1
|
Shen S, Li J, Wei Z, Liu Y, Kang L, Gu R, Sun X, Xu B, Li Q. Immune-response gene 1 deficiency aggravates inflammation-triggered cardiac dysfunction by inducing M1 macrophage polarization and aggravating Ly6C high monocyte recruitment. Biol Direct 2024; 19:86. [PMID: 39350193 PMCID: PMC11441264 DOI: 10.1186/s13062-024-00521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
The immune response gene 1 (IRG1) and its metabolite itaconate are implicated in modulating inflammation and oxidative stress, with potential relevance to sepsis-induced myocardial dysfunction (SIMD). This study investigates their roles in SIMD using both in vivo and in vitro models. Mice were subjected to lipopolysaccharide (LPS)-induced sepsis, and cardiac function was assessed in IRG1 knockout (IRG1-/-) and wild-type mice. Exogenous 4-octyl itaconate (4-OI) supplementation was also examined for its protective effects. In vitro, bone marrow-derived macrophages and RAW264.7 cells were treated with 4-OI following Nuclear factor, erythroid 2 like 2 (NRF2)-small interfering RNA administration to elucidate the underlying mechanisms. Our results indicate that IRG1 deficiency exacerbates myocardial injury during sepsis, while 4-OI administration preserves cardiac function and reduces inflammation. Mechanistic insights reveal that 4-OI activates the NRF2/HO-1 pathway, promoting macrophage polarization and attenuating inflammation. These findings underscore the protective role of the IRG1/itaconate axis in SIMD and suggest a therapeutic potential for 4-OI in modulating macrophage responses.
Collapse
Affiliation(s)
- Song Shen
- Department of Cardiology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jianhui Li
- Department of Cardiology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhonghai Wei
- Department of Cardiology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yihai Liu
- Department of Cardiology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lina Kang
- Department of Cardiology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Rong Gu
- Department of Cardiology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuan Sun
- Department of Cardiology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Biao Xu
- Department of Cardiology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - QiaoLing Li
- Department of Cardiology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
2
|
Bhat OM, Mir RA, Nehvi IB, Wani NA, Dar AH, Zargar MA. Emerging role of sphingolipids and extracellular vesicles in development and therapeutics of cardiovascular diseases. IJC HEART & VASCULATURE 2024; 53:101469. [PMID: 39139609 PMCID: PMC11320467 DOI: 10.1016/j.ijcha.2024.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Sphingolipids are eighteen carbon alcohol lipids synthesized from non-sphingolipid precursors in the endoplasmic reticulum (ER). The sphingolipids serve as precursors for a vast range of moieties found in our cells that play a critical role in various cellular processes, including cell division, senescence, migration, differentiation, apoptosis, pyroptosis, autophagy, nutrition intake, metabolism, and protein synthesis. In CVDs, different subclasses of sphingolipids and other derived molecules such as sphingomyelin (SM), ceramides (CERs), and sphingosine-1-phosphate (S1P) are directly related to diabetic cardiomyopathy, dilated cardiomyopathy, myocarditis, ischemic heart disease (IHD), hypertension, and atherogenesis. Several genome-wide association studies showed an association between genetic variations in sphingolipid pathway genes and the risk of CVDs. The sphingolipid pathway plays an important role in the biogenesis and secretion of exosomes. Small extracellular vesicles (sEVs)/ exosomes have recently been found as possible indicators for the onset of CVDs, linking various cellular signaling pathways that contribute to the disease progression. Important features of EVs like biocompatibility, and crossing of biological barriers can improve the pharmacokinetics of drugs and will be exploited to develop next-generation drug delivery systems. In this review, we have comprehensively discussed the role of sphingolipids, and sphingolipid metabolites in the development of CVDs. In addition, concise deliberations were laid to discuss the role of sEVs/exosomes in regulating the pathophysiological processes of CVDs and the exosomes as therapeutic targets.
Collapse
Affiliation(s)
- Owais Mohmad Bhat
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | | | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Abid Hamid Dar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - M Afzal Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| |
Collapse
|
3
|
Xiao H, Cui X, Liu L, Lv B, Zhang R, Zheng T, Yao D, Gao H, Gu X, Li Y, Tian Y. Identification and validation of lipid metabolism-related key genes as novel biomarkers in acute myocardial infarction and pan-cancer analysis. Aging (Albany NY) 2024; 16:9127-9146. [PMID: 38787365 PMCID: PMC11164520 DOI: 10.18632/aging.205860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Acute myocardial infarction (AMI) is associated with high morbidity and mortality, and is associated with abnormal lipid metabolism. We identified lipid metabolism related genes as biomarkers of AMI, and explored their mechanisms of action. METHODS Microarray datasets were downloaded from the GEO database and lipid metabolism related genes were obtained from Molecular Signatures Database. WGCNA was performed to identify key genes. We evaluated differential expression and performed ROC and ELISA analyses. We also explored the mechanism of AMI mediated by key genes using gene enrichment analysis. Finally, immune infiltration and pan-cancer analyses were performed for the identified key genes. RESULTS TRL2, S100A9, and HCK were identified as key genes related to lipid metabolism in AMI. Internal and external validation (including ELISA) showed that these were good biomarkers of AMI. In addition, the results of gene enrichment analysis showed that the key genes were enriched in inflammatory response, immune system process, and tumor-related pathways. Finally, the results of immune infiltration showed that key genes were concentrated in neutrophils and macrophages, and pan-cancer analysis showed that the key genes were highly expressed in most tumors and were associated with poor prognosis. CONCLUSIONS TLR2, S100A9, and HCK were identified as lipid metabolism related novel diagnostic biomarkers of AMI. In addition, AMI and tumors may be related through the inflammatory immune response.
Collapse
Affiliation(s)
- Hao Xiao
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaolei Cui
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liang Liu
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baopu Lv
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Zhang
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tuokang Zheng
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dongqi Yao
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hengbo Gao
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinshun Gu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yi Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingping Tian
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Baccouche BM, Elde S, Wang H, Woo YJ. Structural, angiogenic, and immune responses influencing myocardial regeneration: a glimpse into the crucible. NPJ Regen Med 2024; 9:18. [PMID: 38688935 PMCID: PMC11061134 DOI: 10.1038/s41536-024-00357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/15/2024] [Indexed: 05/02/2024] Open
Abstract
Complete cardiac regeneration remains an elusive therapeutic goal. Although much attention has been focused on cardiomyocyte proliferation, especially in neonatal mammals, recent investigations have unearthed mechanisms by which non-cardiomyocytes, such as endothelial cells, fibroblasts, macrophages, and other immune cells, play critical roles in modulating the regenerative capacity of the injured heart. The degree to which each of these cell types influence cardiac regeneration, however, remains incompletely understood. This review highlights the roles of these non-cardiomyocytes and their respective contributions to cardiac regeneration, with emphasis on natural heart regeneration after cardiac injury during the neonatal period.
Collapse
Affiliation(s)
- Basil M Baccouche
- Stanford University Department of Cardiothoracic Surgery, Palo Alto, CA, USA
| | - Stefan Elde
- Stanford University Department of Cardiothoracic Surgery, Palo Alto, CA, USA
| | - Hanjay Wang
- Stanford University Department of Cardiothoracic Surgery, Palo Alto, CA, USA
| | - Y Joseph Woo
- Stanford University Department of Cardiothoracic Surgery, Palo Alto, CA, USA.
| |
Collapse
|
5
|
Sun J, Peterson EA, Chen X, Wang J. ptx3a + fibroblast/epicardial cells provide a transient macrophage niche to promote heart regeneration. Cell Rep 2024; 43:114092. [PMID: 38607913 PMCID: PMC11092985 DOI: 10.1016/j.celrep.2024.114092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Macrophages conduct critical roles in heart repair, but the niche required to nurture and anchor them is poorly studied. Here, we investigated the macrophage niche in the regenerating heart. We analyzed cell-cell interactions through published single-cell RNA sequencing datasets and identified a strong interaction between fibroblast/epicardial (Fb/Epi) cells and macrophages. We further visualized the association of macrophages with Fb/Epi cells and the blockage of macrophage response without Fb/Epi cells in the regenerating zebrafish heart. Moreover, we found that ptx3a+ epicardial cells associate with reparative macrophages, and their depletion resulted in fewer reparative macrophages. Further, we identified csf1a expression in ptx3a+ cells and determined that pharmacological inhibition of the csf1a pathway or csf1a knockout blocked the reparative macrophage response. Moreover, we found that genetic overexpression of csf1a enhanced the reparative macrophage response with or without heart injury. Altogether, our studies illuminate a cardiac Fb/Epi niche, which mediates a beneficial macrophage response after heart injury.
