1
|
Aktaş A, Ekren BY, Yaşa B, Sezerman OU, Nakipoğlu Y. Investigation of the Impact of Antibiotic Administration on the Preterm Infants' Gut Microbiome Using Next-Generation Sequencing-Based 16S rRNA Gene Analysis. Antibiotics (Basel) 2024; 13:977. [PMID: 39452243 PMCID: PMC11505465 DOI: 10.3390/antibiotics13100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Background: The human gut microbiota is an extensive population of microorganisms, and it shows significant variations between periods of optimal health and periods of illness. Vancomycin-resistant Enterococcus (VRE) and carbapenem-resistant Klebsiella pneumoniae (CRKP) are both pathogenic agents (BPAs) that can colonize in the gut after dysbiosis of microbiotal composition following antibiotic treatment. Methods: This study aimed to investigate the impact of antibiotics on the microbiotal composition of the gut. For this purpose, the first pass meconiums of 20 patients and the first rectal swabs containing BPAs of the same patients after antibiotic treatment were studied using next-generation sequencing-based 16S rRNA gene analysis. The V1-V9 region of 16S rRNA was sequenced with Oxford Nanopore. Results: Twenty-five phyla were detected in the meconiums, and 12 of them were absent after antibiotic treatment. The four most prevalent phyla in meconiums were Bacillota, Pseudomonadota, Bacteroidota, and Actinomycetota. Only the relative abundance of Pseudomonadota was increased, while a significant decrease was observed in the other three phyla (p < 0.05). A significant decrease was observed in alpha-diversity in rectal swabs containing BPAs versus meconiums (p = 0.00408), whereas an increased variance was observed in beta-diversity in all samples (p < 0.05). As a result of a LEfSe analysis, Pseudomonadota was found to have a higher relative abundance in rectal swabs, and Bacillota was significantly higher in the meconiums of the twins. Conclusions: Our study strongly verified the relationship between the administration of antibiotics, dysbiosis, and colonization of BPAs in the infants' gut microbiota. Further research would be beneficial and needed, comprising the natural development process of the infants' gut microbiota.
Collapse
Affiliation(s)
- Ahmet Aktaş
- Medical Microbiology Department, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Türkiye
| | - Berkay Yekta Ekren
- Department of Biostatistics and Bioinformatics, Acıbadem MAA University, 34752 Istanbul, Türkiye
| | - Beril Yaşa
- Child Health and Diseases Department, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Türkiye
| | - Osman Uğur Sezerman
- Department of Biostatistics and Bioinformatics, Acıbadem MAA University, 34752 Istanbul, Türkiye
| | - Yaşar Nakipoğlu
- Medical Microbiology Department, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Türkiye
| |
Collapse
|
2
|
Wurm J, Curtis N, Zimmermann P. The effect of antibiotics on the intestinal microbiota in children - a systematic review. FRONTIERS IN ALLERGY 2024; 5:1458688. [PMID: 39435363 PMCID: PMC11491438 DOI: 10.3389/falgy.2024.1458688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 10/23/2024] Open
Abstract
Background Children are the age group with the highest exposure to antibiotics (ABX). ABX treatment changes the composition of the intestinal microbiota. The first few years of life are crucial for the establishment of a healthy microbiota and consequently, disturbance of the microbiota during this critical period may have far-reaching consequences. In this review, we summarise studies that have investigated the effect of ABX on the composition of the intestinal microbiota in children. Methods According to the PRISMA guidelines, a systematic search was done using MEDLINE and Embase to identify original studies that have investigated the effect of systemic ABX on the composition of the intestinal microbiota in children. Results We identified 89 studies investigating a total of 9,712 children (including 4,574 controls) and 14,845 samples. All ABX investigated resulted in a reduction in alpha diversity, either when comparing samples before and after ABX or children with ABX and controls. Following treatment with penicillins, the decrease in alpha diversity persisted for up to 6-12 months and with macrolides, up to the latest follow-up at 12-24 months. After ABX in the neonatal period, a decrease in alpha diversity was still found at 36 months. Treatment with penicillins, penicillins plus gentamicin, cephalosporins, carbapenems, macrolides, and aminoglycosides, but not trimethoprim/sulfamethoxazole, was associated with decreased abundances of beneficial bacteria including Actinobacteria, Bifidobacteriales, Bifidobacteriaceae, and/or Bifidobacterium, and Lactobacillus. The direction of change in the abundance of Enterobacteriaceae varied with ABX classes, but an increase in Enterobacteriaceae other than Escherichia coli was frequently observed. Conclusion ABX have profound effects on the intestinal microbiota of children, with notable differences between ABX classes. Macrolides have the most substantial impact while trimethoprim/sulfamethoxazole has the least pronounced effect.
Collapse
Affiliation(s)
- Juliane Wurm
- Department of Paediatrics, Fribourg Hospital, Fribourg, Switzerland
- Department of Health Science and Medicine, University Lucerne, Lucerne, Switzerland
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Petra Zimmermann
- Department of Paediatrics, Fribourg Hospital, Fribourg, Switzerland
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department for Community Health, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
Wolska M, Wypych TP, Rodríguez-Viso P. The Influence of Premature Birth on the Development of Pulmonary Diseases: Focus on the Microbiome. Metabolites 2024; 14:382. [PMID: 39057705 PMCID: PMC11279213 DOI: 10.3390/metabo14070382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Globally, around 11% of neonates are born prematurely, comprising a highly vulnerable population with a myriad of health problems. Premature births are often accompanied by an underdeveloped immune system biased towards a Th2 phenotype and microbiota dysbiosis. Typically, a healthy gut microbiota interacts with the host, driving the proper maturation of the host immunity. However, factors like cesarean section, formula milk feeding, hospitalization in neonatal intensive care units (NICU), and routine antibiotic treatments compromise microbial colonization and increase the risk of developing related diseases. This, along with alterations in the innate immune system, could predispose the neonates to the development of respiratory diseases later in life. Currently, therapeutic strategies are mainly focused on restoring gut microbiota composition using probiotics and prebiotics. Understanding the interactions between the gut microbiota and the immature immune system in premature neonates could help to develop novel therapeutic strategies for treating or preventing gut-lung axis disorders.
Collapse
Affiliation(s)
| | - Tomasz Piotr Wypych
- Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Ludwika Pasteura 3, 02-093 Warsaw, Poland; (M.W.); (P.R.-V.)
| | | |
Collapse
|
4
|
Hunt BL, Parikh A, Jain D. The Factors Associated With Continuous Positive Airway Pressure (CPAP) Failure in Late Preterm and Term Infants and Its Impact on In-Hospital Outcomes. Cureus 2024; 16:e63895. [PMID: 39100029 PMCID: PMC11298116 DOI: 10.7759/cureus.63895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Background and objective Late preterm and term infants commonly require continuous positive airway pressure (CPAP) on admission. However, CPAP failure in this population has not been well studied. Hence, we conducted this study to determine the impact of CPAP failure and identify antenatal factors associated with it in late preterm and term infants. Materials and methods We carried out a single-center retrospective analysis of all inborn infants of ≥34 weeks gestational age (GA) from 2012 to 2019 who received CPAP on admission to the neonatal intensive care unit (NICU). CPAP failure was defined as follows: escalation in the mode of respiratory support, surfactant administration, increase in FiO2 >0.2 above the baseline, or absolute FiO2 >0.4 for ≥3h; within 12h of admission. In-hospital outcomes and perinatal factors were compared between CPAP-failure and success groups. Multivariate stepwise binary logistic regression analysis (LRA) was used to assess the association between antenatal factors and CPAP failure. Results Of the 272 infants included in the study, 38 (14%) failed CPAP. Infants in the failure group received a longer duration of respiratory support [median (IQR): 3.0 (5.6) vs. 0.5 (0.5)d; p<0.001], and length of stay [9 (9) vs. 4 (4)d; p<0.001]. On LRA, higher GA was associated with reduced odds of CPAP failure. Maternal hypertensive disorders, meconium-stained amniotic fluid, and group B Streptococcus (GBS)-positive status were associated with increased odds of CPAP failure. Conclusions In this cohort of late preterm and term infants, CPAP failure was associated with worse in-hospital outcomes. Lower GA, maternal hypertensive disorders, meconium-stained amniotic fluid, and GBS-positive status were associated with CPAP failure. These data, if replicated in further studies, may help develop individualized respiratory support strategies.
Collapse
Affiliation(s)
- Bethany L Hunt
- Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, USA
| | - Amy Parikh
- Pediatrics, Nationwide Children's Hospital, Columbus, USA
| | - Deepak Jain
- Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, USA
| |
Collapse
|
5
|
Desorcy-Scherer K, Lamberti MFT, Weaver M, Lorca GL, Parker LA. Sociodemographic Factors and Intestinal Microbiome Development in Preterm, Very Low Birth Weight Infants. Am J Perinatol 2024; 41:e1866-e1877. [PMID: 37640050 DOI: 10.1055/s-0043-1769793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
OBJECTIVE Preterm very low birth weight (VLBW) infants are at risk for intestinal morbidities and dysbiotic development of the intestinal microbiome. Despite the influence of sociodemographic factors on premature infant health outcomes, whether they shape the intestinal microbiome early in life is not clear. The objective was to explore the associations between race, sex, and socioeconomic status and the intestinal microbiome of VLBW infants during the first 4 weeks of life. STUDY DESIGN This was a secondary analysis of data from an ongoing randomized trial of 79 infants ≤30 weeks' gestation and ≤1,500 g. Stool samples were collected at week 1 through week 4, frozen to -80°C and analyzed by 16S rRNA sequencing of the V4 region using Illumina MiSeq. Reads were analyzed to measure α and β diversity as well as relative abundance of bacteria in the intestinal microbiome. RESULTS Of the 79 infants, 63 had at least one sample available. Twenty-three (37%) of infants were African American, 30 (48%) were male, and 44 (71%) had Medicaid insurance. There were no statistically significant (<0.05) differences in α diversity or β diversity, and the differential abundance analysis suggests limited patterns of distinction in the intestinal microbiome between non-African American and African American infants, male and female infants, and infants with maternal private or Medicaid insurance. CONCLUSION Our results suggest race, sex, and socioeconomic status shape colonization of specific microorganisms to a limited extent. Future studies should confirm these findings and determine clinical relevance through further study of differentially abundant microorganisms and additional factors contributing to colonization patterns. KEY POINTS · Diversity of the gut microbiome was similar between infants of varying race, sex, and socioeconomic status.. · We observed sociodemographic-linked differences in colonization of individual taxa.. · Further study is required to confirm these results and the clinical relevance of these findings..
Collapse
Affiliation(s)
- Katelyn Desorcy-Scherer
- College of Nursing, University of Florida, Gainesville, Florida
- School of Nursing, University of Wisconsin, Madison, Wisconsin
| | - Monica F Torrez Lamberti
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida
| | - Michael Weaver
- College of Nursing, University of Florida, Gainesville, Florida
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida
| | - Leslie A Parker
- College of Nursing, University of Florida, Gainesville, Florida
| |
Collapse
|
6
|
Stylianou-Riga P, Boutsikou T, Kouis P, Michailidou K, Kinni P, Sokou R, Iliodromiti Z, Pitsios C, Yiallouros PK, Iacovidou N. Epidemiology, risk factors, clinical presentation and complications of late-onset neonatal sepsis among preterm neonates in Cyprus: a prospective case-control study. BMC Pediatr 2024; 24:50. [PMID: 38229029 DOI: 10.1186/s12887-023-04359-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 10/12/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Late-onset neonatal sepsis (LOS) is common in preterm neonates, with increasing incidence in recent years. In the present study, we examined the epidemiology, clinical presentation, and complications of LOS in Cyprus and quantified possible risk factors for the development of this condition. METHODS The study subjects were preterm neonates admitted in the Neonatal Intensive Care Unit (NICU) of Archbishop Makarios III Hospital, the only neonatal tertiary centre in Cyprus. A prospective, case-control study was designed, and carried out between April 2017-October 2018. Depending on blood culture results, preterm neonates were classified as "Confirmed LOS": positive blood culture - microorganism isolated and LOS symptoms, "Unconfirmed LOS": negative blood culture and LOS symptoms, and "Controls" group: negative blood culture and absence of LOS symptoms. Comparisons between the 3 groups were performed and the associations between demographic, clinical and treatment characteristics with the likelihood of LOS were assessed using univariate and multivariate logistic regression. RESULTS A total of 350 preterm neonates were included in the study and the incidence of LOS was 41.1%. 79 (22.6%) and 65 (18.6%) neonates were classified as "Confirmed LOS", and "unconfirmed LOS" cases respectively while 206 (58.9%) served as controls. The rate of confirmed LOS ranged from 12.2% in moderate to late preterm neonates to 78.6% in extremely preterm neonates. In the multivariate model, we demonstrated an independent association between LOS and duration of hospitalization (OR: 1.06, 95%CI: 1.01-1.10), duration of ventilation (OR: 1.23, 95%CI: 1.07-1.43) and necrotising enterocolitis (OR: 3.41, 95%CI: 1.13-10.25). CONCLUSIONS The present study highlights the epidemiology of LOS in preterm neonates in Cyprus and its association with the duration of ventilation and hospitalization as well as with necrotizing enterocolitis. Establishment of protocols for the prevention of nosocomial infections during hospitalization in the NICUs and mechanical ventilation of preterm neonates is recommended.
