1
|
Panetti B, Bucci I, Di Ludovico A, Pellegrino GM, Di Filippo P, Di Pillo S, Chiarelli F, Attanasi M, Sferrazza Papa GF. Acute Respiratory Failure in Children: A Clinical Update on Diagnosis. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1232. [PMID: 39457197 PMCID: PMC11506303 DOI: 10.3390/children11101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Acute respiratory failure (ARF) is a sudden failure of the respiratory system to ensure adequate gas exchanges. Numerous clinical conditions may cause ARF, including pneumonia, obstructive lung diseases (e.g., asthma), restrictive diseases such as neuromuscular diseases (e.g., spinal muscular atrophy and muscular dystrophy), and albeit rarely, interstitial lung diseases. Children, especially infants, may be more vulnerable to ARF than adults due to anatomical and physiological features of the respiratory system. Assessing respiratory impairment in the pediatric population is particularly challenging as children frequently present difficulties in reporting symptoms and due to compliance and cooperation in diagnostic tests. The evaluation of clinical and anamnestic aspects represents the cornerstone of ARF diagnosis: first level exams (e.g., arterial blood gas analysis) confirm and evaluate the severity of the ARF and second level exams help to uncover the underlying cause. Prompt management is critical, with supplemental oxygen, mechanical ventilation, and the treatment of the underlying problem. The aim of this review is to provide a comprehensive summary of the current state of the art in diagnosing pediatric ARF, with a focus on pathophysiology, novel imaging applications, and new perspectives, such as biomarkers and artificial intelligence.
Collapse
Affiliation(s)
- Beatrice Panetti
- Pediatric Allergy and Pulmonology Unit, Department of Pediatrics, University of Chieti, 66100 Chieti, Italy; (B.P.); (I.B.); (A.D.L.); (P.D.F.); (S.D.P.); (F.C.)
| | - Ilaria Bucci
- Pediatric Allergy and Pulmonology Unit, Department of Pediatrics, University of Chieti, 66100 Chieti, Italy; (B.P.); (I.B.); (A.D.L.); (P.D.F.); (S.D.P.); (F.C.)
| | - Armando Di Ludovico
- Pediatric Allergy and Pulmonology Unit, Department of Pediatrics, University of Chieti, 66100 Chieti, Italy; (B.P.); (I.B.); (A.D.L.); (P.D.F.); (S.D.P.); (F.C.)
| | - Giulia Michela Pellegrino
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, 20144 Milan, Italy; (G.M.P.); (G.F.S.P.)
| | - Paola Di Filippo
- Pediatric Allergy and Pulmonology Unit, Department of Pediatrics, University of Chieti, 66100 Chieti, Italy; (B.P.); (I.B.); (A.D.L.); (P.D.F.); (S.D.P.); (F.C.)
| | - Sabrina Di Pillo
- Pediatric Allergy and Pulmonology Unit, Department of Pediatrics, University of Chieti, 66100 Chieti, Italy; (B.P.); (I.B.); (A.D.L.); (P.D.F.); (S.D.P.); (F.C.)
| | - Francesco Chiarelli
- Pediatric Allergy and Pulmonology Unit, Department of Pediatrics, University of Chieti, 66100 Chieti, Italy; (B.P.); (I.B.); (A.D.L.); (P.D.F.); (S.D.P.); (F.C.)
| | - Marina Attanasi
- Pediatric Allergy and Pulmonology Unit, Department of Pediatrics, University of Chieti, 66100 Chieti, Italy; (B.P.); (I.B.); (A.D.L.); (P.D.F.); (S.D.P.); (F.C.)
| | | |
Collapse
|
2
|
Reilly RB, Ramdour SK, Fuhlbrigge ME, Tavares LP, Staffa SJ, Booth JM, Krishnamoorthy N, Levy BD, Duvall MG. An altered natural killer cell immunophenotype characterizes clinically severe pediatric RSV infection. Sci Transl Med 2024; 16:eado6606. [PMID: 39383246 DOI: 10.1126/scitranslmed.ado6606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/12/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Respiratory syncytial virus (RSV) infects nearly all children by 2 years of age and is a leading cause of pediatric hospitalizations. A subset of children with RSV infection (RSV+ children) develop respiratory failure requiring intensive care, but immune mechanisms distinguishing severe pediatric RSV infection are not fully elucidated. Natural killer (NK) cells are key innate immune effectors of viral host defense. In this study of 47 critically ill RSV+ children, we coupled NK cell immunophenotype and cytotoxic function with clinical parameters to identify an NK cell immune signature of severe pediatric RSV disease. Airway NK cells were increased in intubated RSV+ children with severe hypoxemia and prolonged duration of mechanical ventilation and were correlated with clinical severity scores. Peripheral blood NK cells were decreased in RSV+ patients and had altered activating receptor expression, with increased expression of CD69 and decreased expression of NKG2D. Ex vivo, circulating NK cells from RSV+ patients exhibited functional impairment characterized by decreased cytotoxicity as well as aberrant immune synapse assembly and lytic granule trafficking. NK cell frequency and phenotype correlated with clinical measures that defined disease severity. These findings implicate a role for NK cells in mediating RSV immunopathology and suggest that an altered NK cell immunophenotype is associated with severe RSV disease in young children.
Collapse
Affiliation(s)
- Roisin B Reilly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Saïsha K Ramdour
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mary E Fuhlbrigge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Luciana P Tavares
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Steven J Staffa
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jocelyn M Booth
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nandini Krishnamoorthy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce D Levy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Melody G Duvall
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Parsons EL, Kim JS, Malloy AMW. Development of innate and adaptive immunity to RSV in young children. Cell Immunol 2024; 399-400:104824. [PMID: 38615612 DOI: 10.1016/j.cellimm.2024.104824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024]
Abstract
Infection of the respiratory tract with respiratory syncytial virus (RSV) is common and occurs repeatedly throughout life with most severe disease occurring at the extremes of age: in young infants and the elderly. Effective anti-viral therapeutics are not available and therefore prevention has been the primary strategy for reducing the disease burden. Our current understanding of respiratory mucosal cell biology and the immune response within the respiratory tract is inadequate to prevent infection caused by a pathogen like RSV that does not disseminate outside of this environment. Gaps in our understanding of the activation of innate and adaptive immunity in response to RSV and the role of age upon infection also limit improvements in the design of therapeutics and vaccines for young infants. However, advancements in structural biology have improved our ability to characterize antibodies against viral proteins and in 2023 the first vaccines for those over 60 years and pregnant women became available, potentially reducing the burden of disease. This review will examine our current understanding of the critical facets of anti-RSV immune responses in infants and young children as well as highlight areas where more research is needed.
Collapse
Affiliation(s)
| | - Jisung S Kim
- Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation, Bethesda, MD, USA
| | | |
Collapse
|
4
|
Zivanovic N, Öner D, Abraham Y, McGinley J, Drysdale SB, Wildenbeest JG, Crabbe M, Vanhoof G, Thys K, Thwaites RS, Robinson H, Bont L, Openshaw PJM, Martinón‐Torres F, RESCEU Investigators, Pollard AJ, Aerssens J. Single-cell immune profiling reveals markers of emergency myelopoiesis that distinguish severe from mild respiratory syncytial virus disease in infants. Clin Transl Med 2023; 13:e1507. [PMID: 38115705 PMCID: PMC10731116 DOI: 10.1002/ctm2.1507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/31/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023] Open
Abstract
Whereas most infants infected with respiratory syncytial virus (RSV) show no or only mild symptoms, an estimated 3 million children under five are hospitalized annually due to RSV disease. This study aimed to investigate biological mechanisms and associated biomarkers underlying RSV disease heterogeneity in young infants, enabling the potential to objectively categorize RSV-infected infants according to their medical needs. Immunophenotypic and functional profiling demonstrated the emergence of immature and progenitor-like neutrophils, proliferative monocytes (HLA-DRLow , Ki67+), impaired antigen-presenting function, downregulation of T cell response and low abundance of HLA-DRLow B cells in severe RSV disease. HLA-DRLow monocytes were found as a hallmark of RSV-infected infants requiring hospitalization. Complementary transcriptomics identified genes associated with disease severity and pointed to the emergency myelopoiesis response. These results shed new light on mechanisms underlying the pathogenesis and development of severe RSV disease and identified potential new candidate biomarkers for patient stratification.
Collapse
Affiliation(s)
- Nevena Zivanovic
- Discovery Sciences & Translational Biomarkers Infectious DiseasesJanssen Research and DevelopmentBeerseBelgium
| | - Deniz Öner
- Discovery Sciences & Translational Biomarkers Infectious DiseasesJanssen Research and DevelopmentBeerseBelgium
| | - Yann Abraham
- Discovery Sciences & Translational Biomarkers Infectious DiseasesJanssen Research and DevelopmentBeerseBelgium
| | - Joseph McGinley
- Department of PaediatricsOxford Vaccine Group, NIHR Oxford Biomedical Research Centre, University of OxfordLondonUK
| | - Simon B. Drysdale
- Centre for Neonatal and Paediatric Infection, Institute for Infection and Immunity, St George's, University of LondonLondonUK
| | - Joanne G. Wildenbeest
- Department of Pediatric Infectious Diseases and ImmunologyWilhelmina Children's Hospital, University Medical Center UtrechtUtrechtThe Netherlands
| | - Marjolein Crabbe
- Discovery Sciences & Translational Biomarkers Infectious DiseasesJanssen Research and DevelopmentBeerseBelgium
| | - Greet Vanhoof
- Discovery Sciences & Translational Biomarkers Infectious DiseasesJanssen Research and DevelopmentBeerseBelgium
| | - Kim Thys
- Discovery Sciences & Translational Biomarkers Infectious DiseasesJanssen Research and DevelopmentBeerseBelgium
| | - Ryan S. Thwaites
- Department of Respiratory MedicineNational Heart and Lung Institute, Imperial College LondonLondonUK
| | - Hannah Robinson
- Department of PaediatricsOxford Vaccine Group, NIHR Oxford Biomedical Research Centre, University of OxfordLondonUK
| | - Louis Bont
- Department of Pediatric Infectious Diseases and ImmunologyWilhelmina Children's Hospital, University Medical Center UtrechtUtrechtThe Netherlands
| | - Peter J. M. Openshaw
- Department of Respiratory MedicineNational Heart and Lung Institute, Imperial College LondonLondonUK
| | - Federico Martinón‐Torres
- Pediatrics DepartmentTranslational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago de Compostela, Santiago de CompostelaGaliciaSpain
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, University of Santiago de CompostelaGaliciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos IIIMadridSpain
| | | | - Andrew J. Pollard
- Department of PaediatricsOxford Vaccine Group, NIHR Oxford Biomedical Research Centre, University of OxfordLondonUK
| | - Jeroen Aerssens
- Discovery Sciences & Translational Biomarkers Infectious DiseasesJanssen Research and DevelopmentBeerseBelgium
| |
Collapse
|
5
|
Aljabali AAA, Obeid MA, El-Tanani M, Tambuwala MM. Respiratory Syncytial Virus: An Overview. Future Virol 2023; 18:595-609. [DOI: 10.2217/fvl-2023-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/26/2023] [Indexed: 01/11/2025]
Affiliation(s)
- Alaa AA Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Mohammad A Obeid
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, England, UK
| |
Collapse
|
6
|
Alkubaisi NA, Aziz IM, Alsaleh AN, Alhetheel AF, Almajhdi FN. Molecular Profiling of Inflammatory Mediators in Human Respiratory Syncytial Virus and Human Bocavirus Infection. Genes (Basel) 2023; 14:genes14051101. [PMID: 37239461 DOI: 10.3390/genes14051101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Infections due to human respiratory syncytial virus (HRSV) and human bocavirus (HBoV) can mediate the release of several pro-inflammatory cytokines such as IL-6, IL-8, and TNF-α, which are usually associated with disease severity in children. In this study, the change in the expression profile of cytokines and chemokines were determined during HRSV, HBoV, and HRSV coinfection with HBoV in 75 nasopharyngeal aspirates (NPAs) samples, positive real-time reverse transcriptase PCR Assay (rRT-PCR) for HRSV (n = 36), HBoV (n = 23) infection alone or HRSV coinfection with HBoV (n = 16). The samples were collected from hospitalized children. qPCR-based detection revealed that the levels of IL-6, IL-8, IL-10, IL-13, IL-33, and G-CSF were significantly (p < 0.05) greater in patients than in controls. IL-4, IL-17, GM-CSF, and CCL-5 were significantly elevated in children with HRSV coinfection with HBoV than in other groups (p < 0.05). TNF-α, IL-6, IL-8, IL-10, IL-13, and IL-33 in children with HRSV were significantly increased in severe infections compared to mild infections. Whereas, IL-10, IL-13, and IL-33 were significantly increased in severe infection in compared a mild infection in children with HBoV. Further large-scale investigations involving isolates are needed to enhance our knowledge of the association between viral infections and cytokine expression patterns during the different stages of HRSV and HBoV infection.
