1
|
Jo S, Seo M, Nguyen TH, Cha JW, An YJ, Park S. Biosynthesis-Encoded Lipogenic Acetyl-CoA Measurement Using NMR Reveals Glucose-Driven Lipogenesis and Glutamine's Alternative Roles in Kidney Cancer. J Am Chem Soc 2024; 146:33753-33762. [PMID: 39611721 DOI: 10.1021/jacs.4c11809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Fatty acid de novo synthesis (FADNS) is a critical process in lipogenesis that is characteristically altered in clear cell renal cell carcinoma (ccRCC), which is the major type of kidney cancer. An important challenge in studying the FADNS process has been the accurate measurement of cytosolic lipogenic acetyl-CoA (AcCoA), the precursor in FADNS, due to its compartmentalization within cells. Here, we describe a novel NMR-based method to decode the isotopic enrichment of lipogenic AcCoA, which, as we demonstrated, is encoded in the simple signal ratios of the geminal methyl groups of lanosterol during its biosynthesis. The approach was validated based on the independence of the tracer enrichment and species along with the expected FADNS modulation using differentially enriched tracers and a well-studied drug. Application of this technique to 786-O ccRCC cells showed that glucose may serve as a major carbon source for lipogenic AcCoA in FADNS at physiological nutrient concentrations, at odds with previous studies that indicated glutamine's dominant role through reductive carboxylation under higher nutrient conditions. Further investigation into glutamine's alternative roles in ccRCC cells suggested its major involvement in the bioenergetic TCA cycle, pyrimidine synthesis, and glutathione synthesis, which is also critical in ccRCC growth. The glutamine-dependent glutathione synthesis was also suggested as a possible metabolic vulnerability compared to normal kidney cells using a glutathione synthesis inhibitor. The current study provides a simple tool for studying an important aspect of lipid metabolism and suggests translational implications for targeting glucose-driven lipogenesis and glutamine-supported glutathione synthesis in ccRCC.
Collapse
Affiliation(s)
- Sihyang Jo
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Munjun Seo
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Thi Ha Nguyen
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jin Wook Cha
- KIST Gangneung Institute of Natural Products, Natural Product Drug Development Division, Center for Natural Product Systems Biology, Gangneung 25451, Korea
| | - Yong Jin An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Sunghyouk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
2
|
Yang JM, Han IS, Chen TH, Hsieh PS, Tsai MC, Chien HC. Pharmacological activation of pyruvate dehydrogenase by dichloroacetate protects against obesity-induced muscle atrophy in vitro and in vivo. Eur J Pharmacol 2024; 979:176854. [PMID: 39059568 DOI: 10.1016/j.ejphar.2024.176854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Obesity-induced muscle atrophy leads to physical impairment and metabolic dysfunction, which are risky for older adults. The activity of pyruvate dehydrogenase (PDH), a critical regulator of glucose metabolism, is reduced in obesity. Additionally, PDH activator dichloroacetate (DCA) improves metabolic dysfunction. However, the effects of PDH activation on skeletal muscles in obesity remain unclear. Thus, this study aimed to evaluate the effects of PDH activation by DCA treatment on obesity-induced muscle atrophy in vitro and in vivo and elucidate the possible underlying mechanisms. Results showed that PDH activation by DCA treatment ameliorated muscle loss, decreased the cross-sectional area, and reduced grip strength in C57BL/6 mice fed a high-fat diet (HFD). Elevation of muscle atrophic factors atrogin-1 and muscle RING-finger protein-1 (MuRF-1) and autophagy factors LC3BII and p62 were abrogated by DCA treatment in palmitate-treated C2C12 myotubes and in the skeletal muscles of HFD-fed mice. Moreover, p-Akt, p-FoxO1, and p-FoxO3 protein levels were reduced and p-NF-κB p65 and p-p38 MAPK protein levels were elevated in palmitate-treated C2C12 myotubes, which were restored by DCA treatment. However, the protective effects of DCA treatment against myotube atrophy were reversed by treatment with Akt inhibitor MK2206. Taken together, our study demonstrated that PDH activation by DCA treatment can alleviate obesity-induced muscle atrophy. It may serve as a basis for developing novel strategies to prevent obesity-associated muscle loss.
