1
|
Unger Z, Kuklinski A, Gomez-Casado C. Importance of SREBP signaling in controlling lipid metabolism and homeostasis in B cells for future vaccine design. Allergy 2024; 79:2885-2887. [PMID: 38715449 DOI: 10.1111/all.16134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 10/04/2024]
Affiliation(s)
- Zsófia Unger
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alina Kuklinski
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Cristina Gomez-Casado
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
2
|
Hillion S, Miranda A, Le Dantec C, Boudigou M, Le Pottier L, Cornec D, Torres RM, Pelanda R. Maf expression in B cells restricts reactive plasmablast and germinal center B cell expansion. Nat Commun 2024; 15:7982. [PMID: 39266537 PMCID: PMC11393457 DOI: 10.1038/s41467-024-52224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 08/29/2024] [Indexed: 09/14/2024] Open
Abstract
Precise regulation of B cell differentiation is essential for an effective adaptive immune response. Here, we show that B cell development in mice with B cell-specific Maf deletion is unaffected, but marginal zone B cells, germinal centre B cells, and plasmablasts are significantly more frequent in the spleen of naive Maf-deficient mice compared to wild type controls. In the context of a T cell-dependent immunization, Maf deletion causes increased proliferation of germinal centre B cells and extrafollicular plasmablasts. This is accompanied by higher production of antigen-specific IgG1 antibodies with minimal modification of early memory B cells, but a reduction in plasma cell numbers. Single-cell RNA sequencing shows upregulation of genes associated with DNA replication and cell cycle progression, confirming the role of Maf in cell proliferation. Subsequent pathway analysis reveals that Maf influences cellular metabolism, transporter activity, and mitochondrial proteins, which have been implicated in controlling the germinal centre reaction. In summary, our findings demonstrate that Maf acts intrinsically in B cells as a negative regulator of late B cell differentiation, plasmablast proliferation and germinal centre B cell formation.
Collapse
Affiliation(s)
- Sophie Hillion
- LBAI, UMR1227, Univ Brest, Inserm, and CHU de Brest, Brest, France.
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Anjelica Miranda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | | | | | - Divi Cornec
- LBAI, UMR1227, Univ Brest, Inserm, and CHU de Brest, Brest, France
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
3
|
Hu T, Allam M, Cai S, Henderson W, Yueh B, Garipcan A, Ievlev AV, Afkarian M, Beyaz S, Coskun AF. Single-cell spatial metabolomics with cell-type specific protein profiling for tissue systems biology. Nat Commun 2023; 14:8260. [PMID: 38086839 PMCID: PMC10716522 DOI: 10.1038/s41467-023-43917-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Metabolic reprogramming in cancer and immune cells occurs to support their increasing energy needs in biological tissues. Here we propose Single Cell Spatially resolved Metabolic (scSpaMet) framework for joint protein-metabolite profiling of single immune and cancer cells in male human tissues by incorporating untargeted spatial metabolomics and targeted multiplexed protein imaging in a single pipeline. We utilized the scSpaMet to profile cell types and spatial metabolomic maps of 19507, 31156, and 8215 single cells in human lung cancer, tonsil, and endometrium tissues, respectively. The scSpaMet analysis revealed cell type-dependent metabolite profiles and local metabolite competition of neighboring single cells in human tissues. Deep learning-based joint embedding revealed unique metabolite states within cell types. Trajectory inference showed metabolic patterns along cell differentiation paths. Here we show scSpaMet's ability to quantify and visualize the cell-type specific and spatially resolved metabolic-protein mapping as an emerging tool for systems-level understanding of tissue biology.
Collapse
Affiliation(s)
- Thomas Hu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mayar Allam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Shuangyi Cai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Walter Henderson
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brian Yueh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Anton V Ievlev
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN, USA
| | - Maryam Afkarian
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, CA, USA
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
4
|
Chiang MT, Wang JT, Lin WY, Yen RF, Huang JY, Lu CC. Comparison of post-COVID-19 vaccination hypermetabolic lymphadenopathy on 18F-fluorodeoxyglucose PET/CT between virus-vector vaccine and mRNA vaccine. Eur J Med Res 2023; 28:513. [PMID: 37964395 PMCID: PMC10647177 DOI: 10.1186/s40001-023-01456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
PURPOSE We compared hypermetabolic lymphadenopathy (HLN) on 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) after virus-vector and mRNA vaccines for coronavirus disease 2019 (COVID-19). METHODS This retrospective study included 573 participants who underwent FDG PET/CT after receiving a virus-vector vaccine (ChAdOx1, AstraZeneca [AZ] group) or an mRNA vaccine (mRNA-1273, Moderna [M] group) from July 2021 to October 2021. The incidence and avidity of HLN were evaluated and correlated with clinical features and vaccine type. The final analysis was conducted with 263 participants in the AZ group and 310 participants in the M group. RESULTS The HLN incidence was significantly lower in the AZ group than in the M group (38/263 [14%] vs. 74/310 [24%], p = 0.006). The FDG avidity of HLN was comparable between the two groups. The HLN incidence in both groups was significantly higher within 4 weeks after the vaccination compared with more than 4 weeks. The HLN incidence within 4 weeks of the vaccination was significantly higher in the M group than in the AZ group (p = 0.008), whereas a difference in HLN incidence between the two groups was not observed after the same duration (p = 0.11). CONCLUSIONS The mRNA mRNA-1273 COVID-19 vaccine was found to be associated with higher glucose hypermetabolism in regional lymph nodes within the first 4 weeks compared with the virus-vector vaccine, as indicated by the presence of HLN on FDG PET/CT. The degree of glucose hypermetabolism was comparable between the two vaccines.
Collapse
Affiliation(s)
- Meng-Ting Chiang
- Department of Nuclear Medicine, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist., Taipei City, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wan-Yu Lin
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist., Taipei City, Taiwan
| | - Jei-Yie Huang
- Department of Nuclear Medicine, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist., Taipei City, Taiwan
| | - Ching-Chu Lu
- Department of Nuclear Medicine, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist., Taipei City, Taiwan.
| |
Collapse
|
5
|
He S, Guo J, Rao D, Dong J, Wei G, Wang X, Huang S, Yi X. Isolation and culture of chicken bone marrow-derived CD34 + hematopoietic stem and progenitor cells and induced differentiation to myeloid cells. Tissue Cell 2023; 84:102185. [PMID: 37531875 DOI: 10.1016/j.tice.2023.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/16/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Hematopoietic stem and progenitor cell (HSPC) research will help elucidate the pathogenesis of hematologic diseases. The present study aimed to establish an isolation method and culture system for chicken bone marrow (BM)-derived HSPCs and test their proliferation and differentiation abilities. Mononuclear cells were collected from chicken BM, and CD34+ HSPCs were isolated. Then, the cells were cultured in media with different cytokine compositions, and the growth status, cell phenotype, and morphological appearance of the cells were analyzed at different time points. Our results showed that Iscove's Modified Dulbecco's Medium supplemented with 50 ng/mL stem cell factor, 30 ng/mL Flt-3 ligand, 10 μg/mL interleukin 3, 50 ng/mL interleukin 6%, and 10% chicken serum supported chicken CD34+ HSPC survival ex vivo for approximately 10 d. Further, 80 ng/mL granulocyte-colony stimulating factor and 30 ng/mL granulocyte macrophage-colony stimulating factor were added into the above culture system to form a myeloid cell differentiation induction culture system. After culturing in this system for 72 h, approximately 66% of chicken CD34+ HSPCs exhibited a CD11b+ phenotype, indicating that HSPCs differentiated into myeloid cells. In conclusion, chicken BM-derived CD34+ cells possess HSPC characteristics that can self-renew and differentiate into myeloid cells in a culture medium containing growth factors.
