unknown. In the present study, we found that melanoma cell lines present variable protein levels of Axl and Tyro3; interestingly, MerTK is not noted at detectable levels in any of tested MGP (metastatic growth phase) cell lines. Treatment with recombinant human Gas6 significantly activates Akt in the Axl-expressing WM852 and IgR3 lines but just slightly in WM1158. IgR3, WM852 and WM1158 demonstrate different autocrine signaling. Knockdown of Axl by siRNA or the treatment with Axl-specific inhibitor R428 dramatically inhibits the migration and invasion of both IgR3 and WM852 in vitro. These findings suggest that Axl enhances the invasion of melanoma cells.
Collapse
Affiliation(s)
- Hanshuang Shao
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh VA Health System, Pittsburgh, Pennsylvania, United States of America
| | - Diana Teramae
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh VA Health System, Pittsburgh, Pennsylvania, United States of America
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh VA Health System, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
21
|
Zhang D, Zhao Y, You X, He S, Li E. Repurposing Axl Kinase Inhibitors for the Treatment of Respiratory Syncytial Virus Infection. Antimicrob Agents Chemother 2023; 67:e0148722. [PMID: 36853000 PMCID: PMC10019287 DOI: 10.1128/aac.01487-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/01/2023] [Indexed: 03/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection persists as a common pathogen of pulmonary infection in infants and in the elderly with high morbidity and mortality. However, no specific therapeutics are available. Axl, a member of the TAM (Tyro3, Axl, and Mertk) family receptor kinases, is a pleiotropic inhibitor of the innate immune response and functions as a negative regulator of interferon pathway activation. In this report, we investigated Axl inhibitors for their effects against RSV infection. Axl inhibition with kinase inhibitors, including BMS-777607, R428, and TP-0903, or Axl ablation resulted in a significant reduction of RSV infection in cell-based assays. In an animal model of pulmonary RSV infection, treatment with BMS-777607, R428, or TP-0903 ameliorated pulmonary pathology with a significant reduction of RSV titers in the lung tissues and, consequently, decreased the expression of proinflammatory genes. The host promotes ISG expression for the antiviral response and for viral clearance. We found that Axl inhibition led to more robust IFN-β expression and antiviral gene induction. Thus, the results of this study imply that Axl kinase inhibitors may possess a broad spectrum of antiviral effects by promoting ISG expression.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yuanhui Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Yancheng Medical Research Center, The Affiliated Yancheng People's 1st Hospital of Nanjing University Medical School, Yancheng, Jiangsu, China
| | - Xiaoxin You
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Susu He
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Yancheng Medical Research Center, The Affiliated Yancheng People's 1st Hospital of Nanjing University Medical School, Yancheng, Jiangsu, China
| | - Erguang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Medical Virology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
| |
Collapse
|
22
|
Zhou S, Li Y, Zhang Z, Yuan Y. An insight into the TAM system in Alzheimer's disease. Int Immunopharmacol 2023; 116:109791. [PMID: 36738678 DOI: 10.1016/j.intimp.2023.109791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
The TAM receptors may help delay the progression of Alzheimer's disease (AD). AD is the most common neurodegenerative disease associated with human aging. The TAM receptors, derived from the first letter of its three constituents -Tyro3, Axl, and Mertk, are associated with immune responses, cellular differentiation and migration, and clearance of apoptotic cells and debris, with the two canonical ligands, Growth Arrest Specific 6 (Gas6) and ProS1. Several kinds of research have indicated the participation of the TAM system in AD pathology. Also, the TAMs regulate multiple features of microglia, the significant sensors of disorder in the central nervous system (CNS). In this review, we describe the biology of the TAM receptors and ligands in the CNS. Then, we discuss the relationship between the TAM system and AD, specially focusing on its functional expression in the microglia. Finally, we also summarize some agents that could interfere with the TAM signaling pathways and discuss potential difficulties and strategies for drug development.
Collapse
Affiliation(s)
- Shiqi Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yanyan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yuhe Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
23
|
Alver TN, Heintz K, Hovig E, Bøe SL. Cooperative induction of receptor tyrosine kinases contributes to adaptive MAPK drug resistance in melanoma through the PI3K pathway. Cancer Rep (Hoboken) 2023; 6:e1736. [PMID: 36251678 PMCID: PMC9940011 DOI: 10.1002/cnr2.1736] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 02/22/2023] Open
Abstract
Vemurafenib-induced drug resistance in melanoma has been linked to receptor tyrosine kinase (RTK) upregulation. The MITF and SOX10 genes play roles as master regulators of melanocyte and melanoma development. Here, we aimed to explore the complex mechanisms behind the MITF/SOX10-controlled RTK-induced drug resistance in melanoma. To achieve this, we used a number of molecular techniques, including melanoma patient data from TCGA, vemurafenib-resistant melanoma cell lines, and knock-down studies. The melanoma cell lines were classified as proliferative or invasive based upon their MITF/AXL expression activity. We measured the change of expression activity for MITF/SOX10 and their receptor (AXL/ERBB3) and ligand (NRG1/GAS6) targets known to be involved in RTK-induced drug resistance after vemurafenib treatment. We find that melanoma cell lines characterized as proliferative (high MITF low AXL), transform into an invasive (low MITF, high AXL) cell state after vemurafenib resistance, indicating novel feedback loops and advanced compensatory regulation mechanisms between the master regulators, receptors, and ligands involved in vemurafenib-induced resistance. Together, our data disclose fine-tuned mechanisms involved in RTK-facilitated vemurafenib resistance that will be challenging to overcome by using single drug targeting strategies against melanoma.
Collapse
Affiliation(s)
- Tine Norman Alver
- Department of Tumor Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Department of Cancer Genetics, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Faculty of MedicineUniversity of OsloOsloNorway
| | - Karen‐Marie Heintz
- Department of Tumor Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Faculty of MedicineUniversity of OsloOsloNorway
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Department of InformaticsUniversity of OsloOsloNorway
| | - Sigurd L. Bøe
- Department of Medical BiochemistryOslo University Hospital, The Norwegian Radium HospitalOsloNorway
| |
Collapse
|
24
|
Li Q, Tie Y, Alu A, Ma X, Shi H. Targeted therapy for head and neck cancer: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:31. [PMID: 36646686 PMCID: PMC9842704 DOI: 10.1038/s41392-022-01297-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Head and neck cancer (HNC) is malignant, genetically complex and difficult to treat and is the sixth most frequent cancer, with tobacco, alcohol and human papillomavirus being major risk factors. Based on epigenetic data, HNC is remarkably heterogeneous, and treatment remains challenging. There is a lack of significant improvement in survival and quality of life in patients with HNC. Over half of HNC patients experience locoregional recurrence or distal metastasis despite the current multiple traditional therapeutic strategies and immunotherapy. In addition, resistance to chemotherapy, radiotherapy and some targeted therapies is common. Therefore, it is urgent to explore more effective and tolerable targeted therapies to improve the clinical outcomes of HNC patients. Recent targeted therapy studies have focused on identifying promising biomarkers and developing more effective targeted therapies. A well understanding of the pathogenesis of HNC contributes to learning more about its inner association, which provides novel insight into the development of small molecule inhibitors. In this review, we summarized the vital signaling pathways and discussed the current potential therapeutic targets against critical molecules in HNC, as well as presenting preclinical animal models and ongoing or completed clinical studies about targeted therapy, which may contribute to a more favorable prognosis of HNC. Targeted therapy in combination with other therapies and its limitations were also discussed.