Collapse
Affiliation(s)
- Jung-Mou Yang
- Department of Emergency, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - I-Shan Han
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Tsung-Hua Chen
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Po-Shiuan Hsieh
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Hung-Che Chien
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
3
|
Kim J, Jeon Y, Son J, Pagire HS, Pagire SH, Ahn JH, Uemura A, Lee IK, Park S, Park DH. PDK4-mediated metabolic reprogramming is a potential therapeutic target for neovascular age-related macular degeneration. Cell Death Dis 2024; 15:582. [PMID: 39122684 PMCID: PMC11316003 DOI: 10.1038/s41419-024-06968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Age-related macular degeneration (AMD) causes severe blindness in the elderly due to choroidal neovascularization (CNV), which results from the dysfunction of the retinal pigment epithelium (RPE). While normal RPE depends exclusively on mitochondrial oxidative phosphorylation for energy production, the inflammatory conditions associated with metabolic reprogramming of the RPE play a pivotal role in CNV. Although mitochondrial pyruvate dehydrogenase kinase (PDK) is a central node of energy metabolism, its role in the development of CNV in neovascular AMD has not been investigated. In the present study, we used a laser-induced CNV mouse model to evaluate the effects of Pdk4 gene ablation and treatment with pan-PDK or specific PDK4 inhibitors on fluorescein angiography and CNV lesion area. Among PDK isoforms, only PDK4 was upregulated in the RPE of laser-induced CNV mice, and Pdk4 gene ablation attenuated CNV. Next, we evaluated mitochondrial changes mediated by PDK1-4 inhibition using siRNA or PDK inhibitors in inflammatory cytokine mixture (ICM)-treated primary human RPE (hRPE) cells. PDK4 silencing only in ICM-treated hRPE cells restored mitochondrial respiration and reduced inflammatory cytokine secretion. Likewise, GM10395, a specific PDK4 inhibitor, restored oxidative phosphorylation and decreased ICM-induced upregulation of inflammatory cytokine secretion. In a laser-induced CNV mouse model, GM10395 significantly alleviated CNV. Taken together, we demonstrate that specific PDK4 inhibition could be a therapeutic strategy for neovascular AMD by preventing mitochondrial metabolic reprogramming in the RPE under inflammatory conditions.
Collapse
Affiliation(s)
- Juhee Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
- Kyungpook National University Cell & Matrix Research Institute, Daegu, Republic of Korea
| | - Yujin Jeon
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
- Kyungpook National University Cell & Matrix Research Institute, Daegu, Republic of Korea
| | - Jinyoung Son
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Daegu, Republic of Korea
| | - Haushabhau S Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- R&D center, JD Bioscience Inc, Gwangju, Republic of Korea
| | - Suvarna H Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- R&D center, JD Bioscience Inc, Gwangju, Republic of Korea
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- R&D center, JD Bioscience Inc, Gwangju, Republic of Korea
| | - Akiyoshi Uemura
- Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sungmi Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.
- Kyungpook National University Cell & Matrix Research Institute, Daegu, Republic of Korea.
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Daegu, Republic of Korea.
| |
Collapse
|
4
|
Koltai T, Fliegel L. Dichloroacetate for Cancer Treatment: Some Facts and Many Doubts. Pharmaceuticals (Basel) 2024; 17:744. [PMID: 38931411 PMCID: PMC11206832 DOI: 10.3390/ph17060744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Rarely has a chemical elicited as much controversy as dichloroacetate (DCA). DCA was initially considered a dangerous toxic industrial waste product, then a potential treatment for lactic acidosis. However, the main controversies started in 2008 when DCA was found to have anti-cancer effects on experimental animals. These publications showed contradictory results in vivo and in vitro such that a thorough consideration of this compound's in cancer is merited. Despite 50 years of experimentation, DCA's future in therapeutics is uncertain. Without adequate clinical trials and health authorities' approval, DCA has been introduced in off-label cancer treatments in alternative medicine clinics in Canada, Germany, and other European countries. The lack of well-planned clinical trials and its use by people without medical training has discouraged consideration by the scientific community. There are few thorough clinical studies of DCA, and many publications are individual case reports. Case reports of DCA's benefits against cancer have been increasing recently. Furthermore, it has been shown that DCA synergizes with conventional treatments and other repurposable drugs. Beyond the classic DCA target, pyruvate dehydrogenase kinase, new target molecules have also been recently discovered. These findings have renewed interest in DCA. This paper explores whether existing evidence justifies further research on DCA for cancer treatment and it explores the role DCA may play in it.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada;