Collapse
Affiliation(s)
- Shuhai He
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang City 464000, Henan, PR China; Henan Engineering Technology Research Center of Waterfowl Resources Exploitation and Utilization and Disease Control, Xinyang City 464000, Henan, PR China
| | - Jing Guo
- Lushi County Animal Health Supervision Institute, Lu Shi County 472200, Henan, PR China
| | - Dan Rao
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang City 464000, Henan, PR China
| | - Jianguo Dong
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang City 464000, Henan, PR China; Henan Engineering Technology Research Center of Waterfowl Resources Exploitation and Utilization and Disease Control, Xinyang City 464000, Henan, PR China
| | - Gege Wei
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang City 464000, Henan, PR China
| | - Xu Wang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang City 464000, Henan, PR China
| | - Shouxiao Huang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang City 464000, Henan, PR China
| | - Xianguo Yi
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang City 464000, Henan, PR China; Henan Engineering Technology Research Center of Waterfowl Resources Exploitation and Utilization and Disease Control, Xinyang City 464000, Henan, PR China.
| |
Collapse
|
6
|
Ramirez De Oleo I, Kim V, Atisha-Fregoso Y, Shih AJ, Lee K, Diamond B, Kim SJ. Phenotypic and functional characteristics of murine CD11c+ B cells which is suppressed by metformin. Front Immunol 2023; 14:1241531. [PMID: 37744368 PMCID: PMC10512061 DOI: 10.3389/fimmu.2023.1241531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Since the description of age-associated or autoimmune-associated B cells (ABCs), there has been a growing interest in the role of these cells in autoimmunity. ABCs are differently defined depending on the research group and are heterogenous subsets. Here, we sought to characterize ABCs in Sle1/2/3 triple congenic (TC) mice, which is a well accepted mouse model of lupus. Compared to follicular (FO) B cells, ABCs have many distinct functional properties, including antigen presentation. They express key costimulatory molecules for T cell activation and a distinct profile of cytokines. Moreover, they exhibit an increased capacity for antigen uptake. ABCs were also compared with germinal center (GC) B cells, which are antigen activated B cell population. There are several phenotypic similarities between ABCs and GC B cells, but GC B cells do not produce proinflammatory cytokines or take up antigen. While T cell proliferation and activation is induced by both FO B and ABCs in an antigen-dependent manner, ABCs induce stronger T cell receptor signaling in naïve CD4+ T cells and preferentially induce differentiation of T follicular helper (Tfh) cells. We found that ABCs exhibit a distinct transcriptomic profile which is focused on metabolism, cytokine signaling and antigen uptake and processing. ABCs exhibit an increase in both glycolysis and oxidative phosphorylation compared to FO B cells. Treatment of ABCs with metformin suppresses antigen presentation by decreasing antigen uptake, resulting in decreased Tfh differentiation. Taken together, these findings define a fundamental connection between metabolism and function within ABCs.
Collapse
Affiliation(s)
- Ivan Ramirez De Oleo
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Vera Kim
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Yemil Atisha-Fregoso
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Andrew J. Shih
- Center for Genomics and Human Genetics, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Kyungwoo Lee
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Biology at Hofstra University, Hempstead, NY, United States
| | - Betty Diamond
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra University/Northwell, Hempstead, NY, United States
| | - Sun Jung Kim
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra University/Northwell, Hempstead, NY, United States
| |
Collapse
|
7
|
Garcia-Carmona Y, Fribourg M, Sowa A, Cerutti A, Cunningham-Rundles C. TACI and endogenous APRIL in B cell maturation. Clin Immunol 2023; 253:109689. [PMID: 37422057 PMCID: PMC10528899 DOI: 10.1016/j.clim.2023.109689] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
While many of the genes and molecular pathways in the germinal center B cell response which initiate protective antibody production are known, the contributions of individual molecular players in terminal B cell differentiation remain unclear. We have previously investigated how mutations in TACI gene, noted in about 10% of patients with common variable immunodeficiency, impair B cell differentiation and often, lead to lymphoid hyperplasia and autoimmunity. Unlike mouse B cells, human B cells express TACI-L (Long) and TACI-S (Short) isoforms, but only TACI-S promotes terminal B cell differentiation into plasma cells. Here we show that the expression of intracellular TACI-S increases with B cell activation, and colocalizes with BCMA and their ligand, APRIL. We show that the loss of APRIL impairs isotype class switch and leads to distinct metabolic and transcriptional changes. Our studies suggest that intracellular TACI-S and APRIL along with BCMA direct long-term PC differentiation and survival.
Collapse
Affiliation(s)
- Yolanda Garcia-Carmona
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA.
| | - Miguel Fribourg
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Allison Sowa
- Microscopy CoRE and Advanced Bioimaging Center, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Andrea Cerutti
- Translational Clinical Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| |
Collapse
|
8
|
Gong M, Choi SC, Park YP, Zou X, Elshikha AS, Gerriets VA, Rathmell JC, Mohamazadeh M, Morel L. Transcriptional and metabolic programs promote the expansion of follicular helper T cells in lupus-prone mice. iScience 2023; 26:106774. [PMID: 37216123 PMCID: PMC10197114 DOI: 10.1016/j.isci.2023.106774] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/28/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
The expansion of follicular helper T (Tfh) cells, which is tightly associated with the development of lupus, is reversed by the inhibition of either glycolysis or glutaminolysis in mice. Here we analyzed the gene expression and metabolome of Tfh cells and naive CD4+ T (Tn) cells in the B6.Sle1.Sle2.Sle3 (triple congenic, TC) mouse model of lupus and its congenic B6 control. Lupus genetic susceptibility in TC mice drives a gene expression signature starting in Tn cells and expanding in Tfh cells with enhanced signaling and effector programs. Metabolically, TC Tn and Tfh cells showed multiple defective mitochondrial functions. TC Tfh cells also showed specific anabolic programs including enhanced glutamate metabolism, malate-aspartate shuttle, and ammonia recycling, as well as altered dynamics of amino acid content and their transporters. Thus, our study has revealed specific metabolic programs that can be targeted to specifically limit the expansion of pathogenic Tfh cells in lupus.
