1
|
Zajkowska M, Orywal K, Gryko M. Potential Utility of A Proliferation-Inducing Ligand (APRIL) in Colorectal Cancer. Int J Mol Sci 2024; 25:12496. [PMID: 39684206 DOI: 10.3390/ijms252312496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
APRIL (A proliferation-inducing ligand) is a member of the tumor necrosis factor superfamily that is overexpressed in a variety of malignant tumors, including colorectal cancer (CRC). Its key physiological roles include inducing the immunoglobulin switch and ensuring plasmocyte survival. In terms of pathological roles, APRIL antagonism has been identified as a key target in autoimmune diseases and immunoglobulin disorders. As previously demonstrated, several inflammatory processes occur at the site of neoplastic initial stages, and their local symptoms are difficult to detect, particularly in the early stages. That is why we chose to study the current literature on APRIL's role in the development of colorectal cancer. The main objective of our research was to investigate the role of APRIL in cancer initiation and its usefulness in the detection and therapy of CRC. Interestingly, the findings conducted so far show that the selected protein has a significant potential as a CRC biomarker and treatment target. Importantly, based on its concentration, it is possible to identify CRC patients, but whether the lesion has a benign or malignant nature, indicating the possibility of rapid detection of an ongoing disease process.
Collapse
Affiliation(s)
- Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok Clinical Hospital, 15-269 Białystok, Poland
| | - Karolina Orywal
- Department of Biochemical Diagnostics, Medical University of Bialystok Clinical Hospital, 15-269 Białystok, Poland
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland
| | - Mariusz Gryko
- Department of Surgical Nursing, Medical University of Białystok, 15-274 Białystok, Poland
- 1st Clinical Department of General and Endocrine Surgery, Medical University of Bialystok Clinical Hospital, 15-276 Białystok, Poland
| |
Collapse
|
2
|
Shang Y, Chen G, Liu L, Pan R, Li X, Shen H, Tan Y, Ma L, Tong X, Wang W, Chen X, Xia Z, Liu X, Zhou F. Clinical and immunological characteristics of high-risk double-hit multiple myeloma. BMC Cancer 2024; 24:1373. [PMID: 39523318 PMCID: PMC11552351 DOI: 10.1186/s12885-024-13124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
At present, the characteristics of double-hit multiple myeloma (DHMM) are unknown. We retrospectively analyzed the clinical data from 433 new diagnosed MM patients and found that DHMM have a higher β2-MG level and percentage of bone marrow plasma cell. Cox regression analysis showed that the prognosis of DHMM was not limited by clinical indicators. The abnormal proliferation of bone marrow in DHMM is obvious, and the proportion of poorly differentiated plasma cell is high. By collecting specimens from our center and performing flow cytometry to analyze the immunophenotypic and functional characteristics of lymphocyte subpopulations, we found that DHMM had a higher ratio of Tregs cells, and the proportion of iTregs cells was also significantly higher than non-DHMM (P < 0.05). Moreover, DHMM had higher levels of TGF-β1 and IL-10, and TGF-β1 and IL-10 were positively correlated with iTregs (P < 0.05). In addition, DHMM was highly expressed PD-1 on CD8 + T cells and had a higher proportion of CD38highTregs cells. In vitro we have shown that the addition of TGF-β1 antibody or CD38 antibody can effectively inhibit the proportion of CD38high Tregs. This study describes the characteristics of DHMM based on bicentric data, which is helpful to better provide theoretical support for the treatment of DHMM.
Collapse
Grants
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
Collapse
Affiliation(s)
- Yufeng Shang
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, P.R. China
| | - Guopeng Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Li Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Ruiyang Pan
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Xinqi Li
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Hui Shen
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Yuxin Tan
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Xiqin Tong
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Weida Wang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P.R. China
| | - Xiaoqin Chen
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P.R. China
| | - Zhongjun Xia
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P.R. China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China.
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China.
| |
Collapse
|
3
|
Lu K, Wang W, Liu Y, Xie C, Liu J, Xing L. Advancements in microenvironment-based therapies: transforming the landscape of multiple myeloma treatment. Front Oncol 2024; 14:1413494. [PMID: 39087026 PMCID: PMC11288838 DOI: 10.3389/fonc.2024.1413494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
Multiple myeloma (MM) is the most prevalent malignant monoclonal disease of plasma cells. There is mounting evidence that interactions with the bone marrow (BM) niche are essential for the differentiation, proliferation, survival, migration, and treatment resistance of myeloma cells. For this reason, gaining a deeper comprehension of how BM microenvironment compartments interact with myeloma cells may inspire new therapeutic ideas that enhance patient outcomes. This review will concentrate on the most recent findings regarding the mechanisms of interaction between microenvironment and MM and highlight research on treatment targeting the BM niche.
Collapse
Affiliation(s)
- Ke Lu
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wen Wang
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuntong Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Chao Xie
- Department of Respiratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiye Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Lijie Xing
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, Shandong, China
| |
Collapse
|
4
|
Ma C, Hao Y, Shi B, Wu Z, Jin D, Yu X, Jin B. Unveiling mitochondrial and ribosomal gene deregulation and tumor microenvironment dynamics in acute myeloid leukemia. Cancer Gene Ther 2024; 31:1034-1048. [PMID: 38806621 DOI: 10.1038/s41417-024-00788-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Acute myeloid leukemia (AML) is a malignant clonal hematopoietic disease with a poor prognosis. Understanding the interaction between leukemic cells and the tumor microenvironment (TME) can help predict the prognosis of leukemia and guide its treatment. Re-analyzing the scRNA-seq data from the CSC and G20 cohorts, using a Python-based pipeline including machine-learning-based scVI-tools, recapitulated the distinct hierarchical structure within the samples of AML patients. Weighted correlation network analysis (WGCNA) was conducted to construct a weighted gene co-expression network and to identify gene modules primarily focusing on hematopoietic stem cells (HSCs), multipotent progenitors (MPPs), and natural killer (NK) cells. The analysis revealed significant deregulation in gene modules associated with aerobic respiration and ribosomal/cytoplasmic translation. Cell-cell communications were elucidated by the CellChat package, revealing an imbalance of activating and inhibitory immune signaling pathways. Interception of genes upregulated in leukemic HSCs & MPPs as well as in NKG2A-high NK cells was used to construct prognostic models. Normal Cox and artificial neural network models based on 10 genes were developed. The study reveals the deregulation of mitochondrial and ribosomal genes in AML patients and suggests the co-occurrence of stimulatory and inhibitory factors in the AML TME.
Collapse
Affiliation(s)
- Chao Ma
- Institute of Cancer Stem Cell, Dalian Medical University, West Section Lvshun South Road, Dalian, 116044, Liaoning, China
| | - Yuchao Hao
- Department of Hematology, The Second Hospital of Dalian Medical University, West Section Lvshun South Road, Dalian, 116027, Liaoning, China
| | - Bo Shi
- Institute of Cancer Stem Cell, Dalian Medical University, West Section Lvshun South Road, Dalian, 116044, Liaoning, China
| | - Zheng Wu
- Institute of Cancer Stem Cell, Dalian Medical University, West Section Lvshun South Road, Dalian, 116044, Liaoning, China
| | - Di Jin
- Institute of Cancer Stem Cell, Dalian Medical University, West Section Lvshun South Road, Dalian, 116044, Liaoning, China
| | - Xiao Yu
- NHC Key Laboratory of Pneumoconiosis, The First Hospital of Shanxi Medical University, South Jiefang Road, Taiyuan, 030001, Shanxi, China.
| | - Bilian Jin
- Institute of Cancer Stem Cell, Dalian Medical University, West Section Lvshun South Road, Dalian, 116044, Liaoning, China.