Collapse
Affiliation(s)
- Noorah A Alkubaisi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ibrahim M Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asma N Alsaleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulkarim F Alhetheel
- Department of Pathology and Laboratory Medicine, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad N Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Globenko AA, Kuzin GV, Rydlovskaya AV, Isaeva EI, Vetrova EN, Pritchina TN, Baranova A, Nebolsin VE. Curtailing virus-induced inflammation in respiratory infections: emerging strategies for therapeutic interventions. Front Pharmacol 2023; 14:1087850. [PMID: 37214455 PMCID: PMC10196389 DOI: 10.3389/fphar.2023.1087850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/06/2023] [Indexed: 05/24/2023] Open
Abstract
Acute respiratory viral infections (ARVI) are the most common illnesses worldwide. In some instances, mild cases of ARVI progress to hyperinflammatory responses, which are damaging to pulmonary tissue and requiring intensive care. Here we summarize available information on preclinical and clinical effects of XC221GI (1-[2-(1-methyl imidazole-4-yl)-ethyl]perhydroazin-2,6-dione), an oral drug with a favorable safety profile that has been tested in animal models of influenza, respiratory syncytial virus, highly pathogenic coronavirus strains and other acute viral upper respiratory infections. XC221GI is capable of controlling IFN-gamma-driven inflammation as it is evident from the suppression of the production of soluble cytokines and chemokines, including IL-6, IL-8, CXCL10, CXCL9 and CXCL11 as well as a decrease in migration of neutrophils into the pulmonary tissue. An excellent safety profile of XC221GI, which is not metabolized by the liver, and its significant anti-inflammatory effects indicate utility of this compound in abating conversion of ambulatory cases of respiratory infections into the cases with aggravated presentation that require hospitalization. This drug is especially useful when rapid molecular assays determining viral species are impractical, or when direct antiviral drugs are not available. Moreover, XC221GI may be combined with direct antiviral drugs to enhance their therapeutic effects.
Collapse
Affiliation(s)
| | | | | | - Elena I. Isaeva
- N F Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow, Russia
| | - Elizaveta N. Vetrova
- N F Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow, Russia
| | - Tat’yana N. Pritchina
- N F Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow, Russia
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA, United States
- Research Centre for Medical Genetics, Moscow, Russia
| | | |
Collapse
|
8
|
Bertrand PJ, Vázquez Y, Beckhaus AA, González LA, Contreras AM, Ferrés M, Padilla O, Riedel CA, Kalergis AM, Bueno SM. Identification of biomarkers for disease severity in nasopharyngeal secretions of infants with upper or lower respiratory tract viral infections. Clin Exp Immunol 2022; 210:68-78. [PMID: 36036806 PMCID: PMC9585550 DOI: 10.1093/cei/uxac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/08/2022] [Accepted: 08/24/2022] [Indexed: 01/25/2023] Open
Abstract
Lower respiratory tract infections (LRTIs) produced by viruses are the most frequent cause of morbidity and mortality in children younger than 5 years of age. The immune response triggered by viral infection can induce a strong inflammation in the airways and cytokines could be considered as biomarkers for disease severity as these molecules modulate the inflammatory response that defines the outcome of patients. Aiming to predict the severity of disease during respiratory tract infections, we conducted a 1-year follow-up observational study in infants who presented upper or lower respiratory tract infections caused by seasonal respiratory viruses. At the time of enrollment, nasopharyngeal swabs (NPS) were obtained from infants to measure mRNA expression and protein levels of IL-3, IL-8, IL-33, and thymic stromal lymphopoietin. While all cytokines significantly increased their protein levels in infants with upper and lower respiratory tract infections as compared to control infants, IL-33 and IL-8 showed a significant increase in respiratory syncytial virus (RSV)-infected patients with LRTI as compared to patients with upper respiratory tract infection. We also found higher viral loads of RSV-positive samples with a greater IL-8 response at the beginning of the symptoms. Data obtained in this study suggest that both IL-8 and IL-33 could be used as biomarkers for clinical severity for infants suffering from LRTIs caused by the RSV.
Collapse
Affiliation(s)
- Pablo J Bertrand
- Departamento de Enfermedades Respiratorias Pediátricas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yaneisi Vázquez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea A Beckhaus
- Departamento de Enfermedades Respiratorias Pediátricas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Liliana A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana María Contreras
- Laboratorio de Infectología y Virología Molecular, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcela Ferrés
- Laboratorio de Infectología y Virología Molecular, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Oslando Padilla
- Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
9
|
Koch CM, Prigge AD, Setar L, Anekalla KR, Do-Umehara HC, Abdala-Valencia H, Politanska Y, Shukla A, Chavez J, Hahn GR, Coates BM. Cilia-related gene signature in the nasal mucosa correlates with disease severity and outcomes in critical respiratory syncytial virus bronchiolitis. Front Immunol 2022; 13:924792. [PMID: 36211387 PMCID: PMC9540395 DOI: 10.3389/fimmu.2022.924792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) can cause life-threatening respiratory failure in infants. We sought to characterize the local host response to RSV infection in the nasal mucosa of infants with critical bronchiolitis and to identify early admission gene signatures associated with clinical outcomes. Methods Nasal scrape biopsies were obtained from 33 infants admitted to the pediatric intensive care unit (PICU) with critical RSV bronchiolitis requiring non-invasive respiratory support (NIS) or invasive mechanical ventilation (IMV), and RNA sequencing (RNA-seq) was performed. Gene expression in participants who required shortened NIS (</= 3 days), prolonged NIS (> 3 days), and IMV was compared. Findings Increased expression of ciliated cell genes and estimated ciliated cell abundance, but not immune cell abundance, positively correlated with duration of hospitalization in infants with critical bronchiolitis. A ciliated cell signature characterized infants who required NIS for > 3 days while a basal cell signature was present in infants who required NIS for </= 3 days, despite both groups requiring an equal degree of respiratory support at the time of sampling. Infants who required invasive mechanical ventilation had increased expression of genes involved in neutrophil activation and cell death. Interpretation Increased expression of cilia-related genes in clinically indistinguishable infants with critical RSV may differentiate between infants who will require prolonged hospitalization and infants who will recover quickly. Validation of these findings in a larger cohort is needed to determine whether a cilia-related gene signature can predict duration of illness in infants with critical bronchiolitis. The ability to identify which infants with critical RSV bronchiolitis may require prolonged hospitalization using non-invasive nasal samples would provide invaluable prognostic information to parents and medical providers.
Collapse
Affiliation(s)
- Clarissa M. Koch
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Andrew D. Prigge
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Leah Setar
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | | | | | | | - Yuliya Politanska
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Avani Shukla
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Jairo Chavez
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Grant R. Hahn
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Bria M. Coates
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
- *Correspondence: Bria M. Coates,
| |
Collapse
|
10
|
Córdova-Dávalos LE, Hernández-Mercado A, Barrón-García CB, Rojas-Martínez A, Jiménez M, Salinas E, Cervantes-García D. Impact of genetic polymorphisms related to innate immune response on respiratory syncytial virus infection in children. Virus Genes 2022; 58:501-514. [PMID: 36085536 PMCID: PMC9462631 DOI: 10.1007/s11262-022-01932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022]
Abstract
Respiratory syncytial virus (RSV) causes lower respiratory tract infections and bronchiolitis, mainly affecting children under 2 years of age and immunocompromised patients. Currently, there are no available vaccines or efficient pharmacological treatments against RSV. In recent years, tremendous efforts have been directed to understand the pathological mechanisms of the disease and generate a vaccine against RSV. Although RSV is highly infectious, not all the patients who get infected develop bronchiolitis and severe disease. Through various sequencing studies, single nucleotide polymorphisms (SNPs) have been discovered in diverse receptors, cytokines, and transcriptional regulators with crucial role in the activation of the innate immune response, which is implicated in the susceptibility to develop or protect from severe forms of the infection. In this review, we highlighted how variations in the key genes affect the development of innate immune response against RSV. This data would provide crucial information about the mechanisms of viral infection, and in the future, could help in generation of new strategies for vaccine development or generation of the pharmacological treatments.
Collapse
Affiliation(s)
- Laura Elena Córdova-Dávalos
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Alicia Hernández-Mercado
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Claudia Berenice Barrón-García
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Augusto Rojas-Martínez
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto 3000 Pte, Los Doctores, 64710, Monterrey, Nuevo León, México
| | - Mariela Jiménez
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Eva Salinas
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México.
| | - Daniel Cervantes-García
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México. .,Consejo Nacional de Ciencia y Tecnología, 03940, Ciudad de México, México.
| |
Collapse
|
11
|
Xiong R, Fu R, Wu Y, Wu X, Cao Y, Qu Z, Yang Y, Liu S, Huo G, Wang S, Huang W, Lyu J, Zhu X, Liang C, Peng Y, Wang Y, Fan C. Long-Term Infection and Pathogenesis in a Novel Mouse Model of Human Respiratory Syncytial Virus. Viruses 2022; 14:1740. [PMID: 36016362 PMCID: PMC9415064 DOI: 10.3390/v14081740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Intensive efforts have been made to develop models of hRSV infection or disease using various animals. However, the limitations such as semi-permissiveness and short duration of infection have impeded their applications in both the pathogenesis of hRSV and therapeutics development. Here, we present a mouse model based on a Rag2 gene knockout using CRISPR/Cas9 technology. Rag2-/- mice sustained high viral loads upon intranasal inoculation with hRSV. The average peak titer rapidly reached 1 × 109.8 copies/g and 1c106 TCID50 in nasal cavity, as well as 1 × 108 copies/g and 1 × 105 TCID50 in the lungs up to 5 weeks. Mild interstitial pneumonia, severe bronchopneumonia, elevated cytokines and NK cells were seen in Rag2-/- mice. A humanized monoclonal antibody showed strong antiviral activity in this animal model, implying that Rag2-/- mice that support long-term stable infection are a useful tool for studying the transmission and pathogenesis of human RSV, as well as evaluating therapeutics.