Collapse
Affiliation(s)
- Minghao Gong
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Seung-Chul Choi
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Yuk Pheel Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Xueyang Zou
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ahmed S. Elshikha
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Valerie A. Gerriets
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey C. Rathmell
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mansour Mohamazadeh
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
9
|
Raparia C, Quach TD, Zeumer-Spataro L, Choi SC, Yi Z, Zhang W, Morel L, Davidson A. Combination CTLA4Ig and Anti-CD40 Ligand Treatment Modifies T and B Cell Metabolic Profiles and Promotes B Cell Receptor Remodeling in a Mouse Model of Systemic Lupus Erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:558-567. [PMID: 36645445 PMCID: PMC10004980 DOI: 10.4049/jimmunol.2100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/15/2022] [Indexed: 01/17/2023]
Abstract
Systemic lupus erythematosus is a complex autoimmune disease with significant morbidity that demands further examination of tolerance-inducing treatments. Short-term treatment of lupus-prone NZB/WF1 mice with combination CTLA4Ig and anti-CD40 ligand, but not single treatment alone, suppresses disease for >6 mo via modulation of B and T cell function while maintaining immune responses to exogenous Ags. Three months after a 2-wk course of combination costimulatory blockade, we found a modest decrease in the number of activated T and B cells in both combination and single-treatment cohorts compared with untreated controls. However, only combination treatment mice showed a 50% decrease in spare respiratory capacity of splenic B and T cells. RNA sequencing and gene set enrichment analysis of germinal center (GC) B cells confirmed a reduction in the oxidative phosphorylation signature in the combination treatment cohort. This cohort also manifested increased expression of BCR-associated signaling molecules and increased phosphorylation of PLCγ in GC B cells after stimulation with anti-IgG and anti-CD40. GC B cells from combination treatment mice also displayed a signature involving remodeling of GPI-linked surface proteins. Accordingly, we found a decrease in cell surface expression of the inhibitory molecule CD24 on class-switched memory B cells from aged NZB/W mice that corrected in the combination treatment cohort. Because both a profound decrease in BCR signaling and remodeled immune cell metabolism enhance loss of tolerance in lupus-prone mice, our findings help to explain the restoration of tolerance observed after short-term combination costimulatory blockade.
Collapse
Affiliation(s)
- Chirag Raparia
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, NY 11030
| | - Tam D. Quach
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, NY 11030
| | - Leilani Zeumer-Spataro
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL:
| | - Seung-Chul Choi
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL:
| | - Zhengzi Yi
- Department of Medicine, Mount Sinai Medical Center, New York, NY 10029
| | - Weijia Zhang
- Department of Medicine, Mount Sinai Medical Center, New York, NY 10029
| | - Laurence Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL:
| | - Anne Davidson
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, NY 11030
- Donald and Barbara Zucker School of Medicine at Northwell Health
| |
Collapse
|
10
|
Abboud G, Choi SC, Zhang X, Park YP, Kanda N, Zeumer-Spataro L, Terrell M, Teng X, Nündel K, Shlomchik MJ, Morel L. Glucose Requirement of Antigen-Specific Autoreactive B Cells and CD4+ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:377-388. [PMID: 36602759 PMCID: PMC9898175 DOI: 10.4049/jimmunol.2200325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
The activation of lymphocytes in patients with lupus and in mouse models of the disease is coupled with an increased cellular metabolism in which glucose plays a major role. The pharmacological inhibition of glycolysis with 2-deoxy-d-glucose (2DG) reversed the expansion of follicular helper CD4+ T cells and germinal center B cells in lupus-prone mice, as well as the production of autoantibodies. The response of foreign Ags was however not affected by 2DG in these mice, suggesting that B and CD4+ T cell activation by autoantigens is uniquely sensitive to glycolysis. In this study, we tested this hypothesis with monoclonal B cells and CD4+ T cells specific for lupus-relevant autoantigens. AM14 Vκ8R (AM14) transgenic B cells are activated by IgG2a/chromatin immune complexes and they can receive cognate help from chromatin-specific 13C2 CD4+ T cells. We showed that activation of AM14 B cells by their cognate Ag PL2-3 induced glycolysis, and that the inhibition of glycolysis reduced their activation and differentiation into Ab-forming cells, in the absence or presence of T cell help. The dependency of autoreactive B cells on glycolysis is in sharp contrast with the previously reported dependency of 4-hydroxy-3-nitrophenyl acetyl-specific B cells on fatty acid oxidation. Contrary to AM14 B cells, the activation and differentiation of 13C2 T cells into follicular helper CD4+ T cells was not altered by 2DG, which differs from polyclonal CD4+ T cells from lupus-prone mice. These results further define the role of glycolysis in the production of lupus autoantibodies and demonstrate the need to evaluate the metabolic requirements of Ag-specific B and T cells.
Collapse
Affiliation(s)
- Georges Abboud
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Xiaojuan Zhang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Yuk Pheel Park
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Nathalie Kanda
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Leilani Zeumer-Spataro
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Morgan Terrell
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Xiangyu Teng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Kirsten Nündel
- Department of Medicine, Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mark J. Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Kim SA, Lee Y, Ko Y, Kim S, Kim GB, Lee NK, Ahn W, Kim N, Nam GH, Lee EJ, Kim IS. Protein-based nanocages for vaccine development. J Control Release 2023; 353:767-791. [PMID: 36516900 DOI: 10.1016/j.jconrel.2022.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Protein nanocages have attracted considerable attention in various fields of nanomedicine due to their intrinsic properties, including biocompatibility, biodegradability, high structural stability, and ease of modification of their surfaces and inner cavities. In vaccine development, these protein nanocages are suited for efficient targeting to and retention in the lymph nodes and can enhance immunogenicity through various mechanisms, including excellent uptake by antigen-presenting cells and crosslinking with multiple B cell receptors. This review highlights the superiority of protein nanocages as antigen delivery carriers based on their physiological and immunological properties such as biodistribution, immunogenicity, stability, and multifunctionality. With a focus on design, we discuss the utilization and efficacy of protein nanocages such as virus-like particles, caged proteins, and artificial caged proteins against cancer and infectious diseases such as coronavirus disease 2019 (COVID-19). In addition, we summarize available knowledge on the protein nanocages that are currently used in clinical trials and provide a general outlook on conventional distribution techniques and hurdles faced, particularly for therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Seong A Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea; Chemical & Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yeram Lee
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Yeju Ko
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Seohyun Kim
- Department of Research and Development, SHIFTBIO INC., Seoul, Republic of Korea
| | - Gi Beom Kim
- Department of Research and Development, SHIFTBIO INC., Seoul, Republic of Korea
| | - Na Kyeong Lee
- Chemical & Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Wonkyung Ahn
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Nayeon Kim
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Gi-Hoon Nam
- Department of Research and Development, SHIFTBIO INC., Seoul, Republic of Korea; Department of Biochemistry & Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eun Jung Lee
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea.