| |
Collapse
|
5
|
Sheykhhasan M, Ahmadieh-Yazdi A, Vicidomini R, Poondla N, Tanzadehpanah H, Dirbaziyan A, Mahaki H, Manoochehri H, Kalhor N, Dama P. CAR T therapies in multiple myeloma: unleashing the future. Cancer Gene Ther 2024; 31:667-686. [PMID: 38438559 PMCID: PMC11101341 DOI: 10.1038/s41417-024-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/06/2024]
Abstract
In recent years, the field of cancer treatment has witnessed remarkable breakthroughs that have revolutionized the landscape of care for cancer patients. While traditional pillars such as surgery, chemotherapy, and radiation therapy have long been available, a cutting-edge therapeutic approach called CAR T-cell therapy has emerged as a game-changer in treating multiple myeloma (MM). This novel treatment method complements options like autologous stem cell transplants and immunomodulatory medications, such as proteasome inhibitors, by utilizing protein complexes or anti-CD38 antibodies with potent complement-dependent cytotoxic effects. Despite the challenges and obstacles associated with these treatments, the recent approval of the second FDA multiple myeloma CAR T-cell therapy has sparked immense promise in the field. Thus far, the results indicate its potential as a highly effective therapeutic solution. Moreover, ongoing preclinical and clinical trials are exploring the capabilities of CAR T-cells in targeting specific antigens on myeloma cells, offering hope for patients with relapsed/refractory MM (RRMM). These advancements have shown the potential for CAR T cell-based medicines or combination therapies to elicit greater treatment responses and minimize side effects. In this context, it is crucial to delve into the history and functions of CAR T-cells while acknowledging their limitations. We can strategize and develop innovative approaches to overcome these barriers by understanding their challenges. This article aims to provide insights into the application of CAR T-cells in treating MM, shedding light on their potential, limitations, and strategies employed to enhance their efficacy.
Collapse
Affiliation(s)
- Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Amirhossein Ahmadieh-Yazdi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi, University of Medical Sciences, Yazd, Iran
| | - Rosario Vicidomini
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashkan Dirbaziyan
- Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| | - Paola Dama
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
6
|
Dhodapkar MV. Immune-Pathogenesis of Myeloma. Hematol Oncol Clin North Am 2024; 38:281-291. [PMID: 38195307 DOI: 10.1016/j.hoc.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
This research indicates that monoclonal gammopathy of undetermined significance (MGUS) and myeloma may stem from chronic immune activation and inflammation, causing immune dysfunction and spatial immune exclusion. As the conditions progress, a shift toward myeloma involves ongoing immune impairment, affecting both innate and adaptive immunity. Intriguingly, even in advanced myeloma stages, susceptibility to immune effector cells persists. This insight highlights the intricate interplay between immune responses and the development of these conditions, paving the way for potential therapeutic interventions targeting immune modulation in the management of MGUS and myeloma.
Collapse
Affiliation(s)
- Madhav V Dhodapkar
- Department of Hematology/Medical Oncology, Emory University, Winship Cancer Institute, 1365 Clifton Road, Atlanta, GA 30332, USA.
| |
Collapse
|
7
|
Tavener SK, Jackson MI, Panickar KS. Immune-Modulating Effects of Low-Carbohydrate Ketogenic Foods in Healthy Canines. Curr Dev Nutr 2024; 8:102128. [PMID: 38590952 PMCID: PMC10999821 DOI: 10.1016/j.cdnut.2024.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 04/10/2024] Open
Abstract
Background Ketogenic foods limit digestible carbohydrates but contain high fat, and have antioxidant and anti-inflammatory effects as well as improving mitochondrial function. β-Hydroxybutyrate (BHB), 1 of the ketone bodies, reduces the proinflammatory NLR family pyrin domain containing 3 inflammasomes, as well as chemokines in cultures. Objectives We assessed the immune-modulating effects of 2 low-carbohydrate (LoCHO) foods varying in protein and fat and compared their effects with a food replete with high-carbohydrate (HiCHO) in healthy canines. Methods Dogs were fed control food [HiCHO; ketogenic ratio (KR: 0.46) followed by LoCHO_PROT (KR: 0.97), then LoCHO_FAT (KR: 1.63) or LoCHO_FAT followed by LoCHO_PROT. Each food was fed for 5 wk, with collections in the 5th wk; 15 wk feeding total. Gene expression for circulating inflammatory cytokines from 10 dogs was assessed using the Canine RT2 Profiler polymerase chain reaction array, and fold changes were calculated using the ΔΔCt method. Results LoCHO_FAT significantly increased circulating β-hydroxybutyrate compared with both HiCHO and LoCHO_PROT. When compared with HiCHO, there was a significant decrease in several proinflammatory cytokines/chemokines in LoCHO_PROT and LoCHO_FAT groups, including chemokine (C-C motif) ligand (CCL)1, CCL8, CCL13, CCL17, CCL24, chemokine (C-X3-C motif) ligand 1, chemokine (C-X-C motif) receptor 1, Interleukin-10 receptor alpha ((IL)-10RA), IL-1 receptor antagonist, IL-5, and secreted phosphoprotein 1 (all P < 0.05). Interestingly, a subset of inflammatory proteins that decreased in LoCHO_PROT but not in LoCHO_FAT included IL-33, IL-6 receptor, IL-7, IL-8, Nicotinamide phosphoribosyltransferase, and tumor necrosis factor (TNF) receptor superfamily member 11B. In contrast, the decrease in inflammatory markers in LoCHO_FAT, but not in LoCHO_PROT, included complement component 5, granulocyte colony-stimulating factor or G-CSF, interferon-γ, IL-3, IL-10RB, IL-17C, Tumor necrosis factor superfamily (TNFSF)13, TNFSF13B, and TNFSF14. Decreased concentrations of selected cytokines indicate that both low-carbohydrate foods exert an anti-inflammatory effect and provide a strong rationale for testing their efficacy in dogs with inflammatory conditions. Conclusions Both LoCHO_PROT and LoCHO_FAT foods might be important as part of immune-modulating therapeutic nutritional strategies to reduce inflammation to maintain health in canines. Our study identifies several inflammatory genes that are reduced when fed ketogenic food that were not previously reported.
Collapse
Affiliation(s)
- Selena K. Tavener
- Science and Technology Center, Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | - Matthew I. Jackson
- Science and Technology Center, Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | - Kiran S. Panickar
- Science and Technology Center, Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| |
Collapse
|
8
|
Wang X, Sun B, Wang Y, Gao P, Song J, Chang W, Xiao Z, Xi Y, Li Z, An F, Yan C. Research progress of targeted therapy regulating Th17/Treg balance in bone immune diseases. Front Immunol 2024; 15:1333993. [PMID: 38352872 PMCID: PMC10861655 DOI: 10.3389/fimmu.2024.1333993] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Rheumatoid arthritis (RA) and postmenopausal osteoporosis (PMOP) are common bone-immune diseases. The imbalance between helper (Th17) and regulatory T cells (Tregs) produced during differentiation of CD4+ T cells plays a key regulatory role in bone remodelling disorders in RA and PMOP. However, the specific regulatory mechanism of this imbalance in bone remodelling in RA and PMOP has not been clarified. Identifying the regulatory mechanism underlying the Th17/Treg imbalance in RA and PMOP during bone remodelling represents a key factor in the research and development of new drugs for bone immune diseases. In this review, the potential roles of Th17, Treg, and Th17/Treg imbalance in regulating bone remodelling in RA and PMOP have been summarised, and the potential mechanisms by which probiotics, traditional Chinese medicine compounds, and monomers maintain bone remodelling by regulating the Th17/Treg balance are expounded. The maintenance of Th17/Treg balance could be considered as an therapeutic alternative for the treatment of RA and PMOP. This study also summarizes the advantages and disadvantages of conventional treatments and the quality of life and rehabilitation of patients with RA and PMOP. The findings presented her will provide a better understanding of the close relationship between bone immunity and bone remodelling in chronic bone diseases and new ideas for future research, prevention, and treatment of bone immune diseases.
Collapse
Affiliation(s)
- Xiaxia Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Bai Sun
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yujie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhipan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yongbin Xi
- Orthopaedics Department, The No.2 People's Hospital of Lanzhou, Lanzhou, Gansu, China
| | - Zhonghong Li
- Pathological Research Centre, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fangyu An
- Teaching Experiment Training Centre, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
9
|
Chen H, Wang X, Wang Y, Chang X. What happens to regulatory T cells in multiple myeloma. Cell Death Discov 2023; 9:468. [PMID: 38129374 PMCID: PMC10739837 DOI: 10.1038/s41420-023-01765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Abnormal tumor microenvironment and immune escape in multiple myeloma (MM) are associated with regulatory T cells (Tregs), which play an important role in maintaining self-tolerance and regulating the overall immune response to infection or tumor cells. In patients with MM, there are abnormalities in the number, function and distribution of Tregs, and these abnormalities may be related to the disease stage, risk grade and prognosis of patients. During the treatment, Tregs have different responses to various treatment regiments, thus affecting the therapeutic effect of MM. It is also possible to predict the therapeutic response by observing the changes of Tregs. In addition to the above, we reviewed the application of Tregs in the treatment of MM. In conclusion, there is still much room for research on the mechanism and application of Tregs in MM.
