1
|
Streutker EM, Devamoglu U, Vonk MC, Verdurmen WPR, Le Gac S. Fibrosis-on-Chip: A Guide to Recapitulate the Essential Features of Fibrotic Disease. Adv Healthc Mater 2024; 13:e2303991. [PMID: 38536053 DOI: 10.1002/adhm.202303991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/15/2024] [Indexed: 05/05/2024]
Abstract
Fibrosis, which is primarily marked by excessive extracellular matrix (ECM) deposition, is a pathophysiological process associated with many disorders, which ultimately leads to organ dysfunction and poor patient outcomes. Despite the high prevalence of fibrosis, currently there exist few therapeutic options, and importantly, there is a paucity of in vitro models to accurately study fibrosis. This review discusses the multifaceted nature of fibrosis from the viewpoint of developing organ-on-chip (OoC) disease models, focusing on five key features: the ECM component, inflammation, mechanical cues, hypoxia, and vascularization. The potential of OoC technology is explored for better modeling these features in the context of studying fibrotic diseases and the interplay between various key features is emphasized. This paper reviews how organ-specific fibrotic diseases are modeled in OoC platforms, which elements are included in these existing models, and the avenues for novel research directions are highlighted. Finally, this review concludes with a perspective on how to address the current gap with respect to the inclusion of multiple features to yield more sophisticated and relevant models of fibrotic diseases in an OoC format.
Collapse
Affiliation(s)
- Emma M Streutker
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Utku Devamoglu
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnoloygy and TechMed Centre, Organ-on-Chip Centre, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| | - Madelon C Vonk
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Wouter P R Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnoloygy and TechMed Centre, Organ-on-Chip Centre, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| |
Collapse
|
2
|
Zimmermann R, Roeder F, Ruppert C, Smith BJ, Knudsen L. Low-volume ventilation of preinjured lungs degrades lung function via stress concentration and progressive alveolar collapse. Am J Physiol Lung Cell Mol Physiol 2024; 327:L19-L39. [PMID: 38712429 DOI: 10.1152/ajplung.00323.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
Mechanical ventilation can cause ventilation-induced lung injury (VILI). The concept of stress concentrations suggests that surfactant dysfunction-induced microatelectases might impose injurious stresses on adjacent, open alveoli and function as germinal centers for injury propagation. The aim of the present study was to quantify the histopathological pattern of VILI progression and to test the hypothesis that injury progresses at the interface between microatelectases and ventilated lung parenchyma during low-positive end-expiratory pressure (PEEP) ventilation. Bleomycin was used to induce lung injury with microatelectases in rats. Lungs were then mechanically ventilated for up to 6 h at PEEP = 1 cmH2O and compared with bleomycin-treated group ventilated protectively with PEEP = 5 cmH2O to minimize microatelectases. Lung mechanics were measured during ventilation. Afterward, lungs were fixed at end-inspiration or end-expiration for design-based stereology. Before VILI, bleomycin challenge reduced the number of open alveoli [N(alvair,par)] by 29%. No differences between end-inspiration and end-expiration were observed. Collapsed alveoli clustered in areas with a radius of up to 56 µm. After PEEP = 5 cmH2O ventilation for 6 h, N(alvair,par) remained stable while PEEP = 1 cmH2O ventilation led to an additional loss of aerated alveoli by 26%, mainly due to collapse, with a small fraction partly edema filled. Alveolar loss strongly correlated to worsening of tissue elastance, quasistatic compliance, and inspiratory capacity. The radius of areas of collapsed alveoli increased to 94 µm, suggesting growth of the microatelectases. These data provide evidence that alveoli become unstable in neighborhood of microatelectases, which most likely occurs due to stress concentration-induced local vascular leak and surfactant dysfunction.NEW & NOTEWORTHY Low-volume mechanical ventilation in the presence of high surface tension-induced microatelectases leads to the degradation of lung mechanical function via the progressive loss of alveoli. Microatelectases grow at the interfaces of collapsed and open alveoli. Here, stress concentrations might cause injury and alveolar instability. Accumulation of small amounts of alveolar edema can be found in a fraction of partly collapsed alveoli but, in this model, alveolar flooding is not a major driver for degradation of lung mechanics.
Collapse
Affiliation(s)
- Richard Zimmermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Franziska Roeder
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Bradford J Smith
- Department of Bioengineering, College of Engineering, Design & Computing, University of Colorado Denver | Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Shashikadze B, Flenkenthaler F, Kemter E, Franzmeier S, Stöckl JB, Haid M, Riols F, Rothe M, Pichl L, Renner S, Blutke A, Wolf E, Fröhlich T. Multi-omics analysis of diabetic pig lungs reveals molecular derangements underlying pulmonary complications of diabetes mellitus. Dis Model Mech 2024; 17:dmm050650. [PMID: 38900131 DOI: 10.1242/dmm.050650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
Growing evidence shows that the lung is an organ prone to injury by diabetes mellitus. However, the molecular mechanisms of these pulmonary complications have not yet been characterized comprehensively. To systematically study the effects of insulin deficiency and hyperglycaemia on the lung, we combined proteomics and lipidomics with quantitative histomorphological analyses to compare lung tissue samples from a clinically relevant pig model for mutant INS gene-induced diabetes of youth (MIDY) with samples from wild-type littermate controls. Among others, the level of pulmonary surfactant-associated protein A (SFTPA1), a biomarker of lung injury, was moderately elevated. Furthermore, key proteins related to humoral immune response and extracellular matrix organization were significantly altered in abundance. Importantly, a lipoxygenase pathway was dysregulated as indicated by 2.5-fold reduction of polyunsaturated fatty acid lipoxygenase ALOX15 levels, associated with corresponding changes in the levels of lipids influenced by this enzyme. Our multi-omics study points to an involvement of reduced ALOX15 levels and an associated lack of eicosanoid switching as mechanisms contributing to a proinflammatory milieu in the lungs of subjects with diabetes mellitus.
Collapse
Affiliation(s)
- Bachuki Shashikadze
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elisabeth Kemter
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Sophie Franzmeier
- Institute for Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, 80539, Germany
| | - Jan B Stöckl
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Mark Haid
- Metabolomics and Proteomics Core (MPC), Helmholtz Munich, 85764 Neuherberg, Germany
| | - Fabien Riols
- Metabolomics and Proteomics Core (MPC), Helmholtz Munich, 85764 Neuherberg, Germany
| | | | - Lisa Pichl
- Institute for Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, 80539, Germany
| | - Simone Renner
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Andreas Blutke
- Institute for Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, 80539, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
4
|
Mousa AM, Nooman MU, Abbas SS, Gebril SM, Abdelraof M, Al-Kashef AS. Protective effects of microbial biosurfactants produced by Bacillus halotolerans and Candida parapsilosis on bleomycin-induced pulmonary fibrosis in mice: Impact of antioxidant, anti-inflammatory and anti-fibrotic properties via TGF-β1/Smad-3 pathway and miRNA-326. Toxicol Appl Pharmacol 2024; 486:116939. [PMID: 38643951 DOI: 10.1016/j.taap.2024.116939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible disease which considered the most fatal pulmonary fibrosis. Pulmonary toxicity including IPF is the most severe adverse effect of bleomycin, the chemotherapeutic agent. Based on the fact that, exogenous surfactants could induce alveolar stabilization in many lung diseases, the aim of this study was to explore the effects of low cost biosurfactants, surfactin (SUR) and sophorolipids (SLs), against bleomycin-induced pulmonary fibrosis in mice due to their antioxidant, and anti-inflammatory properties. Surfactin and sophorolipids were produced by microbial conversion of frying oil and potato peel wastes using Bacillus halotolerans and Candida parapsilosis respectively. These biosurfactants were identified by FTIR, 1H NMR, and LC-MS/MS spectra. C57BL/6 mice were administered the produced biosurfactants daily at oral dose of 200 mg kg-1 one day after the first bleomycin dose (35 U/kg). We evaluated four study groups: Control, Bleomycin, Bleomycin+SUR, Bleomycin+SLs. After 30 days, lungs from each mouse were sampled for oxidative stress, ELISA, Western blot, histopathological, immunohistochemical analyses. Our results showed that the produced SUR and SLs reduced pulmonary oxidative stress and inflammatory response in the lungs of bleomycin induced mice as they suppressed SOD, CAT, and GST activities also reduced NF-κβ, TNF-α, and CD68 levels. Furthermore, biosurfactants suppressed the expression of TGF-β1, Smad-3, and p-JNK fibrotic signaling pathway in pulmonary tissues. Histologically, SUR and SLs protected against lung ECM deposition caused by bleomycin administration. Biosurfactants produced from microbial sources can inhibit the induced inflammatory and fibrotic responses in bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Amria M Mousa
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| | - Mohamed U Nooman
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| | - Samah S Abbas
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Egypt.
| | - Sahar M Gebril
- Histology and Cell Biology Department, Faculty of Medicine, Sohag University, Egypt.
| | - Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt.
