1
|
Grover A, Farahmandsadr M, Saeed H, Cummings C, Sheehan A, Pei L, Simonson DC, Patti ME. Defining Clinical Characteristics of Individuals With and Without Post-Bariatric Hypoglycemia After Gastric Bypass. Clin Endocrinol (Oxf) 2025; 102:111-120. [PMID: 39604085 DOI: 10.1111/cen.15169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
CONTEXT Post-bariatric hypoglycemia (PBH) is a complication of bariatric surgery including Roux-en-Y gastric bypass (RYGB). It remains unclear why only some individuals develop PBH. OBJECTIVE To identify clinical characteristics distinguishing post-RYGB individuals with PBH, versus without symptomatic hypoglycemia (RYGB non-hypo). DESIGN AND SETTING Cross-sectional observational study in academic referral centre. Adults 18-70, without current diabetes, were recruited into three groups: (1) PBH (n = 39); (2) RYGB non-hypo (n = 25); and (3) individuals without history of upper gastrointestinal surgery (n = 17). Outcome measures included between-group differences in medical history and medication use, and survey-based scores for hypoglycemia, dumping syndrome, and autonomic symptoms. RESULTS PBH participants were 92% female, age 53.4 ± 11.9 y, BMI 31.2 ± 5.6 kg/m2, versus RYGB non-hypo (100% female, age 53.2 ± 10.5 y, BMI 32.2 ± 8.0 kg/m2) and controls (65% female, age 44.5 ± 14.6 y, BMI 30.8 ± 6.3 kg/m2). 87% of PBH reported level 3 hypoglycemia, with emergency visits in 28% and vehicle accidents in 8%. Reduced hypoglycemia awareness was reported by 82%; 13%-17% were classified as unaware (modified Clarke/Gold scores). Preoperative hypoglycemia symptoms and family history were reported by 26% and 18% of PBH. PBH had significantly higher survey scores for hypoglycemia, dumping syndrome, and autonomic symptoms, and higher self-reported neuropathy, autonomic neuropathy, orthostatic hypotension, reflux esophagitis, intestinal dysmotility, and IBS (all p < 0.05 vs. RYGB non-hypo). Gabapentin and PPI use was more frequent in PBH. CONCLUSION High rates of IBS, dumping symptoms, and orthostatic hypotension suggest disordered autonomic regulation as a potential contributor to PBH. Self-reported preoperative symptoms and family history of hypoglycemia suggest possible preoperative differences in glucose metabolism in PBH.
Collapse
Affiliation(s)
- Ashna Grover
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | | | - Hamayle Saeed
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Cameron Cummings
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Amanda Sheehan
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Lei Pei
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Donald C Simonson
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Mary Elizabeth Patti
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Pasveer YM, Aydin Ö, Groen AK, Meijnikman AS, Nieuwdorp M, Gerdes VEA, van Riel NAW. Does GLP-1 cause post-bariatric hypoglycemia: 'Computer says no'. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108424. [PMID: 39326360 DOI: 10.1016/j.cmpb.2024.108424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/18/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND OBJECTIVE Patients who underwent Roux-en-Y Gastric Bypass surgery for treatment of obesity or diabetes can suffer from post-bariatric hypoglycemia (PBH). It has been assumed that PBH is caused by increased levels of the hormone GLP-1. In this research, we elucidate the role of GLP-1 in PBH with a physiology-based mathematical model. METHODS The Eindhoven Diabetes Simulator (EDES) model, simulating postprandial glucose homeostasis, was adapted to include the effect of GLP-1 on insulin secretion. Parameter sensitivity analysis was used to identify parameters that could cause PBH. Virtual patient models were created by defining sets of models parameters based on 63 participants from the HypoBaria study cohort, before and one year after bariatric surgery. RESULTS Simulations with the virtual patient models showed that glycemic excursions can be correctly simulated for the study population, despite heterogeneity in the glucose, insulin and GLP-1 data. Sensitivity analysis showed that GLP-1 stimulated insulin secretion alone was not able to cause PBH. Instead, analyses showed the increased transit speed of the ingested food resulted in quick and increased glucose absorption in the gut after surgery, which in turn induced postprandial glycemic dips. Furthermore, according to the model post-bariatric increased rate of glucose absorption in combination with different levels of insulin sensitivity can result in PBH. CONCLUSIONS Our model findings implicate that if initial rapid improvement in insulin sensitivity after gastric bypass surgery is followed by a more gradual decrease in insulin sensitivity, this may result in the emergence of PBH after prolonged time (months to years after surgery).
Collapse
Affiliation(s)
- Ysanne M Pasveer
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ömrüm Aydin
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, The Netherlands
| | - Albert K Groen
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, The Netherlands
| | - Abraham S Meijnikman
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, The Netherlands
| | - Victor E A Gerdes
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, The Netherlands; Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands; Department of Internal Medicine, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Natal A W van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Kim MK, Kwon HS, Baek KH, Song KH. Bile acids, fibroblast growth factor-19, and glucagon-like peptide-1 levels in the long term after bariatric surgery. Asian J Surg 2024:S1015-9584(24)02313-3. [PMID: 39424505 DOI: 10.1016/j.asjsur.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
OBJECTIVES Glucagon-like peptide-1(GLP-1) is a hormone often measured in the short-term following Roux-en-Y gastric bypass (RYGB) due to its elevation and association with improvement of glucose metabolism. We examined the durability of this effect in patients with type 2 diabetes mellitus (DM) in the long term after RYGB. METHODS Obese patients with type 2 DM who had received RYGB 10 years ago (n = 10) were enrolled and a meal tolerance test (MTT) was performed. A matched control group with type 2 DM (n = 5) underwent MTT. RESULTS Glucose levels during the MTT did not differ between patients with RYGB and the nonsurgical group. Insulin, C-peptide and GLP-1 levels during MTT were significantly higher in patients with RYGB compared with the nonsurgical group (Area under the curve [AUC] of insulin; 57.4 ± 22.9 vs. 27.7 ± 11.1 mIU/L•hr, P = 0.008; AUC of total GLP-1; 189.4 ± 74.72 vs. 52.13 ± 10.23 pM •hr, P = 0.002), and in particular, peak insulin, C-peptide and GLP-1 levels observed 30-45 min after eating were markedly different from those in the nonsurgical group. Bile acids (BAs) and fibroblast growth factor 19 (FGF-19) levels during MTT were higher in patients with RYGB compared with the nonsurgical group. Peak BAs and FGF-19 levels tended to be higher in the RYGB. CONCLUSIONS An enhanced GLP-1 response was noted 10 years after RYGB, strongly suggesting a durability of this effect. BAs and FGF-19 were increased in the RYGB group, but not as much as the pronounced increase in GLP-1 secretion.