Collapse
Affiliation(s)
- Huixian Chen
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xueling Wang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yan Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiaotian Chang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
10
|
Larson RC, Kann MC, Graham C, Mount CW, Castano AP, Lee WH, Bouffard AA, Takei HN, Almazan AJ, Scarfó I, Berger TR, Schmidts A, Frigault MJ, Gallagher KME, Maus MV. Anti-TACI single and dual-targeting CAR T cells overcome BCMA antigen loss in multiple myeloma. Nat Commun 2023; 14:7509. [PMID: 37980341 PMCID: PMC10657357 DOI: 10.1038/s41467-023-43416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023] Open
Abstract
Chimeric Antigen Receptor (CAR) T cells directed to B cell maturation antigen (BCMA) mediate profound responses in patients with multiple myeloma, but most patients do not achieve long-term complete remissions. In addition, recent evidence suggests that high-affinity binding to BCMA can result in on-target, off-tumor activity in the basal ganglia and can lead to fatal Parkinsonian-like disease. Here we develop CAR T cells against multiple myeloma using a binder to targeting transmembrane activator and CAML interactor (TACI) in mono and dual-specific formats with anti-BCMA. These CARs have robust, antigen-specific activity in vitro and in vivo. We also show that TACI RNA expression is limited in the basal ganglia, which may circumvent some of the toxicities recently reported with BCMA CARs. Thus, single-targeting TACI CARs may have a safer toxicity profile, whereas dual-specific BCMA-TACI CAR T cells have potential to avoid the antigen escape that can occur with single-antigen targeting.
Collapse
Affiliation(s)
- Rebecca C Larson
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Michael C Kann
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Charlotte Graham
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher W Mount
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ana P Castano
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Won-Ho Lee
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Amanda A Bouffard
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Hana N Takei
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Antonio J Almazan
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Irene Scarfó
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Trisha R Berger
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Andrea Schmidts
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew J Frigault
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kathleen M E Gallagher
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
11
|
Ni H, Chen Y. Differentiation, regulation and function of regulatory T cells in non-lymphoid tissues and tumors. Int Immunopharmacol 2023; 121:110429. [PMID: 37327512 DOI: 10.1016/j.intimp.2023.110429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Regulatory T cells (Tregs) play a substantial role in inhibiting excessive immune response. A large number of studies have focused on the tissue homeostasis maintenance and remodeling characteristics of Tregs in non-lymphoid tissues, such as the skin, colon, lung, brain, muscle, and adipose tissues. Herein, we overview the kinetics of Treg migration to non-lymphoid tissues and adaptation to the specific tissue microenvironment through the development of tissue-specific chemokine receptors, transcription factors, and phenotypes. Additionally, tumor-infiltrating Tregs (Ti-Tregs) play an important role in tumor generation and immunotherapy resistance. The phenotypes of Ti-Tregs are related to the histological location of the tumor and there is a large overlap between the transcripts of Ti-Tregs and those of tissue-specific Tregs. We recapitulate the molecular underpinnings of tissue-specific Tregs, which might shed new light on Treg-based therapeutic targets and biomarkers for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Hongbo Ni
- The First Clinical Medicine Faculty, China Medical University, Shenyang 110001, China
| | - Yinghan Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
12
|
Ennis S, Conforte A, O’Reilly E, Takanlu JS, Cichocka T, Dhami SP, Nicholson P, Krebs P, Ó Broin P, Szegezdi E. Cell-cell interactome of the hematopoietic niche and its changes in acute myeloid leukemia. iScience 2023; 26:106943. [PMID: 37332612 PMCID: PMC10275994 DOI: 10.1016/j.isci.2023.106943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/22/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
The bone marrow (BM) is a complex microenvironment, coordinating the production of billions of blood cells every day. Despite its essential role and its relevance to hematopoietic diseases, this environment remains poorly characterized. Here we present a high-resolution characterization of the niche in health and acute myeloid leukemia (AML) by establishing a single-cell gene expression database of 339,381 BM cells. We found significant changes in cell type proportions and gene expression in AML, indicating that the entire niche is disrupted. We then predicted interactions between hematopoietic stem and progenitor cells (HSPCs) and other BM cell types, revealing a remarkable expansion of predicted interactions in AML that promote HSPC-cell adhesion, immunosuppression, and cytokine signaling. In particular, predicted interactions involving transforming growth factor β1 (TGFB1) become widespread, and we show that this can drive AML cell quiescence in vitro. Our results highlight potential mechanisms of enhanced AML-HSPC competitiveness and a skewed microenvironment, fostering AML growth.
Collapse
Affiliation(s)
- Sarah Ennis
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
- Discipline of Bioinformatics, School of Mathematical & Statistical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Alessandra Conforte
- Apoptosis Research Centre, School of Biological & Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Eimear O’Reilly
- Apoptosis Research Centre, School of Biological & Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Javid Sabour Takanlu
- Apoptosis Research Centre, School of Biological & Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Tatiana Cichocka
- Apoptosis Research Centre, School of Biological & Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Sukhraj Pal Dhami
- Apoptosis Research Centre, School of Biological & Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Pamela Nicholson
- Next Generation Sequencing Platform, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Pilib Ó Broin
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
- Discipline of Bioinformatics, School of Mathematical & Statistical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Eva Szegezdi
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
- Apoptosis Research Centre, School of Biological & Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
13
|
Chu Y, Dai E, Li Y, Han G, Pei G, Ingram DR, Thakkar K, Qin JJ, Dang M, Le X, Hu C, Deng Q, Sinjab A, Gupta P, Wang R, Hao D, Peng F, Yan X, Liu Y, Song S, Zhang S, Heymach JV, Reuben A, Elamin YY, Pizzi MP, Lu Y, Lazcano R, Hu J, Li M, Curran M, Futreal A, Maitra A, Jazaeri AA, Ajani JA, Swanton C, Cheng XD, Abbas HA, Gillison M, Bhat K, Lazar AJ, Green M, Litchfield K, Kadara H, Yee C, Wang L. Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance. Nat Med 2023; 29:1550-1562. [PMID: 37248301 PMCID: PMC11421770 DOI: 10.1038/s41591-023-02371-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Tumor-infiltrating T cells offer a promising avenue for cancer treatment, yet their states remain to be fully characterized. Here we present a single-cell atlas of T cells from 308,048 transcriptomes across 16 cancer types, uncovering previously undescribed T cell states and heterogeneous subpopulations of follicular helper, regulatory and proliferative T cells. We identified a unique stress response state, TSTR, characterized by heat shock gene expression. TSTR cells are detectable in situ in the tumor microenvironment across various cancer types, mostly within lymphocyte aggregates or potential tertiary lymphoid structures in tumor beds or surrounding tumor edges. T cell states/compositions correlated with genomic, pathological and clinical features in 375 patients from 23 cohorts, including 171 patients who received immune checkpoint blockade therapy. We also found significantly upregulated heat shock gene expression in intratumoral CD4/CD8+ cells following immune checkpoint blockade treatment, particularly in nonresponsive tumors, suggesting a potential role of TSTR cells in immunotherapy resistance. Our well-annotated T cell reference maps, web portal and automatic alignment/annotation tool could provide valuable resources for T cell therapy optimization and biomarker discovery.