Collapse
Affiliation(s)
- Qingfang Li
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Aqu Alu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Endocytic trafficking of GAS6-AXL complexes is associated with sustained AKT activation. Cell Mol Life Sci 2022; 79:316. [PMID: 35622156 PMCID: PMC9135597 DOI: 10.1007/s00018-022-04312-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/27/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
AXL, a TAM receptor tyrosine kinase (RTK), and its ligand growth arrest-specific 6 (GAS6) are implicated in cancer metastasis and drug resistance, and cellular entry of viruses. Given this, AXL is an attractive therapeutic target, and its inhibitors are being tested in cancer and COVID-19 clinical trials. Still, astonishingly little is known about intracellular mechanisms that control its function. Here, we characterized endocytosis of AXL, a process known to regulate intracellular functions of RTKs. Consistent with the notion that AXL is a primary receptor for GAS6, its depletion was sufficient to block GAS6 internalization. We discovered that upon receptor ligation, GAS6–AXL complexes were rapidly internalized via several endocytic pathways including both clathrin-mediated and clathrin-independent routes, among the latter the CLIC/GEEC pathway and macropinocytosis. The internalization of AXL was strictly dependent on its kinase activity. In comparison to other RTKs, AXL was endocytosed faster and the majority of the internalized receptor was not degraded but rather recycled via SNX1-positive endosomes. This trafficking pattern coincided with sustained AKT activation upon GAS6 stimulation. Specifically, reduced internalization of GAS6–AXL upon the CLIC/GEEC downregulation intensified, whereas impaired recycling due to depletion of SNX1 and SNX2 attenuated AKT signaling. Altogether, our data uncover the coupling between AXL endocytic trafficking and AKT signaling upon GAS6 stimulation. Moreover, our study provides a rationale for pharmacological inhibition of AXL in antiviral therapy as viruses utilize GAS6–AXL-triggered endocytosis to enter cells.
Collapse
|
26
|
Two-Front War on Cancer-Targeting TAM Receptors in Solid Tumour Therapy. Cancers (Basel) 2022; 14:cancers14102488. [PMID: 35626092 PMCID: PMC9140196 DOI: 10.3390/cancers14102488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary In recent years, many studies have shown the importance of TAM kinases in both normal and neoplastic cells. In this review, we present and discuss the role of the TAM family (AXL, MERTK, TYRO3) of receptor tyrosine kinases (RTKs) as a dual target in cancer, due to their intrinsic roles in tumour cell survival, migration, chemoresistance, and their immunosuppressive roles in the tumour microenvironment. This review presents the potential of TAMs as emerging therapeutic targets in cancer treatment, focusing on the distinct structures of TAM receptor tyrosine kinases. We analyse and compare different strategies of TAM inhibition, for a full perspective of current and future battlefields in the war with cancer. Abstract Receptor tyrosine kinases (RTKs) are transmembrane receptors that bind growth factors and cytokines and contain a regulated kinase activity within their cytoplasmic domain. RTKs play an important role in signal transduction in both normal and malignant cells, and their encoding genes belong to the most frequently affected genes in cancer cells. The TAM family proteins (TYRO3, AXL, and MERTK) are involved in diverse biological processes: immune regulation, clearance of apoptotic cells, platelet aggregation, cell proliferation, survival, and migration. Recent studies show that TAMs share overlapping functions in tumorigenesis and suppression of antitumour immunity. MERTK and AXL operate in innate immune cells to suppress inflammatory responses and promote an immunosuppressive tumour microenvironment, while AXL expression correlates with epithelial-to-mesenchymal transition, metastasis, and motility in tumours. Therefore, TAM RTKs represent a dual target in cancer due to their intrinsic roles in tumour cell survival, migration, chemoresistance, and their immunosuppressive roles in the tumour microenvironment (TME). In this review, we discuss the potential of TAMs as emerging therapeutic targets in cancer treatment. We critically assess and compare current approaches to target TAM RTKs in solid tumours and the development of new inhibitors for both extra- and intracellular domains of TAM receptor kinases.
Collapse
|
27
|
Engelsen AST, Lotsberg ML, Abou Khouzam R, Thiery JP, Lorens JB, Chouaib S, Terry S. Dissecting the Role of AXL in Cancer Immune Escape and Resistance to Immune Checkpoint Inhibition. Front Immunol 2022; 13:869676. [PMID: 35572601 PMCID: PMC9092944 DOI: 10.3389/fimmu.2022.869676] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
The development and implementation of Immune Checkpoint Inhibitors (ICI) in clinical oncology have significantly improved the survival of a subset of cancer patients with metastatic disease previously considered uniformly lethal. However, the low response rates and the low number of patients with durable clinical responses remain major concerns and underscore the limited understanding of mechanisms regulating anti-tumor immunity and tumor immune resistance. There is an urgent unmet need for novel approaches to enhance the efficacy of ICI in the clinic, and for predictive tools that can accurately predict ICI responders based on the composition of their tumor microenvironment. The receptor tyrosine kinase (RTK) AXL has been associated with poor prognosis in numerous malignancies and the emergence of therapy resistance. AXL is a member of the TYRO3-AXL-MERTK (TAM) kinase family. Upon binding to its ligand GAS6, AXL regulates cell signaling cascades and cellular communication between various components of the tumor microenvironment, including cancer cells, endothelial cells, and immune cells. Converging evidence points to AXL as an attractive molecular target to overcome therapy resistance and immunosuppression, supported by the potential of AXL inhibitors to improve ICI efficacy. Here, we review the current literature on the prominent role of AXL in regulating cancer progression, with particular attention to its effects on anti-tumor immune response and resistance to ICI. We discuss future directions with the aim to understand better the complex role of AXL and TAM receptors in cancer and the potential value of this knowledge and targeted inhibition for the benefit of cancer patients.
Collapse
Affiliation(s)
- Agnete S. T. Engelsen
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Maria L. Lotsberg
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jean-Paul Thiery
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
- Guangzhou Laboratory, Guangzhou, China
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
| | - James B. Lorens
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Faculty of Medicine, University Paris Sud, Le Kremlin-Bicêtre, France
| | - Stéphane Terry
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Faculty of Medicine, University Paris Sud, Le Kremlin-Bicêtre, France
- Research Department, Inovarion, Paris, France
| |
Collapse
|
28
|
van Aalen EA, Wouters SFA, Verzijl D, Merkx M. Bioluminescent RAPPID Sensors for the Single-Step Detection of Soluble Axl and Multiplex Analysis of Cell Surface Cancer Biomarkers. Anal Chem 2022; 94:6548-6556. [PMID: 35438976 PMCID: PMC9069438 DOI: 10.1021/acs.analchem.2c00297] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Early diagnosis of
cancer is essential for the efficacy of treatment.
Our group recently developed RAPPID, a bioluminescent immunoassay
platform capable of measuring a wide panel of biomarkers directly
in solution. Here, we developed and systematically screened different
RAPPID sensors for sensitive detection of the soluble fraction of
Axl (sAxl), a cell surface receptor that is overexpressed in several
types of cancer. The best-performing RAPPID sensor, with a limit of
detection of 8 pM and a >9-fold maximal change in
emission
ratio, was applied to measure Axl in three different contexts: clinically
relevant sAxl levels (∼0.5 and ∼1 nM) in diluted blood
plasma, proteolytically cleaved Axl in the cell culture medium of
A431 and HeLa cancer cells, and Axl on the membrane of A431 cells.
We further extended the sensor toolbox by developing dual-color RAPPID
for simultaneous detection of Axl and EGFR on A431 and HeLa cells,
as well as an AND-gate RAPPID that measures the concurrent presence
of these two cell surface receptors on the same cell. These new RAPPID
sensors provide attractive alternatives for more laborious protein
detection and quantification methods such as FACS and immunostainings,
due to their simple practical implantation and low intrinsic background
signal.