Collapse
Affiliation(s)
- Rui Xiong
- National Rodent Laboratory Animal Resources Center, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Rui Fu
- National Rodent Laboratory Animal Resources Center, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yong Wu
- National Rodent Laboratory Animal Resources Center, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Xi Wu
- National Rodent Laboratory Animal Resources Center, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yuan Cao
- National Rodent Laboratory Animal Resources Center, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Zhe Qu
- National Center for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control (NIFDC), Beijing 100176, China
| | - Yanwei Yang
- National Center for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control (NIFDC), Beijing 100176, China
| | - Susu Liu
- National Rodent Laboratory Animal Resources Center, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Guitao Huo
- National Center for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control (NIFDC), Beijing 100176, China
| | - Sanlong Wang
- National Center for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control (NIFDC), Beijing 100176, China
| | - Weijin Huang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Jianjun Lyu
- Department of Pathology, InnoStar Bio-Tech Nantong Co., Ltd., Nantong 226133, China
| | - Xiang Zhu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Chunnan Liang
- National Rodent Laboratory Animal Resources Center, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yihong Peng
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Youchun Wang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Changfa Fan
- National Rodent Laboratory Animal Resources Center, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| |
Collapse
|
12
|
Stukova МА, Rydlovskaya AV, Proskurina OV, Mochalov SV, Shurygina APS, Nebolsin VE. <em>In vitro</em> and <em>in vivo</em> pharmacodynamic activity of the new compound XC221GI in models of the viral inflammation of the respiratory tract. MICROBIOLOGY INDEPENDENT RESEARCH JOURNAL 2022. [DOI: 10.18527/2500-2236-2022-9-1-56-70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The viruses most commonly affecting the human respiratory tract include rhinoviruses, respiratory syncytial virus (RSV), influenza viruses, and coronaviruses (CoVs). The virus infection of the epithelial cells of the respiratory tract triggers an inflammation accompanied by the release of pro-inflammatory cytokines and chemokines including IL6, IL8(CXCL8), IL1β, and tumor necrosis factor α (TNFα). A subsequent acute inflammatory response in the lungs is accompanied by an increase in the production of cytokines and chemokines − CXCR3 receptor ligands – that are key players of acute inflammatory response that induce an influx of neutrophils and T cells into the lungs.We studied the pharmacodynamic activity of the new compound XC221GI to suppress the IL6 and IL8 of an experimental RSV infection in vitro in human lung carcinoma cells A549 and in vivo in the lungs of cotton rats. We also studied the effect of XC221GI on the production of the chemokines CXCL10, CXCL9, and CXCL11 in mouse bronchoalveolar lavage as well as on the influx of neutrophils into the mouse lungs after the intranasal administration of interferon γ (IFNγ).The obtained results demonstrate the anti-inflammatory activity of XC221GI, which suppresses the production of excessive levels of the key inflammatory markers IL6, IL8, CXCL10, CXCL9, and CXCL11 as well as the influx of neutrophils into the lungs thereby reducing lung pathology. These data confirm the effectiveness of XC221GI as a means of preventive anti-inflammatory therapy during a viral infection of the respiratory tract.
Collapse
|
13
|
Anderson J, Thang CM, Thanh LQ, Dai VTT, Phan VT, Nhu BTH, Trang DNX, Trinh PTP, Nguyen TV, Toan NT, Harpur CM, Mulholland K, Pellicci DG, Do LAH, Licciardi PV. Immune Profiling of Cord Blood From Preterm and Term Infants Reveals Distinct Differences in Pro-Inflammatory Responses. Front Immunol 2021; 12:777927. [PMID: 34790206 PMCID: PMC8591285 DOI: 10.3389/fimmu.2021.777927] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022] Open
Abstract
Background Preterm infants are highly vulnerable to infectious disease. While many factors are likely to contribute to this enhanced susceptibility, the immature nature of the preterm immune system is postulated as one key factor. Methods In our study, we used high-dimensional flow cytometry and cytokine assays to characterise the immune profiles in 25 preterm (range: 30.4-34.1 weeks gestational age) and 25 term infant (range: 37-40 weeks gestational age) cord blood samples. Results We found that preterm infants exhibit reduced frequencies of monocytes, CD56bright NK cells, CD8+ T-cells, γδ T-cells and an increased frequency of intermediate monocytes, CD4+ T-cells, central memory CD4+ and CD8+ T-cells, Tregs and transitional B-cells compared to term infants. Pro-inflammatory cytokines IL-1β, IL-6 and IL-17A were lower in preterm infants in addition to chemokines IL-8, eotaxin, MIP-1α and MIP-1β. However, IL-15 and MCP-1 were higher in preterm infants. Conclusion Overall, we identify key differences in pro-inflammatory immune profiles between preterm and term infants. These findings may help to explain why preterm infants are more susceptible to infectious disease during early life and facilitate the development of targeted interventions to protect this highly vulnerable group.
Collapse
Affiliation(s)
- Jeremy Anderson
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Cao Minh Thang
- Department of Microbiology and Immunology, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh, Vietnam
| | | | - Vo Thi Trang Dai
- Department of Microbiology and Immunology, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - Van Thanh Phan
- Department of Microbiology and Immunology, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - Bui Thi Hong Nhu
- Department of Labour Delivery, Tu Du Hospital, Ho Chi Minh, Vietnam
| | | | | | | | - Nguyen Trong Toan
- Clinical Research Centre, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - Christopher M Harpur
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Kim Mulholland
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.,Epidemiology and Public Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Daniel G Pellicci
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Lien Anh Ha Do
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Paul V Licciardi
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Heinonen S, Velazquez VM, Ye F, Mertz S, Acero-Bedoya S, Smith B, Bunsow E, Garcia-Mauriño C, Oliva S, Cohen DM, Moore-Clingenpeel M, Peeples ME, Ramilo O, Mejias A. Immune profiles provide insights into respiratory syncytial virus disease severity in young children. Sci Transl Med 2021; 12:12/540/eaaw0268. [PMID: 32321862 DOI: 10.1126/scitranslmed.aaw0268] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 11/21/2019] [Accepted: 03/05/2020] [Indexed: 12/29/2022]
Abstract
Respiratory syncytial virus (RSV) is associated with major morbidity in infants, although most cases result in mild disease. The pathogenesis of the disease is incompletely understood, especially the determining factors of disease severity. A better characterization of these factors may help with development of RSV vaccines and antivirals. Hence, identification of a "safe and protective" immunoprofile induced by natural RSV infection could be used as a as a surrogate of ideal vaccine-elicited responses in future clinical trials. In this study, we integrated blood transcriptional and cell immune profiling, RSV loads, and clinical data to identify factors associated with a mild disease phenotype in a cohort of 190 children <2 years of age. Children with mild disease (outpatients) showed higher RSV loads, greater induction of interferon (IFN) and plasma cell genes, and decreased expression of inflammation and neutrophil genes versus children with severe disease (inpatients). Additionally, only infants with severe disease had increased numbers of HLA-DRlow monocytes, not present in outpatients. Multivariable analyses confirmed that IFN overexpression was associated with decreased odds of hospitalization, whereas increased numbers of HLA-DRlow monocytes were associated with increased risk of hospitalization. These findings suggest that robust innate immune responses are associated with mild RSV infection in infants.
Collapse
Affiliation(s)
- Santtu Heinonen
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Victoria M Velazquez
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Fang Ye
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sara Mertz
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Santiago Acero-Bedoya
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Bennett Smith
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Eleonora Bunsow
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Cristina Garcia-Mauriño
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Silvia Oliva
- Division of Pediatric Emergency Medicine and Critical Care, Hospital Regional Universitario de Málaga, Málaga 29001, Spain.,Departamento de Farmacología y Pediatría, Facultad de Medicina, Universidad de Málaga, Málaga 29071, Spain
| | - Daniel M Cohen
- Division of Emergency Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Melissa Moore-Clingenpeel
- Biostatistics Core, The Research Institute at Nationwide Children's Hospital Columbus, OH 43205, USA
| | - Mark E Peeples
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Octavio Ramilo
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA. .,Division of Infectious Diseases, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Asuncion Mejias
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA. .,Departamento de Farmacología y Pediatría, Facultad de Medicina, Universidad de Málaga, Málaga 29071, Spain.,Division of Infectious Diseases, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH 43205, USA
| |
Collapse
|
15
|
Xu J, Wu W, Chen H, Xue Y, Bao X, Zhou J. Substituted N-(4-amino-2-chlorophenyl)-5-chloro-2-hydroxybenzamide analogues potently inhibit respiratory syncytial virus (RSV) replication and RSV infection-associated inflammatory responses. Bioorg Med Chem 2021; 39:116157. [PMID: 33895704 DOI: 10.1016/j.bmc.2021.116157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in young children, and specific treatment for RSV infections remains unavailable. We herein reported a series of substituted N-(4-amino-2-chlorophenyl)-5-chloro-2-hydroxybenzamide analogues as potent RSV inhibitors. Among them, six low cytotoxic compounds (11, 12, 15, 22, 26, and 28) have been identified and selected to study associated inhibitory mechanisms. All these compounds suppressed not only the viral replication but also RSV-induced IRF3 and NF-κB activation and associated production of cytokines/chemokines. The two most potent compounds (15 and 22) were selected for further molecular mechanism studies associated with their suppression effect on RSV-activated IRF3 and NF-κB. These two compounds decreased RSV-induced IRF3 phosphorylation at serine 396 and p65 phosphorylation at serine 536 at both early and late infection phases. In addition, compound 22 also inhibited RSV-induced p65 phosphorylation at serine 276 at the late phase of RSV infection.
Collapse
Affiliation(s)
- Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States
| | - Wenzhe Wu
- Department of Pediatrics, University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States
| | - Yu Xue
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States; Sealy Center for Molecular Medicine, and University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States.