Collapse
Affiliation(s)
- Jisheng Sun
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Elizabeth A Peterson
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Xin Chen
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jinhu Wang
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
6
|
Wang G, Wang L, Wang X, Ye H, Ni W, Shao W, Dai C, Liu B. Low-intensity exercise training increases systolic function of heart and MHCII low cardiac resident macrophages. Heliyon 2023; 9:e22915. [PMID: 38076084 PMCID: PMC10703626 DOI: 10.1016/j.heliyon.2023.e22915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 08/11/2024] Open
Abstract
Physical activities have beneficial effects on cardiovascular health, although the specific mechanisms are largely unknown. Cardiac resident macrophages (cMacs) and the distribution of their subsets are critical regulators for maintaining cardiovascular health and cardiac functions in both steady and inflammatory states. Therefore, we investigated the subsets of cMacs in mice after low-intensity exercise training to elucidate the exercise-induced dynamic changes of cMacs and the benefits of exercise for the heart. The mice were subjected to treadmill running exercise five days per week for five weeks using a low-intensity exercise training protocol. Low-intensity exercise training resulted in a suppression of body weight gain in mice and a significant increase in the ejection fraction, a parameter that represents the systolic function of the heart. Low-intensity exercise training induced the alterations in the transcriptome of the heart, which are associated with muscle contraction and mitochondrial function. Furthermore, low-intensity exercise training did not alter the number of lymphocyte antigen 6 complex, locus C1 (Ly6c)- cMacs but instead remodeled the distributions of Ly6c- cMac subsets. We observed an increase in the percentage of major histocompatibility complex class II (MHCII)low cMacs and a decrease in the percentage of MHCIIhigh cMacs in the heart after low-intensity exercise training. Therefore, the benefits of exercise for cardiovascular fitness might be associated with the redistribution of cMac subsets and the enhancement of the ejection fraction.
Collapse
Affiliation(s)
| | | | - Xuchao Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Heng Ye
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wei Ni
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wei Shao
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Binbin Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| |
Collapse
|
7
|
Soni SS, D'Elia AM, Rodell CB. Control of the post-infarct immune microenvironment through biotherapeutic and biomaterial-based approaches. Drug Deliv Transl Res 2023; 13:1983-2014. [PMID: 36763330 PMCID: PMC9913034 DOI: 10.1007/s13346-023-01290-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
Ischemic heart failure (IHF) is a leading cause of morbidity and mortality worldwide, for which heart transplantation remains the only definitive treatment. IHF manifests from myocardial infarction (MI) that initiates tissue remodeling processes, mediated by mechanical changes in the tissue (loss of contractility, softening of the myocardium) that are interdependent with cellular mechanisms (cardiomyocyte death, inflammatory response). The early remodeling phase is characterized by robust inflammation that is necessary for tissue debridement and the initiation of repair processes. While later transition toward an immunoregenerative function is desirable, functional reorientation from an inflammatory to reparatory environment is often lacking, trapping the heart in a chronically inflamed state that perpetuates cardiomyocyte death, ventricular dilatation, excess fibrosis, and progressive IHF. Therapies can redirect the immune microenvironment, including biotherapeutic and biomaterial-based approaches. In this review, we outline these existing approaches, with a particular focus on the immunomodulatory effects of therapeutics (small molecule drugs, biomolecules, and cell or cell-derived products). Cardioprotective strategies, often focusing on immunosuppression, have shown promise in pre-clinical and clinical trials. However, immunoregenerative therapies are emerging that often benefit from exacerbating early inflammation. Biomaterials can be used to enhance these therapies as a result of their intrinsic immunomodulatory properties, parallel mechanisms of action (e.g., mechanical restraint), or by enabling cell or tissue-targeted delivery. We further discuss translatability and the continued progress of technologies and procedures that contribute to the bench-to-bedside development of these critically needed treatments.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Xie J, Jiang L, Wang J, Yin Y, Wang R, Du L, Chen T, Ni Z, Qiao S, Gong H, Xu B, Xu Q. Multilineage contribution of CD34 + cells in cardiac remodeling after ischemia/reperfusion injury. Basic Res Cardiol 2023; 118:17. [PMID: 37147443 PMCID: PMC10163140 DOI: 10.1007/s00395-023-00981-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 05/07/2023]
Abstract
The ambiguous results of multiple CD34+ cell-based therapeutic trials for patients with heart disease have halted the large-scale application of stem/progenitor cell treatment. This study aimed to delineate the biological functions of heterogenous CD34+ cell populations and investigate the net effect of CD34+ cell intervention on cardiac remodeling. We confirmed, by combining single-cell RNA sequencing on human and mouse ischemic hearts and an inducible Cd34 lineage-tracing mouse model, that Cd34+ cells mainly contributed to the commitment of mesenchymal cells, endothelial cells (ECs), and monocytes/macrophages during heart remodeling with distinct pathological functions. The Cd34+-lineage-activated mesenchymal cells were responsible for cardiac fibrosis, while CD34+Sca-1high was an active precursor and intercellular player that facilitated Cd34+-lineage angiogenic EC-induced postinjury vessel development. We found through bone marrow transplantation that bone marrow-derived CD34+ cells only accounted for inflammatory response. We confirmed using a Cd34-CreERT2; R26-DTA mouse model that the depletion of Cd34+ cells could alleviate the severity of ventricular fibrosis after ischemia/reperfusion (I/R) injury with improved cardiac function. This study provided a transcriptional and cellular landscape of CD34+ cells in normal and ischemic hearts and illustrated that the heterogeneous population of Cd34+ cell-derived cells served as crucial contributors to cardiac remodeling and function after the I/R injury, with their capacity to generate diverse cellular lineages.
Collapse
Affiliation(s)
- Jun Xie
- Department of Cardiology, Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing Universityrsity, State Key Laboratory of Pharmaceutical Biotechnology, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Liujun Jiang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, People's Republic of China
| | - Junzhuo Wang
- Department of Cardiology, Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing Universityrsity, State Key Laboratory of Pharmaceutical Biotechnology, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Yong Yin
- Department of Cardiology, Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing Universityrsity, State Key Laboratory of Pharmaceutical Biotechnology, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Ruilin Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, People's Republic of China
| | - Luping Du
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, People's Republic of China
| | - Ting Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, People's Republic of China
| | - Zhichao Ni
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, People's Republic of China
| | - Shuaihua Qiao
- Department of Cardiology, Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing Universityrsity, State Key Laboratory of Pharmaceutical Biotechnology, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Hui Gong
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, People's Republic of China
| | - Biao Xu
- Department of Cardiology, Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing Universityrsity, State Key Laboratory of Pharmaceutical Biotechnology, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China.