Collapse
Affiliation(s)
- Eva A van Aalen
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O Box 513, 5600 MB Eindhoven, The Netherlands
| | - Simone F A Wouters
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O Box 513, 5600 MB Eindhoven, The Netherlands
| | | | - Maarten Merkx
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
29
|
Buksh BF, Knutson SD, Oakley JV, Bissonnette NB, Oblinsky DG, Schwoerer MP, Seath CP, Geri JB, Rodriguez-Rivera FP, Parker DL, Scholes GD, Ploss A, MacMillan DWC. μMap-Red: Proximity Labeling by Red Light Photocatalysis. J Am Chem Soc 2022; 144:6154-6162. [PMID: 35363468 PMCID: PMC9843638 DOI: 10.1021/jacs.2c01384] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Modern proximity labeling techniques have enabled significant advances in understanding biomolecular interactions. However, current tools primarily utilize activation modes that are incompatible with complex biological environments, limiting our ability to interrogate cell- and tissue-level microenvironments in animal models. Here, we report μMap-Red, a proximity labeling platform that uses a red-light-excited SnIV chlorin e6 catalyst to activate a phenyl azide biotin probe. We validate μMap-Red by demonstrating photonically controlled protein labeling in vitro through several layers of tissue, and we then apply our platform in cellulo to label EGFR microenvironments and validate performance with STED microscopy and quantitative proteomics. Finally, to demonstrate labeling in a complex biological sample, we deploy μMap-Red in whole mouse blood to profile erythrocyte cell-surface proteins. This work represents a significant methodological advance toward light-based proximity labeling in complex tissue environments and animal models.
Collapse
Affiliation(s)
- Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Steve D Knutson
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Daniel G Oblinsky
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Michael P Schwoerer
- Department of Molecular Biology, Princeton University, Princeton, New Jersey08544, United States
| | - Ciaran P Seath
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Jacob B Geri
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | | | - Dann L Parker
- Discovery Chemistry, Merck & Co., Kenilworth, New Jersey07033, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| |
Collapse
|
30
|
Sidhanth C, Bindhya S, Krishnapriya S, Manasa P, Shabna A, Alifia J, Patole C, Kumar V, Garg M, Ganesan TS. Phosphoproteome of signaling by ErbB2 in ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140768. [PMID: 35158093 DOI: 10.1016/j.bbapap.2022.140768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/07/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The gene for receptor tyrosine kinase ErbB2 is amplified in breast and ovarian tumours. The linear pathway by which signals are transduced through ErbB2 are well known. However, second generation questions that address spatial aspects of signaling remain. To address this, we have undertaken a mass spectrometry approach to identify phosphoproteins specific for ErbB2 using the inhibitors Lapatinib and CP724714 in ovarian cancer cells. The ErbB2 specific proteins identified in SKOV-3 cells were Myristoylated alanine-rich C-kinase substrate, Protein capicua homolog, Protein peptidyl isomerase G, Protein PRRC2C, Chromobox homolog1 and PRP4 homolog. We have evaluated three phosphoproteins PKM2, Aldose reductase and MARCKS in SKOV-3 cells. We observed that PKM2 was phosphorylated by EGF but was not inhibited by Lapatinib and CP724714. The activity of aldose reductase in reducing NADPH as a substrate was significantly higher in EGF stimulated cells which was inhibited by Lapatinib and CP724714 but not by Geftinib (EGFR inhibitor). MARCKS was phosphorylated on stimulation of SKOV-3 cells with EGF that was inhibited by Lapatinib and CP724714 which was dependent on the kinase activity of ErbB2. These results have identified phosphoproteins that are specific to ErbB2 which have not been previously reported and sets the basis for future experiments.
Collapse
Affiliation(s)
- C Sidhanth
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - S Bindhya
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - S Krishnapriya
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - P Manasa
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - A Shabna
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - J Alifia
- Mass Spectrometry Facility Proteomics, National Centre for Biological Sciences (NCBS), Bangalore, India
| | - C Patole
- Mass Spectrometry Facility Proteomics, National Centre for Biological Sciences (NCBS), Bangalore, India
| | - V Kumar
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE, USA
| | - M Garg
- Amity Institute of Molecular Medicine & Stem cell Research, Amity University, Delhi, India
| | - T S Ganesan
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India.
| |
Collapse
|
31
|
Majumder A, Hosseinian S, Stroud M, Adhikari E, Saller JJ, Smith MA, Zhang G, Agarwal S, Creixell M, Meyer BS, Kinose F, Bowers K, Fang B, Stewart PA, Welsh EA, Boyle TA, Meyer AS, Koomen JM, Haura EB. Integrated Proteomics-Based Physical and Functional Mapping of AXL Kinase Signaling Pathways and Inhibitors Define Its Role in Cell Migration. Mol Cancer Res 2022; 20:542-555. [PMID: 35022314 PMCID: PMC8983558 DOI: 10.1158/1541-7786.mcr-21-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/14/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
Abstract
To better understand the signaling complexity of AXL, a member of the tumor-associated macrophage (TAM) receptor tyrosine kinase family, we created a physical and functional map of AXL signaling interactions, phosphorylation events, and target-engagement of three AXL tyrosine kinase inhibitors (TKI). We assessed AXL protein complexes using proximity-dependent biotinylation (BioID), effects of AXL TKI on global phosphoproteins using mass spectrometry, and target engagement of AXL TKI using activity-based protein profiling. BioID identifies AXL-interacting proteins that are mostly involved in cell adhesion/migration. Global phosphoproteomics show that AXL inhibition decreases phosphorylation of peptides involved in phosphatidylinositol-mediated signaling and cell adhesion/migration. Comparison of three AXL inhibitors reveals that TKI RXDX-106 inhibits pAXL, pAKT, and migration/invasion of these cells without reducing their viability, while bemcentinib exerts AXL-independent phenotypic effects on viability. Proteomic characterization of these TKIs demonstrates that they inhibit diverse targets in addition to AXL, with bemcentinib having the most off-targets. AXL and EGFR TKI cotreatment did not reverse resistance in cell line models of erlotinib resistance. However, a unique vulnerability was identified in one resistant clone, wherein combination of bemcentinib and erlotinib inhibited cell viability and signaling. We also show that AXL is overexpressed in approximately 30% to 40% of nonsmall but rarely in small cell lung cancer. Cell lines have a wide range of AXL expression, with basal activation detected rarely. IMPLICATIONS Our study defines mechanisms of action of AXL in lung cancers which can be used to establish assays to measure drug targetable active AXL complexes in patient tissues and inform the strategy for targeting it's signaling as an anticancer therapy.
Collapse
Affiliation(s)
- Anurima Majumder
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Sina Hosseinian
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Mia Stroud
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Emma Adhikari
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - James J. Saller
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Matthew A. Smith
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Guolin Zhang
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Shruti Agarwal
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | | | - Benjamin S. Meyer
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Kiah Bowers
- Department of Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Bin Fang
- Department of Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Paul A. Stewart
- Department of Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Eric A. Welsh
- Department of Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Theresa A. Boyle
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | | | - John M. Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| |
Collapse
|
32
|
AXL Receptor Tyrosine Kinase as a Promising Therapeutic Target Directing Multiple Aspects of Cancer Progression and Metastasis. Cancers (Basel) 2022; 14:cancers14030466. [PMID: 35158733 PMCID: PMC8833413 DOI: 10.3390/cancers14030466] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Metastasis is a complex process that requires the acquisition of certain traits by cancer cells as well as the cooperation of several non-neoplastic cells that populate the stroma. Cancer-related deaths are predominantly associated with complications arising from metastases. Limiting metastasis therefore represents an important clinical challenge. The receptor tyrosine kinase AXL is required at many steps of the metastatic cascade and contributes to tumor microenvironment deregulation. In this review, we describe how AXL contributes to metastatic progression by governing various biological processes in cancer cells and in stromal cells, highlighting the potential of its inhibition. Abstract The receptor tyrosine kinase AXL is emerging as a key player in tumor progression and metastasis and its expression correlates with poor survival in a plethora of cancers. While studies have shown the benefits of AXL inhibition for the treatment of metastatic cancers, additional roles for AXL in cancer progression are still being explored. This review discusses recent advances in understanding AXL’s functions in different tumor compartments including cancer, vascular, and immune cells. AXL is required at multiple steps of the metastatic cascade where its activation in cancer cells leads to EMT, invasion, survival, proliferation and therapy resistance. AXL activation in cancer cells and various stromal cells also results in tumor microenvironment deregulation, leading to modulation of angiogenesis, fibrosis, immune response and hypoxia. A better understanding of AXL’s role in these processes could lead to new therapeutic approaches that would benefit patients suffering from metastatic diseases.