| | - Amr S Al-Kashef
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| |
Collapse
|
5
|
Roeder F, Röpke T, Steinmetz LK, Kolb M, Maus UA, Smith BJ, Knudsen L. Exploring alveolar recruitability using positive end-expiratory pressure in mice overexpressing TGF-β1: a structure-function analysis. Sci Rep 2024; 14:8080. [PMID: 38582767 PMCID: PMC10998853 DOI: 10.1038/s41598-024-58213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/26/2024] [Indexed: 04/08/2024] Open
Abstract
Pre-injured lungs are prone to injury progression in response to mechanical ventilation. Heterogeneous ventilation due to (micro)atelectases imparts injurious strains on open alveoli (known as volutrauma). Hence, recruitment of (micro)atelectases by positive end-expiratory pressure (PEEP) is necessary to interrupt this vicious circle of injury but needs to be balanced against acinar overdistension. In this study, the lung-protective potential of alveolar recruitment was investigated and balanced against overdistension in pre-injured lungs. Mice, treated with empty vector (AdCl) or adenoviral active TGF-β1 (AdTGF-β1) were subjected to lung mechanical measurements during descending PEEP ventilation from 12 to 0 cmH2O. At each PEEP level, recruitability tests consisting of two recruitment maneuvers followed by repetitive forced oscillation perturbations to determine tissue elastance (H) and damping (G) were performed. Finally, lungs were fixed by vascular perfusion at end-expiratory airway opening pressures (Pao) of 20, 10, 5 and 2 cmH2O after a recruitment maneuver, and processed for design-based stereology to quantify derecruitment and distension. H and G were significantly elevated in AdTGF-β1 compared to AdCl across PEEP levels. H was minimized at PEEP = 5-8 cmH2O and increased at lower and higher PEEP in both groups. These findings correlated with increasing septal wall folding (= derecruitment) and reduced density of alveolar number and surface area (= distension), respectively. In AdTGF-β1 exposed mice, 27% of alveoli remained derecruited at Pao = 20 cmH2O. A further decrease in Pao down to 2 cmH2O showed derecruitment of an additional 1.1 million alveoli (48%), which was linked with an increase in alveolar size heterogeneity at Pao = 2-5 cmH2O. In AdCl, decreased Pao resulted in septal folding with virtually no alveolar collapse. In essence, in healthy mice alveoli do not derecruit at low PEEP ventilation. The potential of alveolar recruitability in AdTGF-β1 exposed mice is high. H is optimized at PEEP 5-8 cmH2O. Lower PEEP folds and larger PEEP stretches septa which results in higher H and is more pronounced in AdTGF-β1 than in AdCl. The increased alveolar size heterogeneity at Pao = 5 cmH2O argues for the use of PEEP = 8 cmH2O for lung protective mechanical ventilation in this animal model.
Collapse
Affiliation(s)
- Franziska Roeder
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Tina Röpke
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | | | - Martin Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada
| | - Ulrich A Maus
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Disease (DZL), Hannover, Germany
| | - Bradford J Smith
- Department of Bioengineering, College of Engineering Design and Computing, University of Colorado Denver|Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatric Pulmonary and Sleep Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Disease (DZL), Hannover, Germany.
| |
Collapse
|
6
|
Shah D, Dave B, Chorawala MR, Prajapati BG, Singh S, M. Elossaily G, Ansari MN, Ali N. An Insight on Microfluidic Organ-on-a-Chip Models for PM 2.5-Induced Pulmonary Complications. ACS OMEGA 2024; 9:13534-13555. [PMID: 38559954 PMCID: PMC10976395 DOI: 10.1021/acsomega.3c10271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Pulmonary diseases like asthma, chronic obstructive pulmonary disorder, lung fibrosis, and lung cancer pose a significant burden to global human health. Many of these complications arise as a result of exposure to particulate matter (PM), which has been examined in several preclinical and clinical trials for its effect on several respiratory diseases. Particulate matter of size less than 2.5 μm (PM2.5) has been known to inflict unforeseen repercussions, although data from epidemiological studies to back this are pending. Conventionally utilized two-dimensional (2D) cell culture and preclinical animal models have provided insufficient benefits in emulating the in vivo physiological and pathological pulmonary conditions. Three-dimensional (3D) structural models, including organ-on-a-chip models, have experienced a developmental upsurge in recent times. Lung-on-a-chip models have the potential to simulate the specific features of the lungs. With the advancement of technology, an emerging and advanced technique termed microfluidic organ-on-a-chip has been developed with the aim of identifying the complexity of the respiratory cellular microenvironment of the body. In the present Review, the role of lung-on-a-chip modeling in reproducing pulmonary complications has been explored, with a specific emphasis on PM2.5-induced pulmonary complications.
Collapse
Affiliation(s)
- Disha Shah
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Bhavarth Dave
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Mehul R. Chorawala
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Bhupendra G. Prajapati
- Department
of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research,
Ganpat University, Mehsana, Gujarat 384012, India
| | - Sudarshan Singh
- Office
of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Gehan M. Elossaily
- Department
of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Mohd Nazam Ansari
- Department
of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nemat Ali
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Kamp JC, Neubert L, Schupp JC, Braubach P, Wrede C, Laenger F, Salditt T, Reichmann J, Welte T, Ruhparwar A, Ius F, Schwerk N, Bergmann AK, von Hardenberg S, Griese M, Rapp C, Olsson KM, Fuge J, Park DH, Hoeper MM, Jonigk DD, Knudsen L, Kuehnel MP. Multilamellated Basement Membranes in the Capillary Network of Alveolar Capillary Dysplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:180-194. [PMID: 38029923 DOI: 10.1016/j.ajpath.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
A minimal diffusion barrier is key to the pulmonary gas exchange. In alveolar capillary dysplasia (ACD), a rare genetically driven disease of early infancy, this crucial fibrovascular interface is compromised while the underlying pathophysiology is insufficiently understood. Recent in-depth analyses of vascular alterations in adult lung disease encouraged researchers to extend these studies to ACD and compare the changes of the microvasculature. Lung tissue samples of children with ACD (n = 12), adults with non-specific interstitial pneumonia (n = 12), and controls (n = 20) were studied using transmission electron microscopy, single-gene sequencing, immunostaining, exome sequencing, and broad transcriptome profiling. In ACD, pulmonary capillary basement membranes were hypertrophied, thickened, and multilamellated. Transcriptome profiling revealed increased CDH5, COL4A1, COL15A1, PTK2B, and FN1 and decreased VIT expression, confirmed by immunohistochemistry. In contrast, non-specific interstitial pneumonia samples showed a regular basement membrane architecture with preserved VIT expression but also increased COL15A1+ vessels. This study provides insight into the ultrastructure and pathophysiology of ACD. The lack of normally developed lung capillaries appeared to cause a replacement by COL15A1+ vessels, a mechanism recently described in interstitial lung disease. The VIT loss and FN1 overexpression might contribute to the unique appearance of basement membranes in ACD. Future studies are needed to explore the therapeutic potential of down-regulating the expression of FN1 and balancing VIT deficiency.
Collapse
Affiliation(s)
- Jan C Kamp
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany.
| | - Lavinia Neubert
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Jonas C Schupp
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Peter Braubach
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Christoph Wrede
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Florian Laenger
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Tim Salditt
- Institute of X-Ray Physics, University of Göttingen, Göttingen, Germany
| | - Jakob Reichmann
- Institute of X-Ray Physics, University of Göttingen, Göttingen, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Arjang Ruhparwar
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Fabio Ius
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Nicolaus Schwerk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Clinic for Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anke K Bergmann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Matthias Griese
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital of Ludwig Maximilian University Munich, German Center for Lung Research, Munich, Germany
| | - Christina Rapp
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital of Ludwig Maximilian University Munich, German Center for Lung Research, Munich, Germany
| | - Karen M Olsson
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Jan Fuge
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Da-Hee Park
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Marius M Hoeper
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Danny D Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, University of Aachen, Aachen, Germany
| | - Lars Knudsen
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Mark P Kuehnel
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; Institute of Pathology, University of Aachen, Aachen, Germany
| |
Collapse
|
8
|
Kruse P, Brandes G, Hemeling H, Huang Z, Wrede C, Hegermann J, Vlachos A, Lenz M. Synaptopodin Regulates Denervation-Induced Plasticity at Hippocampal Mossy Fiber Synapses. Cells 2024; 13:114. [PMID: 38247806 PMCID: PMC10814840 DOI: 10.3390/cells13020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Neurological diseases can lead to the denervation of brain regions caused by demyelination, traumatic injury or cell death. The molecular and structural mechanisms underlying lesion-induced reorganization of denervated brain regions, however, are a matter of ongoing investigation. In order to address this issue, we performed an entorhinal cortex lesion (ECL) in mouse organotypic entorhino-hippocampal tissue cultures of both sexes and studied denervation-induced plasticity of mossy fiber synapses, which connect dentate granule cells (dGCs) with CA3 pyramidal cells (CA3-PCs) and play important roles in learning and memory formation. Partial denervation caused a strengthening of excitatory neurotransmission in dGCs, CA3-PCs and their direct synaptic connections, as revealed by paired recordings (dGC-to-CA3-PC). These functional changes were accompanied by ultrastructural reorganization of mossy fiber synapses, which regularly contain the plasticity-regulating protein synaptopodin and the spine apparatus organelle. We demonstrate that the spine apparatus organelle and synaptopodin are related to ribosomes in close proximity to synaptic sites and reveal a synaptopodin-related transcriptome. Notably, synaptopodin-deficient tissue preparations that lack the spine apparatus organelle failed to express lesion-induced synaptic adjustments. Hence, synaptopodin and the spine apparatus organelle play a crucial role in regulating lesion-induced synaptic plasticity at hippocampal mossy fiber synapses.