Collapse
Affiliation(s)
- Paraskevi Stylianou-Riga
- Neonatal Intensive Care Unit, "Archbishop Makarios III" Hospital, Nicosia, Cyprus.
- Respiratory Physiology Laboratory, Medical School, University of Cyprus Shakolas Educational Center of Clinical, Medicine Palaios Dromos Lefkosias Lemesou 215/6, Aglantzia, Nicosia, 2029, Cyprus.
- Neonatal Department, Medical School, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Theodora Boutsikou
- Neonatal Department, Medical School, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panayiotis Kouis
- Respiratory Physiology Laboratory, Medical School, University of Cyprus Shakolas Educational Center of Clinical, Medicine Palaios Dromos Lefkosias Lemesou 215/6, Aglantzia, Nicosia, 2029, Cyprus
| | | | - Paraskevi Kinni
- Respiratory Physiology Laboratory, Medical School, University of Cyprus Shakolas Educational Center of Clinical, Medicine Palaios Dromos Lefkosias Lemesou 215/6, Aglantzia, Nicosia, 2029, Cyprus
| | - Rozeta Sokou
- Neonatal Department, Medical School, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Zoi Iliodromiti
- Neonatal Department, Medical School, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Pitsios
- Respiratory Physiology Laboratory, Medical School, University of Cyprus Shakolas Educational Center of Clinical, Medicine Palaios Dromos Lefkosias Lemesou 215/6, Aglantzia, Nicosia, 2029, Cyprus
| | - Panayiotis K Yiallouros
- Respiratory Physiology Laboratory, Medical School, University of Cyprus Shakolas Educational Center of Clinical, Medicine Palaios Dromos Lefkosias Lemesou 215/6, Aglantzia, Nicosia, 2029, Cyprus
| | - Nicoletta Iacovidou
- Neonatal Department, Medical School, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Cheddadi R, Yeramilli V, Martin C. From Mother to Infant, from Placenta to Gut: Understanding Varied Microbiome Profiles in Neonates. Metabolites 2023; 13:1184. [PMID: 38132866 PMCID: PMC10745069 DOI: 10.3390/metabo13121184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
The field of human microbiome and gut microbial diversity research has witnessed a profound transformation, driven by advances in omics technologies. These advancements have unveiled essential connections between microbiome alterations and severe conditions, prompting the development of new frameworks through epidemiological studies. Traditionally, it was believed that each individual harbored unique microbial communities acquired early in life, evolving over the course of their lifetime, with little acknowledgment of any prenatal microbial development, but recent research challenges this belief. The neonatal microbiome's onset, influenced by factors like delivery mode and maternal health, remains a subject of intense debate, hinting at potential intrauterine microbial processes. In-depth research reveals associations between microbiome profiles and specific health outcomes, ranging from obesity to neurodevelopmental disorders. Understanding these diverse microbiome profiles is essential for unraveling the intricate relationships between the microbiome and health outcomes.
Collapse
Affiliation(s)
- Riadh Cheddadi
- Department of Surgery, Division of Pediatric Surgery, Washington University School of Medicine, Saint Louis, MO 63110, USA (C.M.)
| | | | | |
Collapse
|
8
|
Cetinbas M, Thai J, Filatava E, Gregory KE, Sadreyev RI. Long-term dysbiosis and fluctuations of gut microbiome in antibiotic treated preterm infants. iScience 2023; 26:107995. [PMID: 37829203 PMCID: PMC10565780 DOI: 10.1016/j.isci.2023.107995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Postnatal acquisition of the microbiome is critical to infant health. In preterm infants, empiric use of antibiotics is common, with significant health consequences. To understand the influence of antibiotics on acquisition of the microbiome over time, we longitudinally profiled microbial 16S rRNA in the stool of 79 preterm infants during their hospitalization in the intensive care unit and compared antibiotic treated and untreated infants. Despite similar clinical presentation, antibiotic treated infants had strong deviations in the content, diversity, and most dramatically, temporal stability of their microbiome. Dysbiosis and fluctuations of microbiome content persisted long after antibiotic exposure, up to hospital discharge. Microbiome diversity was dominated by a few common bacteria consistent among all infants. Our findings may inform clinical practice related to antibiotic use and targeted microbial interventions aimed at overcoming the adverse influence of antibiotics on the microbiome of preterm infants at specific developmental time points.
Collapse
Affiliation(s)
- Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Julie Thai
- Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | | | - Katherine E. Gregory
- Boston College, Chestnut Hill, MA, USA
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Kumar R, Setiady I, Bultmann CR, Kaufman DA, Swanson JR, Sullivan BA. Implementation of a 24-hour empiric antibiotic duration for negative early-onset sepsis evaluations to reduce early antibiotic exposure in premature infants. Infect Control Hosp Epidemiol 2023; 44:1308-1313. [PMID: 36278513 DOI: 10.1017/ice.2022.246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
OBJECTIVE Antibiotic exposure increases the risk of morbidity and mortality in premature infants. Many centers use at least 48 hours of antibiotics in the evaluation of early-onset sepsis (EOS, <72 hours after birth), yet most important pathogens grow within 24 hours. We investigated the safety and efficacy of reducing empiric antibiotic duration to 24 hours. DESIGN Quality improvement study. SETTING A tertiary-care neonatal intensive care unit. PATIENTS Inborn infants <35 weeks gestational age at birth (ie, preterm) admitted January 2019 through December 2020. INTERVENTION In December 2019, we changed the recommended duration of empiric antibiotics for negative EOS evaluations from 48 hours to 24 hours. RESULTS Patient characteristics before and after the intervention were similar. After the intervention, 71 preterm infants (57%) with negative EOS evaluations received ≤24 hours of antibiotics, an increase from 15 (10%) before the intervention. These 71 infants comprised 77% of infants with negative EOS blood cultures after excluding those treated as clinical sepsis (≥5 days of antibiotics). For all negative EOS blood cultures, the mean treatment duration decreased by 0.5 days from 3.9 days to 3.4 days. This finding equated to 2.4 fewer antibiotic days per 100 patient days for negative EOS blood cultures but similar antibiotic days per 30 patient days (7.2 days vs 7.5 days). This measure did not change over time. Subsequent sepsis evaluations <7 days after a negative EOS blood culture did not increase. Excluding contaminants, the median time to positivity was 13.2 hours (range, 8-23) in 8 positive blood cultures. CONCLUSION Implementation of a 24-hour antibiotic course for negative EOS evaluations safely reduced antibiotic exposure in 77% of infants <35 weeks gestational age at birth in whom EOS was ruled out. All clinically significant pathogens grew within 24 hours.
Collapse
Affiliation(s)
- Rupin Kumar
- Division of Neonatology, Department of Pediatrics, University of Kentucky School of Medicine, Lexington, Kentucky
| | - Initha Setiady
- University of Virginia School of Medicine, Charlottesville, Virginia
| | - Charlene R Bultmann
- Division of Neonatology, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - David A Kaufman
- Division of Neonatology, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jonathan R Swanson
- Division of Neonatology, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Brynne A Sullivan
- Division of Neonatology, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
10
|
Bosnar LM, Shindler AE, Wood J, Patch C, Franks AE. Attempts to limit sporulation in the probiotic strain Bacillus subtilis BG01-4 TM through mutation accumulation and selection. Access Microbiol 2023; 5:acmi000419. [PMID: 37323944 PMCID: PMC10267654 DOI: 10.1099/acmi.0.000419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/16/2023] [Indexed: 06/17/2023] Open
Abstract
The use of bacterial spores in probiotics over viable loads of bacteria has many advantages, including the durability of spores, which allows spore-based probiotics to effectively traverse the various biochemical barriers present in the gastrointestinal tract. However, the majority of spore-based probiotics developed currently aim to treat adults, and there is a litany of differences between the adult and infant intestinal systems, including the immaturity and low microbial species diversity observed within the intestines of infants. These differences are only further exacerbated in premature infants with necrotizing enterocolitis (NEC) and indicates that what may be appropriate for an adult or even a healthy full-term infant may not be suited for an unhealthy premature infant. Complications from using spore-based probiotics for premature infants with NEC may involve the spores remaining dormant and adhering to the intestinal epithelia, the out-competing of commensal bacteria by spores, and most importantly the innate antibiotic resistance of spores. Also, the ability of Bacillus subtilis to produce spores under duress may result in less B. subtilis perishing within the intestines and releasing membrane branched-chain fatty acids. The isolate B. subtilis BG01-4TM is a proprietary strain developed by Vernx Biotechnology through accumulating mutations within the BG01-4TM genome in a serial batch culture. Strain BG01-4TM was provided as a non-spore-forming B. subtilis , but a positive sporulation status for BG01-4TM was confirmed through in vitro testing and suggested that selection for the sporulation defective genes could occur within an environment that would select against sporulation. The durability of key sporulation genes was ratified in this study, as the ability of BG01-4TM to produce spores was not eliminated by the attempts to select against sporulation genes in BG01-4TM by the epigenetic factors of high glucose and low pH. However, a variation in the genes in isolate BG01-4-8 involved in the regulation of sporulation is believed to have occurred during the mutation selection from the parent strain BG01-4TM. An alteration in selected sporulation regulation genes is expected to have occurred from BG01-4TM to BG01-4-8, with BG01-4-8 producing spores within 24 h, ~48 h quicker than BG01-4TM.
Collapse
Affiliation(s)
- Luke M. Bosnar
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Anya E. Shindler
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jennifer Wood
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Craig Patch
- School of Allied Health, Human Services, and Sport, La Trobe University, Melbourne, Victoria 3086, Australia
- Vernx Pty Ltd, Level 17, 40 City Road, Southbank, Victoria 3066, Australia
| | - Ashley E. Franks
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
11
|
Hutchinson RA, Costeloe KL, Wade WG, Millar MR, Ansbro K, Stacey F, Fleming PF. Intravenous antibiotics in preterm infants have a negative effect upon microbiome development throughout preterm life. Gut Pathog 2023; 15:18. [PMID: 37085896 PMCID: PMC10120188 DOI: 10.1186/s13099-023-00544-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/09/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Intestinal dysbiosis is implicated in the origins of necrotising enterocolitis and late-onset sepsis in preterm babies. However, the effect of modulators of bacterial growth (e.g. antibiotics) upon the developing microbiome is not well-characterised. In this prospectively-recruited, retrospectively-classified, case-control study, high-throughput 16S rRNA gene sequencing was combined with contemporaneous clinical data collection, to assess the within-subject relationship between antibiotic administration and microbiome development, in comparison to preterm infants with minimal antibiotic exposure. RESULTS During courses of antibiotics, diversity progression fell in comparison to that seen outside periods of antibiotic use (-0.71units/week vs. + 0.63units/week, p < 0.01); Enterobacteriaceae relative abundance progression conversely rose (+ 10.6%/week vs. -8.9%/week, p < 0.01). After antibiotic cessation, diversity progression remained suppressed (+ 0.2units/week, p = 0.02). CONCLUSIONS Antibiotic use has an acute and longer-lasting impact on the developing preterm intestinal microbiome. This has clinical implications with regard to the contribution of antibiotic use to evolving dysbiosis, and affects the interpretation of existing microbiome studies where this effect modulator is rarely accounted for.
Collapse
Affiliation(s)
- R A Hutchinson
- Queen Mary University of London, London, UK.
- Homerton University Hospital NHS Foundation Trust, London, UK.
| | | | - W G Wade
- Queen Mary University of London, London, UK
- King's College London, London, UK
- The Forsyth Institute, Cambridge, MA, USA
| | - M R Millar
- Queen Mary University of London, London, UK
| | - K Ansbro
- Queen Mary University of London, London, UK
| | - F Stacey
- Homerton University Hospital NHS Foundation Trust, London, UK
| | - P F Fleming
- Queen Mary University of London, London, UK
- Homerton University Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
12
|
Cuna A, Morowitz MJ, Sampath V. Early antibiotics and risk for necrotizing enterocolitis in premature infants: A narrative review. Front Pediatr 2023; 11:1112812. [PMID: 36865691 PMCID: PMC9971631 DOI: 10.3389/fped.2023.1112812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
While prompt initiation of antibiotics at birth due to concerns for early onset sepsis is common, it often leads to many preterm infants being exposed to treatment despite negative blood cultures. Such exposure to early antibiotics can impact the developing gut microbiome putting infants at increased risk of several diseases. Necrotizing enterocolitis (NEC), a devastating inflammatory bowel disease that affects preterm infants, is among the most widely studied neonatal disease that has been linked to early antibiotics. While some studies have demonstrated an increased risk of NEC, other studies have demonstrated seemingly contrary findings of decreased NEC with early antibiotics. Studies using animal models have also yielded differing findings of benefit vs. harm of early antibiotic exposure on subsequent NEC susceptibility. We thus sought to conduct this narrative review to help clarify the relationship between early antibiotics exposure and future risk of NEC in preterm infants. Our objectives are to: (1) summarize findings from human and animal studies that investigated the relationship between early antibiotics and NEC, (2) highlight important limitations of these studies, (3) explore potential mechanisms that can explain why early antibiotics may increase or decrease NEC risk, and (4) identify future directions for research.