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, People's Republic of China.
| |
Collapse
|
9
|
Stojanovic D, Mitic V, Stojanovic M, Milenkovic J, Ignjatovic A, Milojkovic M. The Scientific Rationale for the Introduction of Renalase in the Concept of Cardiac Fibrosis. Front Cardiovasc Med 2022; 9:845878. [PMID: 35711341 PMCID: PMC9193824 DOI: 10.3389/fcvm.2022.845878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
Cardiac fibrosis represents a redundant accumulation of extracellular matrix proteins, resulting from a cascade of pathophysiological events involved in an ineffective healing response, that eventually leads to heart failure. The pathophysiology of cardiac fibrosis involves various cellular effectors (neutrophils, macrophages, cardiomyocytes, fibroblasts), up-regulation of profibrotic mediators (cytokines, chemokines, and growth factors), and processes where epithelial and endothelial cells undergo mesenchymal transition. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. The most effective anti-fibrotic strategy will have to incorporate the specific targeting of the diverse cells, pathways, and their cross-talk in the pathogenesis of cardiac fibroproliferation. Additionally, renalase, a novel protein secreted by the kidneys, is identified. Evidence demonstrates its cytoprotective properties, establishing it as a survival element in various organ injuries (heart, kidney, liver, intestines), and as a significant anti-fibrotic factor, owing to its, in vitro and in vivo demonstrated pleiotropy to alleviate inflammation, oxidative stress, apoptosis, necrosis, and fibrotic responses. Effective anti-fibrotic therapy may seek to exploit renalase’s compound effects such as: lessening of the inflammatory cell infiltrate (neutrophils and macrophages), and macrophage polarization (M1 to M2), a decrease in the proinflammatory cytokines/chemokines/reactive species/growth factor release (TNF-α, IL-6, MCP-1, MIP-2, ROS, TGF-β1), an increase in anti-apoptotic factors (Bcl2), and prevention of caspase activation, inflammasome silencing, sirtuins (1 and 3) activation, and mitochondrial protection, suppression of epithelial to mesenchymal transition, a decrease in the pro-fibrotic markers expression (’α-SMA, collagen I, and III, TIMP-1, and fibronectin), and interference with MAPKs signaling network, most likely as a coordinator of pro-fibrotic signals. This review provides the scientific rationale for renalase’s scrutiny regarding cardiac fibrosis, and there is great anticipation that these newly identified pathways are set to progress one step further. Although substantial progress has been made, indicating renalase’s therapeutic promise, more profound experimental work is required to resolve the accurate underlying mechanisms of renalase, concerning cardiac fibrosis, before any potential translation to clinical investigation.
Collapse
Affiliation(s)
- Dijana Stojanovic
- Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Valentina Mitic
- Department of Cardiovascular Rehabilitation, Institute for Treatment and Rehabilitation "Niska Banja", Niska Banja, Serbia
| | - Miodrag Stojanovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Niš, Niš, Serbia.,Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, Niš, Serbia
| | - Jelena Milenkovic
- Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Aleksandra Ignjatovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Niš, Niš, Serbia.,Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, Niš, Serbia
| | - Maja Milojkovic
- Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia
| |
Collapse
|
10
|
Suku M, Forrester L, Biggs M, Monaghan MG. Resident Macrophages and Their Potential in Cardiac Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:579-591. [PMID: 34088222 PMCID: PMC9242717 DOI: 10.1089/ten.teb.2021.0036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/26/2021] [Indexed: 01/05/2023]
Abstract
Many facets of tissue engineered models aim at understanding cellular mechanisms to recapitulate in vivo behavior, to study and mimic diseases for drug interventions, and to provide a better understanding toward improving regenerative medicine. Recent and rapid advances in stem cell biology, material science and engineering, have made the generation of complex engineered tissues much more attainable. One such tissue, human myocardium, is extremely intricate, with a number of different cell types. Recent studies have unraveled cardiac resident macrophages as a critical mediator for normal cardiac function. Macrophages within the heart exert phagocytosis and efferocytosis, facilitate electrical conduction, promote regeneration, and remove cardiac exophers to maintain homeostasis. These findings underpin the rationale of introducing macrophages to engineered heart tissue (EHT), to more aptly capitulate in vivo physiology. Despite the lack of studies using cardiac macrophages in vitro, there is enough evidence to accept that they will be key to making EHTs more physiologically relevant. In this review, we explore the rationale and feasibility of using macrophages as an additional cell source in engineered cardiac tissues. Impact statement Macrophages play a critical role in cardiac homeostasis and in disease. Over the past decade, we have come to understand the many vital roles played by cardiac resident macrophages in the heart, including immunosurveillance, regeneration, electrical conduction, and elimination of exophers. There is a need to improve our understanding of the resident macrophage population in the heart in vitro, to better recapitulate the myocardium through tissue engineered models. However, obtaining them in vitro remains a challenge. Here, we discuss the importance of cardiac resident macrophages and potential ways to obtain cardiac resident macrophages in vitro. Finally, we critically discuss their potential in realizing impactful in vitro models of cardiac tissue and their impact in the field.
Collapse
Affiliation(s)
- Meenakshi Suku
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
- CURAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Lesley Forrester
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Manus Biggs
- CURAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Michael G. Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
- CURAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- Advanced Materials for Bioengineering Research (AMBER) Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
11
|
Ottaviani L, Juni RP, de Abreu RC, Sansonetti M, Sampaio-Pinto V, Halkein J, Hegenbarth JC, Ring N, Knoops K, Kocken JMM, Jesus C, Ernault AC, El Azzouzi H, Rühle F, Olieslagers S, Fernandes H, Ferreira L, Braga L, Stoll M, Nascimento DS, de Windt LJ, da Costa Martins PA. Intercellular transfer of miR-200c-3p impairs the angiogenic capacity of cardiac endothelial cells. Mol Ther 2022; 30:2257-2273. [PMID: 35278675 DOI: 10.1016/j.ymthe.2022.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022] Open
Abstract
As mediators of intercellular communication, extracellular vesicles containing molecular cargo such as microRNAs, are secreted by cells and taken up by recipient cells to influence their cellular phenotype and function. Here, we report that cardiac stress-induced differential microRNA content, with miR-200c-3p being one of the most enriched, in cardiomyocyte-derived extracellular vesicles mediates functional crosstalk with endothelial cells. Silencing of miR-200c-3p in mice subjected to chronic increased cardiac pressure overload resulted in attenuated hypertrophy, smaller fibrotic areas, higher capillary density and preserved cardiac ejection fraction. Interestingly, we were able to maximal rescue microvascular and cardiac function with very low doses of antagomir, which specifically silences miR-200c-3p expression in the non-myocyte cells. Our results reveal vesicle transfer of miR-200c-3p from cardiomyocytes to cardiac endothelial cells, underlining the importance of cardiac intercellular communication in the pathophysiology of heart failure.
Collapse
Affiliation(s)
- L Ottaviani
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands
| | - R P Juni
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - R C de Abreu
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands; CNC - Center for Neuroscience and Cell Biology,CIBB - Centre for Innovative Biomedicine and Biotechnology, University Coimbra, Portugal
| | - M Sansonetti
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands
| | - V Sampaio-Pinto
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands; i3S - Instituto de Investigação e Inovação em Saude, Universidade do Porto, Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomêdicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - J Halkein
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - J C Hegenbarth
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands
| | - N Ring
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - K Knoops
- Microscope CORE lab, The Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - J M M Kocken
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands
| | - C Jesus
- CNC - Center for Neuroscience and Cell Biology,CIBB - Centre for Innovative Biomedicine and Biotechnology, University Coimbra, Portugal; Faculty of Medicine University of Coimbra, Coimbra, Portugal
| | - A C Ernault
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - H El Azzouzi
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - F Rühle
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - S Olieslagers
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands
| | - H Fernandes
- CNC - Center for Neuroscience and Cell Biology,CIBB - Centre for Innovative Biomedicine and Biotechnology, University Coimbra, Portugal; Faculty of Medicine University of Coimbra, Coimbra, Portugal
| | - L Ferreira
- CNC - Center for Neuroscience and Cell Biology,CIBB - Centre for Innovative Biomedicine and Biotechnology, University Coimbra, Portugal; Faculty of Medicine University of Coimbra, Coimbra, Portugal
| | - L Braga
- Functional Cell Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - M Stoll
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; Department of Biochemistry, Genetic Epidemiology and Statistical Genetics, CARIM School for Cardiovascular Diseases, Maastricht Center for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - D S Nascimento
- i3S - Instituto de Investigação e Inovação em Saude, Universidade do Porto, Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomêdicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - L J de Windt
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands
| | - P A da Costa Martins
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands; Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
12
|
Peterson EA, Sun J, Wang J. Leukocyte-Mediated Cardiac Repair after Myocardial Infarction in Non-Regenerative vs. Regenerative Systems. J Cardiovasc Dev Dis 2022; 9:63. [PMID: 35200716 PMCID: PMC8877434 DOI: 10.3390/jcdd9020063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Innate and adaptive leukocytes rapidly mobilize to ischemic tissues after myocardial infarction in response to damage signals released from necrotic cells. Leukocytes play important roles in cardiac repair and regeneration such as inflammation initiation and resolution; the removal of dead cells and debris; the deposition of the extracellular matrix and granulation tissue; supporting angiogenesis and cardiomyocyte proliferation; and fibrotic scar generation and resolution. By organizing and comparing the present knowledge of leukocyte recruitment and function after cardiac injury in non-regenerative to regenerative systems, we propose that the leukocyte response to cardiac injury differs in non-regenerative adult mammals such as humans and mice in comparison to cardiac regenerative models such as neonatal mice and adult zebrafish. Specifically, extensive neutrophil, macrophage, and T-cell persistence contributes to a lengthy inflammatory period in non-regenerative systems for adverse cardiac remodeling and heart failure development, whereas their quick removal supports inflammation resolution in regenerative systems for new contractile tissue formation and coronary revascularization. Surprisingly, other leukocytes have not been examined in regenerative model systems. With this review, we aim to encourage the development of improved immune cell markers and tools in cardiac regenerative models for the identification of new immune targets in non-regenerative systems to develop new therapies.