Collapse
|
33
|
Bian Q, Anderson JC, Zhang XW, Huang ZQ, Ebefors K, Nyström J, Hall S, Novak L, Julian BA, Willey CD, Novak J. Mesangioproliferative Kidney Diseases and Platelet-Derived Growth Factor-Mediated AXL Phosphorylation. Kidney Med 2021; 3:1003-1013.e1. [PMID: 34939009 PMCID: PMC8664734 DOI: 10.1016/j.xkme.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
RATIONALE & OBJECTIVE Immunoglobulin A nephropathy (IgAN) is a common glomerular disease, with mesangial cell proliferation as a major feature. There is no disease-specific treatment. Platelet-derived growth factor (PDGF) contributes to the pathogenesis of IgAN. To better understand its pathogenic mechanisms, we assessed PDGF-mediated AXL phosphorylation in human mesangial cells and kidney tissue biopsy specimens. STUDY DESIGN Immunostaining using human kidney biopsy specimens and in vitro studies using primary human mesangial cells. SETTING & PARTICIPANTS Phosphorylation of AXL was assessed in cultured mesangial cells and 10 kidney-biopsy specimens from 5 patients with IgAN, 3 with minimal change disease, 1 with membranous nephropathy, and 1 with mesangioproliferative glomerulonephritis (GN). PREDICTOR Glomerular staining for phospho-AXL in kidney biopsy specimens of patients with mesangioproliferative diseases. OUTCOMES Phosphorylated AXL detected in biopsy tissues of patients with IgAN and mesangioproliferative GN and in cultured mesangial cells stimulated with PDGF. ANALYTIC APPROACH t test, Mann-Whitney test, and analysis of variance were used to assess the significance of mesangial cell proliferative changes. RESULTS Immunohistochemical staining revealed enhanced phosphorylation of glomerular AXL in IgAN and mesangioproliferative GN, but not in minimal change disease and membranous nephropathy. Confocal-microscopy immunofluorescence analysis indicated that mesangial cells rather than endothelial cells or podocytes expressed phospho-AXL. Kinomic profiling of primary mesangial cells treated with PDGF revealed activation of several protein-tyrosine kinases, including AXL. Immunoprecipitation experiments indicated association of AXL and PDGF receptor proteins. An AXL-specific inhibitor (bemcentinib) partially blocked PDGF-induced cellular proliferation and reduced phosphorylation of AXL and PDGF receptor and the downstream signals (AKT1 and ERK1/2). LIMITATIONS Small number of kidney biopsy specimens to correlate the activation of AXL with disease severity. CONCLUSIONS PDGF-mediated signaling in mesangial cells involves transactivation of AXL. Finding appropriate inhibitors to block PDGF-mediated transactivation of AXL may provide new therapeutic options for mesangioproliferative kidney diseases such as IgAN.
Collapse
Affiliation(s)
- Qi Bian
- University of Alabama at Birmingham, Birmingham, AL
- Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | | | - Xian Wen Zhang
- University of Alabama at Birmingham, Birmingham, AL
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | | | | | - Stacy Hall
- University of Alabama at Birmingham, Birmingham, AL
| | - Lea Novak
- University of Alabama at Birmingham, Birmingham, AL
| | | | | | - Jan Novak
- University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
34
|
Al Kafri N, Hafizi S. Identification of signalling pathways activated by Tyro3 that promote cell survival, proliferation and invasiveness in human cancer cells. Biochem Biophys Rep 2021; 28:101111. [PMID: 34471705 PMCID: PMC8387907 DOI: 10.1016/j.bbrep.2021.101111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022] Open
Abstract
Tyro3 is a member of the TAM subfamily of receptor tyrosine kinases alongside Axl and MerTK, which are activated by homologous ligands Gas6 and protein S. The TAMs activate signalling pathways that mediate diverse functions including cell survival, proliferation, phagocytosis and immune regulation, and defects in TAM-dependent processes are associated with the development of human autoimmune diseases and numerous cancers. In this study, we have focused on the signalling and functional roles of Tyro3, about which much remains unknown. For this purpose, we used cultured human cancer cell lines with different levels of TAM expression to reveal the relative significance of Tyro3 amongst the TAMs. Knockdown of Tyro3 expression by siRNA in MGH-U3 cells, which express Tyro3 as sole TAM, caused a reduction in cell viability, which could not be rescued by TAM ligand, demonstrating the dependence of these cells solely on Tyro3. In contrast, the reduced viability of SCC-25 cells upon Tyro3 knockdown could be rescued by Gas6 as these cells express both Tyro3 and Axl and hence Axl expression was preserved. An increase in the fraction of Tyro3 knockdown cells in the early apoptotic phase was observed in four different cell lines each with a different TAM expression profile, revealing a broad anti-apoptotic function of Tyro3. Furthermore, in the Tyro3-dependent cells, Tyro3 depletion caused a significant increase in cells in the G0/G1 phase of the cell cycle concomitant with decreases in the G2/M and S phases. In addition, a cancer pathway gene discovery array revealed distinct sets of genes that were altered in expression in cancer cells upon Tyro3 knockdown. Together, these results have elucidated further a role of Tyro3 in promoting multiple tumour-supporting pathways in human cancer cells, which differs in extent depending on the presence of other TAMs in the same cells. Knockdown of Tyro3 expression in human cancer cells reduced cell viability. Reduced viability by Tyro3 knockdown can be rescued by Gas6 in cells also expressing Axl. Tyro3 knockdown increased the fraction of cancer cells undergoing early apoptosis. Tyro3 depletion shifted cells from G2/M and S phases of the cell cycle to G0/G1 phase. Ligand-independent Tyro3 regulates cancer-related gene sets to promote tumorigenesis.
Collapse
Affiliation(s)
- Nour Al Kafri
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Sassan Hafizi
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
35
|
Novoyatleva T, Rai N, Kojonazarov B, Veeroju S, Ben-Batalla I, Caruso P, Shihan M, Presser N, Götz E, Lepper C, Herpel S, Manaud G, Perros F, Gall H, Ghofrani HA, Weissmann N, Grimminger F, Wharton J, Wilkins M, Upton PD, Loges S, Morrell NW, Seeger W, Schermuly RT. Deficiency of Axl aggravates pulmonary arterial hypertension via BMPR2. Commun Biol 2021; 4:1002. [PMID: 34429509 PMCID: PMC8385080 DOI: 10.1038/s42003-021-02531-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH), is a fatal disease characterized by a pseudo-malignant phenotype. We investigated the expression and the role of the receptor tyrosine kinase Axl in experimental (i.e., monocrotaline and Su5416/hypoxia treated rats) and clinical PAH. In vitro Axl inhibition by R428 and Axl knock-down inhibited growth factor-driven proliferation and migration of non-PAH and PAH PASMCs. Conversely, Axl overexpression conferred a growth advantage. Axl declined in PAECs of PAH patients. Axl blockage inhibited BMP9 signaling and increased PAEC apoptosis, while BMP9 induced Axl phosphorylation. Gas6 induced SMAD1/5/8 phosphorylation and ID1/ID2 increase were blunted by BMP signaling obstruction. Axl association with BMPR2 was facilitated by Gas6/BMP9 stimulation and diminished by R428. In vivo R428 aggravated right ventricular hypertrophy and dysfunction, abrogated BMPR2 signaling, elevated pulmonary endothelial cell apoptosis and loss. Together, Axl is a key regulator of endothelial BMPR2 signaling and potential determinant of PAH.