Collapse
Affiliation(s)
- Alain Cuna
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, MOUnited States
- School of Medicine, University of Missouri-Kansas City, Kansas City, MOUnited States
| | - Michael J. Morowitz
- Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PAUnited States
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Venkatesh Sampath
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, MOUnited States
- School of Medicine, University of Missouri-Kansas City, Kansas City, MOUnited States
| |
Collapse
|
13
|
Cardiorespiratory signature of neonatal sepsis: development and validation of prediction models in 3 NICUs. Pediatr Res 2023:10.1038/s41390-022-02444-7. [PMID: 36593281 DOI: 10.1038/s41390-022-02444-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Heart rate characteristics aid early detection of late-onset sepsis (LOS), but respiratory data contain additional signatures of illness due to infection. Predictive models using cardiorespiratory data may improve early sepsis detection. We hypothesized that heart rate (HR) and oxygenation (SpO2) data contain signatures that improve sepsis risk prediction over HR or demographics alone. METHODS We analyzed cardiorespiratory data from very low birth weight (VLBW, <1500 g) infants admitted to three NICUs. We developed and externally validated four machine learning models to predict LOS using features calculated every 10 m: mean, standard deviation, skewness, kurtosis of HR and SpO2, and cross-correlation. We compared feature importance, discrimination, calibration, and dynamic prediction across models and cohorts. We built models of demographics and HR or SpO2 features alone for comparison with HR-SpO2 models. RESULTS Performance, feature importance, and calibration were similar among modeling methods. All models had favorable external validation performance. The HR-SpO2 model performed better than models using either HR or SpO2 alone. Demographics improved the discrimination of all physiologic data models but dampened dynamic performance. CONCLUSIONS Cardiorespiratory signatures detect LOS in VLBW infants at 3 NICUs. Demographics risk-stratify, but predictive modeling with both HR and SpO2 features provides the best dynamic risk prediction. IMPACT Heart rate characteristics aid early detection of late-onset sepsis, but respiratory data contain signatures of illness due to infection. Predictive models using both heart rate and respiratory data may improve early sepsis detection. A cardiorespiratory early warning score, analyzing heart rate from electrocardiogram or pulse oximetry with SpO2, predicts late-onset sepsis within 24 h across multiple NICUs and detects sepsis better than heart rate characteristics or demographics alone. Demographics risk-stratify, but predictive modeling with both HR and SpO2 features provides the best dynamic risk prediction. The results increase understanding of physiologic signatures of neonatal sepsis.
Collapse
|
14
|
Sullivan BA, Kausch SL, Fairchild KD. Artificial and human intelligence for early identification of neonatal sepsis. Pediatr Res 2023; 93:350-356. [PMID: 36127407 DOI: 10.1038/s41390-022-02274-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022]
Abstract
Artificial intelligence may have a role in the early detection of sepsis in neonates. Machine learning can identify patterns that predict high or increasing risk for clinical deterioration from a sepsis-like illness. In developing this potential addition to NICU care, careful consideration should be given to the data and methods used to develop, validate, and evaluate prediction models. When an AI system alerts clinicians to a change in a patient's condition that warrants a bedside evaluation, human intelligence and experience come into play to determine an appropriate course of action: evaluate and treat or wait and watch closely. With intelligently developed, validated, and implemented AI sepsis systems, both clinicians and patients stand to benefit. IMPACT: This narrative review highlights the application of AI in neonatal sepsis prediction. It describes issues in clinical prediction model development specific to this population. This article reviews the methods, considerations, and literature on neonatal sepsis model development and validation. Challenges of AI technology and potential barriers to using sepsis AI systems in the NICU are discussed.
Collapse
Affiliation(s)
- Brynne A Sullivan
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Sherry L Kausch
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Karen D Fairchild
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
15
|
Heisel T, Johnson AJ, Gonia S, Dillon A, Skalla E, Haapala J, Jacobs KM, Nagel E, Pierce S, Fields D, Demerath E, Knights D, Gale CA. Bacterial, fungal, and interkingdom microbiome features of exclusively breastfeeding dyads are associated with infant age, antibiotic exposure, and birth mode. Front Microbiol 2022; 13:1050574. [PMID: 36466688 PMCID: PMC9714262 DOI: 10.3389/fmicb.2022.1050574] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
The composition and function of early life gut bacterial communities (microbiomes) have been proposed to modulate health for the long term. In addition to bacteria, fungi (mycobiomes) also colonize the early life gut and have been implicated in health disorders such as asthma and obesity. Despite the potential importance of mycobiomes in health, there has been a lack of study regarding fungi and their interkingdom interactions with bacteria during infancy. The goal of this study was to obtain a more complete understanding of microbial communities thought to be relevant for the early life programming of health. Breastmilk and infant feces were obtained from a unique cohort of healthy, exclusively breastfeeding dyads recruited as part of the Mothers and Infants Linked for Healthy Growth (MILk) study with microbial taxa characterized using amplicon-based sequencing approaches. Bacterial and fungal communities in breastmilk were both distinct from those of infant feces, consistent with niche-specific microbial community development. Nevertheless, overlap was observed among sample types (breastmilk, 1-month feces, 6-month feces) with respect to the taxa that were the most prevalent and abundant. Self-reported antibacterial antibiotic exposure was associated with micro- as well as mycobiome variation, which depended upon the subject receiving antibiotics (mother or infant), timing of exposure (prenatal, peri- or postpartum), and sample type. In addition, birth mode was associated with bacterial and fungal community variation in infant feces, but not breastmilk. Correlations between bacterial and fungal taxa abundances were identified in all sample types. For infant feces, congruency between bacterial and fungal communities was higher for older infants, consistent with the idea of co-maturation of bacterial and fungal gut communities. Interkingdom connectedness also tended to be higher in older infants. Additionally, higher interkingdom connectedness was associated with Cesarean section birth and with antibiotic exposure for microbial communities of both breastmilk and infant feces. Overall, these results implicate infant age, birth mode, and antibiotic exposure in bacterial, fungal and interkingdom relationship variation in early-life-relevant microbiomes, expanding the current literature beyond bacteria.
Collapse
Affiliation(s)
- Timothy Heisel
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Abigail J. Johnson
- School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Sara Gonia
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Abrielle Dillon
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Emily Skalla
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States,School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Jacob Haapala
- School of Public Health, University of Minnesota, Minneapolis, MN, United States,HealthPartners Institute, Minneapolis, MN, United States
| | - Katherine M. Jacobs
- Department of Obstetrics, Gynecology, and Women’s Health, University of Minnesota, Minneapolis, MN, United States
| | - Emily Nagel
- School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Stephanie Pierce
- College of Medicine, University of Oklahoma, Oklahoma City, OK, United States
| | - David Fields
- College of Medicine, University of Oklahoma, Oklahoma City, OK, United States
| | - Ellen Demerath
- School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Cheryl A. Gale
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States,*Correspondence: Cheryl A. Gale,
| |
Collapse
|
16
|
Breastfeeding as a regulating factor of the development of the intestinal microbiome in the early stages of life. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Westaway JAF, Huerlimann R, Kandasamy Y, Miller CM, Norton R, Watson D, Infante-Vilamil S, Rudd D. To Probiotic or Not to Probiotic: A Metagenomic Comparison of the Discharge Gut Microbiome of Infants Supplemented With Probiotics in NICU and Those Who Are Not. Front Pediatr 2022; 10:838559. [PMID: 35345612 PMCID: PMC8957066 DOI: 10.3389/fped.2022.838559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/09/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Preterm birth is associated with the development of both acute and chronic disease, and the disruption of normal gut microbiome development. Recent studies have sought to both characterize and understand the links between disease and the microbiome. Probiotic treatment may correct for these microbial imbalances and, in turn, mitigate disease. However, the criteria for probiotic supplementation in NICU's in North Queensland, Australia limits its usage to the most premature (<32 weeks gestation) and small for gestational age infants (<1,500 g). Here we use a combination of amplicon and shotgun metagenomic sequencing to compare the gut microbiome of infants who fulfill the criteria for probiotic-treatment and those who do not. The aims of this study were to determine if probiotic-supplemented preterm infants have significantly different taxonomic and functional profiles when compared to non-supplemented preterm infants at discharge. METHODS Preterm infants were recruited in North Queensland, Australia, with fecal samples collected just prior to discharge (36 ± 0.5 weeks gestation), to capture potential changes that could be probiotic induced. All samples underwent 16S rRNA gene amplicon sequencing, with a subset also used for shotgun metagenomics. Mixed effects models were used to assess the effect of probiotics on alpha diversity, beta diversity and taxonomic abundance, whilst accounting for other known covariates. RESULTS Mixed effects modeling demonstrated that probiotic treatment had a significant effect on overall community composition (beta diversity), characterized by greater alpha diversity and differing abundances of several taxa, including Bifidobacterium and Lactobacillus, in supplemented infants. CONCLUSION Late preterm-infants who go without probiotic-supplementation may be missing out on stabilizing-effects provided through increased alpha diversity and the presence of commensal microbes, via the use of probiotic-treatment. These findings suggest that late-preterm infants may benefit from probiotic supplementation. More research is needed to both understand the consequences of the differences observed and the long-term effects of this probiotic-treatment.
Collapse
Affiliation(s)
- Jacob A F Westaway
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
| | - Roger Huerlimann
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia.,Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), Onna, Japan.,Center for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Yoga Kandasamy
- College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia.,Neonatology, Townsville University Hospital, Townsville, QLD, Australia
| | - Catherine M Miller
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD, Australia
| | - Robert Norton
- Microbiology, Pathology Queensland, Herston, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - David Watson
- Maternal-Fetal Medicine, Townsville University Hospital, Townsville, QLD, Australia
| | - Sandra Infante-Vilamil
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia.,Center for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Donna Rudd
- College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
18
|
Westaway JAF, Huerlimann R, Kandasamy Y, Miller CM, Norton R, Staunton KM, Watson D, Rudd D. The bacterial gut microbiome of probiotic-treated very-preterm infants: changes from admission to discharge. Pediatr Res 2022; 92:142-150. [PMID: 34621029 PMCID: PMC9411061 DOI: 10.1038/s41390-021-01738-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Preterm birth is associated with the development of acute and chronic disease, potentially, through the disruption of normal gut microbiome development. Probiotics may correct for microbial imbalances and mitigate disease risk. Here, we used amplicon sequencing to characterise the gut microbiome of probiotic-treated premature infants. We aimed to identify and understand variation in bacterial gut flora from admission to discharge and in association with clinical variables. METHODS Infants born <32 weeks gestation and <1500 g, and who received probiotic treatment, were recruited in North Queensland Australia. Meconium and faecal samples were collected at admission and discharge. All samples underwent 16S rRNA short amplicon sequencing, and subsequently, a combination of univariate and multivariate analyses. RESULTS 71 admission and 63 discharge samples were collected. Univariate analyses showed significant changes in the gut flora from admission to discharge. Mixed-effects modelling showed significantly lower alpha diversity in infants diagnosed with either sepsis or retinopathy of prematurity (ROP) and those fed formula. In addition, chorioamnionitis, preeclampsia, sepsis, necrotising enterocolitis and ROP were also all associated with the differential abundance of several taxa. CONCLUSIONS The lower microbial diversity seen in infants with diagnosed disorders or formula-fed, as well as differing abundances of several taxa across multiple variables, highlights the role of the microbiome in the development of health and disease. This study supports the need for promoting healthy microbiome development in preterm neonates. IMPACT Low diversity and differing taxonomic abundances in preterm gut microbiota demonstrated in formula-fed infants and those identified with postnatal conditions, as well as differences in taxonomy associated with preeclampsia and chorioamnionitis, reinforcing the association of the microbiome composition changes due to maternal and infant disease. The largest study exploring an association between the preterm infant microbiome and ROP. A novel association between the preterm infant gut microbiome and preeclampsia in a unique cohort of very-premature probiotic-supplemented infants.