Collapse
Affiliation(s)
- Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Gudrun Brandes
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Hanna Hemeling
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Zhong Huang
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, 79104 Freiburg, Germany
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
9
|
Chen R, Dai J. Lipid metabolism in idiopathic pulmonary fibrosis: From pathogenesis to therapy. J Mol Med (Berl) 2023; 101:905-915. [PMID: 37289208 DOI: 10.1007/s00109-023-02336-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic irreversible interstitial lung disease characterized by a progressive decline in lung function. The etiology of IPF is unknown, which poses a significant challenge to the treatment of IPF. Recent studies have identified a strong association between lipid metabolism and the development of IPF. Qualitative and quantitative analysis of small molecule metabolites using lipidomics reveals that lipid metabolic reprogramming plays a role in the pathogenesis of IPF. Lipids such as fatty acids, cholesterol, arachidonic acid metabolites, and phospholipids are involved in the onset and progression of IPF by inducing endoplasmic reticulum stress, promoting cell apoptosis, and enhancing the expression of pro-fibrotic biomarkers. Therefore, targeting lipid metabolism can provide a promising therapeutic strategy for pulmonary fibrosis. This review focuses on lipid metabolism in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ranxun Chen
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
10
|
Knudsen L, Hummel B, Wrede C, Zimmermann R, Perlman CE, Smith BJ. Acinar micromechanics in health and lung injury: what we have learned from quantitative morphology. Front Physiol 2023; 14:1142221. [PMID: 37025383 PMCID: PMC10070844 DOI: 10.3389/fphys.2023.1142221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Within the pulmonary acini ventilation and blood perfusion are brought together on a huge surface area separated by a very thin blood-gas barrier of tissue components to allow efficient gas exchange. During ventilation pulmonary acini are cyclically subjected to deformations which become manifest in changes of the dimensions of both alveolar and ductal airspaces as well as the interalveolar septa, composed of a dense capillary network and the delicate tissue layer forming the blood-gas barrier. These ventilation-related changes are referred to as micromechanics. In lung diseases, abnormalities in acinar micromechanics can be linked with injurious stresses and strains acting on the blood-gas barrier. The mechanisms by which interalveolar septa and the blood-gas barrier adapt to an increase in alveolar volume have been suggested to include unfolding, stretching, or changes in shape other than stretching and unfolding. Folding results in the formation of pleats in which alveolar epithelium is not exposed to air and parts of the blood-gas barrier are folded on each other. The opening of a collapsed alveolus (recruitment) can be considered as an extreme variant of septal wall unfolding. Alveolar recruitment can be detected with imaging techniques which achieve light microscopic resolution. Unfolding of pleats and stretching of the blood-gas barrier, however, require electron microscopic resolution to identify the basement membrane. While stretching results in an increase of the area of the basement membrane, unfolding of pleats and shape changes do not. Real time visualization of these processes, however, is currently not possible. In this review we provide an overview of septal wall micromechanics with focus on unfolding/folding as well as stretching. At the same time we provide a state-of-the-art design-based stereology methodology to quantify microarchitecture of alveoli and interalveolar septa based on different imaging techniques and design-based stereology.
Collapse
Affiliation(s)
- Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Benjamin Hummel
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Richard Zimmermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Carrie E Perlman
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Bradford J Smith
- Department of Bioengineering, College of Engineering Design and Computing, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatric Pulmonary and Sleep Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
11
|
Konkimalla A, Konishi S, Kobayashi Y, Kadur Lakshminarasimha Murthy P, Macadlo L, Mukherjee A, Elmore Z, Kim SJ, Pendergast AM, Lee PJ, Asokan A, Knudsen L, Bravo-Cordero JJ, Tata A, Tata PR. Multi-apical polarity of alveolar stem cells and their dynamics during lung development and regeneration. iScience 2022; 25:105114. [PMID: 36185377 PMCID: PMC9519774 DOI: 10.1016/j.isci.2022.105114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Epithelial cells of diverse tissues are characterized by the presence of a single apical domain. In the lung, electron microscopy studies have suggested that alveolar type-2 epithelial cells (AT2s) en face multiple alveolar sacs. However, apical and basolateral organization of the AT2s and their establishment during development and remodeling after injury repair remain unknown. Thick tissue imaging and electron microscopy revealed that a single AT2 can have multiple apical domains that enface multiple alveoli. AT2s gradually establish multi-apical domains post-natally, and they are maintained throughout life. Lineage tracing, live imaging, and selective cell ablation revealed that AT2s dynamically reorganize multi-apical domains during injury repair. Single-cell transcriptome signatures of residual AT2s revealed changes in cytoskeleton and cell migration. Significantly, cigarette smoke and oncogene activation lead to dysregulation of multi-apical domains. We propose that the multi-apical domains of AT2s enable them to be poised to support the regeneration of a large array of alveolar sacs.
Collapse
Affiliation(s)
- Arvind Konkimalla
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Satoshi Konishi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yoshihiko Kobayashi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Lauren Macadlo
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ananya Mukherjee
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zachary Elmore
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - So-Jin Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine and the Durham Veterans Administration Medical Center, Durham, NC 27710, USA
| | - Ann Marie Pendergast
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Patty J. Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine and the Durham Veterans Administration Medical Center, Durham, NC 27710, USA
| | - Aravind Asokan
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biomedical Engineering, Regeneration Next, Duke University, Durham, NC 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27710, USA
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover 30625, Germany
| | - Jose Javier Bravo-Cordero
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine and the Durham Veterans Administration Medical Center, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University, Durham, NC 27710, USA
| |
Collapse
|
12
|
Sehgal M, Jakhete SM, Manekar AG, Sasikumar S. Specific epigenetic regulators serve as potential therapeutic targets in idiopathic pulmonary fibrosis. Heliyon 2022; 8:e09773. [PMID: 36061031 PMCID: PMC9434059 DOI: 10.1016/j.heliyon.2022.e09773] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/27/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), a disorder observed mostly in older human beings, is characterised by chronic and progressive lung scarring leading to an irreversible decline in lung function. This health condition has a dismal prognosis and the currently available drugs only delay but fail to reverse the progression of lung damage. Consequently, it becomes imperative to discover improved therapeutic compounds and their cellular targets to cure IPF. In this regard, a number of recent studies have targeted the epigenetic regulation by histone deacetylases (HDACs) to develop and categorise antifibrotic drugs for lungs. Therefore, this review focuses on how aberrant expression or activity of Classes I, II and III HDACs alter TGF-β signalling to promote events such as epithelial-mesenchymal transition, differentiation of activated fibroblasts into myofibroblasts, and excess deposition of the extracellular matrix to propel lung fibrosis. Further, this study describes how certain chemical compounds or dietary changes modulate dysregulated HDACs to attenuate five faulty TGF-β-dependent profibrotic processes, both in animal models and cell lines replicating IPF, thereby identifying promising means to treat this lung disorder.
Collapse
Affiliation(s)
- Manas Sehgal
- Genetics and Molecular Biology Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, PIN - 411033, India
| | - Sharayu Manish Jakhete
- Genetics and Molecular Biology Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, PIN - 411033, India
| | - Amruta Ganesh Manekar
- Genetics and Molecular Biology Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, PIN - 411033, India
| | - Satish Sasikumar
- Genetics and Molecular Biology Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, PIN - 411033, India
| |
Collapse
|
13
|
Khan P, Roux J, Blumer S, Knudsen L, Jonigk D, Kuehnel MP, Tamm M, Hostettler KE. Alveolar Basal Cells Differentiate towards Secretory Epithelial- and Aberrant Basaloid-like Cells In Vitro. Cells 2022; 11:1820. [PMID: 35681516 PMCID: PMC9180703 DOI: 10.3390/cells11111820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
In idiopathic pulmonary fibrosis (IPF), keratin (KRT)17+/KRT5+ basal and KRT17+/KRT5- aberrant basaloid cells are atypically present within the alveolar space. We previously described the fibrosis-enriched outgrowth of alveolar basal cells from peripheral fibrotic lung tissue. Using single cell RNA sequencing (scRNA-seq), we here characterize the transcriptome of these cultured alveolar basal cells under different culture conditions. METHODS Fibrotic peripheral lung tissue pieces were placed in DMEM growth medium. Outgrown cells were analysed by scRNA-seq, TaqMan-PCR or immunofluorescence (IF) either directly or after medium change to an epithelial cell specific medium (Cnt-PR-A). RESULTS A fraction of alveolar basal cells cultured in DMEM growth medium showed close transcriptomic similarities to IPF basal cells. However, although they expressed KRT5, the transcriptome of the majority of cells matched best to the transcriptome of recently described KRT17+/KRT5- aberrant basaloid cells, co-expressing the canonical basal cell marker KRT17 and mesenchymal cell marker (VIM, FN1). A smaller fraction of cells matched best to secretory epithelial cells. Two differentiation gradients from basal to aberrant basaloid-like cells and basal to secretory epithelial-like cells were apparent. Interestingly, these differentiation paths seemed reversed when the cell culture medium was changed to Cnt-PR-A. CONCLUSIONS Our results suggest that cultured alveolar basal cells have the capacity to differentiate towards secretory epithelial-like cells and to aberrant basaloid-like cells. However, due to the persistent expression of KRT5, a complete differentiation towards aberrant basaloid cells did not seem to be achieved in our culture conditions. Importantly, differentiation seemed reversible by changing the cells microenvironment. Determining specific factors influencing these differentiation paths may help to define novel drug targets for IPF therapy.