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States; Sealy Center for Molecular Medicine, and University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States.
| |
Collapse
|
16
|
Öner D, Drysdale SB, McPherson C, Lin GL, Janet S, Broad J, Pollard AJ, Aerssens J. Biomarkers for Disease Severity in Children Infected With Respiratory Syncytial Virus: A Systematic Literature Review. J Infect Dis 2021; 222:S648-S657. [PMID: 32794555 DOI: 10.1093/infdis/jiaa208] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Clinical manifestations of respiratory syncytial virus (RSV) infection vary widely from mild, self-limiting illness to severe life-threatening disease. There are gaps in knowledge of biomarkers to objectively define severe disease and predict clinical outcomes. METHODS A systematic search was performed, 1945-March 2019 in databases Ovid Medline, Embase, Global health, Scopus, and Web of Science. Risk of bias was assessed using the Cochrane tool. RESULTS A total of 25 132 abstracts were screened and studies were assessed for quality, risk of bias, and extracted data; 111 studies met the inclusion criteria. RSV severity was correlated with antibody titers, reduced T and B cells, dysregulated innate immunity, neutrophil mobilization to the lungs and blood, decreased Th1 response, and Th2 weighted shift. Microbial exposures in respiratory tract may contribute to neutrophil mobilization to the lungs of the infants with severe RSV compared with mild RSV disease. CONCLUSIONS Although a wide range of biomarkers have been associated with RSV disease severity, robust validated biomarkers are lacking. This review illustrates the broad heterogeneity of study designs and high variability in the definition of severe RSV disease. Prospective studies are required to validate biomarkers. Additional research investigating epigenetics, metabolomics, and microbiome holds promise for novel biomarkers.
Collapse
Affiliation(s)
- Deniz Öner
- Infectious Diseases Translational Biomarkers, Janssen Pharmaceutica, Beerse, Belgium
| | - Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom.,Paediatric Infectious Diseases Research Group, Institute of Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Calum McPherson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Gu-Lung Lin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Sophie Janet
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Jonathan Broad
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Jeroen Aerssens
- Infectious Diseases Translational Biomarkers, Janssen Pharmaceutica, Beerse, Belgium
| | | |
Collapse
|
17
|
Anderson J, Do LAH, Wurzel D, Quan Toh Z, Mulholland K, Pellicci DG, Licciardi PV. Severe respiratory syncytial virus disease in preterm infants: a case of innate immaturity. Thorax 2021; 76:942-950. [PMID: 33574121 DOI: 10.1136/thoraxjnl-2020-216291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/12/2021] [Accepted: 01/27/2021] [Indexed: 11/03/2022]
Abstract
Respiratory syncytial virus (RSV) is the most common viral pathogen associated with acute lower respiratory tract infection (LRTI) in children under 5 years of age. Severe RSV disease is associated with the development of chronic respiratory complications such as recurrent wheezing and asthma. A common risk factor for developing severe RSV disease is premature gestation and this is largely due to an immature innate immune system. This increases susceptibility to RSV since the innate immune system is less able to protect against pathogens at a time when adaptive immunity has not fully developed. This review focuses on comparing different aspects of innate immunity between preterm and term infants to better understand why preterm infants are more susceptible to severe RSV disease. Identifying early life innate immune biomarkers associated with the development of severe RSV disease, and understanding how these compare between preterm and term infants, remains a critically important question that would aid the development of interventions to reduce the burden of disease in this vulnerable population.
Collapse
Affiliation(s)
- Jeremy Anderson
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Lien Anh Ha Do
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Pediatrics, The University of Melbourne-Parkville Campus, Melbourne, Victoria, Australia
| | - Danielle Wurzel
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Pediatrics, The University of Melbourne-Parkville Campus, Melbourne, Victoria, Australia.,The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Zheng Quan Toh
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Pediatrics, The University of Melbourne-Parkville Campus, Melbourne, Victoria, Australia
| | - Kim Mulholland
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Pediatrics, The University of Melbourne-Parkville Campus, Melbourne, Victoria, Australia.,Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Daniel G Pellicci
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Pediatrics, The University of Melbourne-Parkville Campus, Melbourne, Victoria, Australia
| | - Paul V Licciardi
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia .,Department of Pediatrics, The University of Melbourne-Parkville Campus, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Ding Q, Xu L, Zhu Y, Xu B, Chen X, Duan Y, Xie Z, Shen K. Comparison of clinical features of acute lower respiratory tract infections in infants with RSV/HRV infection, and incidences of subsequent wheezing or asthma in childhood. BMC Infect Dis 2020; 20:387. [PMID: 32473625 PMCID: PMC7260463 DOI: 10.1186/s12879-020-05094-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Background To compare the clinical characteristics of acute lower respiratory tract infections (ALRTIs) caused by respiratory syncytial virus (RSV) and human rhinovirus (HRV) and to explore the relationship between the development of recurrent wheezing/asthma and RSV/ HRV infections in infancy. Methods Retrospective study was conducted to compare the clinical characteristics of acute lower respiratory tract infections (ALRTIs). Hospitalized patients with ALRTIs from March 2007 to December 2016 were screened. Single RSV cases (s-RSV), single HRV cases (s-HRV), and cases who had co-infection with the two viruses were enrolled. Follow-up was performed to determine whether either specific respiratory virus infection was related to subsequent development of recurrent wheezing/asthma. Results The s-RSV children were the youngest (P = 0.021), they experienced the most serious condition (P < 0.001) and respiratory failure (P < 0.001), they also required highest demand of oxygen therapy (P < 0.001). And in s-RSV group, the incidence of development of recurrent wheezing was significantly higher in subgroup with the family history of wheezing than that without (P < 0.001). Conclusion The s-RSV cases suffered from the worst severity of illness, respiratory failure and required highest demand of oxygen therapy. Recurrent wheezing was more common in s-RSV group with family history of wheezing than those without.
Collapse
Affiliation(s)
- Qin Ding
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yun Zhu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Baoping Xu
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiangpeng Chen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yali Duan
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Kunling Shen
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
19
|
Siefker DT, Vu L, You D, McBride A, Taylor R, Jones TL, DeVincenzo J, Cormier SA. Respiratory Syncytial Virus Disease Severity Is Associated with Distinct CD8 + T-Cell Profiles. Am J Respir Crit Care Med 2020; 201:325-334. [PMID: 31644878 PMCID: PMC6999109 DOI: 10.1164/rccm.201903-0588oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/21/2019] [Indexed: 01/03/2023] Open
Abstract
Rationale: Respiratory syncytial virus (RSV) causes significant morbidity and mortality in infants worldwide. Although T-helper type 2 (Th2) cell pathology is implicated in severe disease, the mechanisms underlying the development of immunopathology are incompletely understood.Objectives: We aimed to identify local immune responses associated with severe RSV in infants. Our hypothesis was that disease severity would correlate with enhanced Th2 cellular responses.Methods: Nasal aspirates were collected from infants hospitalized with severe (admitted to the pediatric ICU) or moderate (maintained in the general ward) RSV disease at 5 to 9 days after enrollment. The immune response was investigated by evaluating T-lymphocyte cellularity, cytokine concentration, and viral load.Measurements and Main Results: Patients with severe disease had increased proportions of CD8 (cluster of differentiation 8)-positive T cells expressing IL-4 (Tc2) and reduced proportions of CD8+ T cells expressing IFNγ (Tc1). Nasal aspirates from patients with severe disease had reduced concentrations of IL-17. Patients with greater frequencies of Tc1, CD8+ T cells expressing IL-17 (Tc17), and CD4+ T cells expressing IL-17 (Th17) had shorter durations of hospitalization.Conclusions: Severe RSV disease was associated with distinct T-cell profiles. Tc1, Tc17, and Th17 were associated with shorter hospital stay and may play a protective role, whereas Tc2 cells may play a previously underappreciated role in pathology.
Collapse
Affiliation(s)
- David T. Siefker
- Department of Biological Sciences, College of Science, and Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Luan Vu
- Department of Biological Sciences, College of Science, and Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Dahui You
- Department of Pediatrics, and
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, Tennessee
| | | | | | - Tamekia L. Jones
- Department of Pediatrics, and
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; and
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, Tennessee
| | - John DeVincenzo
- Department of Pediatrics, and
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, Tennessee
| | - Stephania A. Cormier
- Department of Biological Sciences, College of Science, and Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
20
|
van Erp EA, Feyaerts D, Duijst M, Mulder HL, Wicht O, Luytjes W, Ferwerda G, van Kasteren PB. Respiratory Syncytial Virus Infects Primary Neonatal and Adult Natural Killer Cells and Affects Their Antiviral Effector Function. J Infect Dis 2019; 219:723-733. [PMID: 30252097 PMCID: PMC6376914 DOI: 10.1093/infdis/jiy566] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023] Open
Abstract
Background Respiratory syncytial virus (RSV) is a major cause of severe acute lower respiratory tract infections in infants. Natural killer (NK) cells are important antiviral effector cells that likely encounter RSV in the presence of virus-specific (maternal) antibodies. As NK cells potentially contribute to immunopathology, we investigated whether RSV affects their antiviral effector functions. Methods We assessed the phenotype and functionality of primary neonatal and adult NK cells by flow cytometry after stimulation with RSV or RSV-antibody complexes. Results We demonstrate for the first time that RSV infects neonatal and adult NK cells in vitro. Preincubation of virus with subneutralizing concentrations of RSV-specific antibodies significantly increased the percentage of infected NK cells. Upon infection, NK cells were significantly more prone to produce interferon-γ, while secretion of the cytotoxicity molecule perforin was not enhanced. Conclusions Our findings suggest that (antibody-enhanced) RSV infection of NK cells induces a proinflammatory rather than a cytotoxic response, which may contribute to immunopathology. Considering that most RSV vaccines currently being developed aim at inducing (maternal) antibodies, these results highlight the importance of understanding the interactions between innate effector cells and virus-specific antibodies.
Collapse
Affiliation(s)
- Elisabeth A van Erp
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Dorien Feyaerts
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Maxime Duijst
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven
| | - H Lie Mulder
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven
| | - Oliver Wicht
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven
| | - Willem Luytjes
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven
| | - Gerben Ferwerda
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Puck B van Kasteren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven
- Correspondence: P. B. van Kasteren, PhD, National Institute for Public Health and the Environment, Center for Infectious Diseases Control, Postbus 1, 3720 BA Bilthoven, The Netherlands ()
| |
Collapse
|
21
|
Hancock DG, Cavallaro EC, Doecke E, Reynolds M, Charles-Britton B, Dixon DL, Forsyth KD. Immune biomarkers predicting bronchiolitis disease severity: A systematic review. Paediatr Respir Rev 2019; 32:82-90. [PMID: 31128878 DOI: 10.1016/j.prrv.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/25/2018] [Accepted: 11/23/2018] [Indexed: 12/23/2022]
Abstract
Bronchiolitis is one of the leading causes of hospitalisation in infancy, with highly variable clinical presentations ranging from mild disease safely managed at home to severe disease requiring invasive respiratory support. Identifying immune biomarkers that can predict and stratify this variable disease severity has important implications for clinical prognostication/disposition. A systematic literature search of the databases Embase, PubMed, ScienceDirect, Web of Science, and Wiley Online Library was performed. English language studies that assessed the association between an immune biomarker and bronchiolitis disease severity among children aged less than 24 months were included. 252 distinct biomarkers were identified across 90 studies. A substantial degree of heterogeneity was observed in the bronchiolitis definitions, measures of disease severity, and study designs. 99 biomarkers showed some significant association with disease severity, but only 18 were significant in multiple studies. However, all of these candidate biomarkers had comparable studies that reported conflicting results. Conclusion: The heterogeneity among included studies and the lack of a consistently significant biomarker highlight the need for consensus on bronchiolitis definitions and severity measures, as well as further studies assessing their clinical utility both in isolation and in combination.