Collapse
Affiliation(s)
- Mee Kyoung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 07345, South Korea
| | - Hyuk-Sang Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 07345, South Korea
| | - Ki-Hyun Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 07345, South Korea
| | - Ki-Ho Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 07345, South Korea.
| |
Collapse
|
4
|
Byndloss M, Devkota S, Duca F, Hendrik Niess J, Nieuwdorp M, Orho-Melander M, Sanz Y, Tremaroli V, Zhao L. The Gut Microbiota and Diabetes: Research, Translation, and Clinical Applications-2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum. Diabetes Care 2024; 47:1491-1508. [PMID: 38996003 PMCID: PMC11362125 DOI: 10.2337/dci24-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 07/14/2024]
Abstract
This article summarizes the state of the science on the role of the gut microbiota (GM) in diabetes from a recent international expert forum organized by Diabetes, Diabetes Care, and Diabetologia, which was held at the European Association for the Study of Diabetes 2023 Annual Meeting in Hamburg, Germany. Forum participants included clinicians and basic scientists who are leading investigators in the field of the intestinal microbiome and metabolism. Their conclusions were as follows: 1) the GM may be involved in the pathophysiology of type 2 diabetes, as microbially produced metabolites associate both positively and negatively with the disease, and mechanistic links of GM functions (e.g., genes for butyrate production) with glucose metabolism have recently emerged through the use of Mendelian randomization in humans; 2) the highly individualized nature of the GM poses a major research obstacle, and large cohorts and a deep-sequencing metagenomic approach are required for robust assessments of associations and causation; 3) because single-time point sampling misses intraindividual GM dynamics, future studies with repeated measures within individuals are needed; and 4) much future research will be required to determine the applicability of this expanding knowledge to diabetes diagnosis and treatment, and novel technologies and improved computational tools will be important to achieve this goal.
Collapse
Affiliation(s)
- Mariana Byndloss
- Vanderbilt University Medical Center, Nashville, TN
- Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Suzanne Devkota
- Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, University Digestive Healthcare Center, Clarunis, Basel, Switzerland
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Diabeter Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|
5
|
Byndloss M, Devkota S, Duca F, Niess JH, Nieuwdorp M, Orho-Melander M, Sanz Y, Tremaroli V, Zhao L. The gut microbiota and diabetes: research, translation, and clinical applications - 2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum. Diabetologia 2024; 67:1760-1782. [PMID: 38910152 PMCID: PMC11410996 DOI: 10.1007/s00125-024-06198-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
This article summarises the state of the science on the role of the gut microbiota (GM) in diabetes from a recent international expert forum organised by Diabetes, Diabetes Care, and Diabetologia, which was held at the European Association for the Study of Diabetes 2023 Annual Meeting in Hamburg, Germany. Forum participants included clinicians and basic scientists who are leading investigators in the field of the intestinal microbiome and metabolism. Their conclusions were as follows: (1) the GM may be involved in the pathophysiology of type 2 diabetes, as microbially produced metabolites associate both positively and negatively with the disease, and mechanistic links of GM functions (e.g. genes for butyrate production) with glucose metabolism have recently emerged through the use of Mendelian randomisation in humans; (2) the highly individualised nature of the GM poses a major research obstacle, and large cohorts and a deep-sequencing metagenomic approach are required for robust assessments of associations and causation; (3) because single time point sampling misses intraindividual GM dynamics, future studies with repeated measures within individuals are needed; and (4) much future research will be required to determine the applicability of this expanding knowledge to diabetes diagnosis and treatment, and novel technologies and improved computational tools will be important to achieve this goal.
Collapse
Affiliation(s)
- Mariana Byndloss
- Vanderbilt University Medical Center, Nashville, TN, USA
- Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Suzanne Devkota
- Cedars-Sinai Medical Center, Human Microbiome Research Institute, Los Angeles, CA, USA
| | | | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, University Digestive Healthcare Center, Clarunis, Basel, Switzerland
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Diabeter Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain.
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
6
|
Byndloss M, Devkota S, Duca F, Niess JH, Nieuwdorp M, Orho-Melander M, Sanz Y, Tremaroli V, Zhao L. The Gut Microbiota and Diabetes: Research, Translation, and Clinical Applications-2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum. Diabetes 2024; 73:1391-1410. [PMID: 38912690 PMCID: PMC11333376 DOI: 10.2337/dbi24-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
This article summarizes the state of the science on the role of the gut microbiota (GM) in diabetes from a recent international expert forum organized by Diabetes, Diabetes Care, and Diabetologia, which was held at the European Association for the Study of Diabetes 2023 Annual Meeting in Hamburg, Germany. Forum participants included clinicians and basic scientists who are leading investigators in the field of the intestinal microbiome and metabolism. Their conclusions were as follows: 1) the GM may be involved in the pathophysiology of type 2 diabetes, as microbially produced metabolites associate both positively and negatively with the disease, and mechanistic links of GM functions (e.g., genes for butyrate production) with glucose metabolism have recently emerged through the use of Mendelian randomization in humans; 2) the highly individualized nature of the GM poses a major research obstacle, and large cohorts and a deep-sequencing metagenomic approach are required for robust assessments of associations and causation; 3) because single-time point sampling misses intraindividual GM dynamics, future studies with repeated measures within individuals are needed; and 4) much future research will be required to determine the applicability of this expanding knowledge to diabetes diagnosis and treatment, and novel technologies and improved computational tools will be important to achieve this goal.