Collapse
Affiliation(s)
- Yanshuo Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enyu Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yating Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangsheng Pei
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Davis R Ingram
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krupa Thakkar
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Jiang-Jiang Qin
- Department of Gastric Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| | - Minghao Dang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Can Hu
- Department of Gastric Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| | - Qing Deng
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pravesh Gupta
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dapeng Hao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fuduan Peng
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinmiao Yan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yunhe Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaojun Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yasir Y Elamin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melissa P Pizzi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Lu
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Hu
- Department of Human Genetics, Emory School of Medicine, Atlanta, GA, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Xiang-Dong Cheng
- Department of Gastric Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| | - Hussein A Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maura Gillison
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krishna Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander J Lazar
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Michael Green
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin Litchfield
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Cassian Yee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
14
|
Lee L, Lim WC, Galas-Filipowicz D, Fung K, Taylor J, Patel D, Akbar Z, Alvarez Mediavilla E, Wawrzyniecka P, Shome D, Reijmers RM, Gregg T, Wood L, Day W, Cerec V, Ferrari M, Thomas S, Cordoba S, Onuoha S, Khokhar N, Peddareddigari V, Al-Hajj M, Cavet J, Zweegman S, Rodriguez-Justo M, Youg K, Pule M, Popat R. Limited efficacy of APRIL CAR in patients with multiple myeloma indicate challenges in the use of natural ligands for CAR T-cell therapy. J Immunother Cancer 2023; 11:e006699. [PMID: 37399355 DOI: 10.1136/jitc-2023-006699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND We used a proliferating ligand (APRIL) to construct a ligand-based third generation chimeric antigen receptor (CAR) able to target two myeloma antigens, B-cell maturation antigen (BCMA) and transmembrane activator and CAML interactor. METHODS The APRIL CAR was evaluated in a Phase 1 clinical trial (NCT03287804, AUTO2) in patients with relapsed, refractory multiple myeloma. Eleven patients received 13 doses, the first 15×106 CARs, and subsequent patients received 75,225,600 and 900×106 CARs in a 3+3 escalation design. RESULTS The APRIL CAR was well tolerated. Five (45.5%) patients developed Grade 1 cytokine release syndrome and there was no neurotoxicity. However, responses were only observed in 45.5% patients (1×very good partial response, 3×partial response, 1×minimal response). Exploring the mechanistic basis for poor responses, we then compared the APRIL CAR to two other BCMA CARs in a series of in vitro assays, observing reduced interleukin-2 secretion and lack of sustained tumor control by APRIL CAR regardless of transduction method or co-stimulatory domain. There was also impaired interferon signaling of APRIL CAR and no evidence of autoactivation. Thus focusing on APRIL itself, we confirmed similar affinity to BCMA and protein stability in comparison to BCMA CAR binders but reduced binding by cell-expressed APRIL to soluble BCMA and reduced avidity to tumor cells. This indicated either suboptimal folding or stability of membrane-bound APRIL attenuating CAR activation. CONCLUSIONS The APRIL CAR was well tolerated, but the clinical responses observed in AUTO2 were disappointing. Subsequently, when comparing the APRIL CAR to other BCMA CARs, we observed in vitro functional deficiencies due to reduced target binding by cell-expressed ligand.
Collapse
Affiliation(s)
- Lydia Lee
- Research Department of Haematology, UCL Cancer Institute, London, UK
| | | | | | - Kent Fung
- Research Department of Haematology, UCL Cancer Institute, London, UK
| | | | - Dominic Patel
- Department of Pathology, UCL Cancer Institute, London, UK
| | | | | | | | | | | | | | - Leigh Wood
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | | | | | | | | | | | | | | | - Jim Cavet
- The Christie NHS Foundation Trust, Manchester, UK
| | | | | | - Kwee Youg
- Research Department of Haematology, UCL Cancer Institute, London, UK
| | - Martin Pule
- Research Department of Haematology, UCL Cancer Institute, London, UK
- Autolus Ltd, London, UK
| | - Rakesh Popat
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
15
|
Moscvin M, Evans B, Bianchi G. Dissecting molecular mechanisms of immune microenvironment dysfunction in multiple myeloma and precursor conditions. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023; 9:17. [PMID: 38213954 PMCID: PMC10783205 DOI: 10.20517/2394-4722.2022.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Multiple myeloma (MM) is a disease of clonally differentiated plasma cells. MM is almost always preceded by precursor conditions, monoclonal gammopathy of unknown significance (MGUS), and smoldering MM (SMM) through largely unknown molecular events. Genetic alterations of the malignant plasma cells play a critical role in patient clinical outcomes. Del(17p), t(4;14), and additional chromosomal alterations such as del(1p32), gain(1q) and MYC translocations are involved in active MM evolution. Interestingly, these genetic alterations appear strikingly similar in transformed plasma cell (PC) clones from MGUS, SMM, and MM stages. Recent studies show that effectors of the innate and adaptive immune response show marked dysfunction and skewing towards a tolerant environment that favors disease progression. The MM myeloid compartment is characterized by myeloid-derived suppressor cells (MDSCs), dendritic cells as well as M2-like phenotype macrophages that promote immune evasion. Major deregulations are found in the lymphoid compartment as well, with skewing towards immune tolerant Th17 and Treg and inhibition of CD8+ cytotoxic and CD4+ activated effector T cells. In summary, this review will provide an overview of the complex cross-talk between MM plasma cells and immune cells in the microenvironment and the molecular mechanisms promoting progression from precursor states to full-blown myeloma.
Collapse
Affiliation(s)
- Maria Moscvin
- Department of Medicine, Division of Hematology, Brigham and Womens Hospital, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Benjamin Evans
- Department of Medicine, Division of Hematology, Brigham and Womens Hospital, Boston, MA 02115, USA
| | - Giada Bianchi
- Department of Medicine, Division of Hematology, Brigham and Womens Hospital, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
The BAFF-APRIL System in Cancer. Cancers (Basel) 2023; 15:cancers15061791. [PMID: 36980677 PMCID: PMC10046288 DOI: 10.3390/cancers15061791] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
B cell-activating factor (BAFF; also known as CD257, TNFSF13B, BLyS) and a proliferation-inducing ligand (APRIL; also known as CD256, TNFSF13) belong to the tumor necrosis factor (TNF) family. BAFF was initially discovered as a B-cell survival factor, whereas APRIL was first identified as a protein highly expressed in various cancers. These discoveries were followed by over two decades of extensive research effort, which identified overlapping signaling cascades between BAFF and APRIL, controlling immune homeostasis in health and driving pathogenesis in autoimmunity and cancer, the latter being the focus of this review. High levels of BAFF, APRIL, and their receptors have been detected in different cancers and found to be associated with disease severity and treatment response. Here, we have summarized the role of the BAFF-APRIL system in immune cell differentiation and immune tolerance and detailed its pathogenic functions in hematological and solid cancers. We also highlight the emerging therapeutics targeting the BAFF-APRIL system in different cancer types.
Collapse
|
17
|
Dhodapkar MV. The immune system in multiple myeloma and precursor states: Lessons and implications for immunotherapy and interception. Am J Hematol 2023; 98 Suppl 2:S4-S12. [PMID: 36194782 PMCID: PMC9918687 DOI: 10.1002/ajh.26752] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Multiple myeloma (MM) and its precursor monoclonal gammopathy of undetermined significance (MGUS) are distinct disorders that likely originate in the setting of chronic immune activation. Evolution of these lesions is impacted by cross-talk with both innate and adaptive immune systems of the host. Harnessing the immune system may, therefore, be an attractive strategy to prevent clinical malignancy. While clinical MM is characterized by both regional and systemic immune suppression and paresis, immune-based approaches, particularly redirecting T cells have shown remarkable efficacy in MM patients. Optimal application and sequencing of these new immune therapies and their integration into clinical MM management may depend on the underlying immune status, in turn impacted by host, tumor, and environmental features. Immune therapies carry the potential to achieve durable unmaintained responses and cures in MM.