| |
Collapse
|
5
|
Wu X, Pan X, Zhou Y, Pan J, Kang J, Yu JJJ, Cao Y, Quan C, Gong L, Li Y. Identification of key genes for atherosclerosis in different arterial beds. Sci Rep 2024; 14:6543. [PMID: 38503760 PMCID: PMC10951242 DOI: 10.1038/s41598-024-55575-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024] Open
Abstract
Atherosclerosis (AS) is the pathologic basis of various cardiovascular and cerebrovascular events, with a high degree of heterogeneity among different arterial beds. However, mechanistic differences between arterial beds remain unexplored. The aim of this study was to explore key genes and potential mechanistic differences between AS in different arterial beds through bioinformatics analysis. Carotid atherosclerosis (CAS), femoral atherosclerosis (FAS), infrapopliteal atherosclerosis (IPAS), abdominal aortic atherosclerosis (AAS), and AS-specific differentially expressed genes (DEGs) were screened from the GSE100927 and GSE57691 datasets. Immune infiltration analysis was used to identify AS immune cell infiltration differences. Unsupervised cluster analysis of AS samples from different regions based on macrophage polarization gene expression profiles. Weighted gene co-expression network analysis (WGCNA) was performed to identify the most relevant module genes with AS. Hub genes were then screened by LASSO regression, SVM-REF, and single-gene differential analysis, and a nomogram was constructed to predict the risk of AS development. The results showed that differential expression analysis identified 5, 4, 121, and 62 CAS, FAS, IPAS, AAS-specific DEGs, and 42 AS-common DEGs, respectively. Immune infiltration analysis demonstrated that the degree of macrophage and mast cell enrichment differed significantly in different regions of AS. The CAS, FAS, IPAS, and AAS could be distinguished into two different biologically functional and stable molecular clusters based on macrophage polarization gene expression profiles, especially for cardiomyopathy and glycolipid metabolic processes. Hub genes for 6 AS (ADAP2, CSF3R, FABP5, ITGAX, MYOC, and SPP1), 4 IPAS (CLECL1, DIO2, F2RL2, and GUCY1A2), and 3 AAS (RPL21, RPL26, and RPL10A) were obtained based on module gene, gender stratification, machine learning algorithms, and single-gene difference analysis, respectively, and these genes were effective in differentiating between different regions of AS. This study demonstrates that there are similarities and heterogeneities in the pathogenesis of AS between different arterial beds.
Collapse
Affiliation(s)
- Xize Wu
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, No. 41 Jianshe Road, Chongchuan District, Nantong, 226000, Jiangsu, China
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Xue Pan
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
- Dazhou Vocational College of Chinese Medicine, Dazhou, 635000, Sichuan, China
| | - Yi Zhou
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Jiaxiang Pan
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, No. 33, Beiling Street, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Jian Kang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - J J Jiajia Yu
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Yingyue Cao
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Chao Quan
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, No. 41 Jianshe Road, Chongchuan District, Nantong, 226000, Jiangsu, China.
| | - Lihong Gong
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China.
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, No. 33, Beiling Street, Huanggu District, Shenyang, 110032, Liaoning, China.
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110847, Liaoning, China.
| | - Yue Li
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, No. 33, Beiling Street, Huanggu District, Shenyang, 110032, Liaoning, China.
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110847, Liaoning, China.
| |
Collapse
|
6
|
Pająk B, Zieliński R, Priebe W. The Impact of Glycolysis and Its Inhibitors on the Immune Response to Inflammation and Autoimmunity. Molecules 2024; 29:1298. [PMID: 38542934 PMCID: PMC10975218 DOI: 10.3390/molecules29061298] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 01/03/2025] Open
Abstract
Glucose metabolism is a crucial biological pathway maintaining the activation of extra- and intracellular signaling pathways involved in the immune response. Immune cell stimulation via various environmental factors results in their activation and metabolic reprogramming to aerobic glycolysis. Different immune cells exhibit cell-type-specific metabolic patterns when performing their biological functions. Numerous published studies have shed more light on the importance of metabolic reprogramming in the immune system. Moreover, this knowledge is crucial for revealing new ways to target inflammatory pathologic states, such as autoimmunity and hyperinflammation. Here, we discuss the role of glycolysis in immune cell activity in physiological and pathological conditions, and the potential use of inhibitors of glycolysis for disease treatment.