Collapse
Affiliation(s)
| | | | - Jinhu Wang
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (E.A.P.); (J.S.)
| |
Collapse
|
13
|
Qin YY, Huang XR, Zhang J, Wu W, Chen J, Wan S, Yu XY, Lan HY. Neuropeptide Y attenuates cardiac remodeling and deterioration of function following myocardial infarction. Mol Ther 2022; 30:881-897. [PMID: 34628054 PMCID: PMC8821956 DOI: 10.1016/j.ymthe.2021.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 09/30/2021] [Indexed: 02/04/2023] Open
Abstract
Plasma levels of neuropeptide Y (NPY) are elevated in patients with acute myocardial infarction (AMI), but its role in AMI remains unclear, which was examined here in NPY wild-type/knockout (WT/KO) mice treated with/without exogenous NPY and its Y1 receptor antagonist (Y1Ra) BIBP 3226. We found that AMI mice lacking NPY developed more severe AMI than WT mice with worse cardiac dysfunction, progressive cardiac inflammation and fibrosis, and excessive apoptosis but impairing angiogenesis. All of these changes were reversed when the NPY KO mice were treated with exogenous NPY in a dose-dependent manner. Interestingly, treatment with NPY also dose dependently attenuated AMI in WT mice, which was blocked by BIBP 3226. Phenotypically, cardiac NPY was de novo expressed by infiltrating macrophages during the repairing or fibrosing process in heart-failure patients and AMI mice. Mechanistically, NPY was induced by transforming growth factor (TGF)-β1 in bone marrow-derived macrophages and signaled through its Y1R to exert its pathophysiological activities by inhibiting p38/nuclear factor κB (NF-κB)-mediated M1 macrophage activation while promoting the reparative M2 phenotype in vivo and in vitro. In conclusion, NPY can attenuate AMI in mice. Inhibition of cardiac inflammation and fibrosis while enhancing angiogenesis but reducing apoptosis may be the underlying mechanisms through which NPY attenuates cardiac remodeling and deterioration of function following AMI.
Collapse
Affiliation(s)
- Yu-Yan Qin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China; Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Jian Zhang
- Department of Cardiovascular Surgery, Shenyang Northern Hospital, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning, China
| | - Wenjing Wu
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Junzhe Chen
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Song Wan
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China; The Chinese University of Hong Kong (CUHK)-Guangdong Provincial People's Hospital Joint Research Laboratory on Immunological and Genetic Kidney Diseases, CUHK, Hong Kong, China.
| |
Collapse
|
14
|
Ma S, Yan J, Chen L, Zhu Y, Chen K, Zheng C, Shen M, Liao Y. A Bibliometric and Visualized Analysis of Cardiac Regeneration Over a 20-Year Period. Front Cardiovasc Med 2021; 8:789503. [PMID: 34966800 PMCID: PMC8710530 DOI: 10.3389/fcvm.2021.789503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Recent research has suggested that cardiac regeneration may have the widely applicable potential of treating heart failure (HF). A comprehensive understanding of the development status of this field is conducive to its development. However, no bibliometric analysis has summarized this field properly. We aimed to analyze cardiac regeneration-related literature over 20 years and provide valuable insights. Methods: Publications were collected from the Web of Science Core Collection (WoSCC). Microsoft Excel, VOSviewer, CiteSpace, and alluvial generator were used to analyze and present the data. Results: The collected 11,700 publications showed an annually increasing trend. The United States and Harvard University were the leading force among all the countries and institutions. The majority of articles were published in Circulation Research, and Circulation was the most co-cited journal. According to co-citation analysis, burst detection and alluvial flow map, cardiomyocyte proliferation, stem cells, such as first-and second-generation, extracellular vesicles especially exosomes, direct cardiac reprogramming, macrophages, microRNAs, and inflammation have become more and more popular recently. Conclusions: Cardiac regeneration remains a research hotspot and develops rapidly. How to modify cardiac regeneration endogenously and exogenously may still be the hotspot in the future and should be discussed more deeply.
Collapse
Affiliation(s)
- Siyuan Ma
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junyu Yan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingqi Zhu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaitong Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cankun Zheng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengjia Shen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Barcena ML, Niehues MH, Christiansen C, Estepa M, Haritonow N, Sadighi AH, Müller-Werdan U, Ladilov Y, Regitz-Zagrosek V. Male Macrophages and Fibroblasts from C57/BL6J Mice Are More Susceptible to Inflammatory Stimuli. Front Immunol 2021; 12:758767. [PMID: 34867999 PMCID: PMC8637417 DOI: 10.3389/fimmu.2021.758767] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Mounting evidence argues for the significant impact of sex in numerous cardiac pathologies, including myocarditis. Macrophage polarization and activation of cardiac fibroblasts play a key role in myocardial inflammation and remodeling. However, the role of sex in these processes is still poorly understood. In this study, we investigated sex-specific alterations in the polarization of murine bone marrow-derived macrophages (BMMs) and the polarization-related changes in fibroblast activation. Cultured male and female murine BMMs from C57/BL6J mice were polarized into M1 (LPS) and M2 (IL-4/IL-13) macrophages. Furthermore, male and female cardiac fibroblasts from C57/BL6J mice were activated with TNF-α, TGF-β, or conditioned medium from M1 BMMs. We found a significant overexpression of M1 markers (c-fos, NFκB, TNF-α, and IL-1β) and M2 markers (MCP-1 and YM1) in male but not female activated macrophages. In addition, the ROS levels were higher in M1 male BMMs, indicating a stronger polarization. Similarly, the pro-fibrotic markers TGF-β and IL-1β were expressed in activated cardiac male fibroblasts at a significantly higher level than in female fibroblasts. In conclusion, the present study provides strong evidence for the male-specific polarization of BMMs and activation of cardiac fibroblasts in an inflammatory environment. The data show an increased inflammatory response and tissue remodeling in male mice.
Collapse
Affiliation(s)
- Maria Luisa Barcena
- Department of Geriatrics and Medical Gerontology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Berlin, Germany
| | - Maximilian H Niehues
- Department of Geriatrics and Medical Gerontology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Céline Christiansen
- Department of Geriatrics and Medical Gerontology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Misael Estepa
- Department of Geriatrics and Medical Gerontology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Internal Medicine and Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Natalie Haritonow
- Department of Geriatrics and Medical Gerontology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Amir H Sadighi
- Department of Geriatrics and Medical Gerontology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ursula Müller-Werdan
- Department of Geriatrics and Medical Gerontology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Yury Ladilov
- Institute for Gender in Medicine, Center for Cardiovascular Research, Charité University Hospital, Berlin, Germany
| | - Vera Regitz-Zagrosek
- Institute for Gender in Medicine, Center for Cardiovascular Research, Charité University Hospital, Berlin, Germany.,Department of Cardiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| |
Collapse
|
16
|
Gao Y, Qian N, Xu J, Wang Y. The Roles of Macrophages in Heart Regeneration and Repair After Injury. Front Cardiovasc Med 2021; 8:744615. [PMID: 34760943 PMCID: PMC8575035 DOI: 10.3389/fcvm.2021.744615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Although great advances have been made, the problem of irreversible myocardium loss due to the limited regeneration capacity of cardiomyocytes has not been fully solved. The morbidity and mortality of heart disease still remain high. There are many therapeutic strategies for treating heart disease, while low efficacy and high cost remain challenging. Abundant evidence has shown that both acute and chronic inflammations play a crucial role in heart regeneration and repair following injury. Macrophages, a primary component of inflammation, have attracted much attention in cardiac research in recent decades. The detailed mechanisms of the roles of macrophages in heart regeneration and repair are not completely understood, in part because of their complex subsets, various functions, and intercellular communications. The purpose of this review is to summarize the progress made in the understanding of macrophages, including recent reports on macrophage differentiation, polarization and function, and involvement in heart regeneration and repair. Also, we discuss progress in treatments, which may suggest directions for future research.