Collapse
Affiliation(s)
- Mariana Byndloss
- Vanderbilt University Medical Center, Nashville, TN
- Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Suzanne Devkota
- Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, University Digestive Healthcare Center, Clarunis, Basel, Switzerland
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Diabeter Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|
7
|
Sardão D, Santos-Sousa H, Peleteiro B, Resende F, Costa-Pinho A, Preto J, Lima-da-Costa E, Freitas P. The Impact of Cholecystectomy in Patients with Post-Bariatric Surgery Hypoglycemia. Obes Surg 2024; 34:2570-2579. [PMID: 38842763 PMCID: PMC11217132 DOI: 10.1007/s11695-024-07325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Metabolic surgery is the foremost treatment for obesity and its associated medical conditions. Nonetheless, post-bariatric hypoglycemia (PBH) emerges as a prevalent complication. PBH pathophysiology implicates heightened insulin and glucagon-like peptide 1 (GLP-1) levels, with bile acids (BA) contributing to GLP-1 release. A plausible association exists between cholecystectomy and PBH, which is attributed to alterations in BA metabolism and ensuing hormonal responses. The objective of this retrospective cohort study was to evaluate the impact of cholecystectomy on PBH pharmacological treatment, diagnostic timelines and metabolic parameters. MATERIALS AND METHODS Patients diagnosed with PBH after bariatric surgery were evaluated based on their history of cholecystectomy. Demographic, anthropometric and clinical data were collected. Mixed meal tolerance tests (MMTT) results were compiled to assess metabolic responses. RESULTS Of the 131 patients with PBH included in the study, 29 had prior cholecystectomy. The time to PBH diagnosis was similar across groups. Patients with prior cholecystectomy required higher doses of acarbose (p = 0.046), compared to those without prior cholecystectomy. Additionally, MMTT revealed higher insulin (t = 60 min: p = 0.010 and t = 90 min: p = 0.034) and c-peptide levels (t = 60 min: p = 0.008) and greater glycemic variability in patients with prior cholecystectomy (p = 0.049), highlighting the impact of cholecystectomy on glucose metabolism. CONCLUSION Our study offers novel insights into PBH pharmacotherapy, indicating that PBH patients with a history of cholecystectomy require elevated doses of acarbose for symptom control than PBH patients without such surgical history. Furthermore, our findings underscore the pivotal role of hyperinsulinism in PBH aetiology, emphasizing the significance of the BA-GLP-1-insulin axis.
Collapse
Affiliation(s)
- Daniel Sardão
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.
| | - Hugo Santos-Sousa
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Integrated Responsibility Center for Obesity (CRI-O), São João Local Health Unit (ULS), Porto, Portugal
| | - Bárbara Peleteiro
- Centro de Epidemiologia Hospitalar, Unidade Local de Saúde São João, Porto, Portugal
- Departamento de Ciências da Saúde Pública E Forenses E Educação Médica, Faculdade de Medicina da Universidade Do Porto, Porto, Portugal
- EPIUnit-Instituto de Saúde Pública, Universidade Do Porto, Porto, Portugal
- Laboratório Para a Investigação Integrativa E Translacional Em Saúde Populacional (ITR), Universidade Do Porto, Porto, Portugal
| | - Fernando Resende
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Integrated Responsibility Center for Obesity (CRI-O), São João Local Health Unit (ULS), Porto, Portugal
| | - André Costa-Pinho
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Integrated Responsibility Center for Obesity (CRI-O), São João Local Health Unit (ULS), Porto, Portugal
| | - John Preto
- Integrated Responsibility Center for Obesity (CRI-O), São João Local Health Unit (ULS), Porto, Portugal
| | - Eduardo Lima-da-Costa
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Integrated Responsibility Center for Obesity (CRI-O), São João Local Health Unit (ULS), Porto, Portugal
| | - Paula Freitas
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Integrated Responsibility Center for Obesity (CRI-O), São João Local Health Unit (ULS), Porto, Portugal
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Hazlehurst J, Khoo B, Lobato CB, Ilesanmi I, Abbott S, Chan T, Pillai S, Maslin K, Purkayastha S, McGowan B, Andrews R, Nicholson E, McCullough K, Albon L, Batterham R, Dimitriadis GK, Forbes S, Bewick G, Tan TMM. Society for Endocrinology guidelines for the diagnosis and management of post-bariatric hypoglycaemia. Endocr Connect 2024; 13:EC-23-0285. [PMID: 38451861 PMCID: PMC11046333 DOI: 10.1530/ec-23-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Post bariatric hypoglycaemia (PBH) is typically a post-prandial hypoglycaemia occurring about 2-4 hours after eating in people who have undergone bariatric surgery. PBH develops relatively late after surgery and often after discharge from post-surgical follow-up by bariatric teams, leading to variability in diagnosis and management in non-specialist centres. AIM to improve and standardise clinical practice in the diagnosis and management of PBH. OBJECTIVES (1) to undertake an up-to-date review of the current literature; (2) to formulate practical and evidence-based guidance with regards on the diagnosis and treatment of PBH; (3) to recommend future avenues for research in this condition. METHOD A scoping review was undertaken after an extensive literature search. A consensus on the guidance and confidence in the recommendations was reached by the steering group authors prior to review by key stakeholders. OUTCOME We make pragmatic recommendations for the practical diagnosis and management of PBH including criteria for diagnosis and recognition, as well as recommendations for research areas that should be explored.
Collapse
Affiliation(s)
- Jonathan Hazlehurst
- Department of Diabetes and Endocrinology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Bernard Khoo
- Endocrinology, Division of Medicine, University College London, London, UK
| | - Carolina Brito Lobato
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Copenhagen University Hospital – Amager and Hvidovre, Hvidovre, Denmark
| | - Ibiyemi Ilesanmi
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Sally Abbott
- Department of Dietetics, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Tin Chan
- Faculty of Medicine, Chinese University of Hong Kong, Hong Kong
| | - Sanesh Pillai
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Kate Maslin
- School of Nursing and Midwifery, University of Plymouth, Plymouth, UK
| | - Sanjay Purkayastha
- Brunel University, London, UK
- Imperial College Healthcare NHS Trust, St Mary’s Hospital, London, UK
| | - Barbara McGowan
- Endocrinology, Guys’ and St Thomas’s NHS Foundation Trust, London, UK
| | - Rob Andrews
- University of Exeter Medical School, Exeter, UK
| | | | | | - Lorraine Albon
- University Hospitals Sussex NHS Foundation Trust, Worthing, UK
| | - Rachel Batterham
- Endocrinology, Division of Medicine, University College London, London, UK
| | | | - Shareen Forbes
- BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Gavin Bewick
- School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Tricia M-M Tan
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
9
|
Jalleh RJ, Umapathysivam MM, Plummer MP, Deane A, Jones KL, Horowitz M. Postprandial plasma GLP-1 levels are elevated in individuals with postprandial hypoglycaemia following Roux-en-Y gastric bypass - a systematic review. Rev Endocr Metab Disord 2023; 24:1075-1088. [PMID: 37439960 PMCID: PMC10697890 DOI: 10.1007/s11154-023-09823-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND AND AIMS Bariatric surgery is the most effective treatment in individuals with obesity to achieve remission of type 2 diabetes. Post-bariatric surgery hypoglycaemia occurs frequently, and management remains suboptimal, because of a poor understanding of the underlying pathophysiology. The glucoregulatory hormone responses to nutrients in individuals with and without post-bariatric surgery hypoglycaemia have not been systematically examined. MATERIALS AND METHODS The study protocol was prospectively registered with PROSPERO. PubMed, EMBASE, Web of Science and the Cochrane databases were searched for publications between January 1990 and November 2021 using MeSH terms related to post-bariatric surgery hypoglycaemia. Studies were included if they evaluated individuals with post-bariatric surgery hypoglycaemia and included measurements of plasma glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), insulin, C-peptide and/or glucagon concentrations following an ingested nutrient load. Glycated haemoglobin (HbA1c) was also evaluated. A random-effects meta-analysis was performed, and Hedges' g (standardised mean difference) and 95% confidence intervals were reported for all outcomes where sufficient studies were available. The τ2 estimate and I2 statistic were used as tests for heterogeneity and a funnel plot with the Egger regression-based test was used to evaluate for publication bias. RESULTS From 377 identified publications, 12 were included in the analysis. In all 12 studies, the type of bariatric surgery was Roux-en-Y gastric bypass (RYGB). Comparing individuals with and without post-bariatric surgery hypoglycaemia following an ingested nutrient load, the standardised mean difference in peak GLP-1 was 0.57 (95% CI, 0.32, 0.82), peak GIP 0.05 (-0.26, 0.36), peak insulin 0.84 (0.44, 1.23), peak C-peptide 0.69 (0.28, 1.1) and peak glucagon 0.05 (-0.26, 0.36). HbA1c was less in individuals with hypoglycaemia - 0.40 (-0.67, -0.12). There was no evidence of substantial heterogeneity in any outcome except for peak insulin: τ2 = 0.2, I2 = 54.3. No publication bias was evident. CONCLUSION Following RYGB, postprandial peak plasma GLP-1, insulin and C-peptide concentrations are greater in individuals with post-bariatric surgery hypoglycaemia, while HbA1c is less. These observations support the concept that antagonism of GLP-1 would prove beneficial in the management of individuals with hypoglycaemia following RYGB.PROSPERO Registration Number: CRD42021287515.