Collapse
Affiliation(s)
- Beata Pająk
- Department of Medical Biology, Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
- WPD Pharmaceuticals, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Rafał Zieliński
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA;
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA;
| |
Collapse
|
7
|
Forteza MJ, Berg M, Edsfeldt A, Sun J, Baumgartner R, Kareinen I, Casagrande FB, Hedin U, Zhang S, Vuckovic I, Dzeja PP, Polyzos KA, Gisterå A, Trauelsen M, Schwartz TW, Dib L, Herrmann J, Monaco C, Matic L, Gonçalves I, Ketelhuth DFJ. Pyruvate dehydrogenase kinase regulates vascular inflammation in atherosclerosis and increases cardiovascular risk. Cardiovasc Res 2023; 119:1524-1536. [PMID: 36866436 PMCID: PMC10318388 DOI: 10.1093/cvr/cvad038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 03/04/2023] Open
Abstract
AIMS Recent studies have revealed a close connection between cellular metabolism and the chronic inflammatory process of atherosclerosis. While the link between systemic metabolism and atherosclerosis is well established, the implications of altered metabolism in the artery wall are less understood. Pyruvate dehydrogenase kinase (PDK)-dependent inhibition of pyruvate dehydrogenase (PDH) has been identified as a major metabolic step regulating inflammation. Whether the PDK/PDH axis plays a role in vascular inflammation and atherosclerotic cardiovascular disease remains unclear. METHODS AND RESULTS Gene profiling of human atherosclerotic plaques revealed a strong correlation between PDK1 and PDK4 transcript levels and the expression of pro-inflammatory and destabilizing genes. Remarkably, the PDK1 and PDK4 expression correlated with a more vulnerable plaque phenotype, and PDK1 expression was found to predict future major adverse cardiovascular events. Using the small-molecule PDK inhibitor dichloroacetate (DCA) that restores arterial PDH activity, we demonstrated that the PDK/PDH axis is a major immunometabolic pathway, regulating immune cell polarization, plaque development, and fibrous cap formation in Apoe-/- mice. Surprisingly, we discovered that DCA regulates succinate release and mitigates its GPR91-dependent signals promoting NLRP3 inflammasome activation and IL-1β secretion by macrophages in the plaque. CONCLUSIONS We have demonstrated for the first time that the PDK/PDH axis is associated with vascular inflammation in humans and particularly that the PDK1 isozyme is associated with more severe disease and could predict secondary cardiovascular events. Moreover, we demonstrate that targeting the PDK/PDH axis with DCA skews the immune system, inhibits vascular inflammation and atherogenesis, and promotes plaque stability features in Apoe-/- mice. These results point toward a promising treatment to combat atherosclerosis.
Collapse
Affiliation(s)
- Maria J Forteza
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Martin Berg
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Andreas Edsfeldt
- Cardiovascular Research Translational Studies, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, 20 502, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Carl-Bertil Laurells gata 9, 21 428, Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Jan Waldenströms gata 35, 20 502, Malmö, Sweden
| | - Jangming Sun
- Cardiovascular Research Translational Studies, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, 20 502, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Carl-Bertil Laurells gata 9, 21 428, Malmö, Sweden
| | - Roland Baumgartner
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Ilona Kareinen
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Felipe Beccaria Casagrande
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Song Zhang
- Mayo Clinic Metabolomics Core, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
| | - Ivan Vuckovic
- Mayo Clinic Metabolomics Core, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
| | - Petras P Dzeja
- Department of Cardiovascular Medicine, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
| | - Konstantinos A Polyzos
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Anton Gisterå
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Mette Trauelsen
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
| | - Thue W Schwartz
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
| | - Lea Dib
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7FY, UK
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7FY, UK
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Isabel Gonçalves
- Cardiovascular Research Translational Studies, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, 20 502, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Carl-Bertil Laurells gata 9, 21 428, Malmö, Sweden
| | - Daniel F J Ketelhuth
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws vej 21, 5000 Odense, Denmark
| |
Collapse
|
8
|
Liu S, Liu Y, Liu Z, Hu Y, Jiang M. A review of the signaling pathways of aerobic and anaerobic exercise on atherosclerosis. J Cell Physiol 2023; 238:866-879. [PMID: 36890781 DOI: 10.1002/jcp.30989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/10/2023]
Abstract
Atherosclerosis (AS), a chronic inflammatory vascular disease with lipid metabolism abnormalities, is one of the major pathological bases of coronary heart disease. As people's lifestyles and diets change, the incidence of AS increases yearly. Physical activity and exercise training have recently been identified as effective strategies for lowering cardiovascular disease (CVD) risk. However, the best exercise mode to ameliorate the risk factors related to AS is not clear. The effect of exercise on AS is affected by the type of exercise, intensity, and duration. In particular, aerobic and anaerobic exercise are the two most widely discussed types of exercise. During exercise, the cardiovascular system undergoes physiological changes via various signaling pathways. The review aims to summarize signaling pathways related to AS in two different exercise types and provide new ideas for the prevention and treatment of AS in clinical practice.