Collapse
Affiliation(s)
- Ying Gao
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Ningjing Qian
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Jingmiao Xu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Yaping Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| |
Collapse
|
17
|
Wagner KT, Radisic M. A New Role for Extracellular Vesicles in Cardiac Tissue Engineering and Regenerative Medicine. ADVANCED NANOBIOMED RESEARCH 2021; 1:2100047. [PMID: 34927167 PMCID: PMC8680295 DOI: 10.1002/anbr.202100047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Discovering new therapies to treat heart disease requires improved understanding of cardiac physiology at a cellular level. Extracellular vesicles (EVs) are plasma membrane-bound nano- and microparticles secreted by cells and known to play key roles in intercellular communication, often through transfer of biomolecular cargo. Advances in EV research have established techniques for EV isolation from tissue culture media or biofluids, as well as standards for quantitation and biomolecular characterization. EVs released by cardiac cells are known to be involved in regulating cardiac physiology as well as in the progression of myocardial diseases. Due to difficulty accessing the heart in vivo, advanced in vitro cardiac 'tissues-on-a-chip' have become a recent focus for studying EVs in the heart. These physiologically relevant models are producing new insight into the role of EVs in cardiac physiology and disease while providing a useful platform for screening novel EV-based therapeutics for cardiac tissue regeneration post-injury. Numerous hurdles have stalled the clinical translation of EV therapeutics for heart patients, but tissue-on-a-chip models are playing an important role in bridging the translational gap, improving mechanistic understanding of EV signalling in cardiac physiology, disease, and repair.
Collapse
Affiliation(s)
- Karl T Wagner
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada M5S 1A1
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada M5S 1A1
| |
Collapse
|
18
|
Abstract
Macrophages are essential components of the immune system and play a role in the normal functioning of the cardiovascular system. Depending on their origin and phenotype, cardiac macrophages perform various functions. In a steady-state, these cells play a beneficial role in maintaining cardiac homeostasis by defending the body from pathogens and eliminating apoptotic cells, participating in electrical conduction, vessel patrolling, and arterial tone regulation. However, macrophages also take part in adverse cardiac remodeling that could lead to the development and progression of heart failure (HF) in such HF comorbidities as hypertension, obesity, diabetes, and myocardial infarction. Nevertheless, studies on detailed mechanisms of cardiac macrophage function are still in progress, and could enable potential therapeutic applications of these cells. This review aims to present the latest reports on the origin, heterogeneity, and functions of cardiac macrophages in the healthy heart and in cardiovascular diseases leading to HF. The potential therapeutic use of macrophages is also briefly discussed.
Collapse
|
19
|
Rech L, Rainer PP. The Innate Immune cGAS-STING-Pathway in Cardiovascular Diseases - A Mini Review. Front Cardiovasc Med 2021; 8:715903. [PMID: 34381828 PMCID: PMC8349977 DOI: 10.3389/fcvm.2021.715903] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation plays a central role in cardiovascular diseases (CVD). One pathway under investigation is the innate immune DNA sensor cyclic GMP-AMP synthase (cGAS) and its downstream receptor stimulator of interferon genes (STING). cGAS-STING upregulates type I interferons in response to pathogens. Recent studies show that also self-DNA may activate cGAS-STING, for instance, DNA released from nuclei or mitochondria during obesity or myocardial infarction. Here, we focus on emerging evidence describing the interaction of cGAS-STING with cardiovascular risk factors and disease. We also touch on translational therapeutic opportunities and potential further investigations.
Collapse
Affiliation(s)
- Lavinia Rech
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Peter P Rainer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,BioTechMed Graz, Graz, Austria
| |
Collapse
|
20
|
The Evolving Roles of Cardiac Macrophages in Homeostasis, Regeneration, and Repair. Int J Mol Sci 2021; 22:ijms22157923. [PMID: 34360689 PMCID: PMC8347787 DOI: 10.3390/ijms22157923] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages were first described as phagocytic immune cells responsible for maintaining tissue homeostasis by the removal of pathogens that disturb normal function. Historically, macrophages have been viewed as terminally differentiated monocyte-derived cells that originated through hematopoiesis and infiltrated multiple tissues in the presence of inflammation or during turnover in normal homeostasis. However, improved cell detection and fate-mapping strategies have elucidated the various lineages of tissue-resident macrophages, which can derive from embryonic origins independent of hematopoiesis and monocyte infiltration. The role of resident macrophages in organs such as the skin, liver, and the lungs have been well characterized, revealing functions well beyond a pure phagocytic and immunological role. In the heart, recent research has begun to decipher the functional roles of various tissue-resident macrophage populations through fate mapping and genetic depletion studies. Several of these studies have elucidated the novel and unexpected roles of cardiac-resident macrophages in homeostasis, including maintaining mitochondrial function, facilitating cardiac conduction, coronary development, and lymphangiogenesis, among others. Additionally, following cardiac injury, cardiac-resident macrophages adopt diverse functions such as the clearance of necrotic and apoptotic cells and debris, a reduction in the inflammatory monocyte infiltration, promotion of angiogenesis, amelioration of inflammation, and hypertrophy in the remaining myocardium, overall limiting damage extension. The present review discusses the origin, development, characterization, and function of cardiac macrophages in homeostasis, cardiac regeneration, and after cardiac injury or stress.
Collapse
|
21
|
Chachques JC, Gardin C, Lila N, Ferroni L, Migonney V, Falentin-Daudre C, Zanotti F, Trentini M, Brunello G, Rocca T, Gasbarro V, Zavan B. Elastomeric Cardiowrap Scaffolds Functionalized with Mesenchymal Stem Cells-Derived Exosomes Induce a Positive Modulation in the Inflammatory and Wound Healing Response of Mesenchymal Stem Cell and Macrophage. Biomedicines 2021; 9:824. [PMID: 34356888 PMCID: PMC8301323 DOI: 10.3390/biomedicines9070824] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
A challenge in contractile restoration of myocardial scars is one of the principal aims in cardiovascular surgery. Recently, a new potent biological tool used within healing processes is represented by exosomes derived from mesenchymal stem cells (MSCs). These cells are the well-known extracellular nanovesicles released from cells to facilitate cell function and communication. In this work, a combination of elastomeric membranes and exosomes was obtained and tested as a bioimplant. Mesenchymal stem cells (MSCs) and macrophages were seeded into the scaffold (polycaprolactone) and filled with exosomes derived from MSCs. Cells were tested for proliferation with an MTT test, and for wound healing properties and macrophage polarization by gene expression. Moreover, morphological analyses of their ability to colonize the scaffolds surfaces have been further evaluated. Results confirm that exosomes were easily entrapped onto the surface of the elastomeric scaffolds, increasing the wound healing properties and collagen type I and vitronectin of the MSC, and improving the M2 phenotype of the macrophages, mainly thanks to the increase in miRNA124 and decrease in miRNA 125. We can conclude that the enrichment of elastomeric scaffolds functionalized with exosomes is as an effective strategy to improve myocardial regeneration.