Collapse
Affiliation(s)
- Madhav V Dhodapkar
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Xie HC, Wang ZG, Feng YH, Wang JX, Liu L, Yang XL, Li JF, Feng GW. Bone marrow mesenchymal stem cells repress renal transplant immune rejection by facilitating the APRIL phosphorylation to induce regulation B cell production. Physiol Genomics 2023; 55:90-100. [PMID: 36645668 DOI: 10.1152/physiolgenomics.00103.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) exert pivotal roles in suppressing immune rejection in organ transplantation. However, the function of BMSCs on immune rejection in renal transplantation remains unclear. This study aimed to evaluate the effect and underlying mechanism of BMSCs on immune rejection in renal transplantation. Following the establishment of the renal allograft mouse model, the isolated primary BMSCs were injected intravenously into the recipient mice. Enzyme-linked immunosorbent assay, flow cytometry, hematoxylin-eosin staining, and Western blot assays were conducted to investigate BMSCs' function in vivo and in vitro. Mechanistically, the underlying mechanism of BMSCs on immune rejection in renal transplantation was investigated in in vivo and in vitro models. Functionally, BMSCs alleviated the immune rejection in renal transplantation mice and facilitated B cell activation and the production of IL-10+ regulatory B cells (Bregs). Furthermore, the results of mechanism studies revealed that BMSCs induced the production of IL-10+ Bregs by facilitating a proliferation-inducing ligand (APRIL) phosphorylation to enhance immunosuppression and repressed renal transplant rejection by promoting APRIL phosphorylation to induce IL-10+ Bregs. BMSCs prevent renal transplant rejection by facilitating APRIL phosphorylation to induce IL-10+ Bregs.
Collapse
Affiliation(s)
- Hong-Chang Xie
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Gang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong-Hua Feng
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun-Xiang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Liu
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xian-Lei Yang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin-Feng Li
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gui-Wen Feng
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Bertuglia G, Cani L, Larocca A, Gay F, D'Agostino M. Normalization of the Immunological Microenvironment and Sustained Minimal Residual Disease Negativity: Do We Need Both for Long-Term Control of Multiple Myeloma? Int J Mol Sci 2022; 23:15879. [PMID: 36555520 PMCID: PMC9781462 DOI: 10.3390/ijms232415879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Over the past two decades, the treatment landscape for multiple myeloma (MM) has progressed significantly, with the introduction of several new drug classes that have greatly improved patient outcomes. At present, it is well known how the bone marrow (BM) microenvironment (ME) exerts an immunosuppressive action leading to an exhaustion of the immune system cells and promoting the proliferation and sustenance of tumor plasma cells. Therefore, having drugs that can reconstitute a healthy BM ME can improve results in MM patients. Recent findings clearly demonstrated that achieving minimal residual disease (MRD) negativity and sustaining MRD negativity over time play a pivotal prognostic role. However, despite the achievement of MRD negativity, patients may still relapse. The understanding of immunologic changes in the BM ME during treatment, complemented by a deeper knowledge of plasma cell genomics and biology, will be critical to develop future therapies to sustain MRD negativity over time and possibly achieve an operational cure. In this review, we focus on the components of the BM ME and their role in MM, on the prognostic significance of MRD negativity and, finally, on the relative contribution of tumor plasma cell biology and BM ME to long-term disease control.
Collapse
Affiliation(s)
- Giuseppe Bertuglia
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Lorenzo Cani
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Alessandra Larocca
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Francesca Gay
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Mattia D'Agostino
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| |
Collapse
|
20
|
Advancing Biologic Therapy for Refractory Autoimmune Hepatitis. Dig Dis Sci 2022; 67:4979-5005. [PMID: 35147819 DOI: 10.1007/s10620-021-07378-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/27/2021] [Indexed: 01/05/2023]
Abstract
Biologic agents may satisfy an unmet clinical need for treatment of refractory autoimmune hepatitis. The goals of this review are to present the types and results of biologic therapy for refractory autoimmune hepatitis, indicate opportunities to improve and expand biologic treatment, and encourage comparative clinical trials. English abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and secondary and tertiary bibliographies were developed. Rituximab (monoclonal antibodies against CD20 on B cells), infliximab (monoclonal antibodies against tumor necrosis factor-alpha), low-dose recombinant interleukin 2 (regulatory T cell promoter), and belimumab (monoclonal antibodies against B cell activating factor) have induced laboratory improvement in small cohorts with refractory autoimmune hepatitis. Ianalumab (monoclonal antibodies against the receptor for B cell activating factor) is in clinical trial. These agents target critical pathogenic pathways, but they may also have serious side effects. Blockade of the B cell activating factor or its receptors may disrupt pivotal B and T cell responses, and recombinant interleukin 2 complexed with certain interleukin 2 antibodies may selectively expand the regulatory T cell population. A proliferation-inducing ligand that enhances T cell proliferation and survival is an unevaluated, potentially pivotal, therapeutic target. Fully human antibodies, expanded target options, improved targeting precision, more effective delivery systems, and biosimilar agents promise to improve efficacy, safety, and accessibility. In conclusion, biologic agents target key pathogenic pathways in autoimmune hepatitis, and early experiences in refractory disease encourage clarification of the preferred target, rigorous clinical trial, and comparative evaluations.
Collapse
|
21
|
Monitoring of Soluble Forms of BAFF System (BAFF, APRIL, sR-BAFF, sTACI and sBCMA) in Kidney Transplantation. Arch Immunol Ther Exp (Warsz) 2022; 70:21. [PMID: 36136146 DOI: 10.1007/s00005-022-00659-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/03/2022] [Indexed: 11/02/2022]
Abstract
BAFF system plays an essential role in B cells homeostasis and tolerance, although it has widely not been tested in transplantation with doubtful results. The main purpose was to study the BAFF soluble forms and their correlation with acute rejection (AR) and donor-specific antibodies production. Serum levels of BAFF, APRIL, and soluble forms of their receptors were analyzed in renal recipients with and without acute rejection (AR/NAR) appearance. All molecules were evaluated at pre- and post-transplantation. sTACI showed a significant correlation with BAFF and sR-BAFF levels, and sBCMA also showed a positive correlation with sAPRIL levels. A significant increase in sAPRIL levels in patients suffering AR was also found, and ROC curves analysis showed an AUC = 0.724, a concentration of 6.05 ng/ml (sensitivity: 66.7%; specificity: 73.3%), the best cutoff point for predicting AR. In the post-transplant dynamics of sAPRIL levels in the longitudinal cohort, we observed a significant decrease at 3 and 6 month post-transplantation compared to pretransplantation status. We also observed that recipients with high pre-transplant levels of sAPRIL generated antibodies earlier than those with lower sAPRIL levels, although their long-term post-transplantation was not different. Our results show that elevated serum levels of APRIL may be helpful as a biomarker for the diagnosis of AR, although the longitudinal study shows that it is not helpful as a prognostic biomarker.
Collapse
|
22
|
Neumeister P, Schulz E, Pansy K, Szmyra M, Deutsch AJA. Targeting the Microenvironment for Treating Multiple Myeloma. Int J Mol Sci 2022; 23:ijms23147627. [PMID: 35886976 PMCID: PMC9317002 DOI: 10.3390/ijms23147627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 12/23/2022] Open
Abstract
Multiple myeloma (MM) is a malignant, incurable disease characterized by the expansion of monoclonal terminally differentiated plasma cells in the bone marrow. MM is consistently preceded by an asymptomatic monoclonal gammopathy of undetermined significance, and in the absence of myeloma defining events followed by a stage termed smoldering multiple myeloma (SMM), which finally progresses to active myeloma if signs of organ damage are present. The reciprocal interaction between tumor cells and the tumor microenvironment plays a crucial role in the development of MM and the establishment of a tumor-promoting stroma facilitates tumor growth and myeloma progression. Since myeloma cells depend on signals from the bone marrow microenvironment (BMME) for their survival, therapeutic interventions targeting the BMME are a novel and successful strategy for myeloma care. Here, we describe the complex interplay between myeloma cells and the cellular components of the BMME that is essential for MM development and progression. Finally, we present BMME modifying treatment options such as anti-CD38 based therapies, immunomodulatory drugs (IMiDs), CAR T-cell therapies, bispecific antibodies, and antibody-drug conjugates which have significantly improved the long-term outcome of myeloma patients, and thus represent novel therapeutic standards.
Collapse
Affiliation(s)
- Peter Neumeister
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (E.S.); (K.P.); (M.S.); (A.J.D.)
- Correspondence:
| | - Eduard Schulz
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (E.S.); (K.P.); (M.S.); (A.J.D.)