Collapse
Affiliation(s)
- Sibo Liu
- The QUEEN MARY School, Nanchang University, Nanchang, China
| | - Yuhe Liu
- Medical Collage of Hebei University of Engineering, Handan, China
| | - Zhihan Liu
- The QUEEN MARY School, Nanchang University, Nanchang, China
| | - Yansong Hu
- The QUEEN MARY School, Nanchang University, Nanchang, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
10
|
Geng Z, Yuan Y, He D, Lee H, Wang H, Niu N, Ni Z, Abdullah S, Tang Z, Qu P. RNA-Seq analysis of obese Pdha1 fl/flLyz2-Cre mice induced by a high-fat diet. Exp Anim 2023; 72:112-122. [PMID: 36288929 PMCID: PMC9978130 DOI: 10.1538/expanim.22-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Pyruvate dehydrogenase complex (PDH) is an important complex of three enzymes that transforms pyruvate into acetyl-CoA, subsequently entering the tricarboxylic acid (TCA) cycle to produce ATP and electron donors. As a key regulator of energy and metabolic homeostasis, PDH is considered a potential therapeutic target of many diseases. On the other hand, the relationship between PDH and obesity is not clear. In this study, peripheral blood of Pdha1fl/flLyz2-Cre and C57BL/6 mice fed a high-fat diet (HFD) was collected and subjected to extensive transcriptome sequencing. Differentially expressed genes (DEGs) were identified. Enrichment of functions and signaling pathways analyses were performed based on Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the genes selected from RNA sequencing (RNA-seq). Eventually, we found that Pdha1fl/flLyz2-Cre mice were more susceptible to HFD-induced obesity. A total of 302 up-regulated genes and 30 down-regulated genes were screened that were differentially expressed between Pdha1fl/flLyz2-Cre mice fed the HFD and the control groups. Furthermore, we verified that significant transcriptional changes in the genes Sgstm1, Ncoa4, Rraga, Slc3a2, Usp15, Gabarapl2, Wipi1, Sh3glb1, Mtmr3, and Cd36 were consistent with the results obtained from RNA-seq analysis. In summary, this study preliminarily established that there is a close relationship between Pdha1 and obesity and revealed the possible downstream pathways and target genes involved, laying a good foundation for the further study of Pdha1 function in the future.