Collapse
Affiliation(s)
- Ryan Joseph Jalleh
- Adelaide Medical School, The University of Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, South Australia, Australia
- Diabetes and Endocrine Services, Northern Adelaide Local Health Network, South Australia, Australia
| | - Mahesh Michael Umapathysivam
- Adelaide Medical School, The University of Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, South Australia, Australia
| | - Mark Philip Plummer
- Adelaide Medical School, The University of Adelaide, South Australia, Australia
| | - Adam Deane
- Intensive Care Unit, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Karen Louise Jones
- Adelaide Medical School, The University of Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, South Australia, Australia
| | - Michael Horowitz
- Adelaide Medical School, The University of Adelaide, South Australia, Australia.
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, South Australia, Australia.
| |
Collapse
|
10
|
Hou Y, Zhai X, Wang X, Wu Y, Wang H, Qin Y, Han J, Meng Y. Research progress on the relationship between bile acid metabolism and type 2 diabetes mellitus. Diabetol Metab Syndr 2023; 15:235. [PMID: 37978556 PMCID: PMC10656899 DOI: 10.1186/s13098-023-01207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Bile acids, which are steroid molecules originating from cholesterol and synthesized in the liver, play a pivotal role in regulating glucose metabolism and maintaining energy balance. Upon release into the intestine alongside bile, they activate various nuclear and membrane receptors, influencing crucial processes. These bile acids have emerged as significant contributors to managing type 2 diabetes mellitus, a complex clinical syndrome primarily driven by insulin resistance. Bile acids substantially lower blood glucose levels through multiple pathways: BA-FXR-SHP, BA-FXR-FGFR15/19, BA-TGR5-GLP-1, and BA-TGR5-cAMP. They also impact blood glucose regulation by influencing intestinal flora, endoplasmic reticulum stress, and bitter taste receptors. Collectively, these regulatory mechanisms enhance insulin sensitivity, stimulate insulin secretion, and boost energy expenditure. This review aims to comprehensively explore the interplay between bile acid metabolism and T2DM, focusing on primary regulatory pathways. By examining the latest advancements in our understanding of these interactions, we aim to illuminate potential therapeutic strategies and identify areas for future research. Additionally, this review critically assesses current research limitations to contribute to the effective management of T2DM.
Collapse
Affiliation(s)
- Yisen Hou
- Department of Oncology Surgery, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shanxi, People's Republic of China
| | - Xinzhe Zhai
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Xiaotao Wang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Yi Wu
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Heyue Wang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Yaxin Qin
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Jianli Han
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China.
| | - Yong Meng
- Department of Oncology Surgery, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shanxi, People's Republic of China.
| |
Collapse
|
11
|
Alsayed Hasan M, Schwartz S, McKenna V, Ing R. An Imbalance of Pathophysiologic Factors in Late Postprandial Hypoglycemia Post Bariatric Surgery: A Narrative Review. Obes Surg 2023; 33:2927-2937. [PMID: 37530920 DOI: 10.1007/s11695-023-06758-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
With a rise in obesity and more patients opting for bariatric surgery, it becomes crucial to understand associated complications like postprandial hypoglycemia (PPH). After bariatric surgery, significant changes are seen in insulin sensitivity, beta cell function, glucagon-like peptide 1 (GLP-1) levels, the gut microbiome, and bile acid metabolism. And in a small subset of patients, exaggerated imbalances in these functional and metabolic processes lead to insulin-glucose mismatch and hypoglycemia. The main treatment for PPH involves dietary modifications. For those that do not respond, medications or surgical interventions are considered to reverse some of the imbalances. We present a few case reports of patients that safely tolerated GLP-1 agonists. However, larger randomized control trials are needed to further characterize PPH and understand its treatment.