Collapse
Affiliation(s)
- David G Hancock
- Department of Paediatrics and Child Health, Flinders University, Bedford Park, Australia.
| | - Elena C Cavallaro
- Intensive and Critical Care Unit, Flinders University and Flinders Medical Centre, Bedford Park, Australia.
| | - Elizabeth Doecke
- Department of Paediatrics and Child Health, Flinders University, Bedford Park, Australia.
| | - Molly Reynolds
- Department of Paediatrics and Child Health, Flinders University, Bedford Park, Australia.
| | - Billie Charles-Britton
- Department of Paediatrics and Child Health, Flinders University, Bedford Park, Australia.
| | - Dani-Louise Dixon
- Intensive and Critical Care Unit, Flinders University and Flinders Medical Centre, Bedford Park, Australia.
| | - Kevin D Forsyth
- Department of Paediatrics and Child Health, Flinders University, Bedford Park, Australia.
| |
Collapse
|
22
|
Vázquez Y, González L, Noguera L, González PA, Riedel CA, Bertrand P, Bueno SM. Cytokines in the Respiratory Airway as Biomarkers of Severity and Prognosis for Respiratory Syncytial Virus Infection: An Update. Front Immunol 2019; 10:1154. [PMID: 31214165 PMCID: PMC6557983 DOI: 10.3389/fimmu.2019.01154] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 05/07/2019] [Indexed: 12/24/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) is one of the most important causes of upper and lower respiratory tract infections in children and the main cause of bronchiolitis worldwide. Disease manifestations caused by hRSV may vary from mild to severe, occasionally requiring admission and hospitalization in intensive care units. Despite the high morbidity rates associated to bronchiolitis, treatment options against hRSV are limited and there are no current vaccination strategies to prevent infection. Importantly, the early identification of high-risk patients can help improve disease management and prevent complications associated with hRSV infection. Recently, the characterization of pro- and anti-inflammatory cytokine patterns produced during hRSV-related inflammatory processes has allowed the identification of potential prognosis biomarkers. A suitable biomarker should allow predicting the severity of the infection in a simple and opportune manner and should ideally be obtained from non-invasive samples. Among the cytokines associated with hRSV disease severity, IL-8, interferon-alpha (IFN-alpha), and IL-6, as well as the Th2-type cytokines thymic stromal lymphopoietin (TSLP), IL-3, and IL-33 have been highlighted as molecules with prognostic value in hRSV infections. In this review, we discuss current studies that describe molecules produced by patients during hRSV infection and their potential as biomarkers to anticipate the severity of the disease caused by this virus.
Collapse
Affiliation(s)
- Yaneisi Vázquez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Liliana González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreani Noguera
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo Bertrand
- División de Pediatría, Unidad de Enfermedades Respiratorias Pediátricas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
23
|
van Erp EA, Luytjes W, Ferwerda G, van Kasteren PB. Fc-Mediated Antibody Effector Functions During Respiratory Syncytial Virus Infection and Disease. Front Immunol 2019; 10:548. [PMID: 30967872 PMCID: PMC6438959 DOI: 10.3389/fimmu.2019.00548] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections and hospitalization in infants under 1 year of age and there is currently no market-approved vaccine available. For protection against infection, young children mainly depend on their innate immune system and maternal antibodies. Traditionally, antibody-mediated protection against viral infections is thought to be mediated by direct binding of antibodies to viral particles, resulting in virus neutralization. However, in the case of RSV, virus neutralization titers do not provide an adequate correlate of protection. The current lack of understanding of the mechanisms by which antibodies can protect against RSV infection and disease or, alternatively, contribute to disease severity, hampers the design of safe and effective vaccines against this virus. Importantly, neutralization is only one of many mechanisms by which antibodies can interfere with viral infection. Antibodies consist of two structural regions: a variable fragment (Fab) that mediates antigen binding and a constant fragment (Fc) that mediates downstream effector functions via its interaction with Fc-receptors on (innate) immune cells or with C1q, the recognition molecule of the complement system. The interaction with Fc-receptors can lead to killing of virus-infected cells through a variety of immune effector mechanisms, including antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Antibody-mediated complement activation may lead to complement-dependent cytotoxicity (CDC). In addition, both Fc-receptor interactions and complement activation can exert a broad range of immunomodulatory functions. Recent studies have emphasized the importance of Fc-mediated antibody effector functions in both protection and pathogenesis for various infectious agents. In this review article, we aim to provide a comprehensive overview of the current knowledge on Fc-mediated antibody effector functions in the context of RSV infection, discuss their potential role in establishing the balance between protection and pathogenesis, and point out important gaps in our understanding of these processes. Furthermore, we elaborate on the regulation of these effector functions on both the cellular and humoral side. Finally, we discuss the implications of Fc-mediated antibody effector functions for the rational design of safe and effective vaccines and monoclonal antibody therapies against RSV.
Collapse
Affiliation(s)
- Elisabeth A. van Erp
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Radboud Center for Infectious Diseases, Nijmegen, Netherlands
| | - Willem Luytjes
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Gerben Ferwerda
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Radboud Center for Infectious Diseases, Nijmegen, Netherlands
| | - Puck B. van Kasteren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
24
|
Tahamtan A, Askari FS, Bont L, Salimi V. Disease severity in respiratory syncytial virus infection: Role of host genetic variation. Rev Med Virol 2019; 29:e2026. [DOI: 10.1002/rmv.2026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Alireza Tahamtan
- Student Research Committee, School of Medicine; Golestan University of Medical Sciences; Gorgan Iran
- Department of Microbiology, School of Medicine; Golestan University of Medical Sciences; Gorgan Iran
| | - Fatemeh Sana Askari
- Student Research Committee, School of Medicine; Golestan University of Medical Sciences; Gorgan Iran
| | - Louis Bont
- Department of Pediatrics, Wilhelmina Children's Hospital; University Medical Centre Utrecht; Utrecht Netherlands
| | - Vahid Salimi
- Department of Virology, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
25
|
Ayegbusi OT, Ajagbe OA, Afowowe TO, Aransi AT, Olusola BA, Awogbindin IO, Ogunsemowo OO, Faneye AO, Odaibo GN, Olaleye DO. Virus genes and host correlates of pathology are markedly reduced during respiratory syncytial and influenza virus co-infection in BALB/c mice. Heliyon 2019; 5:e01094. [PMID: 30623128 PMCID: PMC6319304 DOI: 10.1016/j.heliyon.2018.e01094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/14/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022] Open
Abstract
Globally, influenza A virus (IAV) and respiratory syncytial virus (RSV) infection remain very high. There is also a high burden of IAV and RSV co-infection in developing countries. To develop universally protective vaccines against these infections, it is imperative that viral genes and immune correlates of pathology are elucidated. As such, we profiled virus genes expressions, histopathology and immunological responses of BALB/c mice infected with RSV and/or IAV in this study. RSV A2 and/or influenza A/H3N2/Perth/16/09 (Pr/H3N2) were induced over a seven-day period in BALB/c mice. Anaesthetized BALB/c mice (12-14 g) were divided into six groups (15-20 mice per group), inoculated with 32 μl each of 3LD50 Pr/H3N2 and/or 100 TCID50 RSV. Two groups (R or I) received RSV or Pr/H3N2 intranasally. Prior infection with either RSV or Pr/H3N2 was followed with a second challenge of the other virus 24 hours post inoculation in RI and IR groups. Another set was exposed to the two viruses simultaneously (I + R group) while the last group served as healthy controls. Five to seven mice per group were euthanized at days 2, 4 and 7. Lung and spleen organs were harvested for virus genes quantitation and immune cells phenotyping respectively. I + R group showed progressive downregulation of RSV F, G, NS1 and NS2 genes. IAV PB2 and M genes had high fold increase on day 2 and 4 post infections. However, by day 7 post infection, M and PB2 fold increase was lower. Also, increased proportions of NKT and T cell subsets were observed throughout the period in I + R group. Conversely, I group was characterized by reduced NKT cell counts and enhanced CD8 T cells levels while R group only showed an increased proportion of CD8 T cells towards the peak of infection. This study shows that RSV and IAV co-infection lead to reduced virulence and pathology compared to single infections. This information is very useful in combinatorial RSV/IAV vaccine design and development.
Collapse
Affiliation(s)
- Olaitan T. Ayegbusi
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwaseyi A. Ajagbe
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tosin O. Afowowe
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Abideen T. Aransi
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Babatunde A. Olusola
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | | - Adedayo O. Faneye
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Georgina N. Odaibo
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - David O. Olaleye
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
26
|
Ederveen THA, Ferwerda G, Ahout IM, Vissers M, de Groot R, Boekhorst J, Timmerman HM, Huynen MA, van Hijum SAFT, de Jonge MI. Haemophilus is overrepresented in the nasopharynx of infants hospitalized with RSV infection and associated with increased viral load and enhanced mucosal CXCL8 responses. MICROBIOME 2018; 6:10. [PMID: 29325581 PMCID: PMC5765694 DOI: 10.1186/s40168-017-0395-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/21/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND While almost all infants are infected with respiratory syncytial virus (RSV) before the age of 2 years, only a small percentage develops severe disease. Previous studies suggest that the nasopharyngeal microbiome affects disease development. We therefore studied the effect of the nasopharyngeal microbiome on viral load and mucosal cytokine responses, two important factors influencing the pathophysiology of RSV disease. To determine the relation between (i) the microbiome of the upper respiratory tract, (ii) viral load, and (iii) host mucosal inflammation during an RSV infection, nasopharyngeal microbiota profiles of RSV infected infants (< 6 months) with different levels of disease severity and age-matched healthy controls were determined by 16S rRNA marker gene sequencing. The viral load was measured using qPCR. Nasopharyngeal CCL5, CXCL10, MMP9, IL6, and CXCL8 levels were determined with ELISA. RESULTS Viral load in nasopharyngeal aspirates of patients associates significantly to total nasopharyngeal microbiota composition. Healthy infants (n = 21) and RSV patients (n = 54) display very distinct microbial patterns, primarily characterized by a loss in commensals like Veillonella and overrepresentation of opportunistic organisms like Haemophilus and Achromobacter in RSV-infected individuals. Furthermore, nasopharyngeal microbiota profiles are significantly different based on CXCL8 levels. CXCL8 is a chemokine that was previously found to be indicative for disease severity and for which we find Haemophilus abundance as the strongest predictor for CXCL8 levels. CONCLUSIONS The nasopharyngeal microbiota in young infants with RSV infection is marked by an overrepresentation of the genus Haemophilus. We present that this bacterium is associated with viral load and mucosal CXCL8 responses, both which are involved in RSV disease pathogenesis.