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea; Chemical & Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
12
|
Ulbricht C, Leben R, Cao Y, Niesner RA, Hauser AE. Combined FRET-FLIM and NAD(P)H FLIM to Analyze B Cell Receptor Signaling Induced Metabolic Activity of Germinal Center B Cells In Vivo. Methods Mol Biol 2023; 2654:91-111. [PMID: 37106177 DOI: 10.1007/978-1-0716-3135-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Affinity maturation of B cell clones within germinal centers constitutes an important mechanism for immune memory. During this process, B cell receptor signaling capacity is tested in multiple rounds of positive selection. Antigen stimulation and co-stimulatory signals mobilize calcium to switch on gene expression leading to proliferation and survival and to differentiation into memory B cells and plasma cells. Additionally, all these processes require adaption of B cell metabolism, and calcium signaling and metabolic pathways are closely interlinked. Mitochondrial adaption, ROS production, and NADPH oxidase activation are involved in cell fate decisions, but it remains elusive to what extent, especially because the analysis of these dynamic processes in germinal centers has to take place in vivo. Here, we introduce a quantitative intravital imaging method for combined measurement of cytoplasmic calcium concentration and enzymatic fingerprinting in germinal center B cells as a possible tool in order to further examine the relationship of calcium signaling and immunometabolism.
Collapse
Affiliation(s)
- Carolin Ulbricht
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Ruth Leben
- Biophysical Analysis, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
- Dynamic and functional in vivo imaging, Freie Universität Berlin, Veterinary Medicine, Berlin, Germany
| | - Yu Cao
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Raluca A Niesner
- Biophysical Analysis, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
- Dynamic and functional in vivo imaging, Freie Universität Berlin, Veterinary Medicine, Berlin, Germany
| | - Anja E Hauser
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany.
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany.
| |
Collapse
|
13
|
Capece D, Verzella D, Flati I, Arboretto P, Cornice J, Franzoso G. NF-κB: blending metabolism, immunity, and inflammation. Trends Immunol 2022; 43:757-775. [PMID: 35965153 DOI: 10.1016/j.it.2022.07.004] [Citation(s) in RCA: 195] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023]
Abstract
The procurement and management of nutrients and ability to fight infections are fundamental requirements for survival. These defense responses are bioenergetically costly, requiring the immune system to balance protection against pathogens with the need to maintain metabolic homeostasis. NF-κB transcription factors are central regulators of immunity and inflammation. Over the last two decades, these factors have emerged as a pivotal node coordinating the immune and metabolic systems in physiology and the etiopathogenesis of major threats to human health, including cancer, autoimmunity, chronic inflammation, and others. In this review, we discuss recent advances in understanding how NF-κB-dependent metabolic programs control inflammation, metabolism, and immunity and how improved knowledge of them may lead to better diagnostics and therapeutics for widespread human diseases.
Collapse
Affiliation(s)
- Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy; Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK.
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy; Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
14
|
Radford‐Smith DE, Selvaraj EA, Peters R, Orrell M, Bolon J, Anthony DC, Pavlides M, Lynch K, Geremia A, Bailey A, Culver EL, Probert F. A novel serum metabolomic panel distinguishes IgG4-related sclerosing cholangitis from primary sclerosing cholangitis. Liver Int 2022; 42:1344-1354. [PMID: 35129255 PMCID: PMC9546203 DOI: 10.1111/liv.15192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Primary sclerosing cholangitis (PSC) and IgG4-related sclerosing cholangitis (IgG4-SC) are chronic fibro-inflammatory immune-mediated hepatobiliary conditions that are challenging to distinguish in a clinical setting. Accurate non-invasive biomarkers for discriminating PSC and IgG4-SC are important to ensure a correct diagnosis, prompt therapy and adequate cancer surveillance. METHODS We performed nuclear magnetic resonance (NMR)-based metabolomic profiling using serum samples collected prospectively from patients with PSC (n = 100), IgG4-SC (n = 23) and healthy controls (HC; n = 16). RESULTS Multivariate analysis of the serum metabolome discriminated PSC from IgG4-SC with greater accuracy (AUC 0.95 [95%CI 0.90-0.98]) than IgG4 titre (AUC 0.87 [95%CI 0.79-0.94]). When inflammatory bowel disease (IBD) was excluded as a comorbid condition (IgG4-SC n = 20, PSC n = 22), the diagnostic AUC increased to 1.0, suggesting that the metabolome differences identified are not a result of the increased prevalence of IBD in PSC relative to IgG4-SC patients. Serum lactate (p < .0001), glucose (p < .01) and glutamine (p < .01) metabolites were increased in IgG4-related disease (IgG4-RD) and IgG4-SC individuals compared to PSC, whereas mobile choline (p < .05), 3-hydroxybutyric acid (p < .01) and -CH3 lipoprotein resonances (p < .01) were decreased. CONCLUSIONS Taken together, serum metabolomic profiling has the potential to be incorporated as a diagnostic criterion, independent of IgG4 titre, to improve the diagnosis of IgG4-RD and help distinguish IgG4-SC from PSC.