Collapse
Affiliation(s)
- Juan Carlos Chachques
- Laboratory of Biosurgical Research (Alain Carpentier Foundation), Pompidu Hospital, University of Paris, 75015 Paris, France; (J.C.C.); (N.L.)
| | - Chiara Gardin
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.G.); (L.F.)
| | - Nermine Lila
- Laboratory of Biosurgical Research (Alain Carpentier Foundation), Pompidu Hospital, University of Paris, 75015 Paris, France; (J.C.C.); (N.L.)
| | - Letizia Ferroni
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.G.); (L.F.)
| | - Veronique Migonney
- Department of UMR, University Sorbonne Paris Nord, 93430 Villetaneuse, France; (V.M.); (C.F.-D.)
| | - Celine Falentin-Daudre
- Department of UMR, University Sorbonne Paris Nord, 93430 Villetaneuse, France; (V.M.); (C.F.-D.)
| | - Federica Zanotti
- Translational Medicine Department, University of Ferrara, 44123 Ferrara, Italy; (F.Z.); (M.T.)
| | - Martina Trentini
- Translational Medicine Department, University of Ferrara, 44123 Ferrara, Italy; (F.Z.); (M.T.)
| | - Giulia Brunello
- Department of Neurosciences, University of Padova, 35133 Padova, Italy;
| | - Tiberio Rocca
- Division of Internal Medicine, St. Anna Hospital, 44123 Ferrara, Italy; (T.R.); (V.G.)
| | - Vincenzo Gasbarro
- Division of Internal Medicine, St. Anna Hospital, 44123 Ferrara, Italy; (T.R.); (V.G.)
- Department of Medical Sciences, University of Ferrara, 44123 Ferrara, Italy
| | - Barbara Zavan
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.G.); (L.F.)
- Translational Medicine Department, University of Ferrara, 44123 Ferrara, Italy; (F.Z.); (M.T.)
| |
Collapse
|
22
|
Miguel-Dos-Santos R, Moreira JBN, Loennechen JP, Wisløff U, Mesquita T. Exercising immune cells: The immunomodulatory role of exercise on atrial fibrillation. Prog Cardiovasc Dis 2021; 68:52-59. [PMID: 34274371 DOI: 10.1016/j.pcad.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022]
Abstract
Exercise training is generally beneficial for cardiovascular health, improving stroke volume, cardiac output, and aerobic capacity. Despite these benefits, some evidence indicates that endurance training may increase the risk of atrial fibrillation (AF), particularly in highly trained individuals. Among multiple mechanisms, autonomic tone changes and atrial remodeling have been proposed as main contributors for exercise-induced AF. However, the contribution of local and systemic immunity is poorly understood in the development of atrial arrhythmogenic substrates. Here we aim to update the field of immunomodulation in the context of exercise and AF by compiling and reconciling the most recent evidence from preclinical and human studies and rationalize the applicability of "lone" AF terminology in athletes.
Collapse
Affiliation(s)
- Rodrigo Miguel-Dos-Santos
- Department of Physiology, Federal University of Sergipe, Sergipe, Brazil; Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - José Bianco Nascimento Moreira
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jan Pål Loennechen
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Cardiology, St. Olav's University Hospital, Trondheim, Norway
| | - Ulrik Wisløff
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; School of Human Movement and Nutrition Science, University of Queensland, Queensland, Australia.
| | - Thássio Mesquita
- Smidt Heart Institute, Cedars-Sinai Medical Center, California, United States..
| |
Collapse
|
23
|
Huang F, Na N, Ijichi T, Wu X, Miyamoto K, Ciullo A, Tran M, Li L, Ibrahim A, Marbán E, de Couto G. Exosomally derived Y RNA fragment alleviates hypertrophic cardiomyopathy in transgenic mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:951-960. [PMID: 34094713 PMCID: PMC8141670 DOI: 10.1016/j.omtn.2021.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 04/15/2021] [Indexed: 11/15/2022]
Abstract
Cardiosphere-derived cell exosomes (CDCexo) and YF1, a CDCexo-derived non-coding RNA, elicit therapeutic bioactivity in models of myocardial infarction and hypertensive hypertrophy. Here we tested the hypothesis that YF1, a 56-nucleotide Y RNA fragment, could alleviate cardiomyocyte hypertrophy, inflammation, and fibrosis associated with hypertrophic cardiomyopathy (HCM) in transgenic mice harboring a clinically relevant mutation in cardiac troponin I (cTnIGly146). By quantitative PCR, YF1 was detectable in bone marrow, spleen, liver, and heart 30 min after intravenous (i.v.) infusion. For efficacy studies, mice were randomly allocated to receive i.v. YF1 or vehicle, monitored for ambulatory and cardiac function, and sacrificed at 4 weeks. YF1 (but not vehicle) improved ambulation and reduced cardiac hypertrophy and fibrosis. In parallel, peripheral mobilization of neutrophils and proinflammatory monocytes was decreased, and fewer macrophages infiltrated the heart. RNA-sequencing of macrophages revealed that YF1 confers substantive and broad changes in gene expression, modulating pathways associated with immunological disease and inflammatory responses. Together, these data demonstrate that YF1 can reverse hypertrophic and fibrotic signaling pathways associated with HCM, while improving function, raising the prospect that YF1 may be a viable novel therapeutic candidate for HCM.
Collapse
Affiliation(s)
- Feng Huang
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Na Na
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Takeshi Ijichi
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Xiaokang Wu
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Kazutaka Miyamoto
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Alessandra Ciullo
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - My Tran
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Liang Li
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Ahmed Ibrahim
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Geoffrey de Couto
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| |
Collapse
|
24
|
Liu M, López de Juan Abad B, Cheng K. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Adv Drug Deliv Rev 2021; 173:504-519. [PMID: 33831476 PMCID: PMC8299409 DOI: 10.1016/j.addr.2021.03.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/16/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Cardiac fibrosis remains an unresolved problem in heart diseases. After initial injury, cardiac fibroblasts (CFs) are activated and subsequently differentiate into myofibroblasts (myoFbs) that are major mediator cells in the pathological remodeling. MyoFbs exhibit proliferative and secretive characteristics, and contribute to extracellular matrix (ECM) turnover, collagen deposition. The persistent functions of myoFbs lead to fibrotic scars and cardiac dysfunction. The anti-fibrotic treatment is hindered by the elusive mechanism of fibrosis and lack of specific targets on myoFbs. In this review, we will outline the progress of cardiac fibrosis and its contributions to the heart failure. We will also shed light on the role of myoFbs in the regulation of adverse remodeling. The communication between myoFbs and other cells that are involved in the heart injury and repair respectively will be reviewed in detail. Then, recently developed therapeutic strategies to treat fibrosis will be summarized such as i) chimeric antigen receptor T cell (CAR-T) therapy with an optimal target on myoFbs, ii) direct reprogramming from stem cells to quiescent CFs, iii) "off-target" small molecular drugs. The application of nano/micro technology will be discussed as well, which is involved in the construction of cell-based biomimic platforms and "pleiotropic" drug delivery systems.
Collapse
Affiliation(s)
- Mengrui Liu
- Department of Molecular Biomedical Sciences, North Carolina State University, NC, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Blanca López de Juan Abad
- Department of Molecular Biomedical Sciences, North Carolina State University, NC, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, NC, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA.
| |
Collapse
|
25
|
Walravens AS, Smolgovsky S, Li L, Kelly L, Antes T, Peck K, Quon T, Ibrahim A, Marbán E, Berman B, Marbán L, R-Borlado L, de Couto G. Mechanistic and therapeutic distinctions between cardiosphere-derived cell and mesenchymal stem cell extracellular vesicle non-coding RNA. Sci Rep 2021; 11:8666. [PMID: 33883598 PMCID: PMC8060398 DOI: 10.1038/s41598-021-87939-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cell therapy limits ischemic injury following myocardial infarction (MI) by preventing cell death, modulating the immune response, and promoting tissue regeneration. The therapeutic efficacy of cardiosphere-derived cells (CDCs) and mesenchymal stem cells (MSCs) is associated with extracellular vesicle (EV) release. Prior head-to-head comparisons have shown CDCs to be more effective than MSCs in MI models. Despite differences in cell origin, it is unclear why EVs from different adult stem cell populations elicit differences in therapeutic efficacy. Here, we compare EVs derived from multiple human MSC and CDC donors using diverse in vitro and in vivo assays. EV membrane protein and non-coding RNA composition are highly specific to the parent cell type; for example, miR-10b is enriched in MSC-EVs relative to CDC-EVs, while Y RNA fragments follow the opposite pattern. CDC-EVs enhance the Arg1/Nos2 ratio in macrophages in vitro and reduce MI size more than MSC-EVs and suppress inflammation during acute peritonitis in vivo. Thus, CDC-EVs are distinct from MSC-EVs, confer immunomodulation, and protect the host against ischemic myocardial injury and acute inflammation.