Collapse
Affiliation(s)
- Thomas H A Ederveen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerben Ferwerda
- Laboratory of Pediatric Infectious Diseases, Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein-Zuid 10 (Route 412), 6525, GA, Nijmegen, The Netherlands.
| | - Inge M Ahout
- Laboratory of Pediatric Infectious Diseases, Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein-Zuid 10 (Route 412), 6525, GA, Nijmegen, The Netherlands
| | - Marloes Vissers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Ronald de Groot
- Laboratory of Pediatric Infectious Diseases, Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein-Zuid 10 (Route 412), 6525, GA, Nijmegen, The Netherlands
| | - Jos Boekhorst
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- NIZO, Ede, The Netherlands
| | | | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sacha A F T van Hijum
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- NIZO, Ede, The Netherlands
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein-Zuid 10 (Route 412), 6525, GA, Nijmegen, The Netherlands
| |
Collapse
|
27
|
Ahout IML, Brand KH, Zomer A, van den Hurk WH, Schilders G, Brouwer ML, Neeleman C, de Groot R, Ferwerda G. Prospective observational study in two Dutch hospitals to assess the performance of inflammatory plasma markers to determine disease severity of viral respiratory tract infections in children. BMJ Open 2017; 7:e014596. [PMID: 28667205 PMCID: PMC5734420 DOI: 10.1136/bmjopen-2016-014596] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Respiratory viruses causing lower respiratory tract infections (LRTIs) are a major cause of hospital admissions in children. Since the course of these infections is unpredictable with potential fast deterioration into respiratory failure, infants are easily admitted to the hospital for observation. The aim of this study was to examine whether systemic inflammatory markers can be used to predict severity of disease in children with respiratory viral infections. METHODS Blood and nasopharyngeal washings from children <3 years of age with viral LRTI attending a hospital were collected within 24 hours (acute) and after 4-6 weeks (recovery). Patients were assigned to a mild (observation only), moderate (supplemental oxygen and/or nasogastric feeding) or severe (mechanical ventilation) group. Linear regression analysis was used to design a prediction rule using plasma levels of C reactive protein (CRP), serum amyloid A (SAA), pentraxin 3 (PTX3), serum amyloid P component and properdin. This rule was tested in a validation cohort. RESULTS One hundred and four children (52% male) were included. A combination of CRP, SAA, PTX3 and properdin was a better indicator of severe disease compared with any of the individual makers and age (69% sensitivity (95% CI 50 to 83), 90% specificity (95% CI 80 to 96)). Validation in 141 patients resulted in 71% sensitivity (95% CI 53 to 85), 87% specificity (95% CI 79 to 92), negative predictive value of 64% (95% CI 47 to 78) and positive predictive value of 90% (95% CI 82 to 95). The prediction rule was not able to identify patients with a mild course of disease. CONCLUSION A combination of CRP, SAA, PTX3 and properdin was able to identify children with a severe course of viral LRTI disease, even in children under 2 months of age. To assess the true impact on clinical management, these results should be validated in a prospective randomised control study.
Collapse
Affiliation(s)
- Inge M L Ahout
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, The Netherlands
| | - Kim H Brand
- Department of Pediatrics, Erasmus MC Sophia, Rotterdam, The Netherlands
| | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | | | - Geurt Schilders
- Department Research and Development, Hycult Biotech, Uden, The Netherlands
| | - Marianne L Brouwer
- Department of Pediatrics, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Chris Neeleman
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Ronald de Groot
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, The Netherlands
| | - Gerben Ferwerda
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Connors TJ, Ravindranath TM, Bickham KL, Gordon CL, Zhang F, Levin B, Baird JS, Farber DL. Airway CD8(+) T Cells Are Associated with Lung Injury during Infant Viral Respiratory Tract Infection. Am J Respir Cell Mol Biol 2017; 54:822-30. [PMID: 26618559 DOI: 10.1165/rcmb.2015-0297oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Infants and young children are disproportionately susceptible to severe complications from respiratory viruses, although the underlying mechanisms remain unknown. Recent studies show that the T cell response in the lung is important for protective responses to respiratory infections, although details on the infant/pediatric respiratory immune response remain sparse. The objectives of the present study were to characterize the local versus systemic immune response in infants and young children with respiratory failure from viral respiratory tract infections and its association to disease severity. Daily airway secretions were sampled from infants and children 4 years of age and younger receiving mechanical ventilation owing to respiratory failure from viral infection or noninfectious causes. Samples were examined for immune cell composition and markers of T cell activation. These parameters were then correlated with clinical disease severity. Innate immune cells and total CD3(+) T cells were present in similar proportions in airway aspirates derived from infected and uninfected groups; however, the CD8:CD4 T cell ratio was markedly increased in the airways of patients with viral infection compared with uninfected patients, and specifically in infected infants with acute lung injury. T cells in the airways were phenotypically and functionally distinct from those in blood with activated/memory phenotypes and increased cytotoxic capacity. We identified a significant increase in airway cytotoxic CD8(+) T cells in infants with lung injury from viral respiratory tract infection that was distinct from the T cell profile in circulation and associated with increasing disease severity. Airway sampling could therefore be diagnostically informative for assessing immune responses and lung damage.
Collapse
Affiliation(s)
- Thomas J Connors
- 1 Department of Pediatrics and.,2 Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York
| | | | - Kara L Bickham
- 2 Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York
| | - Claire L Gordon
- 2 Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York
| | - Feifan Zhang
- 3 Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York; and Departments of
| | - Bruce Levin
- 3 Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York; and Departments of
| | | | - Donna L Farber
- 2 Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York.,4 Surgery and.,5 Microbiology and Immunology, Columbia University Medical Center, New York, New York
| |
Collapse
|
29
|
Raiden S, Sananez I, Remes-Lenicov F, Pandolfi J, Romero C, De Lillo L, Ceballos A, Geffner J, Arruvito L. Respiratory Syncytial Virus (RSV) Infects CD4+ T Cells: Frequency of Circulating CD4+ RSV+ T Cells as a Marker of Disease Severity in Young Children. J Infect Dis 2017; 215:1049-1058. [PMID: 28199704 DOI: 10.1093/infdis/jix070] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/31/2017] [Indexed: 12/21/2022] Open
Abstract
Background Although human airway epithelial cells are the main target of respiratory syncytial virus (RSV), it also infects immune cells, such as macrophages and B cells. Whether T cells are permissive to RSV infection is unknown. We sought to analyze the permissiveness of CD4+ T cells to RSV infection. Methods CD4+ and CD8+ T cells from cord blood, healthy young children, and adults were challenged by RSV or cocultured with infected HEp-2 cells. Infection, phenotype, and cytokine production by T cells were analyzed by flow cytometry or enzyme-linked immunosorbent assay. Expression of RSV antigens by circulating CD4+ T cells from infected children was analyzed by flow cytometry, and disease severity was defined by standard criteria. Results CD4+ and CD8+ T cells were productively infected by RSV. Infection decreased interleukin 2 and interferon γ production as well as the expression of CD25 and Ki-67 by activated CD4+ T cells. Respiratory syncytial virus antigens were detected in circulating CD4+ and CD8+ T cells during severe RSV infection of young children. Interestingly, the frequency of CD4+ RSV+ T cells positively correlated with disease severity. Conclusions Respiratory syncytial virus infects CD4+ and CD8+ T cells and compromises T-cell function. The frequency of circulating CD4+ RSV+ T cells might represent a novel marker of severe infection.
Collapse
Affiliation(s)
| | - Inés Sananez
- Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires.,Instituto de Inmunología, Genética y Metabolismo, CONICET, Universidad de Buenos Aires
| | - Federico Remes-Lenicov
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, and.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, CONICET, Universidad de Buenos Aires, Argentina
| | - Julieta Pandolfi
- Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires.,Instituto de Inmunología, Genética y Metabolismo, CONICET, Universidad de Buenos Aires
| | | | | | - Ana Ceballos
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, and.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, CONICET, Universidad de Buenos Aires, Argentina
| | - Jorge Geffner
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, and.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, CONICET, Universidad de Buenos Aires, Argentina
| | - Lourdes Arruvito
- Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires.,Instituto de Inmunología, Genética y Metabolismo, CONICET, Universidad de Buenos Aires
| |
Collapse
|
30
|
Russell CD, Unger SA, Walton M, Schwarze J. The Human Immune Response to Respiratory Syncytial Virus Infection. Clin Microbiol Rev 2017; 30:481-502. [PMID: 28179378 PMCID: PMC5355638 DOI: 10.1128/cmr.00090-16] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is an important etiological agent of respiratory infections, particularly in children. Much information regarding the immune response to RSV comes from animal models and in vitro studies. Here, we provide a comprehensive description of the human immune response to RSV infection, based on a systematic literature review of research on infected humans. There is an initial strong neutrophil response to RSV infection in humans, which is positively correlated with disease severity and mediated by interleukin-8 (IL-8). Dendritic cells migrate to the lungs as the primary antigen-presenting cell. An initial systemic T-cell lymphopenia is followed by a pulmonary CD8+ T-cell response, mediating viral clearance. Humoral immunity to reinfection is incomplete, but RSV IgG and IgA are protective. B-cell-stimulating factors derived from airway epithelium play a major role in protective antibody generation. Gamma interferon (IFN-γ) has a strongly protective role, and a Th2-biased response may be deleterious. Other cytokines (particularly IL-17A), chemokines (particularly CCL-5 and CCL-3), and local innate immune factors (including cathelicidins and IFN-λ) contribute to pathogenesis. In summary, neutrophilic inflammation is incriminated as a harmful response, whereas CD8+ T cells and IFN-γ have protective roles. These may represent important therapeutic targets to modulate the immunopathogenesis of RSV infection.
Collapse
Affiliation(s)
- Clark D Russell
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Stefan A Unger
- Department of Child Life and Health, University of Edinburgh, Edinburgh, UK
| | - Marc Walton
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Jürgen Schwarze
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Department of Child Life and Health, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
31
|
Wishaupt JO, Ploeg TVD, Smeets LC, Groot RD, Versteegh FGA, Hartwig NG. Pitfalls in interpretation of CT-values of RT-PCR in children with acute respiratory tract infections. J Clin Virol 2017; 90:1-6. [PMID: 28259567 PMCID: PMC7185604 DOI: 10.1016/j.jcv.2017.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/26/2016] [Accepted: 02/19/2017] [Indexed: 11/12/2022]
Abstract
Background The relation between viral load and disease severity in childhood acute respiratory tract infections (ARI) is not fully understood. Objectives To assess the clinical relevance of the relation between viral load, determined by cycle threshold (CT) value of real-time reverse transcription-polymerase chain reaction assays and disease severity in children with single- and multiple viral ARI. Study design 582 children with ARI were prospectively followed and tested for 15 viruses. Correlations were calculated between CT values and clinical parameters. Results In single viral ARI, statistically significant correlations were found between viral loads of Respiratory Syncytial Virus (RSV) and hospitalization and between viral loads of Human Coronavirus (HCoV) and a disease severity score. In multiple-viral ARI, statistically significant correlations between viral load and clinical parameters were found. In RSV-Rhinovirus (RV) multiple infections, a low viral load of RV was correlated with a high length of hospital stay and a high duration of extra oxygen use. The mean CT value for RV, HCoV and Parainfluenza virus was significantly lower in single- versus multiple infections. Conclusion Although correlations between CT values and clinical parameters in patients with single and multiple viral infection were found, the clinical importance of these findings is limited because individual differences in host-, viral and laboratory factors complicate the interpretation of statistically significant findings. In multiple infections, viral load cannot be used to differentiate between disease causing virus and innocent bystanders.