Collapse
Affiliation(s)
- Tatyana Novoyatleva
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany.
| | - Nabham Rai
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Baktybek Kojonazarov
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
- Institute for Lung Health, Giessen, Germany
| | - Swathi Veeroju
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Isabel Ben-Batalla
- Department of Oncology, Hematology and Bone Marrow Transplantation with section Pneumology, Hubertus Wald University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paola Caruso
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Mazen Shihan
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Nadine Presser
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Elsa Götz
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Carina Lepper
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Sebastian Herpel
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Grégoire Manaud
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Frédéric Perros
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Henning Gall
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Hossein Ardeschir Ghofrani
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Friedrich Grimminger
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - John Wharton
- Centre for Pharmacology and Therapeutics, Department of Medicine, Imperial College London, London, UK
| | - Martin Wilkins
- Centre for Pharmacology and Therapeutics, Department of Medicine, Imperial College London, London, UK
| | - Paul D Upton
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sonja Loges
- Department of Oncology, Hematology and Bone Marrow Transplantation with section Pneumology, Hubertus Wald University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralph T Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
36
|
Zaman A, Bivona TG. Targeting AXL in NSCLC. LUNG CANCER (AUCKLAND, N.Z.) 2021; 12:67-79. [PMID: 34408519 PMCID: PMC8364399 DOI: 10.2147/lctt.s305484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
State-of-the-art cancer precision medicine approaches involve targeted inactivation of chemically and immunologically addressable vulnerabilities that often yield impressive initial anti-tumor responses in patients. Nonetheless, these responses are overshadowed by therapy resistance that follows. AXL, a receptor tyrosine kinase with bona fide oncogenic capacity, has been associated with the emergence of resistance in an array of cancers with varying pathophysiology and cellular origins, including in non-small-cell lung cancers (NSCLCs). Here in this review, we summarize AXL biology during normal homeostasis, oncogenic development and therapy resistance with a focus on NSCLC. In the context of NSCLC therapy resistance, we delineate AXL's role in mediating resistance to tyrosine kinase inhibitors (TKIs) deployed against epidermal growth factor receptor (EGFR) as well as other notable oncogenes and to chemotherapeutics. We also discuss the current understanding of AXL's role in mediating cell-biological variables that function as important modifiers of therapy resistance such as epithelial to mesenchymal transition (EMT), the tumor microenvironment and tumor heterogeneity. We also catalog and discuss a set of effective pharmacologic tools that are emerging to strategically perturb AXL mediated resistance programs in NSCLC. Finally, we enumerate ongoing and future exciting precision medicine approaches targeting AXL as well as challenges in this regard. We highlight that a holistic understanding of AXL biology in NSCLC may allow us to predict and improve targeted therapeutic strategies, such as through polytherapy approaches, potentially against a broad spectrum of NSCLC sub-types to forestall tumor evolution and drug resistance.
Collapse
Affiliation(s)
- Aubhishek Zaman
- Department of Medicine, University of California, San Francisco, CA, USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, CA, USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
37
|
Yang DC, Gu S, Li JM, Hsu SW, Chen SJ, Chang WH, Chen CH. Targeting the AXL Receptor in Combating Smoking-related Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 64:734-746. [PMID: 33730527 PMCID: PMC8456879 DOI: 10.1165/rcmb.2020-0303oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/01/2021] [Indexed: 11/24/2022] Open
Abstract
Tobacco smoking is a well-known risk factor for both fibrogenesis and fibrotic progression; however, the mechanisms behind these processes remain enigmatic. RTKs (receptor tyrosine kinases) have recently been reported to drive profibrotic phenotypes in fibroblasts during pulmonary fibrosis (PF). Using a phospho-RTK array screen, we identified the RTK AXL as a top upregulated RTK in response to smoke. Both expression and signaling activity of AXL were indeed elevated in lung fibroblasts exposed to tobacco smoke, whereas no significant change to the levels of a canonical AXL ligand, Gas6 (growth arrest-specific 6), was seen upon smoke treatment. Notably, we found that smoke-exposed human lung fibroblasts exhibited highly proliferative and invasive activities and were capable of inducing fibrotic lung lesions in mice. Conversely, genetic suppression of AXL in smoke-exposed fibroblasts cells led to suppression of AXL downstream pathways and aggressive phenotypes. We further demonstrated that AXL interacted with MARCKS (myristoylated alanine-rich C kinase substrate) and cooperated with MARCKS in regulating downstream signaling activity and fibroblast invasiveness. Pharmacological inhibition of AXL with AXL-specific inhibitor R428 showed selectivity for smoke-exposed fibroblasts. In all, our data suggest that AXL is a potential marker for smoke-associated PF and that targeting of the AXL pathway is a potential therapeutic strategy in treating tobacco smoking-related PF.
Collapse
Affiliation(s)
- David C. Yang
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Shenwen Gu
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Ji-Min Li
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Ssu-Wei Hsu
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Szu-Jung Chen
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Wen-Hsin Chang
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Hsien Chen
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| |
Collapse
|
38
|
Wium M, Ajayi-Smith AF, Paccez JD, Zerbini LF. The Role of the Receptor Tyrosine Kinase Axl in Carcinogenesis and Development of Therapeutic Resistance: An Overview of Molecular Mechanisms and Future Applications. Cancers (Basel) 2021; 13:1521. [PMID: 33806258 PMCID: PMC8037968 DOI: 10.3390/cancers13071521] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/22/2023] Open
Abstract
Resistance to chemotherapeutic agents by cancer cells has remained a major obstacle in the successful treatment of various cancers. Numerous factors such as DNA damage repair, cell death inhibition, epithelial-mesenchymal transition, and evasion of apoptosis have all been implicated in the promotion of chemoresistance. The receptor tyrosine kinase Axl, a member of the TAM family (which includes TYRO3 and MER), plays an important role in the regulation of cellular processes such as proliferation, motility, survival, and immunologic response. The overexpression of Axl is reported in several solid and hematological malignancies, including non-small cell lung, prostate, breast, liver and gastric cancers, and acute myeloid leukaemia. The overexpression of Axl is associated with poor prognosis and the development of resistance to therapy. Reports show that Axl overexpression confers drug resistance in lung cancer and advances the emergence of tolerant cells. Axl is, therefore, an important candidate as a prognostic biomarker and target for anticancer therapies. In this review, we discuss the consequence of Axl upregulation in cancers, provide evidence for its role in cancer progression and the development of drug resistance. We will also discuss the therapeutic potential of Axl in the treatment of cancer.
Collapse
Affiliation(s)
- Martha Wium
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (M.W.); (A.F.A.-S.)
| | - Aderonke F. Ajayi-Smith
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (M.W.); (A.F.A.-S.)
| | - Juliano D. Paccez
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | - Luiz F. Zerbini
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (M.W.); (A.F.A.-S.)
| |
Collapse
|
39
|
Hoque M, Wai Wong S, Recasens A, Abbassi R, Nguyen N, Zhang D, Stashko MA, Wang X, Frye S, Day BW, Baell J, Munoz L. MerTK activity is not necessary for the proliferation of glioblastoma stem cells. Biochem Pharmacol 2021; 186:114437. [PMID: 33571503 DOI: 10.1016/j.bcp.2021.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022]
Abstract
MerTK has been identified as a promising target for therapeutic intervention in glioblastoma. Genetic studies documented a range of oncogenic processes that MerTK targeting could influence, however robust pharmacological validation has been missing. The aim of this study was to assess therapeutic potential of MerTK inhibitors in glioblastoma therapy. Unlike previous studies, our work provides several lines of evidence that MerTK activity is dispensable for glioblastoma growth. We observed heterogeneous responses to MerTK inhibitors that could not be correlated to MerTK inhibition or MerTK expression in cells. The more selective MerTK inhibitors UNC2250 and UNC2580A lack the anti-proliferative potency of less-selective inhibitors exemplified by UNC2025. Functional assays in MerTK-high and MerTK-deficient cells further demonstrate that the anti-cancer efficacy of UNC2025 is MerTK-independent. However, despite its efficacy in vitro, UNC2025 failed to attenuate glioblastoma growth in vivo. Gene expression analysis from cohorts of glioblastoma patients identified that MerTK expression correlates negatively with proliferation and positively with quiescence genes, suggesting that MerTK regulates dormancy rather than proliferation in glioblastoma. In summary, this study demonstrates the importance of orthogonal inhibitors and disease-relevant models in target validation studies and raises a possibility that MerTK inhibitors could be used to target dormant glioblastoma cells.