Collapse
Affiliation(s)
- Jacob A. F. Westaway
- grid.1011.10000 0004 0474 1797College of Public Health, Medical and Veterinary Science, James Cook University, 1/14-88 McGregor Road, Smithfield, QLD 4878 Australia ,grid.1011.10000 0004 0474 1797Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, 1 James Cook Drive, Douglas, QLD 4811 Australia
| | - Roger Huerlimann
- grid.1011.10000 0004 0474 1797Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, 1 James Cook Drive, Douglas, QLD 4811 Australia ,grid.250464.10000 0000 9805 2626Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son Okinawa, 904-0495 Japan ,grid.1011.10000 0004 0474 1797College of Science and Engineering, James Cook University, 1 James Cook Drive, Douglas, QLD 4811 Australia
| | - Yoga Kandasamy
- grid.1011.10000 0004 0474 1797College of Public Health, Medical and Veterinary Science, James Cook University, 1 James Cook Drive, Douglas, QLD 4811 Australia ,grid.417216.70000 0000 9237 0383Department of neonatology, Townsville University Hospital, 100 Angus Smith Drive, Douglas, QLD 4814 Australia
| | - Catherine M. Miller
- grid.1011.10000 0004 0474 1797College of Public Health, Medical and Veterinary Science, James Cook University, 1/14-88 McGregor Road, Smithfield, QLD 4878 Australia ,grid.1011.10000 0004 0474 1797Australian Institute for Tropical Health and Medicine, James Cook University, 1/14-88 McGregor Road, Smithfield, QLD 4878 Australia
| | - Robert Norton
- Department of Microbiology, Pathology Queensland, 100 Angus Smith Drive, Douglas, QLD 4814 Australia
| | - Kyran M. Staunton
- grid.1011.10000 0004 0474 1797Australian Institute for Tropical Health and Medicine, James Cook University, 1/14-88 McGregor Road, Smithfield, QLD 4878 Australia
| | - David Watson
- grid.417216.70000 0000 9237 0383Department of Maternal-Fetal Medicine, Townsville University Hospital, 100 Angus Smith Drive, Douglas, 4814 Australia
| | - Donna Rudd
- grid.1011.10000 0004 0474 1797College of Public Health, Medical and Veterinary Science, James Cook University, 1 James Cook Drive, Douglas, QLD 4811 Australia
| |
Collapse
|
19
|
Healy DB, Ryan CA, Ross RP, Stanton C, Dempsey EM. Clinical implications of preterm infant gut microbiome development. Nat Microbiol 2022; 7:22-33. [PMID: 34949830 DOI: 10.1038/s41564-021-01025-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
Perturbations to the infant gut microbiome during the first weeks to months of life affect growth, development and health. In particular, assembly of an altered intestinal microbiota during infant development results in an increased risk of immune and metabolic diseases that can persist into childhood and potentially into adulthood. Most research into gut microbiome development has focused on full-term babies, but health-related outcomes are also important for preterm babies. The systemic physiological immaturity of very preterm gestation babies (born earlier than 32 weeks gestation) results in numerous other microbiome-organ interactions, the mechanisms of which have yet to be fully elucidated or in some cases even considered. In this Perspective, we compare assembly of the intestinal microbiome in preterm and term infants. We focus in particular on the clinical implications of preterm infant gut microbiome composition and discuss the prospects for microbiome diagnostics and interventions to improve the health of preterm babies.
Collapse
Affiliation(s)
- David B Healy
- APC Microbiome Ireland, University College Cork, Cork, Ireland. .,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.
| | - C Anthony Ryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Eugene M Dempsey
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, Cork University Hospital, Cork, Ireland
| |
Collapse
|
20
|
Antibiotic spectrum index: A new tool comparing antibiotic use in three NICUs. Infect Control Hosp Epidemiol 2021; 43:1553-1557. [PMID: 34812135 DOI: 10.1017/ice.2021.467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Antibiotics are widely used in very low-birth-weight infants (VLBW, <1500 g), and excess exposure, particularly to broad-spectrum antibiotics, is associated with significant morbidity. An antibiotic spectrum index (ASI) quantifies antibiotic exposure by relative antimicrobial activity, adding information to exposure measured by days of therapy (DOT). We compared ASI and DOT across multiple centers to evaluate differences in antibiotic exposures. METHODS We extracted data from patients admitted to 3 level-4 NICUs for 2 years at 2 sites and for 1 year at a third site. We calculated the ASI per antibiotic days and DOT per patient days for all admitted VLBW infants <32 weeks gestational age. Clinical variables were compared as percentages or as days per 1,000 patient days. We used Kruskal-Wallis tests to compare continuous variables across the 3 sites. RESULTS Demographics were similar for the 734 VLBW infants included. The site with the highest DOT per patient days had the lowest ASI per antibiotic days and the site with the highest mortality and infection rates had the highest ASI per antibiotic days. Antibiotic utilization varied by center, particularly for choice of broad-spectrum coverage, although the organisms causing infection were similar. CONCLUSION An antibiotic spectrum index identified differences in prescribing practice patterns among 3 NICUs unique from those identified by standard antibiotic use metrics. Site differences in infection rates and unit practices or guidelines for prescribing antibiotics were reflected in the ASI. This comparison uncovered opportunities to improve antibiotic stewardship and demonstrates the utility of this metric for comparing antibiotic exposures among NICU populations.
Collapse
|
21
|
Liu Q, Liu Z, Zhang C, Xu Y, Li X, Gao H. Effects of 3% Boric Acid Solution on Cutaneous Candida albicans Infection and Microecological Flora Mice. Front Microbiol 2021; 12:709880. [PMID: 34557169 PMCID: PMC8453016 DOI: 10.3389/fmicb.2021.709880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
To determine the effect of 3% boric acid solution on cutaneous infections with Candida albicans (CA) in mice and its effect on skin microflora. Female mice were divided into three groups, with 18 mice in each group. Two injection sites were randomly selected, and 0.1 mL of CA mycelium suspension was injected into the epidermis and dermis of the back of mice. Group N was treated with sterile water for injection (SWFI). We observed the clinical manifestations, fungal fluorescence microscopic examination and colony count. Group B were hydropathically compressed with 3% boric acid solution for 30 min every 12 h. Group M was treated with SWFI, and group N was not treated. One week later, each group was observed with naked eyes, and skin samples were collected. The effect of boric acid on skin microflora was measured using Internal Transcribed Spacer Identification (ITS) and 16S rRNA genes. There were no significant changes in group M. In group B, the degree of skin injury was alleviated, the wounds healed markedly, and the exudate amount decreased. The effective rate of group B (83%) was significantly higher than that of group M (25%) (P < 0.05). The relative average abundance of Candida (P < 0.0001) and CA (P < 0.05) in group B was significantly lower than that in group M. Compared with group M, the microbial richness of group B changed little, but the diversity decreased. The flora structure of group B was significantly different from that of group M, but like that of group N. In group B, the abundance of Proteobacteria (P < 0.001), Enterobacteriaceae (P < 0.001), and Escherichia-Shigella (P < 0.001) was significantly greater, and the abundance of Firmicutes (P < 0.001), Staphylococcaceae (P < 0.001), and Staphylococcus (P < 0.001) were significantly lower. The 3% boric acid solution significantly reduced the symptoms of skin infection with Candida albicans. It inhibited the growth of Candida albicans and CA, reduced the diversity of skin microorganisms, increased the abundance of Proteobacteria, Enterobacteriaceae, Escherichia-Shigella, and reduced the abundance of Firmicutes, Staphylococcaceae, Staphylococcus.
Collapse
Affiliation(s)
- Qing Liu
- Department of Clinical Medicine, Hebei University of Engineering, Handan, China
| | - Zhao Liu
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Changlin Zhang
- Department of Clinical Medicine, Hebei University of Engineering, Handan, China
| | - Yanyan Xu
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Xiaojing Li
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Hongqi Gao
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering, Handan, China
| |
Collapse
|
22
|
Chang HY, Chiang Chiau JS, Ho YH, Chang JH, Tsai KN, Liu CY, Hsu CH, Lin CY, Ko MHJ, Lee HC. Impact of Early Empiric Antibiotic Regimens on the Gut Microbiota in Very Low Birth Weight Preterm Infants: An Observational Study. Front Pediatr 2021; 9:651713. [PMID: 34136438 PMCID: PMC8200535 DOI: 10.3389/fped.2021.651713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Frequent use of antibiotics in preterm infants disturbs their gut microbial balance. In this preliminary observational study, we investigated the effect of different antibiotic regimens, administered during the first week of life, on microbial composition and diversity in very low birth weight (VLBW) preterm infants. We performed fecal sampling of breastfed VLBW infants on days 7, 14, and 30. After excluding stool samples from infants who received probiotics or who were administered antibiotics beyond the age of 7 days, we compared gut microbiota profiles between infants receiving a combination of ampicillin and gentamicin for 3 days (AG group, n = 10) and those receiving a combination of ampicillin and cefotaxime for 7 days (AC group, n = 14) using 16S ribosomal DNA community profiling. We also assessed the changes over time in each group. Compared to the AG group, Enterococcus species were significantly more abundant in the AC group (P = 0.002), especially in 7-day samples (12.3 vs. 0.6%, respectively, P = 0.032). No difference was observed at phylum and genus level over time within each group. Species richness in the AC group decreased significantly in the 14-day (P = 0.038) and 30-day (P = 0.03) samples compared to that in the 7-day sample. The same was observed for microbial evenness; in contrast, no significant difference in Shannon index and beta-diversity was detected between the two groups. Controlling for relevant confounding variables did not change the results. In conclusion, different antibiotic regimens affect the early development of gut microbiota in VLBW preterm infants. Prolonged use of ampicillin and cefotaxime might result in overabundance of Enterococcus. However, given that no significant differences were observed in 1-month samples, bacterial genera appear to continue colonizing the gastrointestinal tract despite previous exposure to antibiotics. The clinical relevance of these findings should be elucidated by further studies.
Collapse
Affiliation(s)
- Hung-Yang Chang
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | | | - Yu-Hsuan Ho
- Life Science, Delta Research Center, Delta Electronics Incorporation, Taipei, Taiwan
| | - Jui-Hsing Chang
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Kun-Nan Tsai
- Life Science, Delta Research Center, Delta Electronics Incorporation, Taipei, Taiwan
| | - Chia-Yen Liu
- Life Science, Delta Research Center, Delta Electronics Incorporation, Taipei, Taiwan
| | - Chyong-Hsin Hsu
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Chia-Ying Lin
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Mary Hsin-Ju Ko
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Hung-Chang Lee
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
23
|
Infants exposed to antibiotics after birth have altered recognition memory responses at one month of age. Pediatr Res 2021; 89:1500-1507. [PMID: 32919394 PMCID: PMC7952463 DOI: 10.1038/s41390-020-01117-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Neonatal exposure to antibiotics, in the absence of infection, results in abnormal learning and memory in animals and is linked to changes in gut microbes. The relevance of early-life antibiotic exposure to brain function in humans is not known. METHODS Recognition memory was assessed at 1 month of age in 15 term-born infants exposed to antibiotics (with negative cultures) and 57 unexposed infants using event-related potentials (ERPs). Linear regression analysis, adjusting for covariates, was employed to compare groups with respect to ERP features representing early stimulus processing (P2 amplitude) and discrimination between mother and stranger voices. RESULTS Infants exposed to antibiotics exhibited smaller P2 amplitudes for both voice conditions (p = 0.001), with greatest reductions observed for mother's voice in frontal and central scalp regions (p < 0.04). Infants exposed to antibiotics showed larger P2 amplitudes to stranger's as compared to mother's voice, a reversal of the typical response exhibited by unexposed infants. Abnormal ERP responses did not consistently correlate with increased inflammatory cytokines within the antibiotic-exposed group. CONCLUSIONS Otherwise healthy infants exposed to antibiotics soon after birth demonstrated altered auditory processing and recognition memory responses, supporting the possibility of a microbiota-gut-brain axis in humans during early life. IMPACT Infants exposed to antibiotics after birth demonstrate altered auditory processing and recognition memory responses at 1 month of age. Preclinical models support a role for gut microbiomes in modulating brain function and behavior, particularly in developing brains. This study is one of the first to explore the relevance of these findings for human infants. The findings of this study have implications for the management and follow-up of at-risk infants with exposure to gut-microbiome disrupting factors and lay foundation for future studies to further characterize the short- and long-term effects of gut microbiome perturbation on brain development.