Collapse
Affiliation(s)
- Petra Khan
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (P.K.); (J.R.); (S.B.); (M.T.)
| | - Julien Roux
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (P.K.); (J.R.); (S.B.); (M.T.)
- Swiss Institute of Bioinformatics, 4031 Basel, Switzerland
| | - Sabrina Blumer
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (P.K.); (J.R.); (S.B.); (M.T.)
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany;
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), The German Center for Lung Research (DZL), 30625 Hannover, Germany; (D.J.); (M.P.K.)
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), The German Center for Lung Research (DZL), 30625 Hannover, Germany; (D.J.); (M.P.K.)
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Mark P. Kuehnel
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), The German Center for Lung Research (DZL), 30625 Hannover, Germany; (D.J.); (M.P.K.)
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Tamm
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (P.K.); (J.R.); (S.B.); (M.T.)
| | - Katrin E. Hostettler
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (P.K.); (J.R.); (S.B.); (M.T.)
| |
Collapse
|
14
|
Induction of Accelerated Aging in a Mouse Model. Cells 2022; 11:cells11091418. [PMID: 35563724 PMCID: PMC9102583 DOI: 10.3390/cells11091418] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
With the global increase of the elderly population, the improvement of the treatment for various aging-related diseases and the extension of a healthy lifespan have become some of the most important current medical issues. In order to understand the developmental mechanisms of aging and aging-related disorders, animal models are essential to conduct relevant studies. Among them, mice have become one of the most prevalently used model animals for aging-related studies due to their high similarity to humans in terms of genetic background and physiological structure, as well as their short lifespan and ease of reproduction. This review will discuss some of the common and emerging mouse models of accelerated aging and related chronic diseases in recent years, with the aim of serving as a reference for future application in fundamental and translational research.
Collapse
|
15
|
Knoell J, Chillappagari S, Knudsen L, Korfei M, Dartsch R, Jonigk D, Kuehnel MP, Hoetzenecker K, Guenther A, Mahavadi P. PACS2-TRPV1 axis is required for ER-mitochondrial tethering during ER stress and lung fibrosis. Cell Mol Life Sci 2022; 79:151. [PMID: 35212819 PMCID: PMC8881280 DOI: 10.1007/s00018-022-04189-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 01/16/2023]
Abstract
Endoplasmic reticulum (ER) and mitochondria (mito) play a vital role in alveolar type II cell (AEC2) homeostasis and are both stressed in patients with idiopathic pulmonary fibrosis (IPF). Up to now, no data are available with regard to ER–mito cross talk and tethering under conditions of IPF. We here demonstrate that ER–mitochondrial tethering is reduced upon experimental ER stress in vitro and in the IPF AECII ex vivo, and this is—at least in part—due to decreased phosphofurin acidic cluster sorting protein 2 (PACS-2, also called PACS2) protein levels. PACS2 levels are influenced by its interaction with the transient receptor potential cation channel subfamily V member 1 (TRPV1) and can be experimentally modified by the TRPV1-modulating drug capsaicin (CPS). Employing alveolar epithelial cells with overexpression of the terminal ER stress signaling factor Chop or the IPF-associated surfactant protein C mutation (SPCΔexon4) in vitro, we observed a restoration of PACS2 levels upon treatment with CPS. Similarly, treatment of precision cut lung slices from IPF patients with CPS ex vivo forwarded similar effects. Importantly, in all models such kind of intervention also greatly reduced the extent of alveolar epithelial apoptosis. We therefore conclude that therapeutic targeting of the PACS2–TRPV1 axis represents an interesting novel, epithelial-protective approach in IPF.
Collapse
Affiliation(s)
- Jessica Knoell
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Shashi Chillappagari
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany.,Department of Biochemistry, Faculty of Medicine, JLU, Giessen, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Martina Korfei
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Ruth Dartsch
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Mark P Kuehnel
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Vienna General Hospital, Vienna, Austria.,European IPF/ILD Registry and Biobank, Giessen, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany.,European IPF/ILD Registry and Biobank, Giessen, Germany.,Member of the Cardio-Pulmonary Institute (CPI), JLU, Giessen, Germany.,Lung Clinic, Agaplesion Evangelisches Krankenhaus Mittelhessen, Giessen, Germany
| | - Poornima Mahavadi
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany. .,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
16
|
Wasnick RM, Shalashova I, Wilhelm J, Khadim A, Schmidt N, Hackstein H, Hecker A, Hoetzenecker K, Seeger W, Bellusci S, El Agha E, Ruppert C, Guenther A. Differential LysoTracker Uptake Defines Two Populations of Distal Epithelial Cells in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:235. [PMID: 35053350 PMCID: PMC8773634 DOI: 10.3390/cells11020235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal degenerative lung disease of unknown etiology. Although in its final stages it implicates, in a reactive manner, all lung cell types, the initial damage involves the alveolar epithelial compartment, in particular the alveolar epithelial type 2 cells (AEC2s). AEC2s serve dual progenitor and surfactant secreting functions, both of which are deeply impacted in IPF. Thus, we hypothesize that the size of the surfactant processing compartment, as measured by LysoTracker incorporation, allows the identification of different epithelial states in the IPF lung. Flow cytometry analysis of epithelial LysoTracker incorporation delineates two populations (Lysohigh and Lysolow) of AEC2s that behave in a compensatory manner during bleomycin injury and in the donor/IPF lung. Employing flow cytometry and transcriptomic analysis of cells isolated from donor and IPF lungs, we demonstrate that the Lysohigh population expresses all classical AEC2 markers and is drastically diminished in IPF. The Lysolow population, which is increased in proportion in IPF, co-expressed AEC2 and basal cell markers, resembling the phenotype of the previously identified intermediate AEC2 population in the IPF lung. In that regard, we provide an in-depth flow-cytometry characterization of LysoTracker uptake, HTII-280, proSP-C, mature SP-B, NGFR, KRT5, and CD24 expression in human lung epithelial cells. Combining functional analysis with extracellular and intracellular marker expression and transcriptomic analysis, we advance the current understanding of epithelial cell behavior and fate in lung fibrosis.
Collapse
Affiliation(s)
- Roxana Maria Wasnick
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
| | - Irina Shalashova
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
| | - Jochen Wilhelm
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
- Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany
- Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Ali Khadim
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Nicolai Schmidt
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
| | - Holger Hackstein
- Department of Clinical Immunology and Transfusion Medicine, 35392 Giessen, Germany;
| | - Andreas Hecker
- Department of General and Thoracic Surgery, University Hospital Giessen, 35392 Giessen, Germany;
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
- Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany
- Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Saverio Bellusci
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
- Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Elie El Agha
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
- Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany
- European IPF Registry/UGLMC Giessen Biobank, 35392 Giessen, Germany
| | - Andreas Guenther
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
- Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Department of General and Thoracic Surgery, University Hospital Giessen, 35392 Giessen, Germany;
- European IPF Registry/UGLMC Giessen Biobank, 35392 Giessen, Germany
- Lung Clinic Waldhof-Elgershausen, 35753 Greifenstein, Germany
| |
Collapse
|
17
|
Kotta S, Aldawsari HM, Badr-Eldin SM, Binmahfouz LS, Bakhaidar RB, Sreeharsha N, Nair AB, Ramnarayanan C. Aerosol Delivery of Surfactant Liposomes for Management of Pulmonary Fibrosis: An Approach Supporting Pulmonary Mechanics. Pharmaceutics 2021; 13:pharmaceutics13111851. [PMID: 34834265 PMCID: PMC8625129 DOI: 10.3390/pharmaceutics13111851] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/31/2021] [Indexed: 01/13/2023] Open
Abstract
Excessive architectural re-modeling of tissues in pulmonary fibrosis due to proliferation of myofibroblasts and deposition of extracellular matrix adversely affects the elasticity of the alveoli and lung function. Progressively destructive chronic inflammatory disease, therefore, necessitates safe and effective non-invasive airway delivery that can reach deep alveoli, restore the surfactant function and reduce oxidative stress. We designed an endogenous surfactant-based liposomal delivery system of naringin to be delivered as an aerosol that supports pulmonary mechanics for the management of pulmonary fibrosis. Phosphatidylcholine-based liposomes showed 91.5 ± 2.4% encapsulation of naringin, with a mean size of 171.4 ± 5.8 nm and zeta potential of −15.5 ± 1.3 mV. Liposomes with the unilamellar structure were found to be spherical and homogeneous in shape using electron microscope imaging. The formulation showed surface tension of 32.6 ± 0.96 mN/m and was able to maintain airway patency of 97 ± 2.5% for a 120 s test period ensuring the effective opening of lung capillaries and deep lung delivery. In vitro lung deposition utilizing Twin Stage Impinger showed 79 ± 1.5% deposition in lower airways, and Anderson Cascade Impactor deposition revealed a mass median aerodynamic diameter of 2.35 ± 1.02 μm for the aerosolized formulation. In vivo efficacy of the developed formulation was analyzed in bleomycin-induced lung fibrosis model in rats after administration by the inhalation route. Lactate dehydrogenase activity, total protein content, and inflammatory cell infiltration in broncho-alveolar lavage fluid were substantially reduced by liposomal naringin. Oxidative stress was minimized as observed from levels of antioxidant enzymes. Masson’s Trichrome staining of lung tissue revealed significant amelioration of histological changes and lesser deposition of collagen. Overall results indicated the therapeutic potential of the developed non-invasive aerosol formulation for the effective management of pulmonary fibrosis.