Collapse
Affiliation(s)
- Marah Alsayed Hasan
- Department of Internal Medicine, Main Line Health System/Lankenau Medical Center, 100 E Lancaster Ave, Wynnewood, PA, 19096, USA.
| | - Stanley Schwartz
- Affiliate, Main Line Health System, Emeritus, University of Pennsylvania, 100 E Lancaster Ave, Wynnewood, PA, 19096, USA
| | - Victoria McKenna
- Main Line Health Bariatric Surgery - Bryn Mawr, 830 Old Lancaster Road Suite 300, Bryn Mawr, PA, 19010, USA
| | - Richard Ing
- Bariatric Center of Bryn Mawr Hospital, Main Line Health System, Bryn Mawr Medical Building North, 830 Old Lancaster Road, Bryn Mawr, PA, 19010, USA
| |
Collapse
|
12
|
Wang M, Huang Y, Xin M, Li T, Wang X, Fang Y, Liang S, Cai T, Xu X, Dong L, Wang C, Xu Z, Song X, Li J, Zheng Y, Sun W, Li L. The impact of microbially modified metabolites associated with obesity and bariatric surgery on antitumor immunity. Front Immunol 2023; 14:1156471. [PMID: 37266441 PMCID: PMC10230250 DOI: 10.3389/fimmu.2023.1156471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Obesity is strongly associated with the occurrence and development of many types of cancers. Patients with obesity and cancer present with features of a disordered gut microbiota and metabolism, which may inhibit the physiological immune response to tumors and possibly damage immune cells in the tumor microenvironment. In recent years, bariatric surgery has become increasingly common and is recognized as an effective strategy for long-term weight loss; furthermore, bariatric surgery can induce favorable changes in the gut microbiota. Some studies have found that microbial metabolites, such as short-chain fatty acids (SCFAs), inosine bile acids and spermidine, play an important role in anticancer immunity. In this review, we describe the changes in microbial metabolites initiated by bariatric surgery and discuss the effects of these metabolites on anticancer immunity. This review attempts to clarify the relationship between alterations in microbial metabolites due to bariatric surgery and the effectiveness of cancer treatment. Furthermore, this review seeks to provide strategies for the development of microbial metabolites mimicking the benefits of bariatric surgery with the aim of improving therapeutic outcomes in cancer patients who have not received bariatric surgery.
Collapse
Affiliation(s)
- Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhong Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueke Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yini Fang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Palani G, Stortz E, Moheet A. Clinical Presentation and Diagnostic Approach to Hypoglycemia in Adults Without Diabetes Mellitus. Endocr Pract 2023; 29:286-294. [PMID: 36464132 DOI: 10.1016/j.eprac.2022.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE To review the clinical presentation, causes, and diagnostic approach to spontaneous hypoglycemia in adults without diabetes mellitus. METHODS A literature review was performed using the PubMed and Google Scholar databases. RESULTS Hypoglycemia is uncommon in people who are not on glucose-lowering medications. Under normal physiologic conditions, multiple neural and hormonal counterregulatory mechanisms prevent the development of abnormally low levels of plasma glucose. If spontaneous hypoglycemia is suspected, the Whipple triad should be used to confirm hypoglycemia before pursuing further diagnostic workup. The Whipple criteria include the following: (1) low levels of plasma glucose, (2) signs or symptoms that would be expected with low levels of plasma glucose, and (3) improvement in those signs or symptoms when the level of plasma glucose increases. Spontaneous hypoglycemia can be caused by conditions that cause endogenous hyperinsulinism, including insulinoma, postbariatric hypoglycemia, and noninsulinoma pancreatogenous hypoglycemia. Spontaneous hypoglycemia can also be seen with critical illness, hepatic or renal dysfunction, hormonal deficiency, non-diabetes-related medications, and non-islet cell tumors. The initial diagnostic approach should begin by obtaining a detailed history of the nature and timing of the patient's symptoms, medications, underlying comorbid conditions, and any acute illness. A laboratory evaluation should be conducted at the time of the spontaneous symptomatic episode. Supervised tests such as a 72-hour fast or mixed-meal test may be needed to recreate the situation under which the patient is likely to experience symptoms. CONCLUSION We provide an overview of the physiology of counterregulatory response to hypoglycemia, its causes, and diagnostic approaches to spontaneous hypoglycemia in adults.
Collapse
Affiliation(s)
- Gurunanthan Palani
- Division of Endocrinology and Diabetes, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Ethan Stortz
- Division of Endocrinology and Diabetes, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Amir Moheet
- Division of Endocrinology and Diabetes, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
14
|
Sandoval DA, Patti ME. Glucose metabolism after bariatric surgery: implications for T2DM remission and hypoglycaemia. Nat Rev Endocrinol 2023; 19:164-176. [PMID: 36289368 PMCID: PMC10805109 DOI: 10.1038/s41574-022-00757-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
Although promising therapeutics are in the pipeline, bariatric surgery (also known as metabolic surgery) remains our most effective strategy for the treatment of obesity and type 2 diabetes mellitus (T2DM). Of the many available options, Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) are currently the most widely used procedures. RYGB and VSG have very different anatomical restructuring but both surgeries are effective, to varying degrees, at inducing weight loss and T2DM remission. Both weight loss-dependent and weight loss-independent alterations in multiple tissues (such as the intestine, liver, pancreas, adipose tissue and skeletal muscle) yield net improvements in insulin resistance, insulin secretion and insulin-independent glucose metabolism. In a subset of patients, post-bariatric hypoglycaemia can develop months to years after surgery, potentially reflecting the extreme effects of potent glucose reduction after surgery. This Review addresses the effects of bariatric surgery on glucose regulation and the potential mechanisms responsible for both the resolution of T2DM and the induction of hypoglycaemia.
Collapse
Affiliation(s)
- Darleen A Sandoval
- Department of Paediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | | |
Collapse
|
15
|
Vilarrasa N, Bretón I, Ballesteros-Pomar M, Lecube A, Goday A, Pellitero S, Sánchez R, Zugasti A, Ciudin A, de Hollanda A, Rubio MA. Recommendations for the diagnosis and treatment of hypoglycaemia after bariatric surgery. ENDOCRINOL DIAB NUTR 2022; 69:723-731. [PMID: 36424342 DOI: 10.1016/j.endien.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/12/2021] [Indexed: 06/16/2023]
Abstract
Postprandial hyperinsulinaemic hypoglycaemia is a common complication of bariatric surgery. Although in general its evolution is mild and self-limited, it can lead to neuroglycopaenia and compromise the patient's safety and quality of life. The aim of this document is to offer some recommendations to facilitate the clinical care of these complex patients, reviewing the aetiopathogenesis, its diagnosis and treatment that, sequentially, will include dietary and pharmacological measures and surgery in refractory cases. In the absence of high-quality studies, the diagnostic and therapeutic approach proposed is based on the consensus of experts of the Grupo de Obesidad de la Sociedad Española de Endocrinología y Nutrición [Obesity Group of the Spanish Society of Endocrinology and Nutrition], GOSEEN. Those undergoing bariatric surgery should be informed of the possibility of developing this complication.