Collapse
Affiliation(s)
| | - Sasha Smolgovsky
- Capricor Therapeutics, Inc., 8840 Wilshire Blvd., Beverly Hills, CA, 90211, USA
| | - Liang Li
- Capricor Therapeutics, Inc., 8840 Wilshire Blvd., Beverly Hills, CA, 90211, USA
| | - Lauren Kelly
- Capricor Therapeutics, Inc., 8840 Wilshire Blvd., Beverly Hills, CA, 90211, USA
| | - Travis Antes
- Capricor Therapeutics, Inc., 8840 Wilshire Blvd., Beverly Hills, CA, 90211, USA
| | - Kiel Peck
- Capricor Therapeutics, Inc., 8840 Wilshire Blvd., Beverly Hills, CA, 90211, USA
| | - Tanner Quon
- Capricor Therapeutics, Inc., 8840 Wilshire Blvd., Beverly Hills, CA, 90211, USA
| | - Ahmed Ibrahim
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA
| | - Benjamin Berman
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Linda Marbán
- Capricor Therapeutics, Inc., 8840 Wilshire Blvd., Beverly Hills, CA, 90211, USA.
| | - Luis R-Borlado
- Capricor Therapeutics, Inc., 8840 Wilshire Blvd., Beverly Hills, CA, 90211, USA
| | - Geoffrey de Couto
- Capricor Therapeutics, Inc., 8840 Wilshire Blvd., Beverly Hills, CA, 90211, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA.
| |
Collapse
|
26
|
Human cardiac fibroblasts produce pro-inflammatory cytokines upon TLRs and RLRs stimulation. Mol Cell Biochem 2021; 476:3241-3252. [PMID: 33881711 PMCID: PMC8059428 DOI: 10.1007/s11010-021-04157-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022]
Abstract
Heart inflammation is one of the major causes of heart damage that leads to dilated cardiomyopathy and often progresses to end-stage heart failure. In the present study, we aimed to assess whether human cardiac cells could release immune mediators upon stimulation of Toll-like receptors (TLRs) and Retinoic acid-inducible gene (RIG)-I-like receptors (RLRs). Commercially available human cardiac fibroblasts and an immortalized human cardiomyocyte cell line were stimulated in vitro with TLR2, TLR3, and TLR4 agonists. In addition, cytosolic RLRs were activated in cardiac cells after transfection of polyinosinic-polycytidylic acid (PolyIC). Upon stimulation of TLR3, TLR4, MDA5, and RIG-I, but not upon stimulation of TLR2, human cardiac fibroblasts produced high amounts of the pro-inflammatory cytokines IL-6 and IL-8. On the contrary, the immortalized human cardiomyocyte cell line was unresponsive to the tested TLRs agonists. Upon RLRs stimulation, cardiac fibroblasts, and to a lesser extent the cardiomyocyte cell line, induced anti-viral IFN-β expression. These data demonstrate that human cardiac fibroblasts and an immortalized human cardiomyocyte cell line differently respond to various TLRs and RLRs ligands. In particular, human cardiac fibroblasts were able to induce pro-inflammatory and anti-viral cytokines on their own. These aspects will contribute to better understand the immunological function of the different cell populations that make up the cardiac tissue.
Collapse
|
27
|
Niderla-Bielińska J, Ścieżyńska A, Moskalik A, Jankowska-Steifer E, Bartkowiak K, Bartkowiak M, Kiernozek E, Podgórska A, Ciszek B, Majchrzak B, Ratajska A. A Comprehensive miRNome Analysis of Macrophages Isolated from db/db Mice and Selected miRNAs Involved in Metabolic Syndrome-Associated Cardiac Remodeling. Int J Mol Sci 2021; 22:2197. [PMID: 33672153 PMCID: PMC7926522 DOI: 10.3390/ijms22042197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 01/10/2023] Open
Abstract
Cardiac macrophages are known from various activities, therefore we presume that microRNAs (miRNAs) produced or released by macrophages in cardiac tissue have impact on myocardial remodeling in individuals with metabolic syndrome (MetS). We aim to assess the cardiac macrophage miRNA profile by selecting those miRNA molecules that potentially exhibit regulatory functions in MetS-related cardiac remodeling. Cardiac tissue macrophages from control and db/db mice (an animal model of MetS) were counted and sorted with flow cytometry, which yielded two populations: CD45+CD11b+CD64+Ly6Chi and CD45+CD11b+CD64+Ly6Clow. Total RNA was then isolated, and miRNA expression profiles were evaluated with Next Generation Sequencing. We successfully sequenced 1400 miRNAs in both macrophage populations: CD45+CD11b+CD64+Ly6Chi and CD45+CD11b+CD64+Ly6Clow. Among the 1400 miRNAs, about 150 showed different expression levels in control and db/db mice and between these two subpopulations. At least 15 miRNAs are possibly associated with MetS pathology in cardiac tissue due to direct or indirect regulation of the expression of miRNAs for proteins involved in angiogenesis, fibrosis, or inflammation. In this paper, for the first time we describe the miRNA transcription profile in two distinct macrophage populations in MetS-affected cardiac tissue. Although the results are preliminary, the presented data provide a foundation for further studies on intercellular cross-talk/molecular mechanism(s) involved in the regulation of MetS-related cardiac remodeling.
Collapse
Affiliation(s)
- Justyna Niderla-Bielińska
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (J.N.-B.); (A.Ś.); (E.J.-S.)
| | - Aneta Ścieżyńska
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (J.N.-B.); (A.Ś.); (E.J.-S.)
| | - Aneta Moskalik
- Postgraduate School of Molecular Medicine, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland;
| | - Ewa Jankowska-Steifer
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (J.N.-B.); (A.Ś.); (E.J.-S.)
| | - Krzysztof Bartkowiak
- Student Scientific Group, Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (K.B.); (M.B.)
| | - Mateusz Bartkowiak
- Student Scientific Group, Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (K.B.); (M.B.)
- Department of History of Medicine, Medical University of Warsaw, 00-575 Warsaw, Poland
| | - Ewelina Kiernozek
- Department of Immunology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Anna Podgórska
- Molecular Biology Laboratory, Department of Medical Biology, Cardinal Stefan Wyszyński Institute of Cardiology, 04-628 Warsaw, Poland;
| | - Bogdan Ciszek
- Department of Clinical Anatomy, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland;
| | - Barbara Majchrzak
- Department of Pathology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland;
| | - Anna Ratajska
- Department of Pathology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland;
| |
Collapse
|
28
|
Cardiac cell type-specific responses to injury and contributions to heart regeneration. CELL REGENERATION 2021; 10:4. [PMID: 33527149 PMCID: PMC7851195 DOI: 10.1186/s13619-020-00065-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Heart disease is the leading cause of mortality worldwide. Due to the limited proliferation rate of mature cardiomyocytes, adult mammalian hearts are unable to regenerate damaged cardiac muscle following injury. Instead, injured area is replaced by fibrotic scar tissue, which may lead to irreversible cardiac remodeling and organ failure. In contrast, adult zebrafish and neonatal mammalian possess the capacity for heart regeneration and have been widely used as experimental models. Recent studies have shown that multiple types of cells within the heart can respond to injury with the activation of distinct signaling pathways. Determining the specific contributions of each cell type is essential for our understanding of the regeneration network organization throughout the heart. In this review, we provide an overview of the distinct functions and coordinated cell behaviors of several major cell types including cardiomyocytes, endocardial cells, epicardial cells, fibroblasts, and immune cells. The topic focuses on their specific responses and cellular plasticity after injury, and potential therapeutic applications.