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katrin Pansy
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (E.S.); (K.P.); (M.S.); (A.J.D.)
| | - Marta Szmyra
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (E.S.); (K.P.); (M.S.); (A.J.D.)
| | - Alexander JA Deutsch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (E.S.); (K.P.); (M.S.); (A.J.D.)
| |
Collapse
|
23
|
Gaydosik AM, Stonesifer CJ, Khaleel AE, Geskin LJ, Fuschiotti P. Single-Cell RNA Sequencing Unveils the Clonal and Transcriptional Landscape of Cutaneous T-Cell Lymphomas. Clin Cancer Res 2022; 28:2610-2622. [PMID: 35421230 PMCID: PMC9197926 DOI: 10.1158/1078-0432.ccr-21-4437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/24/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Clonal malignant T lymphocytes constitute only a fraction of T cells in mycosis fungoides skin tumors and in the leukemic blood of Sézary syndrome, the classic types of cutaneous T-cell lymphomas. However, lack of markers specific for malignant lymphocytes prevents distinguishing them from benign T cells, thus delaying diagnosis and the development of targeted treatments. Here we applied single-cell methods to assess the transcriptional profiles of both malignant T-cell clones and reactive T lymphocytes directly in mycosis fungoides/Sézary syndrome patient samples. EXPERIMENTAL DESIGN Single-cell RNA sequencing was used to profile the T-cell immune repertoire simultaneously with gene expression in CD3+ lymphocytes from mycosis fungoides and healthy skin biopsies as well as from Sézary syndrome and control blood samples. Transcriptional data were validated in additional advanced-stage mycosis fungoides/Sézary syndrome skin and blood samples by immunofluorescence microscopy. RESULTS Several nonoverlapping clonotypes are expanded in the skin and blood of individual advanced-stage mycosis fungoides/Sézary syndrome patient samples, including a dominant malignant clone as well as additional minor malignant and reactive clones. While we detected upregulation of patient-specific as well as mycosis fungoides- and Sézary syndrome-specific oncogenic pathways within individual malignant clones, we also detected upregulation of several common pathways that included genes associated with cancer cell metabolism, cell-cycle regulation, de novo nucleotide biosynthesis, and invasion. CONCLUSIONS Our analysis unveils new insights into mycosis fungoides/Sézary syndrome pathogenesis by providing an unprecedented report of the transcriptional profile of malignant T-cell clones in the skin and blood of individual patients and offers novel prospective targets for personalized therapy.
Collapse
Affiliation(s)
- Alyxzandria M. Gaydosik
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261, USA
| | | | | | | | - Patrizia Fuschiotti
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261, USA,Correspondence to: Patrizia Fuschiotti, Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, S709 BST, 200 Lothrop Street, Pittsburgh PA 15261, USA. Tel.: +1-412-648-9385;
| |
Collapse
|
24
|
DNMT3a-Mediated Enterocyte Barrier Dysfunction Contributes to Ulcerative Colitis via Facilitating the Interaction of Enterocytes and B Cells. Mediators Inflamm 2022; 2022:4862763. [PMID: 35574272 PMCID: PMC9106515 DOI: 10.1155/2022/4862763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/04/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022] Open
Abstract
Objective Dysfunction of the enterocyte barrier is associated with the development of ulcerative colitis (UC). This study was aimed at exploring the effect of DNMT3a on enterocyte barrier function in the progression of UC and the underlying mechanism. Method Mice were given 3.5% dextran sodium sulphate (DSS) in drinking water to induce colitis. The primary intestinal epithelial cells (IECs) were isolated and treated with lipopolysaccharide (LPS) to establish an in vitro inflammatory model. We detected mouse clinical symptoms, histopathological damage, enterocyte barrier function, B cell differentiation, DNA methylation level, and cytokine production. Subsequently, the effect of DNMT3a from IECs on B cell differentiation was explored by a cocultural experiment. Result DSS treatment significantly reduced the body weight and colonic length, increased disease activity index (DAI), and aggravated histopathological damage. In addition, DSS treatment induced downregulation of tight junction (TJ) protein, anti-inflammatory cytokines (IL-10 and TGF-β), and the number of anti-inflammatory B cells (CD1d+) in intestinal epithelial tissues, while upregulated proinflammatory cytokines (IL-6 and TNF-α), proinflammatory B cells (CD138+), and DNA methylation level. Further in vitro results revealed that DNMT3a silencing or TNFSF13 overexpression in IECs partly abolished the result of LPS-induced epithelial barrier dysfunction, as well as abrogated the effect of IEC-regulated B cell differentiation, while si-TACI transfection reversed these effects. Moreover, DNMT3a silencing decreased TNFSF13 methylation level and induced CD1d+ B cell differentiation, and the si-TNFSF13 transfection reversed the trend of B cell differentiation but did not affect TNFSF13 methylation level. Conclusion Our study suggests that DNMT3a induces enterocyte barrier dysfunction to aggravate UC progression via TNFSF13-mediated interaction of enterocyte and B cells.
Collapse
|
25
|
He C, Zhang M, Liu L, Han Y, Xu Z, Xiong Y, Yan F, Su D, Chen H, Zheng Y, Cheng F. Cellular membrane-based vesicles displaying a reconstructed B cell maturation antigen for multiple myeloma therapy by dual targeting APRIL and BAFF. Acta Biomater 2022; 143:406-417. [PMID: 35218967 DOI: 10.1016/j.actbio.2022.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/30/2022] [Accepted: 02/18/2022] [Indexed: 11/19/2022]
Abstract
Excessive secretion of cytokines (such as APRIL and BAFF) in the bone marrow microenvironment (BMM) plays an essential role in the formation of relapsed or refractory multiple myeloma (MM). Blocking the binding of excessive cytokines to their receptors is becoming a promising approach for MM therapy. Here, we proposed a strategy of engineering cell membrane-based nanovesicles (NVs) to reconstruct B cell maturation antigen (BCMA), a receptor of APRIL and BAFF, to capture excess APRIL/BAFF in BMM as a bait protein. Our results showed that reconstructed BCMA expressed on the membrane of NVs (Re-BCMA-NVs) retained the ability of binding to soluble and surface-bound APRIL/BAFF in BMM. Consequently, Re-BCMA-NVs blocked the activation of the NF-κB pathway, downregulating the expression of anti-apoptosis genes and cell cycle-related genes, and hence inhibiting MM cell survival. Importantly, Re-BCMA-NVs showed a synergistic anti-MM effect when administrated together with bortezomib (BTZ) in vitro and in vivo. Our NVs targeting multiple cytokines in cancer microenvironment provides a solution to enhance sensitivity of MM cells to BTZ-based therapy. STATEMENT OF SIGNIFICANCE: Excessive APRIL and BAFF is reported to promote the survival of MM cell and facilitate the formation of resistance to bortezomib therapy. In this study, we bioengineered cell membrane derived reconstructed BCMA nanovesicles (Re-BCMA-NVs) to capture both soluble and cell-surface APRIL and BAFF. These NVs inhibited the activation of NF-κB pathway and thus inhibit the survival of MM cells in 2D, 3D and subcutaneous mouse tumor models. Importantly, Re-BCMA-NVs showed a synergistic anti-MM effect when administrated together with bortezomib in vitro and in vivo. Taken together, our NVs targeting multiple cytokines in cancer microenvironment provides a solution to enhance sensitivity of MM cells to bortezomib-based therapy.
Collapse
Affiliation(s)
- Chao He
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Manqi Zhang
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Lingling Liu
- Department of Hematology, Institute of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong, China
| | - Yuhang Han
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhanxue Xu
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yue Xiong
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Fuxia Yan
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Dandan Su
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Hongbo Chen
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yongjiang Zheng
- Department of Hematology, Institute of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong, China.
| | - Fang Cheng
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
26
|
Wang J, Yang J, Kopeček J. Nanomedicines in B cell-targeting therapies. Acta Biomater 2022; 137:1-19. [PMID: 34687954 PMCID: PMC8678319 DOI: 10.1016/j.actbio.2021.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
B cells play multiple roles in immune responses related to autoimmune diseases as well as different types of cancers. As such, strategies focused on B cell targeting attracted wide interest and developed intensively. There are several common mechanisms various B cell targeting therapies have relied on, including direct B cell depletion, modulation of B cell antigen receptor (BCR) signaling, targeting B cell survival factors, targeting the B cell and T cell costimulation, and immune checkpoint blockade. Nanocarriers, used as drug delivery vehicles, possess numerous advantages to low molecular weight drugs, reducing drug toxicity, enhancing blood circulation time, as well as augmenting targeting efficacy and improving therapeutic effect. Herein, we review the commonly used targets involved in B cell targeting approaches and the utilization of various nanocarriers as B cell-targeted delivery vehicles. STATEMENT OF SIGNIFICANCE: As B cells are engaged significantly in the development of many kinds of diseases, utilization of nanomedicines in B cell depletion therapies have been rapidly developed. Although numerous studies focused on B cell targeting have already been done, there are still various potential receptors awaiting further investigation. This review summarizes the most relevant studies that utilized nanotechnologies associated with different B cell depletion approaches, providing a useful tool for selection of receptors, agents and/or nanocarriers matching specific diseases. Along with uncovering new targets in the function map of B cells, there will be a growing number of candidates that can benefit from nanoscale drug delivery.