Collapse
Affiliation(s)
- Monira Hoque
- School of Medical Sciences, Faculty of Medicine and Health and Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Siu Wai Wong
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ariadna Recasens
- School of Medical Sciences, Faculty of Medicine and Health and Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Ramzi Abbassi
- School of Medical Sciences, Faculty of Medicine and Health and Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Nghi Nguyen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Dehui Zhang
- University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Michael A Stashko
- University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Xiaodong Wang
- University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Stephen Frye
- University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| | - Jonathan Baell
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Lenka Munoz
- School of Medical Sciences, Faculty of Medicine and Health and Charles Perkins Centre, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
40
|
Stewart CM, Phan A, Bo Y, LeBlond ND, Smith TKT, Laroche G, Giguère PM, Fullerton MD, Pelchat M, Kobasa D, Côté M. Ebola virus triggers receptor tyrosine kinase-dependent signaling to promote the delivery of viral particles to entry-conducive intracellular compartments. PLoS Pathog 2021; 17:e1009275. [PMID: 33513206 PMCID: PMC7875390 DOI: 10.1371/journal.ppat.1009275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/10/2021] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
Filoviruses, such as the Ebola virus (EBOV) and Marburg virus (MARV), are causative agents of sporadic outbreaks of hemorrhagic fevers in humans. To infect cells, filoviruses are internalized via macropinocytosis and traffic through the endosomal pathway where host cathepsin-dependent cleavage of the viral glycoproteins occurs. Subsequently, the cleaved viral glycoprotein interacts with the late endosome/lysosome resident host protein, Niemann-Pick C1 (NPC1). This interaction is hypothesized to trigger viral and host membrane fusion, which results in the delivery of the viral genome into the cytoplasm and subsequent initiation of replication. Some studies suggest that EBOV viral particles activate signaling cascades and host-trafficking factors to promote their localization with host factors that are essential for entry. However, the mechanism through which these activating signals are initiated remains unknown. By screening a kinase inhibitor library, we found that receptor tyrosine kinase inhibitors potently block EBOV and MARV GP-dependent viral entry. Inhibitors of epidermal growth factor receptor (EGFR), tyrosine protein kinase Met (c-Met), and the insulin receptor (InsR)/insulin like growth factor 1 receptor (IGF1R) blocked filoviral GP-mediated entry and prevented growth of replicative EBOV in Vero cells. Furthermore, inhibitors of c-Met and InsR/IGF1R also blocked viral entry in macrophages, the primary targets of EBOV infection. Interestingly, while the c-Met and InsR/IGF1R inhibitors interfered with EBOV trafficking to NPC1, virus delivery to the receptor was not impaired in the presence of the EGFR inhibitor. Instead, we observed that the NPC1 positive compartments were phenotypically altered and rendered incompetent to permit viral entry. Despite their different mechanisms of action, all three RTK inhibitors tested inhibited virus-induced Akt activation, providing a possible explanation for how EBOV may activate signaling pathways during entry. In sum, these studies strongly suggest that receptor tyrosine kinases initiate signaling cascades essential for efficient post-internalization entry steps. Ebola virus (EBOV) and Marburg virus (MARV) are zoonotic pathogens that can cause severe hemorrhagic fevers in humans and non-human primates. They are members of the growing Filoviridae family that also includes three other species of Ebolaviruses known to be highly pathogenic in humans. While vaccines for EBOV are being deployed and showed high efficacy, pan-filoviral treatment is still lacking. To infect cells, EBOV requires the endosomal/lysosomal resident protein Niemann-Pick C1 (NPC1). Accordingly, viral particles require extensive trafficking within endosomal pathways for entry and delivery of the viral genome into the host cell cytoplasm. Here, we used chemical biology to reveal that EBOV triggers receptor tyrosine kinase (RTK)-dependent signaling to traffic to intracellular vesicles that contain the receptor and are conducive to entry. The characterization of host trafficking factors and signaling pathways that are potentially triggered by the virus are important as these could be targeted for antiviral therapies. In our study, we identified several RTK inhibitors, some of which are FDA-approved drugs, that potently block EBOV infection. Since all filoviruses known to date, even Měnglà virus that was recently discovered in bats in China, use NPC1 as their entry receptor, these inhibitors have the potential to be effective pan-filovirus antivirals.
Collapse
Affiliation(s)
- Corina M. Stewart
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Alexandra Phan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Nicholas D. LeBlond
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Tyler K. T. Smith
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Patrick M. Giguère
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Morgan D. Fullerton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
- Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
- Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Canada
- * E-mail:
| |
Collapse
|
41
|
AXL Receptor in Breast Cancer: Molecular Involvement and Therapeutic Limitations. Int J Mol Sci 2020; 21:ijms21228419. [PMID: 33182542 PMCID: PMC7696061 DOI: 10.3390/ijms21228419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer was one of the first malignancies to benefit from targeted therapy, i.e., treatments directed against specific markers. Inhibitors against HER2 are a significant example and they improved the life expectancy of a large cohort of patients. Research on new biomarkers, therefore, is always current and important. AXL, a member of the TYRO-3, AXL and MER (TAM) subfamily, is, today, considered a predictive and prognostic biomarker in many tumor contexts, primarily breast cancer. Its oncogenic implications make it an ideal target for the development of new pharmacological agents; moreover, its recent role as immune-modulator makes AXL particularly attractive to researchers involved in the study of interactions between cancer and the tumor microenvironment (TME). All these peculiarities characterize AXL as compared to other members of the TAM family. In this review, we will illustrate the biological role played by AXL in breast tumor cells, highlighting its molecular and biological features, its involvement in tumor progression and its implication as a target in ongoing clinical trials.
Collapse
|
42
|
Dangi A, Natesh NR, Husain I, Ji Z, Barisoni L, Kwun J, Shen X, Thorp EB, Luo X. Single cell transcriptomics of mouse kidney transplants reveals a myeloid cell pathway for transplant rejection. JCI Insight 2020; 5:141321. [PMID: 32970632 PMCID: PMC7605544 DOI: 10.1172/jci.insight.141321] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Myeloid cells are increasingly recognized as major players in transplant rejection. Here, we used a murine kidney transplantation model and single cell transcriptomics to dissect the contribution of myeloid cell subsets and their potential signaling pathways to kidney transplant rejection. Using a variety of bioinformatic techniques, including machine learning, we demonstrate that kidney allograft–infiltrating myeloid cells followed a trajectory of differentiation from monocytes to proinflammatory macrophages, and they exhibited distinct interactions with kidney allograft parenchymal cells. While this process correlated with a unique pattern of myeloid cell transcripts, a top gene identified was Axl, a member of the receptor tyrosine kinase family Tyro3/Axl/Mertk (TAM). Using kidney transplant recipients with Axl gene deficiency, we further demonstrate that Axl augmented intragraft differentiation of proinflammatory macrophages, likely via its effect on the transcription factor Cebpb. This, in turn, promoted intragraft recruitment, differentiation, and proliferation of donor-specific T cells, and it enhanced early allograft inflammation evidenced by histology. We conclude that myeloid cell Axl expression identified by single cell transcriptomics of kidney allografts in our study plays a major role in promoting intragraft myeloid cell and T cell differentiation, and it presents a potentially novel therapeutic target for controlling kidney allograft rejection and improving kidney allograft survival. In a murine model of allogeneic kidney transplantation, single-cell transcriptomics identifies that myeloid cell Axl expression promotes allograft rejection by inducing inflammatory macrophage differentiation.