Collapse
Affiliation(s)
- Daniel E. Radford‐Smith
- Department of PharmacologyUniversity of OxfordOxfordUK,Department of ChemistryUniversity of OxfordOxfordUK
| | - Emmanuel A. Selvaraj
- Translational Gastroenterology Unit, Nuffield Department of MedicineUniversity of OxfordOxfordUK,Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of MedicineUniversity of OxfordOxfordUK,NIHR Oxford Biomedical Research CentreUniversity of Oxford and Oxford University Hospitals NHS Foundation TrustOxfordUK
| | - Rory Peters
- Translational Gastroenterology Unit, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Michael Orrell
- Translational Gastroenterology Unit, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Jonathan Bolon
- Translational Gastroenterology Unit, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | | | - Michael Pavlides
- Translational Gastroenterology Unit, Nuffield Department of MedicineUniversity of OxfordOxfordUK,Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of MedicineUniversity of OxfordOxfordUK,NIHR Oxford Biomedical Research CentreUniversity of Oxford and Oxford University Hospitals NHS Foundation TrustOxfordUK
| | - Kate Lynch
- Translational Gastroenterology Unit, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Alessandra Geremia
- Translational Gastroenterology Unit, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Adam Bailey
- Translational Gastroenterology Unit, Nuffield Department of MedicineUniversity of OxfordOxfordUK,NIHR Oxford Biomedical Research CentreUniversity of Oxford and Oxford University Hospitals NHS Foundation TrustOxfordUK
| | - Emma L. Culver
- Translational Gastroenterology Unit, Nuffield Department of MedicineUniversity of OxfordOxfordUK,NIHR Oxford Biomedical Research CentreUniversity of Oxford and Oxford University Hospitals NHS Foundation TrustOxfordUK
| | - Fay Probert
- Department of ChemistryUniversity of OxfordOxfordUK
| |
Collapse
|
15
|
Guo Y, Song S, DU X, Tian L, Zhang M, Zhou H, Chen ZK, Chang S. Romidepsin (FK228) improves the survival of allogeneic skin grafts through downregulating the production of donor-specific antibody via suppressing the IRE1α-XBP1 pathway. J Zhejiang Univ Sci B 2022; 23:392-406. [PMID: 35557040 DOI: 10.1631/jzus.b2100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antibody-mediated rejection (AMR) is one of the major causes of graft loss after transplantation. Recently, the regulation of B cell differentiation and the prevention of donor-specific antibody (DSA) production have gained increased attention in transplant research. Herein, we established a secondary allogeneic in vivo skin transplant model to study the effects of romidepsin (FK228) on DSA. The survival of grafted skins was monitored daily. The serum levels of DSA and the number of relevant immunocytes in the recipient spleens were evaluated by flow cytometry. Then, we isolated and purified B cells from B6 mouse spleens in vitro by magnetic bead sorting. The B cells were cultured with interleukin-4 (IL-4) and anti-clusters of differentiation 40 (CD40) antibody with or without FK228 treatment. The immunoglobulin G1 (IgG1) and IgM levels in the supernatant were evaluated by enzyme-linked immunosorbent assay (ELISA). Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and western blotting were conducted to determine the corresponding levels of messenger RNA (mRNA) and protein expression in cultured cells and the recipient spleens. The results showed that FK228 significantly improved the survival of allogeneic skin grafts. Moreover, FK228 inhibited DSA production in the serum along with the suppression of histone deacetylase 1 (HADC1) and HDAC2 and the upregulation of the acetylation of histones H2A and H3. It also inhibited the differentiation of B cells to plasma cells, decreased the transcription of positive regulatory domain-containing 1 (Prdm1) and X-box-binding protein 1 (Xbp1), and decreased the expression of phosphorylated inositol-requiring enzyme 1 α (p-IRE1α), XBP1, and B lymphocyte-induced maturation protein-1 (Blimp-1). In conclusion, FK228 could decrease the production of antibodies by B cells via inhibition of the IRE1α-XBP1 signaling pathway. Thus, FK228 is considered as a promising therapeutic agent for the clinical treatment of AMR.
Collapse
Affiliation(s)
- Yuliang Guo
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Siyu Song
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Xiaoxiao DU
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Li Tian
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Man Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Hongmin Zhou
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhonghua Klaus Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Sheng Chang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China.
| |
Collapse
|
16
|
Choi SC, Li W, Zhang X, Kanda N, Zeumer-Spataro L, Teng X, Morel L. Pharmacologically Inferred Glycolysis and Glutaminolysis Requirement of B Cells in Lupus-Prone Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2098-2108. [PMID: 35387839 PMCID: PMC9050845 DOI: 10.4049/jimmunol.2100356] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 02/17/2022] [Indexed: 11/19/2022]
Abstract
Several studies have shown an enhanced metabolism in the CD4+ T cells of lupus patients and lupus-prone mice. Little is known about the metabolism of B cells in lupus. In this study, we compared the metabolism of B cells between lupus-prone B6.Sle1.Sle2.Sle3 triple-congenic mice and C57BL/6 controls at steady state relative to autoantibody production, as well as during T cell-dependent (TD) and T cell-independent (TI) immunizations. Starting before the onset of autoimmunity, B cells from triple-congenic mice showed an elevated glycolysis and mitochondrial respiration, which were normalized in vivo by inhibiting glycolysis with a 2-deoxy-d-glucose (2DG) treatment. 2DG greatly reduced the production of TI-Ag-specific Abs, but showed minimal effect with TD-Ags. In contrast, the inhibition of glutaminolysis with 6-diazo-5-oxo-l-norleucine had a greater effect on TD than TI-Ag-specific Abs in both strains. Analysis of the TI and TD responses in purified B cells in vitro suggests, however, that the glutaminolysis requirement is not B cell-intrinsic. Thus, B cells have a greater requirement for glycolysis in TI than TD responses, as inferred from pharmacological interventions. B cells from lupus-prone and control mice have different intrinsic metabolic requirements or different responses toward 2DG and 6-diazo-5-oxo-l-norleucine, which mirrors our previous results obtained with follicular Th cells. Overall, these results predict that targeting glucose metabolism may provide an effective therapeutic approach for systemic autoimmunity by eliminating both autoreactive follicular Th and B cells, although it may also impair TI responses.
Collapse
Affiliation(s)
- Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Xiaojuan Zhang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Nathalie Kanda
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Leilani Zeumer-Spataro
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Xiangyu Teng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
17
|
Fearon U, Hanlon MM, Floudas A, Veale DJ. Cellular metabolic adaptations in rheumatoid arthritis and their therapeutic implications. Nat Rev Rheumatol 2022; 18:398-414. [PMID: 35440762 DOI: 10.1038/s41584-022-00771-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Activation of endothelium and immune cells is fundamental to the initiation of autoimmune diseases such as rheumatoid arthritis (RA), and it results in trans-endothelial cell migration and synovial fibroblast proliferation, leading to joint destruction. In RA, the synovial microvasculature is highly dysregulated, resulting in inefficient oxygen perfusion to the synovium, which, along with the high metabolic demands of activated immune and stromal cells, leads to a profoundly hypoxic microenvironment. In inflamed joints, infiltrating immune cells and synovial resident cells have great requirements for energy and nutrients, and they adapt their metabolic profiles to generate sufficient energy to support their highly activated inflammatory states. This shift in metabolic capacity of synovial cells enables them to produce the essential building blocks to support their proliferation, activation and invasiveness. Furthermore, it results in the accumulation of metabolic intermediates and alteration of redox-sensitive pathways, affecting signalling pathways that further potentiate the inflammatory response. Importantly, the inflamed synovium is a multicellular tissue, with cells differing in their metabolic requirements depending on complex cell-cell interactions, nutrient supply, metabolic intermediates and transcriptional regulation. Therefore, understanding the complex interplay between metabolic and inflammatory pathways in synovial cells in RA will provide insight into the underlying mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Ursula Fearon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland. .,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland.