Collapse
Affiliation(s)
- Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.M.B.-E.); (R.B.B.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-558-734-418
| | - Hibah Mubarak Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.M.B.-E.); (R.B.B.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.M.B.-E.); (R.B.B.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lenah S. Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Rana Bakur Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.M.B.-E.); (R.B.B.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (N.S.); (A.B.N.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (N.S.); (A.B.N.)
| | - Chandramouli Ramnarayanan
- Department of Pharmaceutical Chemistry, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India;
- Global Technical Enablement JMP Division, SAS India Pvt. Ltd., Lavelle Road, Bengaluru 560025, India
| |
Collapse
|
18
|
Müller-Deile J, Sopel N, Ohs A, Rose V, Gröner M, Wrede C, Hegermann J, Daniel C, Amann K, Zahner G, Schiffer M. Glomerular Endothelial Cell-Derived microRNA-192 Regulates Nephronectin Expression in Idiopathic Membranous Glomerulonephritis. J Am Soc Nephrol 2021; 32:2777-2794. [PMID: 34716242 PMCID: PMC8806098 DOI: 10.1681/asn.2020121699] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 07/09/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Autoantibodies binding to podocyte antigens cause idiopathic membranous glomerulonephritis (iMGN). However, it remains elusive how autoantibodies reach the subepithelial space because the glomerular filtration barrier (GFB) is size selective and almost impermeable for antibodies. METHODS Kidney biopsies from patients with iMGN, cell culture, zebrafish, and mouse models were used to investigate the role of nephronectin (NPNT) regulating microRNAs (miRs) for the GFB. RESULTS Glomerular endothelial cell (GEC)-derived miR-192-5p and podocyte-derived miR-378a-3p are upregulated in urine and glomeruli of patients with iMGN, whereas glomerular NPNT is reduced. Overexpression of miR-192-5p and morpholino-mediated npnt knockdown induced edema, proteinuria, and podocyte effacement similar to podocyte-derived miR-378a-3p in zebrafish. Structural changes of the glomerular basement membrane (GBM) with increased lucidity, splitting, and lamellation, especially of the lamina rara interna, similar to ultrastructural findings seen in advanced stages of iMGN, were found. IgG-size nanoparticles accumulated in lucidity areas of the lamina rara interna and lamina densa of the GBM in npnt-knockdown zebrafish models. Loss of slit diaphragm proteins and severe structural impairment of the GBM were further confirmed in podocyte-specific Npnt knockout mice. GECs downregulate podocyte NPNT by transfer of miR-192-5p-containing exosomes in a paracrine manner. CONCLUSIONS Podocyte NPNT is important for proper glomerular filter function and GBM structure and is regulated by GEC-derived miR-192-5p and podocyte-derived miR-378a-3p. We hypothesize that loss of NPNT in the GBM is an important part of the initial pathophysiology of iMGN and enables autoantigenicity of podocyte antigens and subepithelial immune complex deposition in iMGN.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Department of Nephrology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nina Sopel
- Department of Nephrology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandra Ohs
- Department of Nephrology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Victoria Rose
- Department of Nephrology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marwin Gröner
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, Erlangen, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Hannover, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Gunther Zahner
- Department of Medicine, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Mario Schiffer
- Department of Nephrology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
19
|
Siekacz K, Piotrowski WJ, Iwański MA, Górski P, Białas AJ. The Role of Interaction between Mitochondria and the Extracellular Matrix in the Development of Idiopathic Pulmonary Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9932442. [PMID: 34707784 PMCID: PMC8545566 DOI: 10.1155/2021/9932442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 01/16/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a condition which affects mainly older adults, that suggests mitochondrial dysfunction and oxidative stress, which follow cells senescence, and might contribute to the disease onset. We have assumed pathogenesis associated with crosstalk between the extracellular matrix (ECM) and mitochondria, mainly based on mitochondrial equilibrium impairment consisting of (1) tyrosine kinases and serine-threonine kinase (TKs and ST-Ks) activation via cytokines, (2) mitochondrial electron transport chain dysfunction and in consequence electrons leak with lower ATP synthesis, (3) the activation of latent TGF-β via αVβ6 integrin, (4) tensions transduction via α2β1 integrin, (5) inefficient mitophagy, and (6) stress inhibited biogenesis. Mitochondria dysfunction influences ECM composition and vice versa. Damaged mitochondria release mitochondrial reactive oxygen species (mtROS) and the mitochondrial DNA (mtDNA) to the microenvironment. Therefore, airway epithelial cells (AECs) undergo transition and secrete cytokines. Described factors initiate an inflammatory process with immunological enhancement. In consequence, local fibroblasts exposed to harmful conditions transform into myofibroblasts, produce ECM, and induce progression of fibrosis. In our review, we summarize numerous aspects of mitochondrial pathobiology, which seem to be involved in the pathogenesis of lung fibrosis. In addition, an increasing body of evidence suggests considering crosstalk between the ECM and mitochondria in this context. Moreover, mitochondria and ECM seem to be important players in the antifibrotic treatment of IPF.
Collapse
Affiliation(s)
- Kamil Siekacz
- Department of Pathobiology of Respiratory Diseases, 1st Chair of Internal Medicine, Medical University of Lodz, Poland
| | - Wojciech J. Piotrowski
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Poland
| | - Mikołaj A. Iwański
- Department of Pathobiology of Respiratory Diseases, 1st Chair of Internal Medicine, Medical University of Lodz, Poland
| | - Paweł Górski
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Poland
| | - Adam J. Białas
- Department of Pathobiology of Respiratory Diseases, 1st Chair of Internal Medicine, Medical University of Lodz, Poland
| |
Collapse
|
20
|
Linking Fibrotic Remodeling and Ultrastructural Alterations of Alveolar Epithelial Cells after Deletion of Nedd4-2. Int J Mol Sci 2021; 22:ijms22147607. [PMID: 34299227 PMCID: PMC8306112 DOI: 10.3390/ijms22147607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/24/2022] Open
Abstract
Our previous study showed that in adult mice, conditional Nedd4-2-deficiency in club and alveolar epithelial type II (AE2) cells results in impaired mucociliary clearance, accumulation of Muc5b and progressive, terminal pulmonary fibrosis within 16 weeks. In the present study, we investigated ultrastructural alterations of the alveolar epithelium in relation to interstitial remodeling in alveolar septa as a function of disease progression. Two, eight and twelve weeks after induction of Nedd4-2 knockout, lungs were fixed and subjected to design-based stereological investigation at the light and electron microscopic level. Quantitative data did not show any abnormalities until 8 weeks compared to controls. At 12 weeks, however, volume of septal wall tissue increased while volume of acinar airspace and alveolar surface area significantly decreased. Volume and surface area of alveolar epithelial type I cells were reduced, which could not be compensated by a corresponding increase of AE2 cells. The volume of collagen fibrils in septal walls increased and was linked with an increase in blood–gas barrier thickness. A high correlation between parameters reflecting interstitial remodeling and abnormal AE2 cell ultrastructure could be established. Taken together, abnormal regeneration of the alveolar epithelium is correlated with interstitial septal wall remodeling.