Collapse
|
24
|
Berardi A, Zinani I, Rossi C, Spaggiari E, D’Amico V, Toni G, Bedetti L, Lucaccioni L, Iughetti L, Lugli L. Antibiotic Use in Very Low Birth Weight Neonates After an Antimicrobial Stewardship Program. Antibiotics (Basel) 2021; 10:411. [PMID: 33918796 PMCID: PMC8070476 DOI: 10.3390/antibiotics10040411] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
There is insufficient data regarding antimicrobial stewardship (AS) and outcomes of very low birth weight (VLBW) neonates after AS programs. This observational, retrospective study addressed AS and outcomes of VLBW neonates admitted to an Italian level-three center. Two periods were compared: (i) baseline, before AS (January 2011-December 2012) and (ii) intervention, after AS (January 2016-December 2017). Between these two periods, procedures were put in place to inform medical and nursing staff regarding AS. There were 111 and 119 VLBW neonates in the baseline (6744 live births) and in the intervention period (5902 live births), respectively. The number of infants exposed to antibiotics (70%) during the hospital stay did not change, but the total days of therapy (DOT, median 12 vs. 5) and DOT/1000 patient days (302 vs. 215) decreased in the intervention period (p < 0.01), as well as the median duration of first antibiotic treatment (144 vs. 48 h, p < 0.01). A re-analysis of single cases of culture-proven or culture-negative sepsis failed to demonstrate any association between deaths and a delay or insufficient antibiotic use in the intervention period. In conclusion, AS is feasible in preterm VLBW neonates and antibiotic use can be safely reduced.
Collapse
Affiliation(s)
- Alberto Berardi
- Neonatal Intensive Care Unit, University Hospital of Modena and Reggio Emilia, 41121 Modena, Italy; (C.R.); (E.S.); (L.B.); (L.L.)
- Pediatric Post-Graduate School, University Hospital of Modena and Reggio Emilia, 41121 Modena, Italy; (I.Z.); (V.D.); (G.T.)
| | - Isotta Zinani
- Pediatric Post-Graduate School, University Hospital of Modena and Reggio Emilia, 41121 Modena, Italy; (I.Z.); (V.D.); (G.T.)
| | - Cecilia Rossi
- Neonatal Intensive Care Unit, University Hospital of Modena and Reggio Emilia, 41121 Modena, Italy; (C.R.); (E.S.); (L.B.); (L.L.)
| | - Eugenio Spaggiari
- Neonatal Intensive Care Unit, University Hospital of Modena and Reggio Emilia, 41121 Modena, Italy; (C.R.); (E.S.); (L.B.); (L.L.)
| | - Virginia D’Amico
- Pediatric Post-Graduate School, University Hospital of Modena and Reggio Emilia, 41121 Modena, Italy; (I.Z.); (V.D.); (G.T.)
| | - Greta Toni
- Pediatric Post-Graduate School, University Hospital of Modena and Reggio Emilia, 41121 Modena, Italy; (I.Z.); (V.D.); (G.T.)
| | - Luca Bedetti
- Neonatal Intensive Care Unit, University Hospital of Modena and Reggio Emilia, 41121 Modena, Italy; (C.R.); (E.S.); (L.B.); (L.L.)
- Ph.D. Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Laura Lucaccioni
- Pediatric Department, University of Modena and Reggio Emilia, 41121 Modena, Italy; (L.L.); (L.I.)
| | - Lorenzo Iughetti
- Pediatric Department, University of Modena and Reggio Emilia, 41121 Modena, Italy; (L.L.); (L.I.)
| | - Licia Lugli
- Neonatal Intensive Care Unit, University Hospital of Modena and Reggio Emilia, 41121 Modena, Italy; (C.R.); (E.S.); (L.B.); (L.L.)
| |
Collapse
|
25
|
Hortensius LM, van den Hooven EH, Dudink J, Tataranno ML, van Elburg RM, Benders MJNL. NutriBrain: protocol for a randomised, double-blind, controlled trial to evaluate the effects of a nutritional product on brain integrity in preterm infants. BMC Pediatr 2021; 21:132. [PMID: 33731062 PMCID: PMC7968155 DOI: 10.1186/s12887-021-02570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/24/2021] [Indexed: 11/23/2022] Open
Abstract
Background The gut microbiota and the brain are connected through different mechanisms. Bacterial colonisation of the gut plays a substantial role in normal brain development, providing opportunities for nutritional neuroprotective interventions that target the gut microbiome. Preterm infants are at risk for brain injury, especially white matter injury, mediated by inflammation and infection. Probiotics, prebiotics and L-glutamine are nutritional components that have individually already demonstrated beneficial effects in preterm infants, mostly by reducing infections or modulating the inflammatory response. The NutriBrain study aims to evaluate the benefits of a combination of probiotics, prebiotics and L-glutamine on white matter microstructure integrity (i.e., development of white matter tracts) at term equivalent age in very and extremely preterm born infants. Methods This study is a double-blind, randomised, controlled, parallel-group, single-center study. Eighty-eight infants born between 24 + 0 and < 30 + 0 weeks gestational age and less than 72 h old will be randomised after parental informed consent to receive either active study product or placebo. Active study product consists of a combination of Bifidobacterium breve M-16V, short-chain galacto-oligosaccharides, long-chain fructo-oligosaccharides and L-glutamine and will be given enterally in addition to regular infant feeding from 48 to 72 h after birth until 36 weeks postmenstrual age. The primary study outcome of white matter microstructure integrity will be measured as fractional anisotropy, assessed using magnetic resonance diffusion tensor imaging at term equivalent age and analysed using Tract-Based Spatial Statistics. Secondary outcomes are white matter injury, brain tissue volumes and cortical morphology, serious neonatal infections, serum inflammatory markers and neurodevelopmental outcome. Discussion This study will be the first to evaluate the effect of a combination of probiotics, prebiotics and L-glutamine on brain development in preterm infants. It may give new insights in the development and function of the gut microbiota and immune system in relation to brain development and provide a new, safe treatment possibility to improve brain development in the care for preterm infants. Trial registration ISRCTN, ISRCTN96620855. Date assigned: 10/10/2017. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-021-02570-x.
Collapse
Affiliation(s)
- Lisa M Hortensius
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | | | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Maria Luisa Tataranno
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Ruurd M van Elburg
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. .,University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
26
|
Diener C, Hoge ACH, Kearney SM, Kusebauch U, Patwardhan S, Moritz RL, Erdman SE, Gibbons SM. Non-responder phenotype reveals apparent microbiome-wide antibiotic tolerance in the murine gut. Commun Biol 2021; 4:316. [PMID: 33750910 PMCID: PMC7943787 DOI: 10.1038/s42003-021-01841-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Broad spectrum antibiotics cause both transient and lasting damage to the ecology of the gut microbiome. Antibiotic-induced loss of gut bacterial diversity has been linked to susceptibility to enteric infections. Prior work on subtherapeutic antibiotic treatment in humans and non-human animals has suggested that entire gut communities may exhibit tolerance phenotypes. In this study, we validate the existence of these community tolerance phenotypes in the murine gut and explore how antibiotic treatment duration or a diet enriched in antimicrobial phytochemicals might influence the frequency of this phenotype. Almost a third of mice exhibited whole-community tolerance to a high dose of the β-lactam antibiotic cefoperazone, independent of antibiotic treatment duration or dietary phytochemical amendment. We observed few compositional differences between non-responder microbiota during antibiotic treatment and the untreated control microbiota. However, gene expression was vastly different between non-responder microbiota and controls during treatment, with non-responder communities showing an upregulation of antimicrobial tolerance genes, like efflux transporters, and a down-regulation of central metabolism. Future work should focus on what specific host- or microbiome-associated factors are responsible for tipping communities between responder and non-responder phenotypes so that we might learn to harness this phenomenon to protect our microbiota from routine antibiotic treatment.
Collapse
Affiliation(s)
| | | | - Sean M Kearney
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | - Susan E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, USA.
- eScience Institute, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
27
|
Westaway JAF, Huerlimann R, Miller CM, Kandasamy Y, Norton R, Rudd D. Methods for exploring the faecal microbiome of premature infants: a review. Matern Health Neonatol Perinatol 2021; 7:11. [PMID: 33685524 PMCID: PMC7941982 DOI: 10.1186/s40748-021-00131-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The premature infant gut microbiome plays an important part in infant health and development, and recognition of the implications of microbial dysbiosis in premature infants has prompted significant research into these issues. The approaches to designing investigations into microbial populations are many and varied, each with its own benefits and limitations. The technique used can influence results, contributing to heterogeneity across studies. This review aimed to describe the most common techniques used in researching the preterm infant microbiome, detailing their various limitations. The objective was to provide those entering the field with a broad understanding of available methodologies, so that the likely effects of their use can be factored into literature interpretation and future study design. We found that although many techniques are used for characterising the premature infant microbiome, 16S rRNA short amplicon sequencing is the most common. 16S rRNA short amplicon sequencing has several benefits, including high accuracy, discoverability and high throughput capacity. However, this technique has limitations. Each stage of the protocol offers opportunities for the injection of bias. Bias can contribute to variability between studies using 16S rRNA high throughout sequencing. Thus, we recommend that the interpretation of previous results and future study design be given careful consideration.
Collapse
Affiliation(s)
- Jacob A F Westaway
- James Cook University, 1 McGregor Road, Smithfield, QLD, 4878, Australia.
| | - Roger Huerlimann
- James Cook University, 1 James Cook Dr, Douglas, QLD, 4811, Australia
| | - Catherine M Miller
- James Cook University, 1 McGregor Road, Smithfield, QLD, 4878, Australia
| | - Yoga Kandasamy
- Townsville University Hospital, 100 Angus Smith Dr, Douglas, QLD, 4814, Australia
| | - Robert Norton
- Pathology Queensland, 100 Angus Smith Dr, Douglas, QLD, 4814, Australia
| | - Donna Rudd
- James Cook University, 1 James Cook Dr, Douglas, QLD, 4811, Australia
| |
Collapse
|
28
|
Russell JT, Lauren Ruoss J, de la Cruz D, Li N, Bazacliu C, Patton L, McKinley KL, Garrett TJ, Polin RA, Triplett EW, Neu J. Antibiotics and the developing intestinal microbiome, metabolome and inflammatory environment in a randomized trial of preterm infants. Sci Rep 2021; 11:1943. [PMID: 33479274 PMCID: PMC7820285 DOI: 10.1038/s41598-021-80982-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/01/2021] [Indexed: 01/29/2023] Open
Abstract
Antibiotic use in neonates can have detrimental effects on the developing gut microbiome, increasing the risk of morbidity. A majority of preterm neonates receive antibiotics after birth without clear evidence to guide this practice. Here microbiome, metabolomic, and immune marker results from the routine early antibiotic use in symptomatic preterm Neonates (REASON) study are presented. The REASON study is the first trial to randomize symptomatic preterm neonates to receive or not receive antibiotics in the first 48 h after birth. Using 16S rRNA sequencing of stool samples collected longitudinally for 91 neonates, the effect of such antibiotic use on microbiome diversity is assessed. The results illustrate that type of nutrition shapes the early infant gut microbiome. By integrating data for the gut microbiome, stool metabolites, stool immune markers, and inferred metabolic pathways, an association was discovered between Veillonella and the neurotransmitter gamma-aminobutyric acid (GABA). These results suggest early antibiotic use may impact the gut-brain axis with the potential for consequences in early life development, a finding that needs to be validated in a larger cohort.Trial Registration This project is registered at clinicaltrials.gov under the name "Antibiotic 'Dysbiosis' in Preterm Infants" with trial number NCT02784821.
Collapse
Affiliation(s)
- Jordan T Russell
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - J Lauren Ruoss
- Division of Neonatology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Diomel de la Cruz
- Division of Neonatology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Nan Li
- Division of Neonatology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Catalina Bazacliu
- Division of Neonatology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Laura Patton
- Division of Neonatology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Kelley Lobean McKinley
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Richard A Polin
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Eric W Triplett
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
| | - Josef Neu
- Division of Neonatology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
29
|
Lee JKF, Hern Tan LT, Ramadas A, Ab Mutalib NS, Lee LH. Exploring the Role of Gut Bacteria in Health and Disease in Preterm Neonates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6963. [PMID: 32977611 PMCID: PMC7579082 DOI: 10.3390/ijerph17196963] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/06/2020] [Accepted: 09/19/2020] [Indexed: 02/07/2023]
Abstract
The mortality rate of very preterm infants with birth weight <1500 g is as high as 15%. The survivors till discharge have a high incidence of significant morbidity, which includes necrotising enterocolitis (NEC), early-onset neonatal sepsis (EONS) and late-onset neonatal sepsis (LONS). More than 25% of preterm births are associated with microbial invasion of amniotic cavity. The preterm gut microbiome subsequently undergoes an early disruption before achieving bacterial maturation. It is postulated that bacterial gut colonisation at birth and postnatal intestinal dysbacteriosis precede the development of NEC and LONS in very preterm infants. In fact, bacterial colonization patterns in preterm infants greatly differ from term infants due to maternal chorioamnionitis, gestational age, delivery method, feeding type, antibiotic exposure and the environment factor in neonatal intensive care unit (NICU). In this regard, this review provides an overview on the gut bacteria in preterm neonates' meconium and stool. More than 50% of preterm meconium contains bacteria and the proportion increases with lower gestational age. Researchers revealed that the gut bacterial diversity is reduced in preterm infants at risk for LONS and NEC. Nevertheless, the association between gut dysbacteriosis and NEC is inconclusive with regards to relative bacteria abundance and between-sample beta diversity indices. With most studies show a disruption of the Proteobacteria and Firmicutes preceding the NEC. Hence, this review sheds light on whether gut bacteria at birth either alone or in combination with postnatal gut dysbacteriosis are associated with mortality and the morbidity of LONS and NEC in very preterm infants.