Collapse
Affiliation(s)
- Jérôme O Wishaupt
- Reinier de Graaf Hospital, Department of Pediatrics, PO Box 5011, 2600GA Delft, The Netherlands.
| | - Tjeerd van der Ploeg
- Pieter van Foreest Institute for Education and Research, Medical Center Alkmaar, PO Box 501, 1800AM Alkmaar, The Netherlands
| | - Leo C Smeets
- Reinier Haga Medisch Diagnostisch Centrum, PO Box 5011, 2600GA Delft, The Netherlands
| | - Ronald de Groot
- Radboud University Medical Center, Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, PO Box 9101, 6500HB Nijmegen, The Netherlands
| | - Florens G A Versteegh
- Groene Hart Ziekenhuis, Department of Pediatrics, PO Box 1098, 2800BB Gouda, The Netherlands; Ghent University Hospital, Department of Pediatrics, De Pintelaan 185, 9000 Gent, Belgium
| | - Nico G Hartwig
- Franciscus Gasthuis en Vlietland, Department of Pediatrics, Postbus 10900, 3004BA Rotterdam, The Netherlands; Erasmus MC, University Medical Center Rotterdam, Department of Pediatric Infectious Diseases and Immunology, PO Box 2040, 3000CA Rotterdam, The Netherlands
| |
Collapse
|
32
|
Li Y, Li H, Fan R, Wen B, Zhang J, Cao X, Wang C, Song Z, Li S, Li X, Lv X, Qu X, Huang R, Liu W. Coronavirus Infections in the Central Nervous System and Respiratory Tract Show Distinct Features in Hospitalized Children. Intervirology 2017; 59:163-169. [PMID: 28103598 PMCID: PMC7179523 DOI: 10.1159/000453066] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/03/2016] [Indexed: 12/22/2022] Open
Abstract
Background/Aims Coronavirus (CoV) infections induce respiratory tract illnesses and central nervous system (CNS) diseases. We aimed to explore the cytokine expression profiles in hospitalized children with CoV-CNS and CoV-respiratory tract infections. Methods A total of 183 and 236 hospitalized children with acute encephalitis-like syndrome and respiratory tract infection, respectively, were screened for anti-CoV IgM antibodies. The expression profiles of multiple cytokines were determined in CoV-positive patients. Results Anti-CoV IgM antibodies were detected in 22/183 (12.02%) and 26/236 (11.02%) patients with acute encephalitis-like syndrome and respiratory tract infection, respectively. Cytokine analysis revealed that the level of serum granulocyte colony-stimulating factor (G-CSF) was significantly higher in both CoV-CNS and CoV-respiratory tract infection compared with healthy controls. Additionally, the serum level of granulocyte macrophage colony-stimulating factor (GM-CSF) was significantly higher in CoV-CNS infection than in CoV-respiratory tract infection. In patients with CoV-CNS infection, the levels of IL-6, IL-8, MCP-1, and GM-CSF were significantly higher in their cerebrospinal fluid samples than in matched serum samples. Conclusion To the best of our knowledge, this is the first report showing a high incidence of CoV infection in hospitalized children, especially with CNS illness. The characteristic cytokine expression profiles in CoV infection indicate the importance of host immune response in disease progression.
Collapse
Affiliation(s)
- Yuanyuan Li
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Chenzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim GJ, Park YM, Won SM, Choi SJ, Kim HS, Chun YH, Yoon JS, Kim HH, Kim JT. Correlation between serum cytokines and clinical feature of children with mild lower respiratory infection. ALLERGY ASTHMA & RESPIRATORY DISEASE 2017. [DOI: 10.4168/aard.2017.5.2.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Geon Ju Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu Mi Park
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sul Mui Won
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Jun Choi
- Department of Pediatrics, Asan Medical Center Children's Hospital, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hwan Soo Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoon Hong Chun
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jong-Seo Yoon
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Hee Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Tack Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
34
|
Vissers M, Ahout IM, van den Kieboom CH, van der Gaast-de Jongh CE, Groh L, Cremers AJ, de Groot R, de Jonge MI, Ferwerda G. High pneumococcal density correlates with more mucosal inflammation and reduced respiratory syncytial virus disease severity in infants. BMC Infect Dis 2016; 16:129. [PMID: 26983753 PMCID: PMC4794819 DOI: 10.1186/s12879-016-1454-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/04/2016] [Indexed: 11/10/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) is an important cause of lower respiratory tract infections in infants. A small percentage of the infected infants develops a severe infection, while most of these severely ill patients were previously healthy. It remains unclear why these children develop severe RSV infections. In this study, we investigate whether pneumococcal nasopharyngeal carriage patterns correlate with mucosal inflammation and severity of disease. Methods In total, 105 infants hospitalized with RSV infection were included and recovery samples were taken from 42 patients. The presence and density of Streptococcus pneumoniae was determined by RT qPCR to study its relation to viral load, inflammation (MMP-9 and IL-6) and severity of RSV disease. Results We show that pneumococcal presence or absence in the nasopharynx does not correlate with viral load, inflammation or severity of disease. However, when pneumococcus is present in patients, a higher nasopharyngeal pneumococcal density was correlated with a higher RSV load, higher MMP-9 levels and a less severe course of disease. Conclusions Our results show correlations between S. pneumoniae density and viral load, inflammation and disease severity, suggesting that pneumococcal density may be an indicator for severity in paediatric RSV disease. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1454-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marloes Vissers
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Inge M Ahout
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Corné H van den Kieboom
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Christa E van der Gaast-de Jongh
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Laszlo Groh
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Amelieke J Cremers
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ronald de Groot
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Gerben Ferwerda
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
35
|
Noyola DE, Juárez-Vega G, Monjarás-Ávila C, Escalante-Padrón F, Rangel-Ramírez V, Cadena-Mota S, Monsiváis-Urenda A, García-Sepúlveda CA, González-Amaro R. NK cell immunophenotypic and genotypic analysis of infants with severe respiratory syncytial virus infection. Microbiol Immunol 2016; 59:389-97. [PMID: 25988502 DOI: 10.1111/1348-0421.12265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/16/2015] [Accepted: 04/29/2015] [Indexed: 11/30/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infection in infants. Reduced numbers of NK cells have been reported in infants with severe RSV infection; however, the precise role of NK cells during acute RSV infection is unclear. In this study the NK and T cell phenotypes, LILRB1 gene polymorphisms and KIR genotypes of infants hospitalized with RSV infection were analyzed. Compared to controls, infants with acute RSV infection showed a higher proportion of LILRB1+ T cells; in addition, a subgroup of infants with RSV infection showed an increase in LILRB1+ NK cells. No differences in NKG2C, NKG2A, or CD161 expression between RSV infected infants and controls were observed. LILRB1 genotype distribution of the rs3760860 A>G, and rs3760861 A>G single nucleotide polymorphisms differed between infants with RSV infection and healthy donors, whereas no differences in any of the KIR genes were observed. Our results suggest that LILRB1 participates in the pathogenesis of RSV infection. Further studies are needed to define the role of LILRB1+ NK in response to RSV and to confirm an association between LILRB1 polymorphisms and the risk of severe RSV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christian A García-Sepúlveda
- Viral and Human Genomics Laboratory, Medical School, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | | |
Collapse
|
36
|
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a common cause of bronchiolitis in infants with a wide spectrum of disease severity. Besides environmental and genetic factors, it is thought that the innate immune system plays a pivotal role. The aim of this study was to investigate the expression of immune receptors on monocytes and the in vitro responsiveness from infants with severe RSV infections. METHODS Peripheral blood mononuclear cells (PBMCs) from infants with RSV infections were isolated. Classical, intermediate and nonclassical monocytes were immunophenotyped for the expression of CD14, CD16, human leukocyte antigen (HLA)-ABC and HLA-DR. PBMCs were stimulated with lipopolysaccharide to determine the secretion of tumor necrosis factor and interleukin (IL)-10 with enzyme-linked immunosorbent assay. RESULTS During RSV infection, intermediate monocytes are increased in the peripheral blood, whereas classical and nonclassical monocytes are reduced. The expression of CD14 and HLA-ABC is increased on monocytes, whereas the expression of HLA-DR is suppressed. Low HLA-DR expression is correlated with increased disease severity. PBMCs from infants with severe RSV infections show an impaired IL-10 response in vitro. CONCLUSIONS Phenotyping subpopulations of monocytes combined with in vitro responsiveness reveals significant differences between nonsevere and severe RSV infections. Reduced HLA-DR expression and impaired IL-10 production in vitro during severe RSV infections indicate that an imbalanced innate immune response may play an important role in disease severity.
Collapse
|
37
|
Jorquera PA, Anderson L, Tripp RA. Understanding respiratory syncytial virus (RSV) vaccine development and aspects of disease pathogenesis. Expert Rev Vaccines 2015; 15:173-87. [PMID: 26641318 DOI: 10.1586/14760584.2016.1115353] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Respiratory syncytial virus (RSV) is the most important cause of lower respiratory tract infections causing bronchiolitis and some mortality in young children and the elderly. Despite decades of research there is no licensed RSV vaccine. Although significant advances have been made in understanding the immune factors responsible for inducing vaccine-enhanced disease in animal models, less information is available for humans. In this review, we discuss the different types of RSV vaccines and their target population, the need for establishing immune correlates for vaccine efficacy, and how the use of different animal models can help predict vaccine efficacy and clinical outcomes in humans.
Collapse
Affiliation(s)
- Patricia A Jorquera
- a Department of Infectious Disease, College of Veterinary Medicine , University of Georgia , Athens , GA , Georgia
| | - Lydia Anderson
- a Department of Infectious Disease, College of Veterinary Medicine , University of Georgia , Athens , GA , Georgia
| | - Ralph A Tripp
- a Department of Infectious Disease, College of Veterinary Medicine , University of Georgia , Athens , GA , Georgia
| |
Collapse
|
38
|
Brown PM, Schneeberger DL, Piedimonte G. Biomarkers of respiratory syncytial virus (RSV) infection: specific neutrophil and cytokine levels provide increased accuracy in predicting disease severity. Paediatr Respir Rev 2015; 16:232-40. [PMID: 26074450 PMCID: PMC4656140 DOI: 10.1016/j.prrv.2015.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 12/17/2022]
Abstract
Despite fundamental advances in the research on respiratory syncytial virus (RSV) since its initial identification almost 60 years ago, recurring failures in developing vaccines and pharmacologic strategies effective in controlling the infection have allowed RSV to become a leading cause of global infant morbidity and mortality. Indeed, the burden of this infection on families and health care organizations worldwide continues to escalate and its financial costs are growing. Furthermore, strong epidemiologic evidence indicates that early-life lower respiratory tract infections caused by RSV lead to the development of recurrent wheezing and childhood asthma. While some progress has been made in the identification of reliable biomarkers for RSV bronchiolitis, a "one size fits all" biomarker capable of accurately and consistently predicting disease severity and post-acute outcomes has yet to be discovered. Therefore, it is of great importance on a global scale to identify useful biomarkers for this infection that will allow pediatricians to cost-effectively predict the clinical course of the disease, as well as monitor the efficacy of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Giovanni Piedimonte
- Center for Pediatric Research, Pediatric Institute and Children's Hospitals, The Cleveland Clinic.