Collapse
|
21
|
Luo Y, Yi H, Huang X, Lin G, Kuang Y, Guo Y, Xie C. Inhibition of macrophage migration inhibitory factor (MIF) as a therapeutic target in bleomycin-induced pulmonary fibrosis rats. Am J Physiol Lung Cell Mol Physiol 2021; 321:L6-L16. [PMID: 33881353 DOI: 10.1152/ajplung.00288.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) inhibition can attenuate pulmonary fibrosis, but the antifibrotic mechanism is unclear. Here we investigated the antifibrotic effect of MIF knockdown in rats with bleomycin (BLM)-induced pulmonary fibrosis. The results showed that MIF inhibition attenuated lung injury and extracellular matrix deposition; significantly reduced the levels of cytokines including transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17), hydroxyproline (hyp), fibroblast growth factor 23 (FGF23), and secreted phosphoprotein 1 (Spp1); and inhibited the expression of CD68, F4/80, and α-smooth muscle actin (α-SMA) protein. MIF inhibition is associated with reduction of proinflammatory mediators and macrophage infiltration in lungs. In addition, MIF knockdown in the day 14 group was significantly better than MIF knockdown in day 1 group in terms of the above mentioned cytokines TGF-β1, IL-17, TNF-α. MIF knockdown in day 14 group showed a better trend than MIF knockdown in day 1 group in inhibition of hyp and α-SMA formation. Furthermore, MIF inhibition downregulated the FGF23, Spp1, anti-integrin alpha 10 (Itga10), laminin subunit alpha 1 (Lama1), thrombospondin 2 (THBS2), and Serpin family B member 5 (SERPINB5) mRNA levels and the p-Smad2/3 protein level. MIF knockdown may inhibit fibrosis through the TGF-β1/Smads signaling pathway. In addition, MIF inhibition protects against vascular remodeling via Thbs2 and Serpinb5 signaling. In summary, our study showed that knockdown of MIF can significantly inhibit lung inflammation and fibrosis in rats with BLM-induced pulmonary fibrosis. The future development of inhibitors targeting MIF may contribute to the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yifeng Luo
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Hui Yi
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xinyan Huang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Gengpeng Lin
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yukun Kuang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yubiao Guo
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Canmao Xie
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
22
|
Casanova M, Branco S, Veiga IB, Barros A, Faísca P. Stereology in Grading and Prognosis of Canine Cutaneous Mast Cell Tumors. Vet Pathol 2021; 58:483-490. [PMID: 33576305 PMCID: PMC8064533 DOI: 10.1177/0300985820985138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Canine cutaneous mast cell tumors (ccMCTs) are currently graded according to Patnaik and Kiupel grading schemes. The qualitative and semiquantitative parameters applied in these schemes may lead to inter- and intraobserver variability. This study investigates the prognostic value of volume-weighted mean nuclear volume (vv¯), a stereological estimation that provides information about nuclear size and its variability. vv¯ of 55 ccMCTs was estimated using the “point-sampled intercept” method and compared with histological grade and clinical outcome. The clinical history of dogs treated with surgical excision alone was available for 30 ccMCTs. Statistical differences in vv¯ were found between grade II (x¯ = 115 ± 29 µm3) and grade III ccMCTs (x ¯= 197 ± 63 µm3), as well as between low-grade (x ¯= 113 ± 28 µm3) and high-grade ccMCTs (x¯ = 184 ± 63 µm3). An optimal cutoff value of vv¯ ≥ 150 µm3 and vv¯ ≥ 140 µm3 was determined for grade III and high-grade ccMCTs, respectively. In terms of prognosis, vv¯ was not able to predict the clinical outcome in 42% of the cases; however, cases with vv¯ <125 µm3 had a favorable outcome. These results indicate that, despite having limited prognostic value when used as a solitary parameter, vv¯ is highly reproducible and is associated with histological grade as well as with benign behavior.
Collapse
Affiliation(s)
- Mafalda Casanova
- 70904Instituto Gulbenkian de Ciência, Oeiras, Portugal.,70989Universidade de Évora, Évora, Portugal
| | | | | | - André Barros
- 70904Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Pedro Faísca
- 70904Instituto Gulbenkian de Ciência, Oeiras, Portugal.,FMV-ULHT, Lisbon, Portugal.,DNATech, Lisbon, Portugal
| |
Collapse
|
23
|
Abstract
Since its entry into biomedical research in the first half of the twentieth century, electron microscopy has been a valuable tool for lung researchers to explore the lung's delicate ultrastructure. Among others, it proved the existence of a continuous alveolar epithelium and demonstrated the surfactant lining layer. With the establishment of serial sectioning transmission electron microscopy, as the first "volume electron microscopic" technique, electron microscopy entered the third dimension and investigations of the lung's three-dimensional ultrastructure became possible. Over the years, further techniques, ranging from electron tomography over serial block-face and focused ion beam scanning electron microscopy to array tomography became available. All techniques cover different volumes and resolutions, and, thus, different scientific questions. This review gives an overview of these techniques and their application in lung research, focusing on their fields of application and practical implementation. Furthermore, an introduction is given how the output raw data are processed and the final three-dimensional models can be generated.
Collapse
Affiliation(s)
- Jan Philipp Schneider
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
24
|
Mechanical ventilation-induced alterations of intracellular surfactant pool and blood-gas barrier in healthy and pre-injured lungs. Histochem Cell Biol 2020; 155:183-202. [PMID: 33188462 PMCID: PMC7910377 DOI: 10.1007/s00418-020-01938-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Mechanical ventilation triggers the manifestation of lung injury and pre-injured lungs are more susceptible. Ventilation-induced abnormalities of alveolar surfactant are involved in injury progression. The effects of mechanical ventilation on the surfactant system might be different in healthy compared to pre-injured lungs. In the present study, we investigated the effects of different positive end-expiratory pressure (PEEP) ventilations on the structure of the blood–gas barrier, the ultrastructure of alveolar epithelial type II (AE2) cells and the intracellular surfactant pool (= lamellar bodies, LB). Rats were randomized into bleomycin-pre-injured or healthy control groups. One day later, rats were either not ventilated, or ventilated with PEEP = 1 or 5 cmH2O and a tidal volume of 10 ml/kg bodyweight for 3 h. Left lungs were subjected to design-based stereology, right lungs to measurements of surfactant proteins (SP−) B and C expression. In pre-injured lungs without ventilation, the expression of SP-C was reduced by bleomycin; while, there were fewer and larger LB compared to healthy lungs. PEEP = 1 cmH2O ventilation of bleomycin-injured lungs was linked with the thickest blood–gas barrier due to increased septal interstitial volumes. In healthy lungs, increasing PEEP levels reduced mean AE2 cell size and volume of LB per AE2 cell; while in pre-injured lungs, volumes of AE2 cells and LB per cell remained stable across PEEPs. Instead, in pre-injured lungs, increasing PEEP levels increased the number and decreased the mean size of LB. In conclusion, mechanical ventilation-induced alterations in LB ultrastructure differ between healthy and pre-injured lungs. PEEP = 1 cmH2O but not PEEP = 5 cmH2O ventilation aggravated septal interstitial abnormalities after bleomycin challenge.
Collapse
|
25
|
Knudsen L, Brandenberger C, Ochs M. Stereology as the 3D tool to quantitate lung architecture. Histochem Cell Biol 2020; 155:163-181. [PMID: 33051774 PMCID: PMC7910236 DOI: 10.1007/s00418-020-01927-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2020] [Indexed: 01/12/2023]
Abstract
Stereology is the method of choice for the quantitative assessment of biological objects in microscopy. It takes into account the fact that, in traditional microscopy such as conventional light and transmission electron microscopy, although one has to rely on measurements on nearly two-dimensional sections from fixed and embedded tissue samples, the quantitative data obtained by these measurements should characterize the real three-dimensional properties of the biological objects and not just their “flatland” appearance on the sections. Thus, three-dimensionality is a built-in property of stereological sampling and measurement tools. Stereology is, therefore, perfectly suited to be combined with 3D imaging techniques which cover a wide range of complementary sample sizes and resolutions, e.g. micro-computed tomography, confocal microscopy and volume electron microscopy. Here, we review those stereological principles that are of particular relevance for 3D imaging and provide an overview of applications of 3D imaging-based stereology to the lung in health and disease. The symbiosis of stereology and 3D imaging thus provides the unique opportunity for unbiased and comprehensive quantitative characterization of the three-dimensional architecture of the lung from macro to nano scale.