Collapse
Affiliation(s)
- Jimmy Kok-Foo Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (J.K.-F.L.); (L.T.H.T.); (A.R.)
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
| | - Loh Teng Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (J.K.-F.L.); (L.T.H.T.); (A.R.)
| | - Amutha Ramadas
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (J.K.-F.L.); (L.T.H.T.); (A.R.)
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (J.K.-F.L.); (L.T.H.T.); (A.R.)
| |
Collapse
|
30
|
Prevention, diagnosis and treatment of necrosing enterocolitis in newborns less than 32 weeks at birth in Spain. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.anpede.2019.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
31
|
Navarro-Tapia E, Sebastiani G, Sailer S, Toledano LA, Serra-Delgado M, García-Algar Ó, Andreu-Fernández V. Probiotic Supplementation During the Perinatal and Infant Period: Effects on Gut Dysbiosis and Disease. Nutrients 2020; 12:E2243. [PMID: 32727119 PMCID: PMC7468726 DOI: 10.3390/nu12082243] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
The perinatal period is crucial to the establishment of lifelong gut microbiota. The abundance and composition of microbiota can be altered by several factors such as preterm delivery, formula feeding, infections, antibiotic treatment, and lifestyle during pregnancy. Gut dysbiosis affects the development of innate and adaptive immune responses and resistance to pathogens, promoting atopic diseases, food sensitization, and infections such as necrotizing enterocolitis (NEC). Recent studies have indicated that the gut microbiota imbalance can be restored after a single or multi-strain probiotic supplementation, especially mixtures of Lactobacillus and Bifidobacterium strains. Following the systematic search methodology, the current review addresses the importance of probiotics as a preventive or therapeutic tool for dysbiosis produced during the perinatal and infant period. We also discuss the safety of the use of probiotics in pregnant women, preterm neonates, or infants for the treatment of atopic diseases and infections.
Collapse
Affiliation(s)
- Elisabet Navarro-Tapia
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Valencian International University (VIU), 46002 Valencia, Spain
| | - Giorgia Sebastiani
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain
| | - Sebastian Sailer
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain
| | - Laura Almeida Toledano
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- BCNatal, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, 08950 Barcelona, Spain
| | - Mariona Serra-Delgado
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- BCNatal, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, 08950 Barcelona, Spain
| | - Óscar García-Algar
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain
| | - Vicente Andreu-Fernández
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Valencian International University (VIU), 46002 Valencia, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain
| |
Collapse
|
32
|
Zwittink RD, van Zoeren-Grobben D, Renes IB, van Lingen RA, Norbruis OF, Martin R, Groot Jebbink LJ, Knol J, Belzer C. Dynamics of the bacterial gut microbiota in preterm and term infants after intravenous amoxicillin/ceftazidime treatment. BMC Pediatr 2020; 20:195. [PMID: 32380969 PMCID: PMC7204001 DOI: 10.1186/s12887-020-02067-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND It is important to understand the consequences of pre-emptive antibiotic treatment in neonates, as disturbances in microbiota development during this key developmental time window might affect early and later life health outcomes. Despite increasing knowledge regarding the detrimental effect of antibiotics on the gut microbiota, limited research focussed on antibiotic treatment duration. We determined the effect of short and long amoxicillin/ceftazidime administration on gut microbiota development during the immediate postnatal life of preterm and term infants. METHODS Faeces was collected from 63 (pre) term infants at postnatal weeks one, two, three, four and six. Infants received either no (control), short-term (ST) or long-term (LT) postpartum amoxicillin/ceftazidime treatment. RESULTS Compared to control infants, ST and LT infants' microbiota contained significantly higher abundance of Enterococcus during the first two postnatal weeks at the expense of Bifidobacterium and Streptococcus. Short and long antibiotic treatment both allowed for microbiota restoration within the first six postnatal weeks. However, Enterococcus and Bifidobacterium abundances were affected in fewer ST than LT infants. CONCLUSIONS Intravenous amoxicillin/ceftazidime administration affects intestinal microbiota composition by decreasing the relative abundance of Escherichia-Shigella and Streptococcus, while increasing the relative abundance of Enterococcus and Lactobacillus species during the first two postnatal weeks. Thriving of enterococci at the expense of bifidobacteria and streptococci should be considered as aspect of the cost-benefit determination for antibiotic prescription.
Collapse
Affiliation(s)
- Romy D Zwittink
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | | | | | - Richard A van Lingen
- Princess Amalia Dpt of Paediatrics, Dpt of Neonatology, Isala, Zwolle, The Netherlands
| | - Obbe F Norbruis
- Princess Amalia Dpt of Paediatrics, Dpt of Neonatology, Isala, Zwolle, The Netherlands
| | - Rocio Martin
- Danone Nutricia Research, Utrecht, The Netherlands
| | | | - Jan Knol
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands.,Danone Nutricia Research, Utrecht, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands.
| |
Collapse
|
33
|
Kibegwa FM, Bett RC, Gachuiri CK, Stomeo F, Mujibi FD. A Comparison of Two DNA Metagenomic Bioinformatic Pipelines While Evaluating the Microbial Diversity in Feces of Tanzanian Small Holder Dairy Cattle. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2348560. [PMID: 32382536 PMCID: PMC7195676 DOI: 10.1155/2020/2348560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/17/2020] [Accepted: 02/27/2020] [Indexed: 12/05/2022]
Abstract
Analysis of shotgun metagenomic data generated from next generation sequencing platforms can be done through a variety of bioinformatic pipelines. These pipelines employ different sets of sophisticated bioinformatics algorithms which may affect the results of this analysis. In this study, we compared two commonly used pipelines for shotgun metagenomic analysis: MG-RAST and Kraken 2, in terms of taxonomic classification, diversity analysis, and usability using their primarily default parameters. Overall, the two pipelines detected similar abundance distributions in the three most abundant taxa Proteobacteria, Firmicutes, and Bacteroidetes. Within bacterial domain, 497 genera were identified by both pipelines, while an additional 694 and 98 genera were solely identified by Kraken 2 and MG-RAST, respectively. 933 species were detected by the two algorithms. Kraken 2 solely detected 3550 species, while MG-RAST identified 557 species uniquely. For archaea, Kraken 2 generated 105 and 236 genera and species, respectively, while MG-RAST detected 60 genera and 88 species. 54 genera and 72 species were commonly detected by the two methods. Kraken 2 had a quicker analysis time (~4 hours) while MG-RAST took approximately 2 days per sample. This study revealed that Kraken 2 and MG-RAST generate comparable results and that a reliable high-level overview of sample is generated irrespective of the pipeline selected. However, Kraken 2 generated a more accurate taxonomic identification given the higher number of "Unclassified" reads in MG-RAST. The observed variations at the genus level show that a main restriction is using different databases for classification of the metagenomic data. The results of this research indicate that a more inclusive and representative classification of microbiomes may be achieved through creation of the combined pipelines.
Collapse
Affiliation(s)
| | | | | | - Francesca Stomeo
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| | | |
Collapse
|
34
|
Li W, Tapiainen T, Brinkac L, Lorenzi HA, Moncera K, Tejesvi MV, Salo J, Nelson KE. Vertical Transmission of Gut Microbiome and Antimicrobial Resistance Genes in Infants Exposed to Antibiotics at Birth. J Infect Dis 2020; 224:1236-1246. [PMID: 32239170 PMCID: PMC8514186 DOI: 10.1093/infdis/jiaa155] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022] Open
Abstract
Vertical transmission of maternal microbes is a major route for establishing the gut microbiome in newborns. The impact of perinatal antibiotics on vertical transmission of microbes and antimicrobial resistance is not well understood. Using a metagenomic approach, we analyzed the fecal samples from mothers and vaginally delivered infants from a control group (10 pairs) and a treatment group (10 pairs) receiving perinatal antibiotics. Antibiotic-usage had a significant impact on the main source of inoculum in the gut microbiome of newborns. The control group had significantly more species transmitted from mothers to infants (P = .03) than the antibiotic-treated group. Approximately 72% of the gut microbial population of infants at 3–7 days after birth in the control group was transmitted from their mothers, versus only 25% in the antibiotic-treated group. In conclusion, perinatal antibiotics markedly disturbed vertical transmission and changed the source of gut colonization towards horizontal transfer from the environment to the infants.
Collapse
Affiliation(s)
- Weizhong Li
- J. Craig Venter Institute, La Jolla, California, USA
| | - Terhi Tapiainen
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
- PEDEGO Research Unit, Biocenter Oulu and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | | | | | | | | | - Jarmo Salo
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Karen E Nelson
- J. Craig Venter Institute, La Jolla, California, USA
- J. Craig Venter Institute, Rockville, Maryland, USA
| |
Collapse
|
35
|
Berardi A, Bedetti L, Spada C, Lucaccioni L, Frymoyer A. Serial clinical observation for management of newborns at risk of early-onset sepsis. Curr Opin Pediatr 2020; 32:245-251. [PMID: 31851052 DOI: 10.1097/mop.0000000000000864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Current management approaches for asymptomatic neonates at risk of early onset sepsis remain controversial. Strategies based entirely on clinical observation (SCO, serial clinical observation) have gained consensus. RECENT FINDINGS We briefly compare different strategies for managing asymptomatic newborns suggested in four high-income countries. Then this review details the existing differences in carrying out the SCO in the United Kingdom, the USA, and Italy; the experiences from the studies performed using the SCO; and open questions regarding this strategy. Advantages and limitations of SCO are also discussed. There is a need to assess which symptoms at birth are more predictive of early onset sepsis and therefore require immediate interventions versus those symptoms that can be monitored and re-evaluated. SUMMARY SCO strategy may require changes in the processes of newborn care at birthing centers. Nonetheless, SCO is safe and is associated with fewer laboratory evaluations and unnecessary antibiotics. Thoughtful and thorough practices related to the care of all newborns will benefit any birthing centre. VIDEO ABSTRACT: http://links.lww.com/MOP/A40.
Collapse
Affiliation(s)
- Alberto Berardi
- Neonatal Intensive Care Unit, Maternal and Child Department, University Hospital
| | - Luca Bedetti
- PhD Program in Clinical and Experimental Medicine, Maternal and Child Department
| | - Caterina Spada
- Pediatric Postgraduate School, Maternal and Child Department, University of Modena and Reggio Emilia, Italy
| | - Laura Lucaccioni
- Neonatal Intensive Care Unit, Maternal and Child Department, University Hospital
| | - Adam Frymoyer
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
36
|
Zozaya C, Avila-Alvarez A, Somoza Argibay I, García-Muñoz Rodrigo F, Oikonomopoulou N, Encinas JL, Saenz de Pipaón M, Couce ML. [Prevention, diagnosis and treatment of necrotising enterocolitis in newborns less than 32 weeks at birth in Spain]. An Pediatr (Barc) 2020; 93:161-169. [PMID: 32111552 DOI: 10.1016/j.anpedi.2019.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES To describe preventive, diagnostic and therapeutic strategies regarding necrotising enterocolitis in Spain and to identify the strengths, areas of further improvement, and future research lines. METHODS Two questionnaires on the management of preterm infants less than 32 weeks, at risk of, or with diagnosed necrotising enterocolitis, were distributed among selected representatives of the surgeons and neonatologists of the Spanish Neonatal Network (SEN1500) participant hospitals with a Paediatric Surgery Department. RESULTS Percentage of response was 77.1% of contacted surgeons and 88.6% of neonatologists. There is a written protocol on the diagnosis and medical management of necrotising enterocolitis in 52% of the hospitals, and as regards surgical treatment in 33%. There is wide access to donor bank milk and to staff dedicated to breastfeeding promotion (87%). On the contrary, only 52% of the centres perform delayed cord clamping, and probiotics are used in just 23%. The use of abdominal ultrasound is increasing. There are no large differences as regards duration of antibiotic use and bowel rest, whereas there was as regards antibiotic selection, surgical indication, and type of intervention. CONCLUSIONS As regards prevention, delayed cord clamping and extended access to donor milk are two possible aspects of further improvement. The observed discrepancies noted in diagnostic and therapeutic aspects are common in precisely the areas where evidence in the literature is weakest.