Collapse
Affiliation(s)
- Nuria Vilarrasa
- Servicio de Endocrinología y Nutrición, Hospital Universitario de Bellvitge-IDIBELL, ĹHospitalet de Llobregat, Barcelona, Spain. CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain).
| | - Irene Bretón
- Servicio de Endocrinología y Nutrición, Hospital Universitario Gregorio Marañón, IiSGM, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - María Ballesteros-Pomar
- Servicio de Endocrinología y Nutrición, Complejo Asistencial Universitario de León, León, Spain
| | - Albert Lecube
- Servicio de Endocrinología y Nutrición, Hospital Universitari Arnau de Vilanova, Lleida, Spain. Obesity, Diabetes and Metabolism Research Group (ODIM), IRBLLeida, Universitat de Lleida, CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain)
| | - Albert Goday
- Servicio de Endocrinología y Nutrició, Hospital del Mar, Departament de Medicina, Universitat Autònoma de Barcelona, Spain. CIBERobn (Centros de Investigación Biomédica en Red-CIBER, Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain)
| | - Silvia Pellitero
- Servicio de Endocrinología y Nutrición, Hospital Universitari Germans Trias i Pujol, IMPPC, Institut d Investigació Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain
| | - Raquel Sánchez
- Servicio de Cirugía General, Complejo Hospitalario Universitario de Vigo, Instituto de Investigación Galicia Sur, Vigo, Pontevedra, Spain
| | - Ana Zugasti
- Sección Nutrición y Dietética, Complejo Hospitalario de Navarra, Pamplona/Iruña, Spain
| | - Andrea Ciudin
- Servicio de Endocrinología y Nutrición, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain) Endocrinology and Nutrition Department, Hospital Universitari Vall Hebron, Barcelona, Spain
| | - Ana de Hollanda
- Servicio de Endocrinología y Nutrición, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain. CIBERobn (Centros de Investigación Biomédica en Red-CIBER, Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid)
| | - Miguel Angel Rubio
- Servicio de Endocrinología y Nutrición, Hospital Clínico San Carlos, IDISSC, Madrid, Spain
| |
Collapse
|
16
|
Ferreira A, Emara AFA, Herzig D, Melmer A, Vogt AP, Nakas CT, Facchinetti A, Dalla Man C, Bally L. Study protocol for a randomised, double-blind, placebo-controlled crossover trial assessing the impact of the SGLT2 inhibitor empagliflozin on postprandial hypoglycaemia after gastric bypass. BMJ Open 2022; 12:e060668. [PMID: 36123073 PMCID: PMC9486284 DOI: 10.1136/bmjopen-2021-060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Postprandial hypoglycaemia after gastric bypass surgery (also known as postbariatric hypoglycaemia or PBH) is an increasingly encountered clinical problem. PBH is characterised by meal-induced rapid spikes and consequent falls in glycaemia, resulting in both hypoglycaemia burden and high glycaemic variability. Despite its frequency, there is currently no approved pharmacotherapy. The purpose of this investigation is to evaluate efficacy and safety of empagliflozin 25 mg, a sodium-glucose cotransporter 2-inhibitor, to reduce glucose excursions and hypoglycaemia burden in patients with PBH after gastric bypass surgery. METHODS AND ANALYSIS In a prospective, single-centre, randomised, double-blind, placebo-controlled, crossover trial, we plan to enrol 22 adults (≥18 years) with PBH after Roux-en-Y gastric bypass surgery (plasma or sensor glucose <3.0 mmol/L). Eligible patients will be randomised to receive empagliflozin 25 mg and placebo once daily, each for 20 days, in random order. Study periods will be separated by a 2-6 weeks wash-out period. The primary efficacy outcome will be the amplitude of plasma glucose excursion (peak to nadir) during a mixed meal tolerance test. Results will be presented as paired-differences±SD plus 95% CIs with p values and hypothesis testing for primary and secondary outcomes according to intention-to-treat. Secondary outcomes include continuous glucose monitoring-based outcomes, further metabolic measures and safety. ETHICS AND DISSEMINATION The DEEP-EMPA trial (original protocol title: Randomized, double-blind, placebo-controlled crossover trialassessing the impact of the SGLT2 inhibitor empagliflozin onpostprandial hypoglycaemia after gastric bypass) was approved by the Bern Ethics Committee (ID 2021-01187) and Swissmedic (Ref. Number: 102663190) in October and November 2021, respectively. First results are expected in the first quarter of 2023 and will be disseminated via peer-reviewed publications and presented at national and international conferences. The acronym DEEP was derived from an overarching project title (DEciphering the Enigma of Postprandial Hyperinsulinaemic Hypoglycaemia after Bariatric Surgery), the term EMPA stands for the drug empagliflozin. TRIAL REGISTRATION NUMBER NCT05057819.
Collapse
Affiliation(s)
- Antonio Ferreira
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, University of Bern, Bern, Switzerland
| | | | - David Herzig
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, University of Bern, Bern, Switzerland
| | - Andreas Melmer
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, University of Bern, Bern, Switzerland
| | - Andreas P Vogt
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christos T Nakas
- Laboratory of Biometry, School of Agriculture, University of Thessaly, Volos, Greece
| | - Andrea Facchinetti
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Lia Bally
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Lath D, Cherian KE, Paul TV, Kapoor N. Beyond diabetes remission a step further: Post bariatric surgery hypoglycemia. World J Diabetes 2022; 13:278-281. [PMID: 35432756 PMCID: PMC8984570 DOI: 10.4239/wjd.v13.i3.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/21/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Postbariatric hypoglycemia is a rare but increasingly recognized complication of bariatric surgery, with significant associated morbidity, and many patients often require multimodal treatment. A mixed meal challenge test is often helpful to diagnose this condition. This manuscript highlights the underlying mechanisms that lead to this condition and the novel emerging therapeutic targets that target these mechanisms.