| |
Collapse
|
39
|
Brand HK, Ahout IML, de Ridder D, van Diepen A, Li Y, Zaalberg M, Andeweg A, Roeleveld N, de Groot R, Warris A, Hermans PWM, Ferwerda G, Staal FJT. Olfactomedin 4 Serves as a Marker for Disease Severity in Pediatric Respiratory Syncytial Virus (RSV) Infection. PLoS One 2015; 10:e0131927. [PMID: 26162090 PMCID: PMC4498630 DOI: 10.1371/journal.pone.0131927] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/08/2015] [Indexed: 12/20/2022] Open
Abstract
Background Respiratory viral infections follow an unpredictable clinical course in young children ranging from a common cold to respiratory failure. The transition from mild to severe disease occurs rapidly and is difficult to predict. The pathophysiology underlying disease severity has remained elusive. There is an urgent need to better understand the immune response in this disease to come up with biomarkers that may aid clinical decision making. Methods In a prospective study, flow cytometric and genome-wide gene expression analyses were performed on blood samples of 26 children with a diagnosis of severe, moderate or mild Respiratory Syncytial Virus (RSV) infection. Differentially expressed genes were validated using Q-PCR in a second cohort of 80 children during three consecutive winter seasons. FACS analyses were also performed in the second cohort and on recovery samples of severe cases in the first cohort. Results Severe RSV infection was associated with a transient but marked decrease in CD4+ T, CD8+ T, and NK cells in peripheral blood. Gene expression analyses in both cohorts identified Olfactomedin4 (OLFM4) as a fully discriminative marker between children with mild and severe RSV infection, giving a PAM cross-validation error of 0%. Patients with an OLFM4 gene expression level above -7.5 were 6 times more likely to develop severe disease, after correction for age at hospitalization and gestational age. Conclusion By combining genome-wide expression profiling of blood cell subsets with clinically well-annotated samples, OLFM4 was identified as a biomarker for severity of pediatric RSV infection.
Collapse
Affiliation(s)
- H. K. Brand
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - I. M. L. Ahout
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - D. de Ridder
- Delft Bioinformatics Lab, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - A. van Diepen
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Y. Li
- Department of Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M. Zaalberg
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
| | - A. Andeweg
- Department of Virology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - N. Roeleveld
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
- Department for Health Evidence, Radboud university medical center, Nijmegen, the Netherlands
| | - R. de Groot
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - A. Warris
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - P. W. M. Hermans
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - G. Ferwerda
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
- * E-mail:
| | - F. J. T. Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
40
|
McElroy AK, Erickson BR, Flietstra TD, Rollin PE, Nichol ST, Towner JS, Spiropoulou CF. Biomarker correlates of survival in pediatric patients with Ebola virus disease. Emerg Infect Dis 2015; 20:1683-90. [PMID: 25279581 PMCID: PMC4193175 DOI: 10.3201/eid2010.140430] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Children who had certain endothelial and immune function markers were more likely to survive infection. Outbreaks of Ebola virus disease (EVD) occur sporadically in Africa and are associated with high case-fatality rates. Historically, children have been less affected than adults. The 2000–2001 Sudan virus–associated EVD outbreak in the Gulu district of Uganda resulted in 55 pediatric and 161 adult laboratory-confirmed cases. We used a series of multiplex assays to measure the concentrations of 55 serum analytes in specimens from patients from that outbreak to identify biomarkers specific to pediatric disease. Pediatric patients who survived had higher levels of the chemokine regulated on activation, normal T-cell expressed and secreted marker and lower levels of plasminogen activator inhibitor 1, soluble intracellular adhesion molecule, and soluble vascular cell adhesion molecule than did pediatric patients who died. Adult patients had similar levels of these analytes regardless of outcome. Our findings suggest that children with EVD may benefit from different treatment regimens than those for adults.
Collapse
|
41
|
Foronjy RF, Dabo AJ, Cummins N, Geraghty P. Leukemia inhibitory factor protects the lung during respiratory syncytial viral infection. BMC Immunol 2014; 15:41. [PMID: 25277705 PMCID: PMC4189665 DOI: 10.1186/s12865-014-0041-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/15/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infects the lung epithelium where it stimulates the production of numerous host cytokines that are associated with disease burden and acute lung injury. Characterizing the host cytokine response to RSV infection, the regulation of host cytokines and the impact of neutralizing an RSV-inducible cytokine during infection were undertaken in this study. METHODS A549, primary human small airway epithelial (SAE) cells and wild-type, TIR-domain-containing adapter-inducing interferon-β (Trif) and mitochondrial antiviral-signaling protein (Mavs) knockout (KO) mice were infected with RSV and cytokine responses were investigated by ELISA, multiplex analysis and qPCR. Neutralizing anti-leukemia inhibitory factor (LIF) IgG or control IgG was administered to a group of wild-type animals prior to RSV infection. RESULTS AND DISCUSSION RSV-infected A549 and SAE cells release a network of cytokines, including newly identified RSV-inducible cytokines LIF, migration inhibitory factor (MIF), stem cell factor (SCF), CCL27, CXCL12 and stem cell growth factor beta (SCGF-β). These RSV-inducible cytokines were also observed in the airways of mice during an infection. To identify the regulation of RSV inducible cytokines, Mavs and Trif deficient animals were infected with RSV. In vivo induction of airway IL-1β, IL-4, IL-5, IL-6, IL-12(p40), IFN-γ, CCL2, CCL5, CCL3, CXCL1, IP-10/CXCL10, IL-22, MIG/CXCL9 and MIF were dependent on Mavs expression in mice. Loss of Trif expression in mice altered the RSV induction of IL-1β, IL-5, CXCL12, MIF, LIF, CXCL12 and IFN-γ. Silencing of retinoic acid-inducible gene-1 (RIG-I) expression in A549 cells had a greater impact on RSV-inducible cytokines than melanoma differentiation-associated protein 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2), and Trif expression. To evaluate the role of LIF in the airways during RSV infection, animals were treated with neutralizing anti-LIF IgG, which enhanced RSV pathology observed with increased airspace protein content, apoptosis and airway hyperresponsiveness compared to control IgG treatment. CONCLUSIONS RSV infection in the epithelium induces a network of immune factors to counter infection, primarily in a RIG-I dependent manner. Expression of LIF protects the lung from lung injury and enhanced pathology during RSV infection.
Collapse
|
42
|
van den Kieboom CH, Ahout IML, Zomer A, Brand KH, de Groot R, Ferwerda G, de Jonge MI. Nasopharyngeal gene expression, a novel approach to study the course of respiratory syncytial virus infection. Eur Respir J 2014; 45:718-25. [PMID: 25261323 DOI: 10.1183/09031936.00085614] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Respiratory syncytial virus (RSV) causes mild infections in the vast majority of children. However, in some cases, it causes severe disease, such as bronchiolitis and pneumonia. Development of severe RSV infection is determined by the host response. Therefore, the main aim of this study was to identify biomarkers associated with severe RSV infection. To identify biomarkers, nasopharyngeal gene expression was profiled by microarray studies, resulting in the selection of five genes: ubiquitin D, tetraspanin 8, mucin 13, β-microseminoprotein and chemokine ligand 7. These genes were validated by real-time quantitative PCR in an independent validation cohort, which confirmed significant differences in gene expression between mildly and severely infected and between recovery and acute patients. Nasopharyngeal aspirate samples are regularly taken when a viral respiratory tract infection is suspected. In this article, we describe a method to discriminate between mild and severe RSV infection based on differential host gene expression. The combination of pathogen detection and host gene expression analysis in nasopharyngeal aspirates will significantly improve the diagnosis and prognosis of respiratory tract infections.
Collapse
Affiliation(s)
- Corné H van den Kieboom
- Laboratory of Pediatric Infectious Diseases, Dept of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands Laboratory of Medical Immunology, Dept of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Inge M L Ahout
- Laboratory of Pediatric Infectious Diseases, Dept of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands Laboratory of Medical Immunology, Dept of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Aldert Zomer
- Laboratory of Pediatric Infectious Diseases, Dept of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands Laboratory of Medical Immunology, Dept of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kim H Brand
- Laboratory of Pediatric Infectious Diseases, Dept of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald de Groot
- Laboratory of Pediatric Infectious Diseases, Dept of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands Laboratory of Medical Immunology, Dept of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerben Ferwerda
- Laboratory of Pediatric Infectious Diseases, Dept of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands Laboratory of Medical Immunology, Dept of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Dept of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands Laboratory of Medical Immunology, Dept of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
43
|
A systematic review of predictive modeling for bronchiolitis. Int J Med Inform 2014; 83:691-714. [PMID: 25106933 DOI: 10.1016/j.ijmedinf.2014.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/20/2014] [Accepted: 07/16/2014] [Indexed: 12/14/2022]
Abstract
PURPOSE Bronchiolitis is the most common cause of illness leading to hospitalization in young children. At present, many bronchiolitis management decisions are made subjectively, leading to significant practice variation among hospitals and physicians caring for children with bronchiolitis. To standardize care for bronchiolitis, researchers have proposed various models to predict the disease course to help determine a proper management plan. This paper reviews the existing state of the art of predictive modeling for bronchiolitis. Predictive modeling for respiratory syncytial virus (RSV) infection is covered whenever appropriate, as RSV accounts for about 70% of bronchiolitis cases. METHODS A systematic review was conducted through a PubMed search up to April 25, 2014. The literature on predictive modeling for bronchiolitis was retrieved using a comprehensive search query, which was developed through an iterative process. Search results were limited to human subjects, the English language, and children (birth to 18 years). RESULTS The literature search returned 2312 references in total. After manual review, 168 of these references were determined to be relevant and are discussed in this paper. We identify several limitations and open problems in predictive modeling for bronchiolitis, and provide some preliminary thoughts on how to address them, with the hope to stimulate future research in this domain. CONCLUSIONS Many problems remain open in predictive modeling for bronchiolitis. Future studies will need to address them to achieve optimal predictive models.
Collapse
|
44
|
Jans J, Vissers M, Heldens JGM, de Jonge MI, Levy O, Ferwerda G. Fc gamma receptors in respiratory syncytial virus infections: implications for innate immunity. Rev Med Virol 2013; 24:55-70. [PMID: 24227634 DOI: 10.1002/rmv.1773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/30/2022]
Abstract
RSV infections are a major burden in infants less than 3 months of age. Newborns and infants express a distinct immune system that is largely dependent on innate immunity and passive immunity from maternal antibodies. Antibodies can regulate immune responses against viruses through interaction with Fc gamma receptors leading to enhancement or neutralization of viral infections. The mechanisms underlying the immunomodulatory effect of Fc gamma receptors on viral infections have yet to be elucidated in infants. Herein, we will discuss current knowledge of the effects of antibodies and Fc gamma receptors on infant innate immunity to RSV. A better understanding of the pathogenesis of RSV infections in young infants may provide insight into novel therapeutic strategies such as vaccination.
Collapse
Affiliation(s)
- Jop Jans
- Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|