Collapse
Affiliation(s)
- Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Matthias Ochs
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, Philippstr. 11, 10115, Berlin, Germany. .,German Center for Lung Research (DZL), Berlin, Germany.
| |
Collapse
|
26
|
Ruwisch J, Sehlmeyer K, Roldan N, Garcia-Alvarez B, Perez-Gil J, Weaver TE, Ochs M, Knudsen L, Lopez-Rodriguez E. Air Space Distension Precedes Spontaneous Fibrotic Remodeling and Impaired Cholesterol Metabolism in the Absence of Surfactant Protein C. Am J Respir Cell Mol Biol 2020; 62:466-478. [PMID: 31922895 DOI: 10.1165/rcmb.2019-0358oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Surfactant protein (SP)-C deficiency is found in samples from patients with idiopathic pulmonary fibrosis, especially in familial forms of this disease. We hypothesized that SP-C may contribute to fibrotic remodeling in aging mice and alveolar lipid homeostasis. For this purpose, we analyzed lung function, alveolar dynamics, lung structure, collagen content, and expression of genes related to lipid and cholesterol metabolism of aging SP-C knockout mice. In addition, in vitro experiments with an alveolar macrophage cell line exposed to lipid vesicles with or without cholesterol and/or SP-C were performed. Alveolar dynamics showed progressive alveolar derecruitment with age and impaired oxygen saturation. Lung structure revealed that decreasing volume density of alveolar spaces was accompanied by increasing of the ductal counterparts. Simultaneously, septal wall thickness steadily increased, and fibrotic wounds appeared in lungs from the age of 50 weeks. This remarkable phenotype is unique to the 129Sv strain, which has an increased absorption of cholesterol, linking the accumulation of cholesterol and the absence of SP-C to a fibrotic remodeling process. The findings of this study suggest that overall loss of SP-C results in an age-dependent, complex, heterogeneous phenotype characterized by a combination of overdistended air spaces and fibrotic wounds that resembles combined emphysema and pulmonary fibrosis in patients with idiopathic pulmonary fibrosis. Addition of SP-C to cholesterol-laden lipid vesicles enhanced the expression of cholesterol metabolism and transport genes in an alveolar macrophage cell line, identifying a potential new lipid-protein axis involved in lung remodeling.
Collapse
Affiliation(s)
- Jannik Ruwisch
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,BREATH (Biomedical Research in Endstage and Obstructive Lung Disease Hannover), Member of the German Center for Lung Research, Hannover, Germany
| | - Kirsten Sehlmeyer
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,BREATH (Biomedical Research in Endstage and Obstructive Lung Disease Hannover), Member of the German Center for Lung Research, Hannover, Germany
| | - Nuria Roldan
- Alveolix AG and ARTORG Center, University of Bern, Bern, Switzerland.,Biochemistry and Molecular Biology Department, Faculty of Biology, and Research Institute "Hospital 12 de Octubre," Complutense University Madrid, Madrid, Spain
| | - Begoña Garcia-Alvarez
- Biochemistry and Molecular Biology Department, Faculty of Biology, and Research Institute "Hospital 12 de Octubre," Complutense University Madrid, Madrid, Spain
| | - Jesus Perez-Gil
- Biochemistry and Molecular Biology Department, Faculty of Biology, and Research Institute "Hospital 12 de Octubre," Complutense University Madrid, Madrid, Spain
| | - Timothy E Weaver
- Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,BREATH (Biomedical Research in Endstage and Obstructive Lung Disease Hannover), Member of the German Center for Lung Research, Hannover, Germany.,Institute of Vegetative Anatomy, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,BREATH (Biomedical Research in Endstage and Obstructive Lung Disease Hannover), Member of the German Center for Lung Research, Hannover, Germany.,Institute of Vegetative Anatomy, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,BREATH (Biomedical Research in Endstage and Obstructive Lung Disease Hannover), Member of the German Center for Lung Research, Hannover, Germany.,Institute of Vegetative Anatomy, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
27
|
Agudelo CW, Samaha G, Garcia-Arcos I. Alveolar lipids in pulmonary disease. A review. Lipids Health Dis 2020; 19:122. [PMID: 32493486 PMCID: PMC7268969 DOI: 10.1186/s12944-020-01278-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Lung lipid metabolism participates both in infant and adult pulmonary disease. The lung is composed by multiple cell types with specialized functions and coordinately acting to meet specific physiologic requirements. The alveoli are the niche of the most active lipid metabolic cell in the lung, the type 2 cell (T2C). T2C synthesize surfactant lipids that are an absolute requirement for respiration, including dipalmitoylphosphatidylcholine. After its synthesis and secretion into the alveoli, surfactant is recycled by the T2C or degraded by the alveolar macrophages (AM). Surfactant biosynthesis and recycling is tightly regulated, and dysregulation of this pathway occurs in many pulmonary disease processes. Alveolar lipids can participate in the development of pulmonary disease from their extracellular location in the lumen of the alveoli, and from their intracellular location in T2C or AM. External insults like smoke and pollution can disturb surfactant homeostasis and result in either surfactant insufficiency or accumulation. But disruption of surfactant homeostasis is also observed in many chronic adult diseases, including chronic obstructive pulmonary disease (COPD), and others. Sustained damage to the T2C is one of the postulated causes of idiopathic pulmonary fibrosis (IPF), and surfactant homeostasis is disrupted during fibrotic conditions. Similarly, surfactant homeostasis is impacted during acute respiratory distress syndrome (ARDS) and infections. Bioactive lipids like eicosanoids and sphingolipids also participate in chronic lung disease and in respiratory infections. We review the most recent knowledge on alveolar lipids and their essential metabolic and signaling functions during homeostasis and during some of the most commonly observed pulmonary diseases.
Collapse
Affiliation(s)
- Christina W Agudelo
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Ghassan Samaha
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Itsaso Garcia-Arcos
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA.
| |
Collapse
|
28
|
Wrede C, Hegermann J, Mühlfeld C. Novel cell contact between podocyte microprojections and parietal epithelial cells analyzed by volume electron microscopy. Am J Physiol Renal Physiol 2020; 318:F1246-F1251. [PMID: 32249613 DOI: 10.1152/ajprenal.00097.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Podocytes are highly specialized cells with a clear cell polarity. It is known that in health and disease, microvilli protrude from the apical surface of the podocytes into the urinary space. As a basis to better understand the podocyte microprojections/microvilli, the present study analyzed their spatial localization, extension, and contact site with parietal epithelial cells (PECs). Using different electron microscopic (EM) techniques, we analyzed renal corpuscles of healthy young adult male C57BL/6 mice fixed by vascular perfusion. Serial block-face scanning EM was used to visualize entire corpuscles, focused ion beam scanning EM was performed to characterize microprojection/microvilli-rich regions at higher magnification, and transmission EM of serial sections was used to analyze the contact zone between podocyte microprojections and PECs. Numerous microprojections originating from the primary processes of podocytes were present in the urinary space in all regions of the corpuscle. They often reached the apical surface of the PEC but did not make junctional contacts. At high resolution, it was observed that the glycocalyx of both cells was in contact. Depending on the distance between podocytes and PECs, these microprojections had a stretched or coiled state. The present study shows that microprojections/microvilli of podocytes are a physiological feature of healthy mouse kidneys and are frequently in contact with the apical surface of PECs, thus spanning the urinary space. It is proposed that podocyte microprojections serve mechanosensory or communicative functions between podocytes and PECs.
Collapse
Affiliation(s)
- Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
29
|
Schneider JP, Wrede C, Mühlfeld C. The Three-Dimensional Ultrastructure of the Human Alveolar Epithelium Revealed by Focused Ion Beam Electron Microscopy. Int J Mol Sci 2020; 21:ijms21031089. [PMID: 32041332 PMCID: PMC7038159 DOI: 10.3390/ijms21031089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Thin type 1 alveolar epithelial (AE1) and surfactant producing type 2 alveolar epithelial (AE2) cells line the alveoli in the lung and are essential for normal lung function. Function is intimately interrelated to structure, so that detailed knowledge of the epithelial ultrastructure can significantly enhance our understanding of its function. The basolateral surface of the cells or the epithelial contact sites are of special interest, because they play an important role in intercellular communication or stabilizing the epithelium. The latter is in particular important for the lung with its variable volume. The aim of the present study was to investigate the three-dimensional (3D) ultrastructure of the human alveolar epithelium focusing on contact sites and the basolateral cell membrane of AE2 cells using focused ion beam electron microscopy and subsequent 3D reconstructions. The study provides detailed surface reconstructions of two AE1 cell domains and two AE2 cells, showing AE1/AE1, AE1/AE2 and AE2/AE2 contact sites, basolateral microvilli pits at AE2 cells and small AE1 processes beneath AE2 cells. Furthermore, we show reconstructions of a surfactant secretion pore, enlargements of the apical AE1 cell surface and long folds bordering grooves on the basal AE1 cell surface. The functional implications of our findings are discussed. These findings may lay the structural basis for further molecular investigations.
Collapse
Affiliation(s)
- Jan Philipp Schneider
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (C.W.); (C.M.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Correspondence:
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (C.W.); (C.M.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (C.W.); (C.M.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
30
|
Buchacker T, Mühlfeld C, Wrede C, Wagner WL, Beare R, McCormick M, Grothausmann R. Assessment of the Alveolar Capillary Network in the Postnatal Mouse Lung in 3D Using Serial Block-Face Scanning Electron Microscopy. Front Physiol 2019; 10:1357. [PMID: 31824323 PMCID: PMC6881265 DOI: 10.3389/fphys.2019.01357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022] Open
Abstract
The alveolar capillary network (ACN) has a large surface area that provides the basis for an optimized gas exchange in the lung. It needs to adapt to morphological changes during early lung development and alveolarization. Structural alterations of the pulmonary vasculature can lead to pathological functional conditions such as in bronchopulmonary dysplasia and various other lung diseases. To understand the development of the ACN and its impact on the pathogenesis of lung diseases, methods are needed that enable comparative analyses of the complex three-dimensional structure of the ACN at different developmental stages and under pathological conditions. In this study a newborn mouse lung was imaged with serial block-face scanning electron microscopy (SBF-SEM) to investigate the ACN and its surrounding structures before the alveolarization process begins. Most parts but not all of the examined ACN contain two layers of capillaries, which were repeatedly connected with each other. A path from an arteriole to a venule was extracted and straightened to allow cross-sectional visualization of the data along the path within a plane. This allows a qualitative characterization of the structures that erythrocytes pass on their way through the ACN. One way to define regions of the ACN supplied by specific arterioles is presented and used for analyses. Pillars, possibly intussusceptive, were found in the vasculature but no specific pattern was observed in regard to parts of the saccular septa. This study provides 3D information with a resolution of about 150 nm on the microscopic structure of a newborn mouse lung and outlines some of the potentials and challenges of SBF-SEM for 3D analyses of the ACN.