Collapse
Affiliation(s)
- Carlos Zozaya
- División de Neonatología, The Hospital for Sick Children, Toronto, Ontario, Canadá.
| | - Alejandro Avila-Alvarez
- Unidad de Neonatología, Servicio de Pediatría, Complexo Hospitalario Universitario A Coruña, A Coruña, España
| | - Iván Somoza Argibay
- Servicio de Cirugía Pediátrica, Complexo Hospitalario Universitario A Coruña, A Coruña, España
| | - Fermín García-Muñoz Rodrigo
- Servicio de Neonatología, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, España
| | - Niki Oikonomopoulou
- División de Neonatología, The Hospital for Sick Children, Toronto, Ontario, Canadá
| | - José Luis Encinas
- Departamento de Cirugía Pediátrica, Hospital Universitario La Paz, Madrid, España
| | | | - María Luz Couce
- Servicio de Neonatología, Hospital Clínico Universitario de Santiago de Compostela. Universidad de Santiago, IDIS; CIBERER, Santiago de Compostela, A Coruña, España
| |
Collapse
|
37
|
Ali F, Lui K, Wang A, Day AS, Leach ST. The perinatal period, the developing intestinal microbiome and inflammatory bowel diseases: What links early life events with later life disease? J R Soc N Z 2020. [DOI: 10.1080/03036758.2019.1706586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fathalla Ali
- School of Women’s and Children’s Health, University of New South Wales, Sydney, Australia
| | - Kei Lui
- School of Women’s and Children’s Health, University of New South Wales, Sydney, Australia
- Department of Newborn Care, Royal Hospital for Women, Sydney, Australia
| | - Alex Wang
- Faculty of Health, University of Technology Sydney, Sydney, Australia
| | - Andrew S. Day
- Department of Paediatrics, University of Otago, Christchurch, New Zealand
| | - Steven T. Leach
- School of Women’s and Children’s Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
38
|
Greenberg RG, Chowdhury D, Hansen NI, Smith PB, Stoll BJ, Sánchez PJ, Das A, Puopolo KM, Mukhopadhyay S, Higgins RD, Cotten CM. Prolonged duration of early antibiotic therapy in extremely premature infants. Pediatr Res 2019; 85:994-1000. [PMID: 30737489 PMCID: PMC6531328 DOI: 10.1038/s41390-019-0300-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Prolonged early antibiotics in extremely premature infants may have negative effects. We aimed to assess prevalence and outcomes of provision of prolonged early antibiotics to extremely premature infants in the absence of culture-confirmed infection or NEC. METHODS Cohort study of infants from 13 centers born without a major birth defect from 2008-2014 who were 401-1000 grams birth weight, 22-28 weeks gestation, and survived ≥5 days without culture-confirmed infection, NEC, or spontaneous intestinal perforation. We determined the proportion of infants who received prolonged early antibiotics, defined as ≥5 days of antibiotic therapy started at ≤72 h of age, by center and over time. Associations between prolonged early antibiotics and adverse outcomes were assessed using multivariable logistic regression. RESULTS A total of 5730 infants were included. The proportion of infants receiving prolonged early antibiotics varied from 30-69% among centers and declined from 49% in 2008 to 35% in 2014. Prolonged early antibiotics was not significantly associated with death (adjusted odds ratio 1.17 [95% CI: 0.99-1.40], p = 0.07) and was not associated with NEC. CONCLUSIONS The proportion of extremely premature infants receiving prolonged early antibiotics decreased, but significant center variation persists. Prolonged early antibiotics were not significantly associated with increased odds of death or NEC.
Collapse
Affiliation(s)
- Rachel G Greenberg
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| | - Dhuly Chowdhury
- Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, NC, Durham, USA
| | - Nellie I Hansen
- Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, NC, Durham, USA
| | - P Brian Smith
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Barbara J Stoll
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX, USA
| | - Pablo J Sánchez
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Abhik Das
- Social, Statistical and Environmental Sciences Unit, RTI International, Rockville, MD, USA
| | - Karen M Puopolo
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sagori Mukhopadhyay
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rosemary D Higgins
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - C Michael Cotten
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
39
|
Henderickx JGE, Zwittink RD, van Lingen RA, Knol J, Belzer C. The Preterm Gut Microbiota: An Inconspicuous Challenge in Nutritional Neonatal Care. Front Cell Infect Microbiol 2019; 9:85. [PMID: 31001489 PMCID: PMC6454191 DOI: 10.3389/fcimb.2019.00085] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
The nutritional requirements of preterm infants are unique and challenging to meet in neonatal care, yet crucial for their growth, development and health. Normally, the gut microbiota has distinct metabolic capacities, making their role in metabolism of dietary components indispensable. In preterm infants, variation in microbiota composition is introduced while facing a unique set of environmental conditions. However, the effect of such variation on the microbiota's metabolic capacity and on the preterm infant's growth and development remains unresolved. In this review, we will provide a holistic overview on the development of the preterm gut microbiota and the unique environmental conditions contributing to this, in addition to maturation of the gastrointestinal tract and immune system in preterm infants. The role of prematurity, as well as the role of human milk, in the developmental processes is emphasized. Current research stresses the early life gut microbiota as cornerstone for simultaneous development of the gastrointestinal tract and immune system. Besides that, literature provides clues that prematurity affects growth and development. As such, this review is concluded with our hypothesis that prematurity of the gut microbiota may be an inconspicuous clinical challenge in achieving optimal feeding besides traditional challenges, such as preterm breast milk composition, high nutritional requirements and immaturity of the gastrointestinal tract and immune system. A better understanding of the metabolic capacity of the gut microbiota and its impact on gut and immune maturation in preterm infants could complement current feeding regimens in future neonatal care and thereby facilitate growth, development and health in preterm infants.
Collapse
Affiliation(s)
- Jannie G E Henderickx
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Romy D Zwittink
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Richard A van Lingen
- Department of Neonatology, Isala Women and Children's Hospital, Zwolle, Netherlands
| | - Jan Knol
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands.,Danone Nutricia Research, Utrecht, Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
40
|
Ficara M, Pietrella E, Spada C, Della Casa Muttini E, Lucaccioni L, Iughetti L, Berardi A. Changes of intestinal microbiota in early life. J Matern Fetal Neonatal Med 2018; 33:1036-1043. [PMID: 30058404 DOI: 10.1080/14767058.2018.1506760] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is an increasing evidence that the intestinal microbiota plays a pivotal role in the maturation of the immune system and in the prevention of diseases occurring during the neonatal period, childhood, and adulthood. A number of nonphysiological conditions during the perinatal period (i.e. caesarean section, prolonged hospitalization, formula feeding, low gestational age) may negatively affect the normal development of the microbiota, leading to decreased amounts of lactobacilli and bifidobacteria and increased amounts of Clostridia. In addition, perinatal antibiotics can cause intestinal dysbiosis that has been associated with short- and long-term diseases. For example, prolonged early empiric antibiotics increase the risk of necrotizing enterocolitis (NEC) and late-onset sepsis (LOS) in preterm neonates, whereas the administration of intrapartum antibiotic prophylaxis (IAP) has been associated with inflammatory bowel diseases, obesity, and atopic conditions, such as eczema and wheezing. Promoting breastfeeding, reducing the length of hospital stay, and reducing unnecessary antibiotic therapies are useful strategies to counterbalance unintended effects of these conditions.
Collapse
Affiliation(s)
- Monica Ficara
- Department of Medical and Surgical Sciences for Mothers, Children and Adults, Post Graduate School of Paediatrics, University of Modena & Reggio Emilia, Modena, Italy
| | - Elisa Pietrella
- Department of Medical and Surgical Sciences for Mothers, Children and Adults, Post Graduate School of Paediatrics, University of Modena & Reggio Emilia, Modena, Italy
| | - Caterina Spada
- Department of Medical and Surgical Sciences for Mothers, Children and Adults, Post Graduate School of Paediatrics, University of Modena & Reggio Emilia, Modena, Italy
| | - Elisa Della Casa Muttini
- Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, Modena, Italy
| | - Laura Lucaccioni
- Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, Modena, Italy
| | - Lorenzo Iughetti
- Department of Medical and Surgical Sciences for Mothers, Children and Adults, Post Graduate School of Paediatrics, University of Modena & Reggio Emilia, Modena, Italy.,Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena & Reggio Emilia, Modena, Italy
| | - Alberto Berardi
- Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, Modena, Italy
| |
Collapse
|
41
|
van Wattum JJ, Leferink TM, Wilffert B, Ter Horst PGJ. Antibiotics and lactation: An overview of relative infant doses and a systematic assessment of clinical studies. Basic Clin Pharmacol Toxicol 2018; 124:5-17. [PMID: 30015369 DOI: 10.1111/bcpt.13098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/11/2018] [Indexed: 01/10/2023]
Abstract
Breastfeeding is important for the development of the child. Many antibiotics are considered safe during breastfeeding. The aim of the study was to assess the quality of lactation studies with antibiotics using the FDA and International Lactation Consultant Association quality guidelines for lactation studies. The secondary goal was to determine the exposure of the breastfed infant to antibiotics in relation to bacterial resistance and the developing microbiome. A literature search was performed and the included studies were scored on methodology, parameters concerning maternal exposure to antibiotics, maternal plasma and milk sampling. The infant exposure has been calculated and expressed as a percentage of a normal infant therapeutic dose. Sixty-six studies were included in five antibiotic groups (broad-spectrum penicillin, cephalosporins, macrolides and lincosamides, quinolones and sulphonamides). Cephalosporins were the most studied group of antibiotics (n = 21). Fifteen studies met all the criteria of "mother exposure to antibiotic". Six studies met every criterion related to "plasma sampling". Only one case report met all listed criteria for lactation studies. The correct calculation of infant exposure to antibiotics via the milk:plasma ratio (AUC) varies between 13% for macrolides and 38% for broad-spectrum penicillin. The highest assessed exposure as a percentage of infant therapeutic dose was for metronidazole (11%). The studies meet to a limited extent with the quality standards for lactation research. The breastfed infants are exposed to a subtherapeutic concentration of antibiotics.
Collapse
Affiliation(s)
| | - Thomas M Leferink
- Department of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Bob Wilffert
- Department of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
42
|
Esaiassen E, Fjalstad JW, Juvet LK, van den Anker JN, Klingenberg C. Antibiotic exposure in neonates and early adverse outcomes: a systematic review and meta-analysis. J Antimicrob Chemother 2018; 72:1858-1870. [PMID: 28369594 DOI: 10.1093/jac/dkx088] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/24/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives To systematically review and meta-analyse the relationship between antibiotic exposure in neonates and the following early adverse outcomes: necrotizing enterocolitis (NEC), invasive fungal infections (IFIs) and/or death. Methods Data sources were PubMed, Embase, Medline and the Cochrane Database (to December 2016), supplemented by manual searches of reference lists. Randomized controlled trials (RCTs) and observational studies were included if they provided data on different categories of antibiotic exposures (yes versus no, long versus short duration, and/or broad- versus narrow-spectrum regimens) and the risk of developing NEC, IFI and/or death in the neonatal period. Two reviewers extracted data and evaluated the risk of bias using the Cochrane Handbook, adapted to include observational studies. When appropriate, meta-analyses were conducted using the random-effect model. Results We identified 9 RCTs and 38 observational studies. The quality of the majority of studies was poor to moderate. There was a significant association between prolonged antibiotic exposure and an increased risk of NEC in five observational studies (5003 participants) and/or risk of death in five observational studies (13 534 participants). Eleven of 15 studies with data on broad- versus narrow-spectrum regimens reported an increased risk of IFI after broad-spectrum antibiotic exposure, in particular with third-generation cephalosporins and carbapenems. Meta-analysis was limited by few and old RCTs, insufficient sample sizes and diversity of antibiotic exposure and outcomes reported. Conclusions Prolonged antibiotic exposure in uninfected preterm infants is associated with an increased risk of NEC and/or death, and broad-spectrum antibiotic exposure is associated with an increased risk of IFI.