Collapse
Affiliation(s)
- Anil Dangi
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Naveen R Natesh
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, USA
| | - Irma Husain
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Zhicheng Ji
- Department of Biostatistics & Bioinformatics
| | | | - Jean Kwun
- Department of Surgery, and.,Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
43
|
Hu L, Shen D, Liang D, Shi J, Song C, Jiang K, Du S, Cheng W, Ma J, Li S, Bi X, Barr MP, Fang Z, Xu Q, Li W, Piao H, Meng S. Thyroid receptor-interacting protein 13 and EGFR form a feedforward loop promoting glioblastoma growth. Cancer Lett 2020; 493:156-166. [PMID: 32860853 DOI: 10.1016/j.canlet.2020.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 11/19/2022]
Abstract
Epidermal growth factor receptor (EGFR) amplification and EGFRvIII mutation drive glioblastoma (GBM) pathogenesis, but their regulation remains elusive. Here we characterized the EGFR/EGFRvIII "interactome" in GBM and identified thyroid receptor-interacting protein 13 (TRIP13), an AAA + ATPase, as an EGFR/EGFRvIII-associated protein independent of its ATPase activity. Functionally, TRIP13 augmented EGFR pathway activation and contributed to EGFR/EGFRvIII-driven GBM growth in GBM spheroids and orthotopic GBM xenograft models. Mechanistically, TRIP13 enhanced EGFR protein abundance in part by preventing Cbl-mediated ubiquitination and proteasomal degradation. Reciprocally, TRIP13 was phosphorylated at tyrosine(Y) 56 by EGFRvIII and EGF-activated EGFR. Abrogating TRIP13 Y56 phosphorylation dramatically attenuated TRIP13 expression-enhanced EGFR signaling and GBM cell growth. Clinically, TRIP13 expression was upregulated in GBM specimens and associated with poor patient outcome. In GBM, TRIP13 localized to cell membrane and cytoplasma and exhibited oncogenic effects in vitro and in vivo, depending on EGFR signaling but not the TRIP13 ATPase activity. Collectively, our findings uncover that TRIP13 and EGFR form a feedforward loop to potentiate EGFR signaling in GBM growth and identify a previously unrecognized ATPase activity-independent mode of action of TRIP13 in GBM biology.
Collapse
Affiliation(s)
- Lulu Hu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, PR China
| | - Dachuan Shen
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, PR China
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, PR China
| | - Ji Shi
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, PR China
| | - Chunyan Song
- Department of Neuro-oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, PR China
| | - Ke Jiang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, PR China; Department of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, PR China
| | - Sha Du
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, PR China
| | - Wei Cheng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, PR China
| | - Jianmei Ma
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, PR China
| | - Shao Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, PR China
| | - Xiaolin Bi
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, PR China
| | - Martin P Barr
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital & Trinity College, Dublin, Ireland
| | - Zhiyou Fang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Qing Xu
- Department of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, PR China.
| | - Wenbin Li
- Department of Neuro-oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, PR China.
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, PR China.
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, PR China.
| |
Collapse
|
44
|
Abu-Thuraia A, Goyette MA, Boulais J, Delliaux C, Apcher C, Schott C, Chidiac R, Bagci H, Thibault MP, Davidson D, Ferron M, Veillette A, Daly RJ, Gingras AC, Gratton JP, Côté JF. AXL confers cell migration and invasion by hijacking a PEAK1-regulated focal adhesion protein network. Nat Commun 2020; 11:3586. [PMID: 32681075 PMCID: PMC7368075 DOI: 10.1038/s41467-020-17415-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/28/2020] [Indexed: 01/08/2023] Open
Abstract
Aberrant expression of receptor tyrosine kinase AXL is linked to metastasis. AXL can be activated by its ligand GAS6 or by other kinases, but the signaling pathways conferring its metastatic activity are unknown. Here, we define the AXL-regulated phosphoproteome in breast cancer cells. We reveal that AXL stimulates the phosphorylation of a network of focal adhesion (FA) proteins, culminating in faster FA disassembly. Mechanistically, AXL phosphorylates NEDD9, leading to its binding to CRKII which in turn associates with and orchestrates the phosphorylation of the pseudo-kinase PEAK1. We find that PEAK1 is in complex with the tyrosine kinase CSK to mediate the phosphorylation of PAXILLIN. Uncoupling of PEAK1 from AXL signaling decreases metastasis in vivo, but not tumor growth. Our results uncover a contribution of AXL signaling to FA dynamics, reveal a long sought-after mechanism underlying AXL metastatic activity, and identify PEAK1 as a therapeutic target in AXL positive tumors. AXL receptor tyrosine kinase has a role in metastasis but the mechanism is unclear. In this study, the authors show that AXL activation can control focal adhesion dynamics via PEAK1 and that AXL-mediated PEAK1 phosphorylation is required for metastasis of triple negative breast cancer cells in vivo.
Collapse
Affiliation(s)
- Afnan Abu-Thuraia
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Marie-Anne Goyette
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Jonathan Boulais
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Carine Delliaux
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Chloé Apcher
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Céline Schott
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Rony Chidiac
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Halil Bagci
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada.,Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | | | - Dominique Davidson
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Mathieu Ferron
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada.,Division of Experimental Medicine, McGill University, Montréal, QC, H4A 3J1, Canada
| | - André Veillette
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jean-Philippe Gratton
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada. .,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
45
|
Patel AB, Pomicter AD, Yan D, Eiring AM, Antelope O, Schumacher JA, Kelley TW, Tantravahi SK, Kovacsovics TJ, Shami PJ, O'Hare T, Deininger MW. Dasatinib overcomes stroma-based resistance to the FLT3 inhibitor quizartinib using multiple mechanisms. Leukemia 2020; 34:2981-2991. [PMID: 32409689 PMCID: PMC7606260 DOI: 10.1038/s41375-020-0858-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/21/2020] [Accepted: 04/30/2020] [Indexed: 11/18/2022]
Abstract
FLT3-ITD mutations occur in 20–30% of AML patients and are associated with aggressive disease. Patients with relapsed FLT3-mutated disease respond well to 2nd generation FLT3 TKIs but inevitably relapse within a short timeframe. In this setting, until overt relapse occurs, the bone marrow microenvironment facilitates leukemia cell survival despite continued on-target inhibition. We demonstrate that human bone marrow derived conditioned medium (CM) protects FLT3-ITD+ AML cells from the 2nd generation FLT3 TKI quizartinib and activates STAT3 and STAT5 in leukemia cells. Extrinsic activation of STAT5 by CM is the primary mediator of leukemia cell resistance to FLT3 inhibition. Combination treatment with quizartinib and dasatinib abolishes STAT5 activation and significantly reduces the IC50 of quizartinib in FLT3-ITD+ AML cells cultured in CM. We demonstrate that CM protects FLT3-ITD+ AML cells from the inhibitory effects of quizartinib on glycolysis and that this is partially reversed by treating cells with the combination of quizartinib and dasatinib. Using a doxycycline-inducible STAT5 knockdown in the FLT3-ITD+ MOLM-13 cell line, we show that dasatinib-mediated suppression of leukemia cell glycolytic activity is STAT5-independent and provide a preclinical rationale for combination treatment with quizartinib and dasatinib in FLT3-ITD+ AML.