Collapse
Affiliation(s)
- Devraj Lath
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Kripa Elizabeth Cherian
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Thomas Vizhalil Paul
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Nitin Kapoor
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
- Non Communicable Disease Unit, Nossal Institute of Global Health, Melbourne 3053, Victoria, Australia
- The Baker Heart and Diabetes Institute, Melbourne 3004, Victoria, Australia
| |
Collapse
|
18
|
Recomendaciones para el diagnóstico y tratamiento de las hipoglucemias tras cirugía bariátrica. ENDOCRINOL DIAB NUTR 2021. [DOI: 10.1016/j.endinu.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Fischer LE, Wolfe BM, Fino N, Elman MR, Flum DR, Mitchell JE, Pomp A, Pories WJ, Purnell JQ, Patti ME. Postbariatric hypoglycemia: symptom patterns and associated risk factors in the Longitudinal Assessment of Bariatric Surgery study. Surg Obes Relat Dis 2021; 17:1787-1798. [PMID: 34294589 PMCID: PMC9944569 DOI: 10.1016/j.soard.2021.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Postbariatric hypoglycemia (PBH) can be a devastating complication for which current therapies are often incompletely effective. More information is needed regarding frequency, incidence, and risk factors for PBH. OBJECTIVES To examine hypoglycemia symptoms following Roux-en-Y gastric bypass (RYGB) and laparoscopic adjustable gastric banding (LAGB) and baseline and in-study risk factors. SETTING Multicenter, at 10 US hospitals in 6 geographically diverse clinical centers. METHODS A prospective, longitudinal cohort study of adults undergoing RYGB or LAGB as part of clinical care between 2006 and 2009 were recruited and followed until January 31, 2015, with baseline and annual postoperative research assessments. We analyzed baseline prevalence and post-operative incidence and frequency of self-reported hypoglycemia symptoms as well as potential preoperative risk factors. RESULTS In all groups, postoperative prevalence of hypoglycemia symptoms was 38.5%. Symptom prevalence increased postoperatively from 2.8%-36.4% after RYGB in patients without preoperative diabetes (T2D), with similar patterns in prediabetes (4.9%-29.1%). Individuals with T2D had higher baseline hypoglycemia symptoms (28.9%), increasing after RYGB (57.9%). Hypoglycemia symptoms were lower after LAGB, with 39.1% reported hypoglycemia symptoms at only 1 postoperative visit with few (4.0%) having persistent symptoms at 6 or more annual visits. Timing of symptoms was not restricted to the postprandial state. Symptoms of severe hypoglycemia were reported in 2.6-3.6% after RYGB. The dominant risk factor for postoperative symptoms was preoperative symptoms; additionally, baseline selective serotonin (SSRI) and serotonin-norepinephrine (SNRI) reuptake inhibitor use was also associated with increased risk in multivariable analysis. Weight loss and regain were not related to hypoglycemia symptom reporting. CONCLUSION Hypoglycemia symptoms increase over time after RYGB, particularly in patients without diabetes. In a small percentage, symptoms can be persistent or severe and require hospitalization. Preoperative hypoglycemia symptoms and SSRI/SNRI use in RYGB patients without diabetes is associated with increased risk of symptoms.
Collapse
Affiliation(s)
- Laura E. Fischer
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma,Correspondence: Laura E. Fischer, M.D., M.S., F.A.C.S., Director, OU Metabolic and Bariatric Surgery Program, Assistant Professor, Department of Surgery, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd, Ste 9000, Oklahoma City, OK 73104. (L.E. Fischer)
| | - Bruce M. Wolfe
- Departments of Medicine, Surgery, and the School of Public Health at Oregon Health & Science University, Portland, Oregon
| | - Nora Fino
- Departments of Medicine, Surgery, and the School of Public Health at Oregon Health & Science University, Portland, Oregon
| | - Miriam R. Elman
- Oregon Health and Science – Portland State University School of Public Health, Portland, Oregon
| | - David R. Flum
- Department of Surgery, University of Washington, Seattle, Washington
| | - James E. Mitchell
- Department of Psychiatry and Behavioral Science, University of North Dakota School of Medicine, Grand Forks, North Dakota
| | - Alfons Pomp
- Department of Surgery, University of Montreal, Montreal, Quebec, Canada
| | - Walter J. Pories
- Metabolic Surgery Research Group, East Carolina University, Greenville, North Carolina
| | - Jonathan Q. Purnell
- Departments of Medicine, Surgery, and the School of Public Health at Oregon Health & Science University, Portland, Oregon
| | - Mary-Elizabeth Patti
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
20
|
Pavlou P, Koutroukas V, Lissett C, Smith JC. Colesevelam-induced hypoglycaemia in a patient with type 1 diabetes mellitus. Clin Case Rep 2021; 9:e04830. [PMID: 34691455 PMCID: PMC8517595 DOI: 10.1002/ccr3.4830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/28/2022] Open
Abstract
Colesevelam possesses antidiabetic properties, which could potentiate sulphonylurea or insulin-induced hypoglycemia; clinically significant hypoglycemia, as a side effect to bile acid sequestrants, may be under-recognized in clinical practice.
Collapse
Affiliation(s)
- Panagiotis Pavlou
- Diabetes and EndocrinologySouth Devon Healthcare NHS Foundation TrustHengrave HouseTorbay HospitalTorquayUK
| | - Vaios Koutroukas
- Diabetes and EndocrinologySouth Devon Healthcare NHS Foundation TrustHengrave HouseTorbay HospitalTorquayUK
| | - Catherine Lissett
- Diabetes and EndocrinologySouth Devon Healthcare NHS Foundation TrustHengrave HouseTorbay HospitalTorquayUK
| | - Jamie C. Smith
- Diabetes and EndocrinologySouth Devon Healthcare NHS Foundation TrustHengrave HouseTorbay HospitalTorquayUK
| |
Collapse
|
21
|
|
22
|
Lee D, Dreyfuss JM, Sheehan A, Puleio A, Mulla CM, Patti ME. Glycemic Patterns Are Distinct in Post-Bariatric Hypoglycemia After Gastric Bypass (PBH-RYGB). J Clin Endocrinol Metab 2021; 106:2291-2303. [PMID: 33974064 PMCID: PMC8277212 DOI: 10.1210/clinem/dgab323] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 12/12/2022]
Abstract
CONTEXT Severe hypoglycemia with neuroglycopenia, termed post-bariatric hypoglycemia (PBH). typically occurs postprandially, but it is also reported after activity or mid-nocturnally. OBJECTIVE To quantify glycemia, glycemic variability, and magnitude/duration of low sensor glucose (SG) values in patients with PBH after Roux-en-Y gastric bypass (PBH-RYGB). METHODS This retrospective analysis of data from an academic medical center included individuals with PBH-RYGB (n = 40), reactive hypoglycemia without gastrointestinal surgery (Non-Surg Hypo, n = 20), prediabetes (Pre-DM, n = 14), newly diagnosed T2D (n = 5), and healthy controls (HC, n = 38). Masked continuous glucose monitoring (Dexcom G4) was used to assess patterns over 24 hours, daytime (6 am-midnight) and nighttime (midnight-6 am). Prespecified measures included mean and median SG, variability, and percent time at thresholds of sensor glucose. RESULTS Mean and median SG were similar for PBH-RYGB and HC (mean: 99.8 ± 18.6 vs 96.9 ± 10.2 mg/dL; median: 93.0 ± 14.8 vs 94.5 ± 7.4 mg/dL). PBH-RYGB had a higher coefficient of variation (27.3 ± 6.8 vs 17.9 ± 2.4%, P < 0.0001) and range (154.5 ± 50.4 vs 112.0 ± 26.7 mg/dL, P < 0.0001). Nadir was lowest in PBH-RYGB (42.5 ± 3.7 vs HC 49.0 ± 11.9 mg/dL, P = 0.0046), with >2-fold greater time with SG < 70 mg/dL vs HC (7.7 ± 8.4 vs 3.2 ± 4.1%, P = 0.0013); these differences were greater at night (12.6 ± 16.9 vs 1.0 ± 1.5%, P < 0.0001). Non-Surg Hypo also had 4-fold greater time with SG < 70 at night vs HC (SG < 70: 4.0 ± 5.9% vs 1.0 ± 1.5%), but glycemic variability was not increased. CONCLUSION Patients with PBH-RYGB experience higher glycemic variability and frequency of SG < 70 compared to HC, especially at night. These data suggest that additional pathophysiologic mechanisms beyond prandial changes contribute to PBH.