Collapse
Affiliation(s)
- Jiawei Wang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
27
|
Cho SF, Xing L, Anderson KC, Tai YT. Promising Antigens for the New Frontier of Targeted Immunotherapy in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13236136. [PMID: 34885245 PMCID: PMC8657018 DOI: 10.3390/cancers13236136] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Defining the specificity and biological sequalae induced by receptors differentiated expressed in multiple myeloma cells are critical for the development of effective immunotherapies based on monoclonal antibodies. Ongoing studies continue to discover new antigens with superior tumor selectivity and defined function in regulating the pathophysiology of myeloma cells directly or indirectly in the immunosuppressive bone marrow microenvironment. Meanwhile, it is urgent to identify mechanisms of immune resistance and design more potent immunotherapies, alone and/or with best combination partners to further prolong anti-MM immunity. Abstract The incorporation of novel agents in recent treatments in multiple myeloma (MM) has improved the clinical outcome of patients. Specifically, the approval of monoclonal antibody (MoAb) against CD38 (daratumumab) and SLAMF7 (elotuzumab) in relapsed and refractory MM (RRMM) represents an important milestone in the development of targeted immunotherapy in MM. These MoAb-based agents significantly induce cytotoxicity of MM cells via multiple effector-dependent mechanisms and can further induce immunomodulation to repair a dysfunctional tumor immune microenvironment. Recently, targeting B cell maturation antigen (BCMA), an even MM-specific antigen, has shown high therapeutic activities by chimeric antigen receptor T cells (CAR T), antibody-drug conjugate (ADC), bispecific T-cell engager (BiTE), as well as bispecific antibody (BiAb), with some already approved for heavily pretreated RRMM patients. New antigens, such as orphan G protein-coupled receptor class C group 5 member D (GPRC5D) and FcRH5, were identified and rapidly moved to ongoing clinical studies. We here summarized the pathobiological function of key MM antigens and the status of the corresponding immunotherapies. The potential challenges and emerging treatment strategies are also discussed.
Collapse
Affiliation(s)
- Shih-Feng Cho
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; (S.-F.C.); (K.C.A.)
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Lijie Xing
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
| | - Kenneth C. Anderson
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; (S.-F.C.); (K.C.A.)
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; (S.-F.C.); (K.C.A.)
- Correspondence: ; Tel.: +1-617-632-3875; Fax: +1-617-632-2140
| |
Collapse
|
28
|
Decellularized ECM derived from normal bone involved in the viability and chemo-sensitivity in multiple myeloma cells. Exp Cell Res 2021; 408:112870. [PMID: 34648843 DOI: 10.1016/j.yexcr.2021.112870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022]
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy. The progression of MM is closely related to the bone microenvironment. Bone matrix proteins are remodeled and manipulated to govern cancer growth during the process of MM. However the role of normal bone extracellular matrix in MM is still unclear. In this study the decellularized extracellular matrix derived from normal SD rats' skulls (N-dECM) was prepared by decellularization technology. The CCK 8 assay and the dead-live cell kit assay were used to determine the viability of MM cells and the sensitivity to bortezomib. The Realtime PCR and Western blot assay were used to assay the mRNA and protein related to MM. Under the treatment of N-dECM, we found that the viability of MM cells was inhibited and the sensitivity of MM cells to bortezomib was increased. Additionally, the expression levels of APRIL and TACI, which participated in the progression of MM, were significantly decreased in MM cells. It suggested that N-dECM might inhibit the development of MM via APRIL-TACI axis, and our study may provide a novel and potential biomaterial for MM therapy.
Collapse
|
29
|
Chen R, Wang X, Dai Z, Wang Z, Wu W, Hu Z, Zhang X, Liu Z, Zhang H, Cheng Q. TNFSF13 Is a Novel Onco-Inflammatory Marker and Correlates With Immune Infiltration in Gliomas. Front Immunol 2021; 12:713757. [PMID: 34712225 PMCID: PMC8546343 DOI: 10.3389/fimmu.2021.713757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Existing therapeutic strategies for gliomas are restricted; hence, exploration for novel diagnostic indicator and treatment is essential. Here, we performed bioinformatic analyses for TNFSF13 (also known as APRIL), a proliferation-inducing ligand of the tumor necrosis factor (TNF) superfamily, aiming to assess its potential for predicting glioma patient’s prognosis and targeted therapy. TNFSF13 expression was upregulated in the increase of tumor grades based on Xiangya cohort. In high TNFSF13 gliomas, somatic mutation was proved to correlate with amplification of EGFR and deletion of CDKN2A; while mutation of IDH1 was more frequently observed in low TNFSF13 group. We also confirmed the positive correlation between TNFSF13 and infiltrating immune and stromal cells in glioma microenvironment. Further, TNFSF13 was found to be involved in immunosuppression via diverse immunoregulation pathways and was associated with other immune checkpoints and inflammation. Single-cell sequencing revealed an abundant expression of TNFSF13 in neoplastic cells and M2 macrophages, which TNFSF13 might potentially regulate the cell communication via IL-8, C3, and CD44. Lastly, TNFSF13 mediated the activities of transcription factors including FOXO3, MEIS2, and IRF8. Our analyses demonstrated the relevance between TNFSF13 and glioma progress and indicated the potential of TNFSF13 as a novel diagnostic onco-inflammatory biomarker and immunotherapy target of gliomas.
Collapse
Affiliation(s)
- Rui Chen
- Department of Neurosurgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xinxing Wang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengang Hu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Czaja AJ. Review article: targeting the B cell activation system in autoimmune hepatitis. Aliment Pharmacol Ther 2021; 54:902-922. [PMID: 34506662 DOI: 10.1111/apt.16574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/30/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The B cell activation system, consisting of B cell activating factor and a proliferation-inducing ligand, may have pathogenic effects in autoimmune hepatitis. AIMS To describe the biological actions of the B cell activation system, indicate its possible role in autoimmune diseases, and evaluate its prospects as a therapeutic target in autoimmune hepatitis METHODS: English abstracts were identified in PubMed by multiple search terms. Full length articles were selected for review, and secondary and tertiary bibliographies were developed. RESULTS The B cell activating factor is crucial for the maturation and survival of B cells, and it can co-stimulate T cell activation, proliferation, and survival. It can also modulate the immune response by inducing interleukin 10 production by regulatory B cells. A proliferation-inducing ligand modulates and diversifies the antibody response by inducing class-switch recombination in B cells. It can also increase the proliferation, survival, and antigen activation of T cells. These immune stimulatory actions can be modulated by inducing proliferation of regulatory T cells. The B cell activation system has been implicated in diverse autoimmune diseases, and therapeutic blockade is a management strategy now being evaluated in autoimmune hepatitis. CONCLUSIONS The B cell activation system has profound effects on B and T cell function in autoimmune diseases. Blockade therapy is being actively evaluated in autoimmune hepatitis. Clarification of the critical pathogenic components of the B cell activation system will improve the targeting, efficacy, and safety of blockade therapy in this disease.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
31
|
Shelyakin PV, Lupyr KR, Egorov ES, Kofiadi IA, Staroverov DB, Kasatskaya SA, Kriukova VV, Shagina IA, Merzlyak EM, Nakonechnaya TO, Latysheva EA, Manto IA, Khaitov MR, Lukyanov SA, Chudakov DM, Britanova OV. Naïve Regulatory T Cell Subset Is Altered in X-Linked Agammaglobulinemia. Front Immunol 2021; 12:697307. [PMID: 34489944 PMCID: PMC8417104 DOI: 10.3389/fimmu.2021.697307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/29/2021] [Indexed: 11/14/2022] Open
Abstract
The interplay between T- and B-cell compartments during naïve, effector and memory T cell maturation is critical for a balanced immune response. Primary B-cell immunodeficiency arising from X-linked agammaglobulinemia (XLA) offers a model to explore B cell impact on T cell subsets, starting from the thymic selection. Here we investigated characteristics of naïve and effector T cell subsets in XLA patients, revealing prominent alterations in the corresponding T-cell receptor (TCR) repertoires. We observed immunosenescence in terms of decreased diversity of naïve CD4+ and CD8+ TCR repertoires in XLA donors. The most substantial alterations were found within naïve CD4+ subsets, and we have investigated these in greater detail. In particular, increased clonality and convergence, along with shorter CDR3 regions, suggested narrower focused antigen-specific maturation of thymus-derived naïve Treg (CD4+CD45RA+CD27+CD25+) in the absence of B cells - normally presenting diverse self and commensal antigens. The naïve Treg proportion among naïve CD4 T cells was decreased in XLA patients, supporting the concept of impaired thymic naïve Treg selection. Furthermore, the naïve Treg subset showed prominent differences at the transcriptome level, including increased expression of genes specific for antigen-presenting and myeloid cells. Altogether, our findings suggest active B cell involvement in CD4 T cell subsets maturation, including B cell-dependent expansion of the naïve Treg TCR repertoire that enables better control of self-reactive T cells.