Collapse
Affiliation(s)
- Ami B Patel
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Dongqing Yan
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Anna M Eiring
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Orlando Antelope
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Todd W Kelley
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Srinivas K Tantravahi
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Tibor J Kovacsovics
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Paul J Shami
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Thomas O'Hare
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael W Deininger
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA. .,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
46
|
Rao L, Mak VCY, Zhou Y, Zhang D, Li X, Fung CCY, Sharma R, Gu C, Lu Y, Tipoe GL, Cheung ANY, Mills GB, Cheung LWT. p85β regulates autophagic degradation of AXL to activate oncogenic signaling. Nat Commun 2020; 11:2291. [PMID: 32385243 PMCID: PMC7210311 DOI: 10.1038/s41467-020-16061-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
PIK3R2 encodes the p85β regulatory subunit of phosphatidylinositol 3-kinase and is frequently amplified in cancers. The signaling mechanism and therapeutic implication of p85β are poorly understood. Here we report that p85β upregulates the protein level of the receptor tyrosine kinase AXL to induce oncogenic signaling in ovarian cancer. p85β activates p110 activity and AKT-independent PDK1/SGK3 signaling to promote tumorigenic phenotypes, which are all abolished upon inhibition of AXL. At the molecular level, p85β alters the phosphorylation of TRIM2 (an E3 ligase) and optineurin (an autophagy receptor), which mediate the selective regulation of AXL by p85β, thereby disrupting the autophagic degradation of the AXL protein. Therapeutically, p85β expression renders ovarian cancer cells vulnerable to inhibitors of AXL, p110, or PDK1. Conversely, p85β-depleted cells are less sensitive to these inhibitors. Together, our findings provide a rationale for pharmacological blockade of the AXL signaling axis in PIK3R2-amplified ovarian cancer.
Collapse
Affiliation(s)
- Ling Rao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Victor C Y Mak
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yuan Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Dong Zhang
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Xinran Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Chloe C Y Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Rakesh Sharma
- Proteomics and Metabolomics Core Facility, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Chao Gu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George L Tipoe
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Annie N Y Cheung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Lydia W T Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
47
|
Zhou Y, Yao Y, Deng Y, Shao A. Regulation of efferocytosis as a novel cancer therapy. Cell Commun Signal 2020; 18:71. [PMID: 32370748 PMCID: PMC7199874 DOI: 10.1186/s12964-020-00542-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
Efferocytosis is a physiologic phagocytic clearance of apoptotic cells, which modulates inflammatory responses and the immune environment and subsequently facilitates immune escape of cancer cells, thus promoting tumor development and progression. Efferocytosis is an equilibrium formed by perfect coordination among “find-me”, “eat-me” and “don’t-eat-me” signals. These signaling pathways not only affect the proliferation, invasion, metastasis, and angiogenesis of tumor cells but also regulate adaptive responses and drug resistance to antitumor therapies. Therefore, efferocytosis-related molecules and pathways are potential targets for antitumor therapy. Besides, supplementing conventional chemotherapy, radiotherapy and other immunotherapies with efferocytosis-targeted therapy could enhance the therapeutic efficacy, reduce off-target toxicity, and promote patient outcome. Video abstract
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
48
|
AXL as a Target in Breast Cancer Therapy. JOURNAL OF ONCOLOGY 2020; 2020:5291952. [PMID: 32148495 PMCID: PMC7042526 DOI: 10.1155/2020/5291952] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/18/2020] [Indexed: 12/21/2022]
Abstract
AXL is a receptor tyrosine kinase (RTK) that has been implicated in diverse tumor-promoting processes such as proliferation, migration, invasion, survival, and apoptosis. AXL therefore plays a role in cancer progression, and AXL has been implicated in a wide variety of malignancies from solid tumors to hematopoietic cancers where it is often associated with poor prognosis. In cancer, AXL has been shown to promote epithelial to mesenchymal transition (EMT), metastasis formation, drug resistance, and a role for AXL in modulation of the tumor microenvironment and immune response has been identified. In light of these activities multiple AXL inhibitors have been developed, and several of these have entered clinical trials in the U.S. In breast cancer, high levels of AXL expression have been observed. The role of AXL in cancer with a focus on therapeutic implications for breast cancer is discussed.
Collapse
|
49
|
Chen G, Bao Y, Weng Q, Zhao Y, Lu X, Fu L, Chen L, Liu Z, Zhang X, Liang G. Compound 15c, a Novel Dual Inhibitor of EGFR L858R/T790M and FGFR1, Efficiently Overcomes Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor Resistance of Non-Small-Cell Lung Cancers. Front Pharmacol 2020; 10:1533. [PMID: 31998131 PMCID: PMC6965315 DOI: 10.3389/fphar.2019.01533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/27/2019] [Indexed: 11/16/2022] Open
Abstract
In the past decades, epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) had been proved as an effective treatment strategy for the patients with EGFR-mutated non-small-cell lung cancer (NSCLC). However, the tolerance for the EGFR-TKI always occurred after continuous administration for a period of time and limiting the application of these drugs. Activation of FGFR1 signaling pathway was one of the important escape mechanisms for EGFR-TKI resistant in NSCLC. Here, a novel dual inhibitor of EGFRL858R/T790M and FGFR1, compound15c, was found and can efficiently overcame the EGFR-TKI resistance via its simultaneous inhibition of their kinase activities. Comparison with EGFRL858R/T790M and FGFR1 inhibitor treatment alone or combined revealed that the inhibition of EGFRL858R/T790M and FGFR1 activity by 15c was responsible for surmounting the intrinsic EGFR-TKI resistance in EGFRL858R/T790M-mutated H1975 cells and the acquired resistance in Afatinib-tolerant PC9 cells (AFA-PC9). Flow Cytometry and Caspase3 activity analysis assay showed that 15c induced significant the early apoptosis of H1975 cells. Xenograft tumor formation in BALB/c mice induced by a H1975 cells was suppressed by 15c treatment, with no changes in animal body weight. Generally, 15c may act as a new-generation EGFR-TKI for the therapy of NSCLC patients suffering a resistance to current TKI.
Collapse
Affiliation(s)
- Gaozhi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| | - Yuyan Bao
- Department of Pharmacy, Sanmen People's Hospital of Zhejiang, Sanmen, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Yingxin Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyao Lu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lili Fu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lingfeng Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiguo Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaomin Zhang
- Department of Pharmacy, Sanmen People's Hospital of Zhejiang, Sanmen, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
50
|
Flem-Karlsen K, Nyakas M, Farstad IN, McFadden E, Wernhoff P, Jacobsen KD, Flørenes VA, Mælandsmo GM. Soluble AXL as a marker of disease progression and survival in melanoma. PLoS One 2020; 15:e0227187. [PMID: 31917795 PMCID: PMC6952099 DOI: 10.1371/journal.pone.0227187] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/14/2019] [Indexed: 12/14/2022] Open
Abstract
Receptor tyrosine kinase AXL is a one-pass transmembrane protein upregulated in cancers and associated with lower survival and therapy resistance. AXL can be cleaved by the A Disintegrin and Metalloproteinases (ADAM)10 and ADAM17, yielding a soluble version of the protein. Elevated soluble AXL (sAXL) has been reported to be associated with disease progression in hepatocellular carcinoma, renal cancer, neurofibromatosis type 1 and inflammatory diseases. In the present work, we analyzed sAXL levels in blood from melanoma patients and showed that sAXL increases with disease progression. Additionally, increased sAXL levels were found correlated with shorter two-year survival in stage IV patients treated with ipilimumab. Furthermore, we showed that sAXL levels were related to the percentage of cells expressing AXL in resected melanoma lymph node metastases. This finding was verified in vitro, where sAXL levels in the cell media corresponded to AXL expression in the cells. AXL inhibition using the small-molecular inhibitor BGB324 reduced sAXL levels, while the cellular expression was elevated through increased protein stability. Our findings signify that quantification of sAXL blood levels is a simple and easily assessable method to determine cellular AXL levels and should be further evaluated for its use as a biomarker of disease progression and treatment response.
Collapse
Affiliation(s)
- Karine Flem-Karlsen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Marta Nyakas
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Inger Nina Farstad
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Erin McFadden
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Patrik Wernhoff
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kari Dolven Jacobsen
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Vivi Ann Flørenes
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Gunhild Mari Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Medical Biology, Faculty of Health Sciences, UiT–Arctic University of Norway, Tromsø, Norway
| |
Collapse
|