Collapse
Affiliation(s)
- Daniel Lee
- Research Division, Joslin Diabetes Center, Boston 02215, MA, USA
- Morehouse School of Medicine, Atlanta 30310, GA, USA
| | - Jonathan M Dreyfuss
- Research Division, Joslin Diabetes Center, Boston 02215, MA, USA
- Harvard Medical School, Boston 02115, MA, USA
| | - Amanda Sheehan
- Research Division, Joslin Diabetes Center, Boston 02215, MA, USA
| | - Alexa Puleio
- Research Division, Joslin Diabetes Center, Boston 02215, MA, USA
| | - Christopher M Mulla
- Research Division, Joslin Diabetes Center, Boston 02215, MA, USA
- Harvard Medical School, Boston 02115, MA, USA
- Current Affiliation for C. M. Mulla: Landstuhl Regional Medical Center, Germany
| | - Mary Elizabeth Patti
- Research Division, Joslin Diabetes Center, Boston 02215, MA, USA
- Harvard Medical School, Boston 02115, MA, USA
- Correspondence: Mary Elizabeth Patti MD, Room 620, Joslin Diabetes Center, 1 Joslin Place, Boston MA 02215, USA.
| |
Collapse
|
23
|
Li R, Andreu-Sánchez S, Kuipers F, Fu J. Gut microbiome and bile acids in obesity-related diseases. Best Pract Res Clin Endocrinol Metab 2021; 35:101493. [PMID: 33707081 DOI: 10.1016/j.beem.2021.101493] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Dysbiosis has been implemented in the etiologies of obesity-related chronic diseases such as type 2 diabetes, NAFLD and cardiovascular diseases. Bile acids, a class of amphipathic steroids produced in the liver and extensively modified by the microbiome, are increasingly recognized as actors in onset and progression of these diseases. Indeed, human obesity is associated with altered bile acid metabolism. Bile acids facilitate intestinal fat absorption but also exert hormone-like functions through activation of nuclear and membrane-bound receptors and thereby modulate glucose, lipid and energy metabolism, intestinal integrity and immunity. Bile acid-signaling pathways have thus been identified as potential pharmacological targets for obesity-related diseases. Interfering with microbiome composition may also be considered, as liver- and microbiome-derived bile acid species have different signaling functions. This review summarizes recent developments in this rapidly expanding field of research and addresses potential clinical prospects of interference with bile acid signaling pathways in human diseases.
Collapse
Affiliation(s)
- Rumei Li
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Sergio Andreu-Sánchez
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Jingyuan Fu
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
24
|
Jonsson I, Bojsen-Møller KN, Kristiansen VB, Veedfald S, Wewer Albrechtsen NJ, Clausen TR, Kuhre RE, Rehfeld JF, Holst JJ, Madsbad S, Svane MS. Effects of Manipulating Circulating Bile Acid Concentrations on Postprandial GLP-1 Secretion and Glucose Metabolism After Roux-en-Y Gastric Bypass. Front Endocrinol (Lausanne) 2021; 12:681116. [PMID: 34084153 PMCID: PMC8166580 DOI: 10.3389/fendo.2021.681116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/16/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Altered bile acid (BA) turnover has been suggested to be involved in the improved glucose regulation after Roux-en-Y gastric bypass (RYGB), possibly via stimulation of GLP-1 secretion. We investigated the role of exogenous as well as endogenous BAs for GLP-1 secretion after RYGB by administering chenodeoxycholic acid (CDCA) and the BA sequestrant colesevelam (COL) both in the presence and the absence of a meal stimulus. METHODS Two single-blinded randomized cross-over studies were performed. In study 1, eight RYGB operated participants ingested 200 ml water with 1) CDCA 1.25 g or 2) CDCA 1.25 g + colesevelam 3.75 g on separate days. In study 2, twelve RYGB participants ingested on separate days a mixed meal with addition of 1) CDCA 1.25 g, 2) COL 3.75 g or 3) COL 3.75 g × 2, or 4) no additions. RESULTS In study 1, oral intake of CDCA increased circulating BAs, GLP-1, C-peptide, glucagon, and neurotensin. Addition of colesevelam reduced all responses. In study 2, addition of CDCA enhanced meal-induced increases in plasma GLP-1, glucagon and FGF-19 and lowered plasma glucose and C-peptide concentrations, while adding colesevelam lowered circulating BAs but did not affect meal-induced changes in plasma glucose or measured gastrointestinal hormones. CONCLUSION In RYGB-operated persons, exogenous CDCA enhanced meal-stimulated GLP-1 and glucagon secretion but not insulin secretion, while the BA sequestrant colesevelam decreased CDCA-stimulated GLP-1 secretion but did not affect meal-stimulated GLP-1, C-peptide or glucagon secretion, or glucose tolerance. These findings suggest a limited role for endogenous bile acids in the acute regulation of postprandial gut hormone secretion or glucose metabolism after RYGB.
Collapse
Affiliation(s)
- Isabella Jonsson
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
| | - Kirstine N. Bojsen-Møller
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Simon Veedfald
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J. Wewer Albrechtsen
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Rune E. Kuhre
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Research and Development, Novo Nordisk A/S, Måløv, Denmark
| | - Jens F. Rehfeld
- Department of Clinical Biochemistry Rigshospitalet, Copenhagen, Denmark
| | - Jens J. Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Sten Madsbad, ; Maria S. Svane,
| | - Maria S. Svane
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Surgical Gastroenterology, Hvidovre Hospital, Hvidovre, Denmark
- *Correspondence: Sten Madsbad, ; Maria S. Svane,
| |
Collapse
|