| | - Megan M Hanlon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland.,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Achilleas Floudas
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland.,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Douglas J Veale
- EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
18
|
Serganova I, Chakraborty S, Yamshon S, Isshiki Y, Bucktrout R, Melnick A, Béguelin W, Zappasodi R. Epigenetic, Metabolic, and Immune Crosstalk in Germinal-Center-Derived B-Cell Lymphomas: Unveiling New Vulnerabilities for Rational Combination Therapies. Front Cell Dev Biol 2022; 9:805195. [PMID: 35071240 PMCID: PMC8777078 DOI: 10.3389/fcell.2021.805195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
B-cell non-Hodgkin lymphomas (B-NHLs) are highly heterogenous by genetic, phenotypic, and clinical appearance. Next-generation sequencing technologies and multi-dimensional data analyses have further refined the way these diseases can be more precisely classified by specific genomic, epigenomic, and transcriptomic characteristics. The molecular and genetic heterogeneity of B-NHLs may contribute to the poor outcome of some of these diseases, suggesting that more personalized precision-medicine approaches are needed for improved therapeutic efficacy. The germinal center (GC) B-cell like diffuse large B-cell lymphomas (GCB-DLBCLs) and follicular lymphomas (FLs) share specific epigenetic programs. These diseases often remain difficult to treat and surprisingly do not respond advanced immunotherapies, despite arising in secondary lymphoid organs at sites of antigen recognition. Epigenetic dysregulation is a hallmark of GCB-DLBCLs and FLs, with gain-of-function (GOF) mutations in the histone methyltransferase EZH2, loss-of-function (LOF) mutations in histone acetyl transferases CREBBP and EP300, and the histone methyltransferase KMT2D representing the most prevalent genetic lesions driving these diseases. These mutations have the common effect to disrupt the interactions between lymphoma cells and the immune microenvironment, via decreased antigen presentation and responsiveness to IFN-γ and CD40 signaling pathways. This indicates that immune evasion is a key step in GC B-cell lymphomagenesis. EZH2 inhibitors are now approved for the treatment of FL and selective HDAC3 inhibitors counteracting the effects of CREBBP LOF mutations are under development. These treatments can help restore the immune control of GCB lymphomas, and may represent optimal candidate agents for more effective combination with immunotherapies. Here, we review recent progress in understanding the impact of mutant chromatin modifiers on immune evasion in GCB lymphomas. We provide new insights on how the epigenetic program of these diseases may be regulated at the level of metabolism, discussing the role of metabolic intermediates as cofactors of epigenetic enzymes. In addition, lymphoma metabolic adaptation can negatively influence the immune microenvironment, further contributing to the development of immune cold tumors, poorly infiltrated by effector immune cells. Based on these findings, we discuss relevant candidate epigenetic/metabolic/immune targets for rational combination therapies to investigate as more effective precision-medicine approaches for GCB lymphomas.
Collapse
Affiliation(s)
- Inna Serganova
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sanjukta Chakraborty
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Samuel Yamshon
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Yusuke Isshiki
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Ryan Bucktrout
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Ari Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Wendy Béguelin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Roberta Zappasodi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States.,Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
19
|
Shiraz AK, Panther EJ, Reilly CM. Altered Germinal-Center Metabolism in B Cells in Autoimmunity. Metabolites 2022; 12:metabo12010040. [PMID: 35050162 PMCID: PMC8780703 DOI: 10.3390/metabo12010040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022] Open
Abstract
B lymphocytes play an important role in the pathophysiology of many autoimmune disorders by producing autoantibodies, secreting cytokines, and presenting antigens. B cells undergo extreme physiological changes as they develop and differentiate. Aberrant function in tolerogenic checkpoints and the metabolic state of B cells might be the contributing factors to the dysfunctionality of autoimmune B cells. Understanding B-cell metabolism in autoimmunity is important as it can give rise to new treatments. Recent investigations have revealed that alterations in metabolism occur in the activation of B cells. Several reports have suggested that germinal center (GC) B cells of individuals with systemic lupus erythematosus (SLE) have altered metabolic function. GCs are unique microenvironments in which the delicate and complex process of B-cell affinity maturation occurs through somatic hypermutation (SHM) and class switching recombination (CSR) and where Bcl6 tightly regulates B-cell differentiation into memory B-cells or plasma cells. GC B cells rely heavily on glucose, fatty acids, and oxidative phosphorylation (OXPHOS) for their energy requirements. However, the complicated association between GC B cells and their metabolism is still not clearly understood. Here, we review several studies of B-cell metabolism, highlighting the significant transformations that occur in GC progression, and suggest possible approaches that may be investigated to more precisely target aberrant B-cell metabolism in SLE.
Collapse
Affiliation(s)
- Ashton K. Shiraz
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, VA 24061, USA;
- Correspondence: (A.K.S.); (C.M.R.); Tel.: +1-540-231-9365 (C.M.R.)
| | - Eric J. Panther
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, VA 24061, USA;
| | - Christopher M. Reilly
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, VA 24061, USA;
- Via College of Osteopathic Medicine, Blacksburg, VA 24060, USA
- Correspondence: (A.K.S.); (C.M.R.); Tel.: +1-540-231-9365 (C.M.R.)
| |
Collapse
|
20
|
Lin YJ, Goretzki A, Schülke S. Immune Metabolism of IL-4-Activated B Cells and Th2 Cells in the Context of Allergic Diseases. Front Immunol 2021; 12:790658. [PMID: 34925372 PMCID: PMC8671807 DOI: 10.3389/fimmu.2021.790658] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
Over the last decades, the frequency of allergic disorders has steadily increased. Immunologically, allergies are caused by abnormal immune responses directed against otherwise harmless antigens derived from our environment. Two of the main cell types driving allergic sensitization and inflammation are IgE-producing plasma cells and Th2 cells. The acute activation of T and B cells, their differentiation into effector cells, as well as the formation of immunological memory are paralleled by distinct changes in cellular metabolism. Understanding the functional consequences of these metabolic changes is the focus of a new research field termed "immune metabolism". Currently, the contribution of metabolic changes in T and B cells to either the development or maintenance of allergies is not completely understood. Therefore, this mini review will introduce the fundamentals of energy metabolism, its connection to immune metabolism, and subsequently focus on the metabolic phenotypes of IL-4-activated B cells and Th2 cells.