Collapse
Affiliation(s)
- Zhaohong Geng
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116000, P.R. China
| | - Yuchan Yuan
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Dan He
- Department of Cardiology, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, P.R. China
| | - Hewang Lee
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville
Pike, Bethesda, MD 20892, USA
| | - Hongyan Wang
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116000, P.R. China
| | - Nan Niu
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116000, P.R. China
| | - Zhigang Ni
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116000, P.R. China
| | - Shopit Abdullah
- Academic Integrated Medicine & College of Pharmacy, Department of Pharmacology, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian
116044, P.R. China
| | - Zeyao Tang
- Academic Integrated Medicine & College of Pharmacy, Department of Pharmacology, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian
116044, P.R. China
| | - Peng Qu
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116000, P.R. China
| |
Collapse
|
11
|
Katayama Y, Kawata Y, Moritoh Y, Watanabe M. Dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, ameliorates type 2 diabetes via reduced gluconeogenesis. Heliyon 2022; 8:e08889. [PMID: 35169648 PMCID: PMC8829582 DOI: 10.1016/j.heliyon.2022.e08889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/18/2021] [Accepted: 01/30/2022] [Indexed: 11/15/2022] Open
Abstract
Aims Pyruvate dehydrogenase (PDH) catalyzes the decarboxylation of pyruvate to acetyl-CoA, which plays a key role in linking cytosolic glycolysis to mitochondria metabolism. PDH is physiologically inactivated by pyruvate dehydrogenase kinases (PDKs). Thus, activation of PDH via inhibiting PDK may lead to metabolic benefits. In the present study, we investigated the antidiabetic effect of PDK inhibition using dichloroacetate (DCA), a PDK inhibitor. Main methods We evaluated the effect of single dose of DCA on plasma metabolic parameters in normal rats. Next, we investigated the antidiabetic effect of DCA in diabetic ob/ob mice. In addition, we performed in vitro assays to understand the effect and mechanism of action of DCA on gluconeogenesis in mouse myoblast cell line C2C12 and rat hepatoma cell line FaO. Key findings In normal rats, a single dose of DCA decreased the plasma level of pyruvate, the product of glycolysis, and the plasma glucose level only in the fasting state. Meanwhile, a single dose of DCA lowered the plasma glucose level, and a three-week treatment decreased the fructosamine level in diabetic ob/ob mice. In vitro experiments demonstrated concentration-dependent suppression of lactate production in C2C12 myotubes. In addition, DCA suppressed glucose production from pyruvate and lactate in FaO hepatoma cells. Thus, DCA-mediated restricted supply of gluconeogenic substrates from the muscle to liver, and direct suppression of hepatic gluconeogenesis might have contributed to its glucose-lowering effect in the current models. Significance PDK inhibitor may be considered as a potential antidiabetic agent harboring inhibitory effect on gluconeogenesis.
Collapse
|
12
|
Pala HG, Pala EE, Artunc Ulkumen B, Erbas O. Protective effects of dichloroacetic acid on endometrial injury and ovarian reserve in an experimental rat model of diabetes mellitus. J Obstet Gynaecol Res 2021; 47:4319-4328. [PMID: 34595798 DOI: 10.1111/jog.15045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/14/2021] [Accepted: 09/19/2021] [Indexed: 12/31/2022]
Abstract
AIM To study (1) ovarian and endometrial damage caused by the hyperglycemia and (2) the effects of dichloroacetic acid (DCA) on follicular reserve and endometrial damage in streptozocin induced diabetic rats. METHODS This study consisted 24 rats randomly separated into three groups. A diabetes model was achieved in 16 rats experimentally, and normoglycemic eight rats were assigned as control group (Group 1). The rats with diabetes were randomly separated to two groups: 1 mL/kg/day intraperitoneal 0.9% NaCl was given to eight rats as diabetic vehicle (Group 2) and 10 mg/kg/day DCA was given to other eight rats as DCA treated group (Group 3). Hysterectomy with bilateral oophorectomy was performed for histopathological evaluation and blood samples were collected after 4 weeks. RESULTS Diabetes caused ovarian and endometrial damage (p < 0.0001). Pentraxin-3 (PTX-3), lactic acid, and transforming growth factor-beta (TGF-β) were higher (p < 0.05, p < 0.05, and p < 0.0001, respectively), whereas anti-Mullerian hormone (AMH) was lower in diabetic rats (p < 0.05). These findings reflected the diabetic damage in the genital tract and diminished ovarian reserve occurred via fibrosis, severe inflammation, and oxidative stress. DCA improved the histopathological fibrosis and degeneration in the ovaries and endometrium (p < 0.05). There was a concominant decrease of TGF-β and lactic acid levels with DCA treatment (p < 0.05). DCA also improved ovarian reserve with higher AMH levels (p < 0.05). CONCLUSIONS The several unfavored changes in the endometrium and ovaries due to diabetes have been determined in this present study. DCA might provide the continuity of the endometrial cycle, physiological endometrial structure, ovarian follicular growth, oocyte maturation, and physiological ovarian function by decreasing the lactate levels via inhibiting pyruvate dehydrogenase kinase enzyme.