Collapse
Affiliation(s)
- Eirin Esaiassen
- Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway.,Paediatric Research Group, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Jon Widding Fjalstad
- Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway.,Paediatric Research Group, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Lene Kristine Juvet
- Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo, Norway.,University College of Southeast Norway, Notodden, Norway
| | - John N van den Anker
- Division of Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland.,Division of Clinical Pharmacology, Children's National Health System, Washington, DC, USA
| | - Claus Klingenberg
- Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway.,Paediatric Research Group, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
43
|
Zwittink RD, Renes IB, van Lingen RA, van Zoeren-Grobben D, Konstanti P, Norbruis OF, Martin R, Groot Jebbink LJM, Knol J, Belzer C. Association between duration of intravenous antibiotic administration and early-life microbiota development in late-preterm infants. Eur J Clin Microbiol Infect Dis 2018; 37:475-483. [PMID: 29368074 PMCID: PMC5816780 DOI: 10.1007/s10096-018-3193-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/11/2018] [Indexed: 12/31/2022]
Abstract
Antibiotic treatment is common practice in the neonatal ward for the prevention and treatment of sepsis, which is one of the leading causes of mortality and morbidity in preterm infants. Although the effect of antibiotic treatment on microbiota development is well recognised, little attention has been paid to treatment duration. We studied the effect of short and long intravenous antibiotic administration on intestinal microbiota development in preterm infants. Faecal samples from 15 preterm infants (35 ± 1 weeks gestation and 2871 ± 260 g birth weight) exposed to no, short (≤ 3 days) or long (≥ 5 days) treatment with amoxicillin/ceftazidime were collected during the first six postnatal weeks. Microbiota composition was determined through 16S rRNA gene sequencing and by quantitative polymerase chain reaction (qPCR). Short and long antibiotic treat ment significantly lowered the abundance of Bifidobacterium right after treatment (p = 0.027) till postnatal week three (p = 0.028). Long treatment caused Bifidobacterium abundance to remain decreased till postnatal week six (p = 0.009). Antibiotic treatment was effective against members of the Enterobacteriaceae family, but allowed Enterococcus to thrive and remain dominant for up to two weeks after antibiotic treatment discontinuation. Community richness and diversity were not affected by antibiotic treatment, but were positively associated with postnatal age (p < 0.023) and with abundance of Bifidobacterium (p = 0.003). Intravenous antibiotic administration during the first postnatal week greatly affects the infant's gastrointestinal microbiota. However, quick antibiotic treatment cessation allows for its recovery. Disturbances in microbiota development caused by short and, more extensively, by long antibiotic treatment could affect healthy development of the infant via interference with maturation of the immune system and gastrointestinal tract.
Collapse
Affiliation(s)
- Romy D Zwittink
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | | | - Richard A van Lingen
- Princess Amalia Children's Centre, Department of Paediatrics and Neonatology, Isala, Zwolle, The Netherlands
| | - Diny van Zoeren-Grobben
- Princess Amalia Children's Centre, Department of Paediatrics and Neonatology, Isala, Zwolle, The Netherlands
| | - Prokopis Konstanti
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Obbe F Norbruis
- Princess Amalia Children's Centre, Department of Paediatrics and Neonatology, Isala, Zwolle, The Netherlands
| | | | - Liesbeth J M Groot Jebbink
- Princess Amalia Children's Centre, Department of Paediatrics and Neonatology, Isala, Zwolle, The Netherlands
| | - Jan Knol
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Nutricia Research, Utrecht, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
44
|
Rodriguez J, Jordan S, Mutic A, Thul T. The Neonatal Microbiome: Implications for Neonatal Intensive Care Unit Nurses. MCN Am J Matern Child Nurs 2017; 42:332-337. [PMID: 29049058 PMCID: PMC5679116 DOI: 10.1097/nmc.0000000000000375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nursing care of the neonate in the neonatal intensive care unit (NICU) is complex, due in large part to various physiological challenges. A newer and less well-known physiological consideration is the neonatal microbiome, the community of microorganisms, both helpful and harmful, that inhabit the human body. The neonatal microbiome is influenced by the maternal microbiome, mode of infant birth, and various aspects of NICU care such as feeding choice and use of antibiotics. The composition and diversity of the microbiome is thought to influence key health outcomes including development of necrotizing enterocolitis, late-onset sepsis, altered physical growth, and poor neurodevelopment. Nurses in the NICU play a key role in managing care that can positively influence the microbiome to promote more optimal health outcomes in this vulnerable population of newborns.
Collapse
Affiliation(s)
- Jeannie Rodriguez
- Jeannie Rodriguez is an Assistant Professor, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA. She can be reached via e-mail at Sheila Jordan is a Pre-Doctoral Fellow, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA. Abby Mutic is a Certified Nurse Midwife, Doctoral Candidate, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA. Taylor Thul is a Doctoral Student, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA
| | | | | | | |
Collapse
|
45
|
Ferrer M, Méndez-García C, Rojo D, Barbas C, Moya A. Antibiotic use and microbiome function. Biochem Pharmacol 2017; 134:114-126. [PMID: 27641814 DOI: 10.1016/j.bcp.2016.09.007] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023]
Abstract
Our microbiome should be understood as one of the most complex components of the human body. The use of β-lactam antibiotics is one of the microbiome covariates that influence its composition. The extent to which our microbiota changes after an antibiotic intervention depends not only on the chemical nature of the antibiotic or cocktail of antibiotics used to treat specific infections, but also on the type of administration, duration and dose, as well as the level of resistance that each microbiota develops. We have begun to appreciate that not all bacteria within our microbiota are vulnerable or reactive to different antibiotic interventions, and that their influence on both microbial composition and metabolism may differ. Antibiotics are being used worldwide on a huge scale and the prescription of antibiotics is continuing to rise; however, their effects on our microbiota have been reported for only a limited number of them. This article presents a critical review of the antibiotics or antibiotic cocktails whose use in humans has been linked to changes in the composition of our microbial communities, with a particular focus on the gut, oral, respiratory, skin and vaginal microbiota, and on their molecular agents (genes, proteins and metabolites). We review the state of the art as of June 2016, and cover a total of circa 68 different antibiotics. The data herein are the first to compile information about the bacteria, fungi, archaea and viruses most influenced by the main antibiotic treatments prescribed nowadays.
Collapse
Affiliation(s)
- Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | | | - David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Madrid, Spain
| | - Andrés Moya
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community Public Health (FISABIO), Valencia, Spain; Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain; Instituto Cavanilles de Biodiversidad y Biología Evolutiva (Universidad de Valencia), Valencia, Spain.
| |
Collapse
|
46
|
Lemas DJ, Yee S, Cacho N, Miller D, Cardel M, Gurka M, Janicke D, Shenkman E. Exploring the contribution of maternal antibiotics and breastfeeding to development of the infant microbiome and pediatric obesity. Semin Fetal Neonatal Med 2016; 21:406-409. [PMID: 27424917 DOI: 10.1016/j.siny.2016.04.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pediatric obesity, a significant public health concern, has been associated with adult premature mortality and the development of type 2 diabetes and cardiovascular disease. Evidence has suggested that the gut microbiota is associated with pediatric obesity. Establishment of the infant gut microbiome is dependent on a dynamic maternal-infant microbiota exchange during early life. The objective of this review is to describe maternal factors such as feeding practices and antibiotic use that may influence the infant gut microbiome and risk for obesity. The complex components in human milk have many nutritional benefits to the infant; however, the microbiome in human milk may be an important factor to help regulate the infant's weight. We discuss maternal antibiotics and the effects on breast milk as critical exposures that alter the infant's gut microbiome and influence the risk of pediatric obesity.
Collapse
Affiliation(s)
- Dominick J Lemas
- University of Florida, Department of Health Outcomes and Policy, Gainesville, FL, USA.
| | - Shanique Yee
- University of Florida, Department of Health Outcomes and Policy, Gainesville, FL, USA
| | - Nicole Cacho
- University of Florida, Department of Pediatrics, Division of Neonatology, Gainesville, FL, USA
| | - Darci Miller
- University of Florida, Department of Health Outcomes and Policy, Gainesville, FL, USA
| | - Michelle Cardel
- University of Florida, Department of Health Outcomes and Policy, Gainesville, FL, USA
| | - Matthew Gurka
- University of Florida, Department of Health Outcomes and Policy, Gainesville, FL, USA
| | - David Janicke
- University of Florida, Department of Clinical and Health Psychology, Gainesville, FL, USA
| | - Elizabeth Shenkman
- University of Florida, Department of Health Outcomes and Policy, Gainesville, FL, USA
| |
Collapse
|
47
|
Weese JS, Jelinski M. Assessment of the Fecal Microbiota in Beef Calves. J Vet Intern Med 2016; 31:176-185. [PMID: 27873352 PMCID: PMC5259625 DOI: 10.1111/jvim.14611] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/12/2016] [Accepted: 10/20/2016] [Indexed: 01/09/2023] Open
Abstract
Background There is increasing interest in the fecal microbiota, but study in calves has been limited. Hypothesis/Objectives To evaluate the fecal microbiota of beef calves and cows on different farms, and to preliminarily explore the impact of antimicrobial exposure. Animals A total of 172 animals, 156 (91%) calves and 16 (9.3%) cows, were enrolled from 5 cow‐calf farms. Methods The fecal bacterial microbiota was assessed through sequencing of 16S rRNA gene (V4 region) amplicons. Results There were significant differences in the relative abundances of numerous phyla between calves on different farms. Farms could be separated into 2 groups: 1 (farms B and C) dominated by Firmicutes and 1 (farms A, D, and E) with predominance of Proteobacteria and Actinobacteria. Richness (median 2,974 versus 1,477, P = .008), diversity (51.4 versus 29.1, P = .0029), and evenness (0.73 versus 0.68, P = .006) were higher in cows. Over‐represented operational taxonomic units (OTUs) in cows tended to be from the classes Bacilli and Bacteroidia, whereas Clostridia and Actinobacteria were most prominently over‐represented in calves. There were differences in community membership (P = .028) and structure (P = .029) in calves that had a history of antimicrobial exposure compared those that did not. Eight (89%) over‐represented OTUs in the untreated group were Firmicutes (7 from the order Clostridiales), compared to only 3 (38%) (2 Clostridiales) in the untreated group. Conclusions and Clinical Importance Interfarm variation should be investigated to determine the causes and potential implications for health and production. Antimicrobial exposure may have an impact on the fecal microbiota at individual and farm levels.
Collapse
Affiliation(s)
- J S Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - M Jelinski
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
48
|
Affiliation(s)
- Gian Maria Pacifici
- Translational Department and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Karel Allegaert
- Neonatal Intensive Care Unit, University Hospitals Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Belgium
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Antibiotics have not only saved lives and improved outcomes, but they also influence the evolving microbiome. This review summarizes reports on neonatal infections and variation in antibiotic utilization, discusses the emergence of resistant organisms, and presents data from human neonates and animal models demonstrating the impact of antibiotics on the microbiome, and how microbiome alterations impact health. The importance of antibiotic stewardship is also discussed. RECENT FINDINGS Infections increase neonatal morbidity and mortality. Furthermore, the clinical presentation of infections can be subtle, prompting clinicians to empirically start antibiotics when infection is a possibility. Antibiotic-resistant infections are a growing problem. Cohort studies have identified extensive center variations in antibiotic usage and associations between antibiotic exposures and outcomes. Studies of antibiotic-induced microbiome alterations and downstream effects on the developing immune system have increased our understanding of the mechanisms underlying the associations between antibiotics and adverse outcomes. The emergence of resistant microorganisms and recent evidence linking antibiotic practice variations with health outcomes has led to the initiation of antibiotic stewardship programs. SUMMARY The review encourages practitioners to assess local antibiotic use with regard to local microbiology, and to adopt steps to reduce infections and use antibiotics wisely.
Collapse
|
50
|
Abstract
OBJECTIVES The aim of the present study was to examine the changes in bacteria in hospitalized preterm infants during the first month of life. METHODS Rectal swabs were collected daily from 12 preterm infants. DNA was extracted from swabs from day of birth and weekly thereafter. Bacterial taxa were identified with next generation sequencing using universal bacterial primers targeted at the 16S ribosomal DNA on a 454 Roche titanium platform. Sequences were clustered into operational taxonomic units, and taxonomy was assigned against the Greengenes databank using Quantitative Insights Into Microbial Ecology version 1.4. Quantitative polymerase chain reaction was used to determine the abundance of Bifidobacterium spp. Functional assessment of the microbiome was performed with Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). RESULTS Average birth weight and gestational age were 1055 g and 28 weeks, respectively. There were 6 to 35 different bacterial families identified in the day-of-birth samples, unrelated to the mode of delivery. Richness decreased through hospitalization (week 1, 16.9 ± 7.7 vs weeks 3-5, 10.7 ± 3.4, P < 0.001). The Shannon diversity index demonstrated the lowest diversity at birth, an increase at week 2, followed by a rapid decline at weeks 3 to 5, suggesting the development of a more uniform microbiota composition after 2 weeks of stay at a neonatal intensive care unit. Enterobacteriaceae, Staphylococcaceae, and Enterococcaceae constituted the majority of the bacterial families. Bifidobacterium spp were infrequently detected at extremely low levels. PICRUSt analysis revealed the enhancement of peroxisome, PPAR, and adipocytokine signaling; plant-pathogen interaction; and aminobenzoate degradation pathways in week 1 samples. CONCLUSIONS Our results suggest that although preterm infants have individualized microbiota that are detectable at birth, the differences decrease during the neonatal intensive care unit hospitalization with increasing prominence of pathogenic microbiota.
Collapse
|