Collapse
Affiliation(s)
- Yen-Ju Lin
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Stefan Schülke
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
21
|
Immune Memory in Aging: a Wide Perspective Covering Microbiota, Brain, Metabolism, and Epigenetics. Clin Rev Allergy Immunol 2021; 63:499-529. [PMID: 34910283 PMCID: PMC8671603 DOI: 10.1007/s12016-021-08905-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 11/06/2022]
Abstract
Non-specific innate and antigen-specific adaptive immunological memories are vital evolutionary adaptations that confer long-lasting protection against a wide range of pathogens. Adaptive memory is established by memory T and B lymphocytes following the recognition of an antigen. On the other hand, innate immune memory, also called trained immunity, is imprinted in innate cells such as macrophages and natural killer cells through epigenetic and metabolic reprogramming. However, these mechanisms of memory generation and maintenance are compromised as organisms age. Almost all immune cell types, both mature cells and their progenitors, go through age-related changes concerning numbers and functions. The aging immune system renders the elderly highly susceptible to infections and incapable of mounting a proper immune response upon vaccinations. Besides the increased infectious burden, older individuals also have heightened risks of metabolic and neurodegenerative diseases, which have an immunological component. This review discusses how immune function, particularly the establishment and maintenance of innate and adaptive immunological memory, regulates and is regulated by epigenetics, metabolic processes, gut microbiota, and the central nervous system throughout life, with a focus on old age. We explain in-depth how epigenetics and cellular metabolism impact immune cell function and contribute or resist the aging process. Microbiota is intimately linked with the immune system of the human host, and therefore, plays an important role in immunological memory during both homeostasis and aging. The brain, which is not an immune-isolated organ despite former opinion, interacts with the peripheral immune cells, and the aging of both systems influences the health of each other. With all these in mind, we aimed to present a comprehensive view of the aging immune system and its consequences, especially in terms of immunological memory. The review also details the mechanisms of promising anti-aging interventions and highlights a few, namely, caloric restriction, physical exercise, metformin, and resveratrol, that impact multiple facets of the aging process, including the regulation of innate and adaptive immune memory. We propose that understanding aging as a complex phenomenon, with the immune system at the center role interacting with all the other tissues and systems, would allow for more effective anti-aging strategies.
Collapse
|
22
|
Wild K, Smits M, Killmer S, Strohmeier S, Neumann-Haefelin C, Bengsch B, Krammer F, Schwemmle M, Hofmann M, Thimme R, Zoldan K, Boettler T. Pre-existing immunity and vaccine history determine hemagglutinin-specific CD4 T cell and IgG response following seasonal influenza vaccination. Nat Commun 2021; 12:6720. [PMID: 34795301 PMCID: PMC8602312 DOI: 10.1038/s41467-021-27064-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022] Open
Abstract
Effectiveness of seasonal influenza vaccination varies between individuals and might be affected by vaccination history among other factors. Here we show, by monitoring frequencies of CD4 T cells specific to the conserved hemagglutinin epitope HA118-132 and titres of IgG against the corresponding recombinant hemagglutinin protein, that antigen-specific CD4 T cell and antibody responses are closely linked to pre-existing immunity and vaccine history. Upon immunization, a strong early reaction is observed in all vaccine naïve participants and also in vaccine experienced individuals who have not received the respective seasonal vaccine in the previous year. This response is characterized by HA118-132 specific CD4 T cells with a follicular helper T cell phenotype and by ascending titers of hemagglutinin-specific antibodies from baseline to day 28 following vaccination. This trend was observed in only a proportion of those participants who received the seasonal vaccine the year preceding the study. Regardless of history, levels of pre-existing antibodies and CD127 expression on CD4 T cells at baseline were the strongest predictors of robust early response. Thus, both pre-existing immunity and vaccine history contribute to the response to seasonal influenza vaccines.
Collapse
Affiliation(s)
- Katharina Wild
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Pharmacy, University of Freiburg, Freiburg, Germany
| | - Maike Smits
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Saskia Killmer
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bertram Bengsch
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Schwemmle
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Zoldan
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Boettler
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
23
|
Wilson CS, Stocks BT, Hoopes EM, Rhoads JP, McNew KL, Major AS, Moore DJ. Metabolic preconditioning in CD4+ T cells restores inducible immune tolerance in lupus-prone mice. JCI Insight 2021; 6:e143245. [PMID: 34403367 PMCID: PMC8525586 DOI: 10.1172/jci.insight.143245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
Autoimmune disease has presented an insurmountable barrier to restoration of durable immune tolerance. Previous studies indicate that chronic therapy with metabolic inhibitors can reduce autoimmune inflammation, but it remains unknown whether acute metabolic modulation enables permanent immune tolerance to be established. In an animal model of lupus, we determined that targeting glucose metabolism with 2-deoxyglucose (2DG) and mitochondrial metabolism with metformin enables endogenous immune tolerance mechanisms to respond to tolerance induction. A 2-week course of 2DG and metformin, when combined with tolerance-inducing therapy anti-CD45RB, prevented renal deposition of autoantibodies for 6 months after initial treatment and restored tolerance induction to allografts in lupus-prone mice. The restoration of durable immune tolerance was linked to changes in T cell surface glycosylation patterns, illustrating a role for glycoregulation in immune tolerance. These findings indicate that metabolic therapy may be applied as a powerful preconditioning to reinvigorate tolerance mechanisms in autoimmune and transplant settings that resist current immune therapies.
Collapse
Affiliation(s)
| | | | - Emilee M. Hoopes
- Ian Burr Division of Endocrinology and Diabetes, Department of Pediatrics
| | | | | | - Amy S. Major
- Department of Pathology, Microbiology, and Immunology; and
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel J. Moore
- Ian Burr Division of Endocrinology and Diabetes, Department of Pediatrics
- Department of Pathology, Microbiology, and Immunology; and
| |
Collapse
|
24
|
Metabolic Swifts Govern Normal and Malignant B Cell Lymphopoiesis. Int J Mol Sci 2021; 22:ijms22158269. [PMID: 34361035 PMCID: PMC8347747 DOI: 10.3390/ijms22158269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022] Open
Abstract
B lymphocytes are an indispensable part of the human immune system. They are the effective mediators of adaptive immunity and memory. To accomplish specificity against an antigen, and to establish the related immunologic memory, B cells differentiate through a complicated and strenuous training program that is characterized by multiple drastic genomic modifications. In order to avoid malignant transformation, these events are tightly regulated by multiple checkpoints, the vast majority of them involving bioenergetic alterations. Despite this stringent control program, B cell malignancies are amongst the top ten most common worldwide. In an effort to better understand malignant pathobiology, in this review, we summarize the metabolic swifts that govern normal B cell lymphopoiesis. We also review the existent knowledge regarding malignant metabolism as a means to unravel new research goals and/or therapeutic targets.