Collapse
Affiliation(s)
- Halil Gursoy Pala
- Division of Perinatology, Department of Obstetrics and Gynecology, Tepecik Training and Research Hospital, University of Health Sciences, İzmir, Turkey
| | - Emel Ebru Pala
- Department of Pathology, Tepecik Training and Research Hospital, University of Health Sciences, İzmir, Turkey
| | - Burcu Artunc Ulkumen
- Department of Obstetrics and Gynecology, Hafsa Sultan Hospital, Manisa Celal Bayar University, Manisa, Turkey
| | - Oytun Erbas
- Department of Physiology, Demiroglu Bilim University, Istanbul, Turkey
| |
Collapse
|
13
|
Protective Effect of Jiang Tang Xiao Ke Granules against Skeletal Muscle IR via Activation of the AMPK/SIRT1/PGC-1 α Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5566053. [PMID: 34326919 PMCID: PMC8277912 DOI: 10.1155/2021/5566053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
The Jiang Tang Xiao Ke (JTXK) granule is a classic Chinese herbal formula that has been put into clinical use in the treatment of type 2 diabetes mellitus for decades. However, whether its ability to ameliorate skeletal muscle insulin resistance (IR) is through modulation of the AMPK/SIRT1/PGC-1α signaling pathway remains unknown. Therefore, we aimed to investigate the effects of JTXK granules on IR in skeletal muscle of high-fat diet-induced diabetic mice and C2C12 cells and analyze the underlying mechanisms. In the present study, we showed that JTXK granules attenuated body weight gain, reduced body fat mass, improved body lean mass, and enhanced muscle performance of diabetic mice. JTXK granules also improved glucose metabolism and skeletal muscle insulin sensitivity and partially reversed abnormal serum lipid levels, which might be related to the regulation of the AMPK/SIRT1/PGC-1α pathway, both in skeletal muscle tissue of diabetic mice and in C2C12 cells. Furthermore, drug-containing serum of JTXK granules was capable of enhancing glucose uptake and mitochondrial respiration in C2C12 cells, and AMPKα was proven to be closely involved in this process. Taken together, these results suggest that the JTXK granule ameliorates skeletal muscle IR through activation of the AMPK/SIRT1/PGC-1α signaling pathway, which offers a novel perspective of this formula to combat IR-related metabolic diseases.
Collapse
|
14
|
Liu J, Tan Y, Ao H, Feng W, Peng C. Aqueous extracts of Aconite promote thermogenesis in rats with hypothermia via regulating gut microbiota and bile acid metabolism. Chin Med 2021; 16:29. [PMID: 33741035 PMCID: PMC7980327 DOI: 10.1186/s13020-021-00437-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background Intermittent or prolonged exposure to severe cold stress disturbs energy homeostasis and can lead to hypothermia, heart failure, Alzheimer’s disease, and so on. As the typical “hot” traditional Chinese medicine, Aconite has been widely used to treat cold-associated diseases for thousands of years, but its critical mechanisms for the promotion of thermogenesis are not fully resolved. Gut microbiota and its metabolites play a crucial role in maintaining energy homeostasis. Here, we investigated whether the aqueous extracts of Aconite (AA) can enhance thermogenesis through modulation of the composition and metabolism of gut microbiota in hypothermic rats. Methods The therapeutic effects of AA on body temperature, energy intake, and the histopathology of white adipose tissue and brown adipose tissue of hypothermic rats were assessed. Microbiota analysis based on 16 S rRNA and targeted metabolomics for bile acids (BAs) were used to evaluate the composition of gut microbiota and BAs pool. The antibiotic cocktail treatment was adopted to further confirm the relationship between the gut microbiota and the thermogenesis-promoting effects of AA. Results Our results showed a sharp drop in rectal temperature and body surface temperature in hypothermic rats. Administration of AA can significantly increase core body temperature, surface body temperature, energy intake, browning of white adipose tissue, and thermogenesis of brown adipose tissue. Importantly, these ameliorative effects of AA were accompanied by the shift of the disturbed composition of gut microbiota toward a healthier profile and the increased levels of BAs. In addition, the depletion of gut microbiota and the reduction of BAs caused by antibiotic cocktails reduced the thermogenesis-promoting effect of AA. Conclusions Our results demonstrated that AA promoted thermogenesis in rats with hypothermia via regulating gut microbiota and BAs metabolism. Our findings can also provide a novel solution for the treatment of thermogenesis-associated diseases such as rheumatoid arthritis, obesity, and type 2 diabetes. ![]()
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.,National Key Laboratory Breeding Base of Systematic Research, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Hui Ao