Collapse
Affiliation(s)
- Tobias Buchacker
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of the German Center for Lung Research, Hanover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of the German Center for Lung Research, Hanover, Germany.,REBIRTH Cluster of Excellence, Hanover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of the German Center for Lung Research, Hanover, Germany.,Research Core Unit Electron Microscopy, Hannover Medical School, Hanover, Germany
| | - Willi L Wagner
- Department of Diagnostic and Interventional Radiology (DIR), University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Richard Beare
- Department of Medicine, Monash University, Melbourne, VIC, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | | | - Roman Grothausmann
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of the German Center for Lung Research, Hanover, Germany
| |
Collapse
|
31
|
Rühl N, Lopez-Rodriguez E, Albert K, Smith BJ, Weaver TE, Ochs M, Knudsen L. Surfactant Protein B Deficiency Induced High Surface Tension: Relationship between Alveolar Micromechanics, Alveolar Fluid Properties and Alveolar Epithelial Cell Injury. Int J Mol Sci 2019; 20:ijms20174243. [PMID: 31480246 PMCID: PMC6747270 DOI: 10.3390/ijms20174243] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 11/16/2022] Open
Abstract
High surface tension at the alveolar air-liquid interface is a typical feature of acute and chronic lung injury. However, the manner in which high surface tension contributes to lung injury is not well understood. This study investigated the relationship between abnormal alveolar micromechanics, alveolar epithelial injury, intra-alveolar fluid properties and remodeling in the conditional surfactant protein B (SP-B) knockout mouse model. Measurements of pulmonary mechanics, broncho-alveolar lavage fluid (BAL), and design-based stereology were performed as a function of time of SP-B deficiency. After one day of SP-B deficiency the volume of alveolar fluid V(alvfluid,par) as well as BAL protein and albumin levels were normal while the surface area of injured alveolar epithelium S(AEinjure,sep) was significantly increased. Alveoli and alveolar surface area could be recruited by increasing the air inflation pressure. Quasi-static pressure-volume loops were characterized by an increased hysteresis while the inspiratory capacity was reduced. After 3 days, an increase in V(alvfluid,par) as well as BAL protein and albumin levels were linked with a failure of both alveolar recruitment and airway pressure-dependent redistribution of alveolar fluid. Over time, V(alvfluid,par) increased exponentially with S(AEinjure,sep). In conclusion, high surface tension induces alveolar epithelial injury prior to edema formation. After passing a threshold, epithelial injury results in vascular leakage and exponential accumulation of alveolar fluid critically hampering alveolar recruitability.
Collapse
Affiliation(s)
- Nina Rühl
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover 30625, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover 30625, Germany
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), Member of the German Center for Lung Research (DLZ), Hannover 30625, Germany
- REBIRTH, Cluster of Excellence, Hannover 30625, Germany
- Institute of Vegetative Anatomy, Charite, Berlin 10117, Germany
| | - Karolin Albert
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover 30625, Germany
| | - Bradford J Smith
- Department of Bioengineering, University of Colorado Denver, Denver, CO 80045, USA
| | - Timothy E Weaver
- Division of Pulmonary Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45221, USA
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover 30625, Germany
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), Member of the German Center for Lung Research (DLZ), Hannover 30625, Germany
- REBIRTH, Cluster of Excellence, Hannover 30625, Germany
- Institute of Vegetative Anatomy, Charite, Berlin 10117, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover 30625, Germany.
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), Member of the German Center for Lung Research (DLZ), Hannover 30625, Germany.
- REBIRTH, Cluster of Excellence, Hannover 30625, Germany.
| |
Collapse
|
32
|
Albert RK, Smith B, Perlman CE, Schwartz DA. Is Progression of Pulmonary Fibrosis due to Ventilation-induced Lung Injury? Am J Respir Crit Care Med 2019; 200:140-151. [PMID: 31022350 PMCID: PMC6635778 DOI: 10.1164/rccm.201903-0497pp] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Bradford Smith
- Department of Bioengineering, University of Colorado, Aurora, Colorado; and
| | - Carrie E. Perlman
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| | | |
Collapse
|
33
|
Nie Y, Zhang D, Qian F, Wu Y. Baccatin III ameliorates bleomycin-induced pulmonary fibrosis via suppression of TGF-β1 production and TGF-β1-induced fibroblast differentiation. Int Immunopharmacol 2019; 74:105696. [PMID: 31229901 DOI: 10.1016/j.intimp.2019.105696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and generally lethal lung disease with a high mortality rate. Current therapeutic drugs exhibit limited efficacy but severe adverse effects. Paclitaxel has been identified to exert both anti-inflammatory and anti-fibrosis activity. Baccatin III (BAC), an important precursor of paclitaxel, has been identified as exhibiting immunomodulatory activity with decisively lower toxicity. However, its effects on pulmonary fibrosis remain unknown. In this study, the role of BAC in bleomycin (BLM)-induced pulmonary fibrosis and inflammation in mice was investigated in addition to elucidation of its mechanism of action. Our results demonstrated that administration of BAC in a dose-dependent manner reduced inflammatory infiltration, secretion of the pro-fibrotic mediator TGF-β1 and deposition of collagen and other components of the extracellular matrix (ECM), including alpha smooth muscle actin (α-SMA) and fibronectin. Administration of BAC to treat isolated macrophages stimulated with IL-13, known to activate macrophages, the principal source of TGF-β1, resulted in markedly reduced TGF-β1 expression from macrophages. The AKT/STAT6 signaling pathway was shown to be involved in this process. In addition, we have provided in vitro evidence that BAC inhibits TGF-β1-induced fibroblast differentiation via the Smad2/3 signaling pathway. Furthermore, intratracheal injection of rTGF-β1 significantly exacerbated the degree of fibrosis which was down-regulated by treatment with BAC. Taken together, our data suggest that BAC exerts a protective effect against lung fibrosis and may serve as a potential therapeutic strategy for IPF.
Collapse
Affiliation(s)
- Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Dan Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Feng Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Yaxian Wu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| |
Collapse
|
34
|
Mellenthin MM, Seong SA, Roy GS, Bartolák-Suki E, Hamlington KL, Bates JHT, Smith BJ. Using injury cost functions from a predictive single-compartment model to assess the severity of mechanical ventilator-induced lung injuries. J Appl Physiol (1985) 2019; 127:58-70. [PMID: 31046518 DOI: 10.1152/japplphysiol.00770.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Identifying safe ventilation patterns for patients with acute respiratory distress syndrome remains challenging because of the delicate balance between gas exchange and selection of ventilator settings to prevent further ventilator-induced lung injury (VILI). Accordingly, this work seeks to link ventilator settings to graded levels of VILI to identify injury cost functions that predict injury by using a computational model to process pressures and flows measured at the airway opening. Pressure-volume loops were acquired over the course of ~2 h of mechanical ventilation in four different groups of BALB/c mice. A cohort of these animals were subjected to an injurious bronchoalveolar lavage before ventilation. The data were analyzed with a single-compartment model that predicts recruitment/derecruitment and tissue distension at each time step in measured pressure-volume loops. We compared several injury cost functions to markers of VILI-induced blood-gas barrier disruption. Of the cost functions considered, we conclude that mechanical power dissipation and strain heterogeneity are the best at distinguishing between graded levels of injury and are good candidates for forecasting the development of VILI. NEW & NOTEWORTHY This work uses a predictive single-compartment model and injury cost functions to assess graded levels of mechanical ventilator-induced lung injury. The most promising measures include strain heterogeneity and mechanical power dissipation.
Collapse
Affiliation(s)
| | - Siyeon A Seong
- College of Medicine, University of Vermont , Burlington, Vermont
| | - Gregory S Roy
- College of Medicine, University of Vermont , Burlington, Vermont
| | | | - Katharine L Hamlington
- College of Medicine, University of Vermont , Burlington, Vermont.,University of Colorado at Children's Hospital Colorado , Aurora, Colorado
| | - Jason H T Bates
- College of Medicine, University of Vermont , Burlington, Vermont
| | - Bradford J Smith
- Department of Bioengineering, University of Colorado Denver , Aurora, Colorado.,College of Medicine, University of Vermont , Burlington, Vermont
| |
Collapse
|