Collapse
|
29
|
Rodjakovic D, Salm L, Beldi G. Function of Connexin-43 in Macrophages. Int J Mol Sci 2021; 22:1412. [PMID: 33573367 PMCID: PMC7866802 DOI: 10.3390/ijms22031412] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Recent studies have helped to increase the understanding of the function of Connexin-43 (Cx43) in macrophages (Mφ). The various roles of Cx43 in Mφs range from migration, antigen-presentation and some forms of intercellular communication to more delicate processes, such as electrochemical support in the propagation of the heartbeat, immunomodulatory regulation in the lungs and in macrophage-differentiation. Its relevance in pathophysiology becomes evident in inflammatory bowel disease (IBD), tumours and HIV, in which aberrant functioning of Cx43 has been described. However, the involvement of Cx43 in other Mφ functions, such as phagocytosis and polarisation, and its involvement in other types of local and systemic inflammation, are still unclear and need further research.
Collapse
Affiliation(s)
- Daniel Rodjakovic
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (D.R.); (L.S.)
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland
| | - Lilian Salm
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (D.R.); (L.S.)
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland
| | - Guido Beldi
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (D.R.); (L.S.)
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland
| |
Collapse
|
30
|
Ge W, Hou C, Zhang W, Guo X, Gao P, Song X, Gao R, Liu Y, Guo W, Li B, Zhao H, Wang J. Mep1a contributes to Ang II-induced cardiac remodeling by promoting cardiac hypertrophy, fibrosis and inflammation. J Mol Cell Cardiol 2020; 152:52-68. [PMID: 33301800 DOI: 10.1016/j.yjmcc.2020.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 01/12/2023]
Abstract
Pathological cardiac remodeling, characterized by excessive deposition of extracellular matrix proteins and cardiac hypertrophy, leads to the development of heart failure. Meprin α (Mep1a), a zinc metalloprotease, previously reported to participate in the regulation of inflammatory response and fibrosis, may also contribute to cardiac remodeling, although whether and how it participates in this process remains unknown. Here, in this work, we investigated the role of Mep1a in pathological cardiac remodeling, as well as the effects of the Mep1a inhibitor actinonin on cardiac remodeling-associated phenotypes. We found that Mep1a deficiency or chemical inhibition both significantly alleviated TAC- and Ang II-induced cardiac remodeling and dysfunction. Mep1a deletion and blocking both attenuated TAC- and Ang II-induced heart enlargement and increases in the thickness of the left ventricle anterior and posterior walls, and reduced expression of pro-hypertrophic markers, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and myosin heavy chain beta (β-MHC). In addition, Mep1a deletion and blocking significantly inhibited TAC- and Ang II-induced cardiac fibroblast activation and production of extracellular matrix (ECM). Moreover, in Mep1a-/- mice and treatment with actinonin significantly reduced Ang II-induced infiltration of macrophages and proinflammatory cytokines. Notably, we found that in vitro, Mep1a is expressed in cardiac myocytes and fibroblasts and that Mep1a deletion or chemical inhibition both markedly suppressed Ang II-induced hypertrophy of rat or mouse cardiac myocytes and activation of rat or mouse cardiac fibroblasts. In addition, blocking Mep1a in macrophages reduced Ang II-induced expression of interleukin (IL)-6 and IL-1β, strongly suggesting that Mep1a participates in cardiac remodeling processes through regulation of inflammatory cytokine expression. Mechanism studies revealed that Mep1a mediated ERK1/2 activation in cardiac myocytes, fibroblasts and macrophages and contributed to cardiac remodeling. In light of our findings that blocking Mep1a can ameliorate cardiac remodeling via inhibition of cardiac hypertrophy, fibrosis, and inflammation, Mep1a may therefore serve as a strong potential candidate for therapeutic targeting to prevent cardiac remodeling.
Collapse
Affiliation(s)
- Weipeng Ge
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Cuiliu Hou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Xiaoxiao Guo
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Pan Gao
- Department of Geriatrics, Southwest Hospital, The First Affiliate Hospital to Army Medical University, Chongqing, China
| | - Xiaomin Song
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Ran Gao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Ying Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Physiology, Peking Union Medical College, Beijing, China
| | - Wenjun Guo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Bolun Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China.
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China.
| |
Collapse
|
31
|
Singh S, Chakravarty T, Chen P, Akhmerov A, Falk J, Friedman O, Zaman T, Ebinger JE, Gheorghiu M, Marbán L, Marbán E, Makkar RR. Allogeneic cardiosphere-derived cells (CAP-1002) in critically ill COVID-19 patients: compassionate-use case series. Basic Res Cardiol 2020; 115:36. [PMID: 32399655 PMCID: PMC7214858 DOI: 10.1007/s00395-020-0795-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 01/08/2023]
Abstract
There are no definitive therapies for patients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Therefore, new therapeutic strategies are needed to improve clinical outcomes, particularly in patients with severe disease. This case series explores the safety and effectiveness of intravenous allogeneic cardiosphere-derived cells (CDCs), formulated as CAP-1002, in critically ill patients with confirmed coronavirus disease 2019 (COVID-19). Adverse reactions to CAP-1002, clinical status on the World Health Organization (WHO) ordinal scale, and changes in pro-inflammatory biomarkers and leukocyte counts were analyzed. All patients (n = 6; age range 19-75 years, 1 female) required ventilatory support (invasive mechanical ventilation, n = 5) with PaO2/FiO2 ranging from 69 to 198. No adverse events related to CAP-1002 administration were observed. Four patients (67%) were weaned from respiratory support and discharged from the hospital. One patient remains mechanically ventilated as of April 28th, 2020; all survive. A contemporaneous control group of critically ill COVID-19 patients (n = 34) at our institution showed 18% overall mortality at a similar stage of hospitalization. Ferritin was elevated in all patients at baseline (range of all patients 605.43-2991.52 ng/ml) and decreased in 5/6 patients (range of all patients 252.89-1029.90 ng/ml). Absolute lymphocyte counts were low in 5/6 patients at baseline (range 0.26-0.82 × 103/µl) but had increased in three of these five patients at last follow-up (range 0.23-1.02 × 103/µl). In this series of six critically ill COVID-19 patients, intravenous infusion of CAP-1002 was well tolerated and associated with resolution of critical illness in 4 patients. This series demonstrates the apparent safety of CAP-1002 in COVID-19. While this initial experience is promising, efficacy will need to be further assessed in a randomized controlled trial.
Collapse
Affiliation(s)
- Siddharth Singh
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S. San Vicente Boulevard, Advanced Health Sciences Pavilion, Third Floor, Suite A3100, Los Angeles, CA, 90048, USA
| | - Tarun Chakravarty
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S. San Vicente Boulevard, Advanced Health Sciences Pavilion, Third Floor, Suite A3100, Los Angeles, CA, 90048, USA
| | - Peter Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Akbarshakh Akhmerov
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S. San Vicente Boulevard, Advanced Health Sciences Pavilion, Third Floor, Suite A3100, Los Angeles, CA, 90048, USA
| | - Jeremy Falk
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Oren Friedman
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S. San Vicente Boulevard, Advanced Health Sciences Pavilion, Third Floor, Suite A3100, Los Angeles, CA, 90048, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Tanzira Zaman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Joseph E Ebinger
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S. San Vicente Boulevard, Advanced Health Sciences Pavilion, Third Floor, Suite A3100, Los Angeles, CA, 90048, USA
| | - Mitch Gheorghiu
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S. San Vicente Boulevard, Advanced Health Sciences Pavilion, Third Floor, Suite A3100, Los Angeles, CA, 90048, USA
| | | | - Eduardo Marbán
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S. San Vicente Boulevard, Advanced Health Sciences Pavilion, Third Floor, Suite A3100, Los Angeles, CA, 90048, USA
| | - Raj R Makkar
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S. San Vicente Boulevard, Advanced Health Sciences Pavilion, Third Floor, Suite A3100, Los Angeles, CA, 90048, USA.
| |
Collapse
|