Collapse
|
25
|
Arulraj T, Binder SC, Robert PA, Meyer-Hermann M. Germinal Centre Shutdown. Front Immunol 2021; 12:705240. [PMID: 34305944 PMCID: PMC8293096 DOI: 10.3389/fimmu.2021.705240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Germinal Centres (GCs) are transient structures in secondary lymphoid organs, where affinity maturation of B cells takes place following an infection. While GCs are responsible for protective antibody responses, dysregulated GC reactions are associated with autoimmune disease and B cell lymphoma. Typically, ‘normal’ GCs persist for a limited period of time and eventually undergo shutdown. In this review, we focus on an important but unanswered question – what causes the natural termination of the GC reaction? In murine experiments, lack of antigen, absence or constitutive T cell help leads to premature termination of the GC reaction. Consequently, our present understanding is limited to the idea that GCs are terminated due to a decrease in antigen access or changes in the nature of T cell help. However, there is no direct evidence on which biological signals are primarily responsible for natural termination of GCs and a mechanistic understanding is clearly lacking. We discuss the present understanding of the GC shutdown, from factors impacting GC dynamics to changes in cellular interactions/dynamics during the GC lifetime. We also address potential missing links and remaining questions in GC biology, to facilitate further studies to promote a better understanding of GC shutdown in infection and immune dysregulation.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sebastian C Binder
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Philippe A Robert
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Immunology, University of Oslo, Oslo, Norway
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
26
|
Gu S, Wang W, Ye G, Chen C, Zhou Y, Guo L, Zhong S, Li X, Fu X, Wen C, Tang L, Sun J, Hou J, Li Y. Hepatocyte-derived L-carnitine restricts hepatitis B surface antigen loss through an immunosuppressive effect on germinal center-related immune cells. J Infect Dis 2021; 225:1955-1966. [PMID: 34214150 DOI: 10.1093/infdis/jiab344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/01/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The outcome of hepatitis B virus (HBV) infection is significantly affected by host immune response; herein, we aim to dissect the effect of L-carnitine (L-Cn) on germinal center (GC)-related immune cells and the influence on the prognosis of HBV infection. METHODS In vitro and in vivo experiments were performed in patients with chronic HBV infection and a hydrodynamic injection mouse model. RESULTS In vitro assays revealed that L-Cn significantly reduced GC-related immune responses and enhanced immunosuppressive profiles. Intriguingly, L-Cn released from lysed hepatocytes was associated with the degree of liver damage. Besides, the administration of L-Cn in an HBV mouse model resulted in delayed clearance of HBsAg in serum and decreased GC formation in the spleen. Notably, patients with HBsAg loss showed decreased plasma L-Cn levels, and longitudinal observations found that low baseline levels of L-Cn were associated with a favorable treatment response in chronic hepatitis B patients. CONCLUSIONS The suppressive effect of hepatocyte-derived L-Cn on GC-related immune cells may contribute to the inability of HBsAg clearance in chronic HBV infection, indicating that L-Cn might serve as a potential therapeutic target for the treatment of HBV infection.
Collapse
Affiliation(s)
- Shuqin Gu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weibin Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guofu Ye
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengcong Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Guo
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shihong Zhong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyi Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Fu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhua Wen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Sun
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Rosser EC, Mauri C. The emerging field of regulatory B cell immunometabolism. Cell Metab 2021; 33:1088-1097. [PMID: 34077716 DOI: 10.1016/j.cmet.2021.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 03/31/2021] [Accepted: 05/05/2021] [Indexed: 01/02/2023]
Abstract
B cells are well known as critical mediators of humoral immune responses via the production of antibodies. However, numerous studies have also identified populations of B cells that are characterized by their anti-inflammatory properties. These "regulatory B cells" restrain excessive inflammatory responses in a wide range of health conditions. A significant knowledge gap remains concerning the nature of the signals that determine whether a B cell exerts a pro-inflammatory or anti-inflammatory function. In this perspective, we explore the concept that in addition to the cytokine microenvironment, intracellular and extracellular metabolic signals play a pivotal role in controlling the balance between regulatory and antibody-producing B cell subsets. Determining the metabolites and tissue-specific signals that influence B cell fate could establish novel therapeutic targets for the treatment of diseases where abnormal B cell responses contribute to pathogenesis.
Collapse
Affiliation(s)
- Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, University College London, London, UK; Centre for Rheumatology Research, Division of Medicine, University College London, London, UK.
| | - Claudia Mauri
- Division of Infection, Immunity and Transplantation, University College London, London, UK
| |
Collapse
|
28
|
Elesela S, Lukacs NW. Role of Mitochondria in Viral Infections. Life (Basel) 2021; 11:life11030232. [PMID: 33799853 PMCID: PMC7998235 DOI: 10.3390/life11030232] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
Viral diseases account for an increasing proportion of deaths worldwide. Viruses maneuver host cell machinery in an attempt to subvert the intracellular environment favorable for their replication. The mitochondrial network is highly susceptible to physiological and environmental insults, including viral infections. Viruses affect mitochondrial functions and impact mitochondrial metabolism, and innate immune signaling. Resurgence of host-virus interactions in recent literature emphasizes the key role of mitochondria and host metabolism on viral life processes. Mitochondrial dysfunction leads to damage of mitochondria that generate toxic compounds, importantly mitochondrial DNA, inducing systemic toxicity, leading to damage of multiple organs in the body. Mitochondrial dynamics and mitophagy are essential for the maintenance of mitochondrial quality control and homeostasis. Therefore, metabolic antagonists may be essential to gain a better understanding of viral diseases and develop effective antiviral therapeutics. This review briefly discusses how viruses exploit mitochondrial dynamics for virus proliferation and induce associated diseases.
Collapse
Affiliation(s)
- Srikanth Elesela
- Department of Pathology, Michigan Medicine, Ann Arbor, MI 48109, USA
- Correspondence:
| | - Nicholas W. Lukacs
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, MI 48109, USA;
| |
Collapse
|
29
|
Abstract
The opposing roles of innate and adaptive immune cells in suppressing or supporting cancer initiation, progression, metastasis and response to therapy has been long debated. The mechanisms by which different monocyte and T cell subtypes affect and modulate cancer have been extensively studied. However, the role of B cells and their subtypes have remained elusive, perhaps partially due to their heterogeneity and range of actions. B cells can produce a variety of cytokines and present tumor-derived antigens to T cells in combination with co-stimulatory or inhibitory ligands based on their phenotype. Unlike most T cells, B cells can be activated by innate immune stimuli, such as endotoxin. Furthermore, the isotype and specificity of the antibodies produced by plasma cells regulate distinct immune responses, including opsonization, antibody-mediated cellular cytotoxicity (ADCC) and complement activation. B cells are shaped by the tumor environment (TME), with the capability to regulate the TME in return. In this review, we will describe the mechanisms of B cell action, including cytokine production, antigen presentation, ADCC, opsonization, complement activation and how they affect tumor development and response to immunotherapy. We will also discuss how B cell fate within the TME is affected by tumor stroma, microbiome and metabolism.
Collapse
Affiliation(s)
- Shabnam Shalapour
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Michael Karin
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093, USA; Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|