- National Key Laboratory Breeding Base of Systematic Research, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China. .,National Key Laboratory Breeding Base of Systematic Research, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China. .,National Key Laboratory Breeding Base of Systematic Research, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
15
|
Ma WQ, Sun XJ, Zhu Y, Liu NF. PDK4 promotes vascular calcification by interfering with autophagic activity and metabolic reprogramming. Cell Death Dis 2020; 11:991. [PMID: 33203874 PMCID: PMC7673024 DOI: 10.1038/s41419-020-03162-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
Pyruvate dehydrogenase kinase 4 (PDK4) is an important mitochondrial matrix enzyme in cellular energy regulation. Previous studies suggested that PDK4 is increased in the calcified vessels of patients with atherosclerosis and is closely associated with mitochondrial function, but the precise regulatory mechanisms remain largely unknown. This study aims to investigate the role of PDK4 in vascular calcification and the molecular mechanisms involved. Using a variety of complementary techniques, we found impaired autophagic activity in the process of vascular smooth muscle cells (VSMCs) calcification, whereas knocking down PDK4 had the opposite effect. PDK4 drives the metabolic reprogramming of VSMCs towards a Warburg effect, and the inhibition of PDK4 abrogates VSMCs calcification. Mechanistically, PDK4 disturbs the integrity of the mitochondria-associated endoplasmic reticulum membrane, concomitantly impairing mitochondrial respiratory capacity, which contributes to a decrease in lysosomal degradation by inhibiting the V-ATPase and lactate dehydrogenase B interaction. PDK4 also inhibits the nuclear translocation of the transcription factor EB, thus inhibiting lysosomal function. These changes result in the interruption of autophagic flux, which accelerates calcium deposition in VSMCs. In addition, glycolysis serves as a metabolic adaptation to improve VSMCs oxidative stress resistance, whereas inhibition of glycolysis by 2-deoxy-D-glucose induces the apoptosis of VSMCs and increases the calcium deposition in VSMCs. Our results suggest that PDK4 plays a key role in vascular calcification through autophagy inhibition and metabolic reprogramming.
Collapse
Affiliation(s)
- Wen-Qi Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, P.R. China
| | - Xue-Jiao Sun
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, P.R. China
| | - Yi Zhu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, P.R. China
| | - Nai-Feng Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, P.R. China.
| |
Collapse
|
16
|
Jeon JH, Thoudam T, Choi EJ, Kim MJ, Harris RA, Lee IK. Loss of metabolic flexibility as a result of overexpression of pyruvate dehydrogenase kinases in muscle, liver and the immune system: Therapeutic targets in metabolic diseases. J Diabetes Investig 2020; 12:21-31. [PMID: 32628351 PMCID: PMC7779278 DOI: 10.1111/jdi.13345] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Good health depends on the maintenance of metabolic flexibility, which in turn is dependent on the maintenance of regulatory flexibility of a large number of regulatory enzymes, but especially the pyruvate dehydrogenase complex (PDC), because of its central role in carbohydrate metabolism. Flexibility in regulation of PDC is dependent on rapid changes in the phosphorylation state of PDC determined by the relative activities of the pyruvate dehydrogenase kinases (PDKs) and the pyruvate dehydrogenase phosphatases. Inactivation of the PDC by overexpression of PDK4 contributes to hyperglycemia, and therefore the serious health problems associated with diabetes. Loss of regulatory flexibility of PDC occurs in other disease states and pathological conditions that have received less attention than diabetes. These include cancers, non‐alcoholic fatty liver disease, cancer‐induced cachexia, diabetes‐induced nephropathy, sepsis and amyotrophic lateral sclerosis. Overexpression of PDK4, and in some situations, the other PDKs, as well as under expression of the pyruvate dehydrogenase phosphatases, leads to inactivation of the PDC, mitochondrial dysfunction and deleterious effects with health consequences. The possible basis for this phenomenon, along with evidence that overexpression of PDK4 results in phosphorylation of “off‐target” proteins and promotes excessive transport of Ca2+ into mitochondria through mitochondria‐associated endoplasmic reticulum membranes are discussed. Recent efforts to find small molecule PDK inhibitors with therapeutic potential are also reviewed.
Collapse
Affiliation(s)
- Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea.,Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea
| | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Korea
| | - Eun Jung Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu, Korea
| | - Min-Ji Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea.,Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea.,Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Korea.,Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu, Korea
| |
Collapse
|