Collapse
Affiliation(s)
- Pavel V Shelyakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ksenia R Lupyr
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Evgeny S Egorov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ilya A Kofiadi
- FSBI "NRC Institute of Immunology" FMBA of Russia, Moscow, Russia
| | - Dmitriy B Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Sofya A Kasatskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Valeriia V Kriukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Irina A Shagina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ekaterina M Merzlyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Tatiana O Nakonechnaya
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Irina A Manto
- FSBI "NRC Institute of Immunology" FMBA of Russia, Moscow, Russia
| | - Musa R Khaitov
- FSBI "NRC Institute of Immunology" FMBA of Russia, Moscow, Russia
| | - Sergey A Lukyanov
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Olga V Britanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
32
|
Xing L, Wang S, Liu J, Yu T, Chen H, Wen K, Li Y, Lin L, Hsieh PA, Cho SF, An G, Qiu L, Kinneer K, Munshi N, Anderson KC, Tai YT. BCMA-Specific ADC MEDI2228 and Daratumumab Induce Synergistic Myeloma Cytotoxicity via IFN-Driven Immune Responses and Enhanced CD38 Expression. Clin Cancer Res 2021; 27:5376-5388. [PMID: 34301753 DOI: 10.1158/1078-0432.ccr-21-1621] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/11/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Efforts are required to improve the potency and durability of CD38- and BCMA-based immunotherapies in human multiple myeloma. We here delineated the molecular and cellular mechanisms underlying novel immunomodulatory effects triggered by BCMA pyrrolobenzodiazepine (PBD) antibody drug conjugate (ADC) MEDI2228 which can augment efficacy of these immunotherapies. EXPERIMENTAL DESIGN MEDI2228-induced transcriptional and protein changes were investigated to define significantly impacted genes and signaling cascades in multiple myeloma cells. Mechanisms whereby MEDI2228 combination therapies can enhance cytotoxicity or overcome drug resistance in multiple myeloma cell lines and patient multiple myeloma cells were defined using in vitro models of tumor in the bone marrow (BM) microenvironment, as well as in human natural killer (NK)-reconstituted NOD/SCID gamma (NSG) mice bearing MM1S tumors. RESULTS MEDI2228 enriched IFN I signaling and enhanced expression of IFN-stimulated genes in multiple myeloma cell lines following the induction of DNA damage-ATM/ATR-CHK1/2 pathways. It activated cGAS-STING-TBK1-IRF3 and STAT1-IRF1-signaling cascades and increased CD38 expression in multiple myeloma cells but did not increase CD38 expression in BCMA-negative NK effector cells. It overcame CD38 downregulation on multiple myeloma cells triggered by IL6 and patient BM stromal cell-culture supernatant via activation of STAT1-IRF1, even in immunomodulatory drug (IMiD)- and bortezomib-resistant multiple myeloma cells. In vitro and in vivo upregulation of NKG2D ligands and CD38 in MEDI2228-treated multiple myeloma cells was further associated with synergistic daratumumab (Dara) CD38 MoAb-triggered NK-mediated cytotoxicity of both cell lines and autologous drug-resistant patient multiple myeloma cells. CONCLUSIONS These results provide the basis for clinical evaluation of combination MEDI2228 with Dara to further improve patient outcome in multiple myeloma.
Collapse
Affiliation(s)
- Lijie Xing
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Su Wang
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
| | - Jiye Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Tengteng Yu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Hailin Chen
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Kenneth Wen
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Yuyin Li
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
- School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin China
| | - Liang Lin
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Phillip A Hsieh
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Shih-Feng Cho
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Gang An
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | | | - Nikhil Munshi
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts
| |
Collapse
|
33
|
Waller RG, Klein RJ, Vijai J, McKay JD, Clay-Gilmour A, Wei X, Madsen MJ, Sborov DW, Curtin K, Slager SL, Offit K, Vachon CM, Lipkin SM, Dumontet C, Camp NJ. Sequencing at lymphoid neoplasm susceptibility loci maps six myeloma risk genes. Hum Mol Genet 2021; 30:1142-1153. [PMID: 33751038 PMCID: PMC8188404 DOI: 10.1093/hmg/ddab066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/14/2022] Open
Abstract
Inherited genetic risk factors play a role in multiple myeloma (MM), yet considerable missing heritability exists. Rare risk variants at genome-wide association study (GWAS) loci are a new avenue to explore. Pleiotropy between lymphoid neoplasms (LNs) has been suggested in family history and genetic studies, but no studies have interrogated sequencing for pleiotropic genes or rare risk variants. Sequencing genetically enriched cases can help discover rarer variants. We analyzed exome sequencing in familial or early-onset MM cases to identify rare, functionally relevant variants near GWAS loci for a range of LNs. A total of 149 distinct and significant LN GWAS loci have been published. We identified six recurrent, rare, potentially deleterious variants within 5 kb of significant GWAS single nucleotide polymorphisms in 75 MM cases. Mutations were observed in BTNL2, EOMES, TNFRSF13B, IRF8, ACOXL and TSPAN32. All six genes replicated in an independent set of 255 early-onset MM or familial MM or precursor cases. Expansion of our analyses to the full length of these six genes resulted in a list of 39 rare and deleterious variants, seven of which segregated in MM families. Three genes also had significant rare variant burden in 733 sporadic MM cases compared with 935 control individuals: IRF8 (P = 1.0 × 10-6), EOMES (P = 6.0 × 10-6) and BTNL2 (P = 2.1 × 10-3). Together, our results implicate six genes in MM risk, provide support for genetic pleiotropy between LN subtypes and demonstrate the utility of sequencing genetically enriched cases to identify functionally relevant variants near GWAS loci.
Collapse
MESH Headings
- Acyl-CoA Oxidase/genetics
- Butyrophilins/genetics
- Female
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Hodgkin Disease/genetics
- Hodgkin Disease/pathology
- Humans
- Interferon Regulatory Factors/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocytes/pathology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Multiple Myeloma/genetics
- Multiple Myeloma/pathology
- Polymorphism, Single Nucleotide/genetics
- Risk Factors
- T-Box Domain Proteins/genetics
- Tetraspanins/genetics
- Transmembrane Activator and CAML Interactor Protein/genetics
- Exome Sequencing
Collapse
Affiliation(s)
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute for Data Science and Genomic Technology, New York, NY 10029-5674, USA
| | - Joseph Vijai
- Department of Medicine, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - James D McKay
- Genetic Cancer Susceptibility, International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Alyssa Clay-Gilmour
- Department of Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Xiaomu Wei
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michael J Madsen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Douglas W Sborov
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Karen Curtin
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Susan L Slager
- Department of Health Sciences, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Kenneth Offit
- Department of Medicine, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Celine M Vachon
- Department of Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven M Lipkin
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Charles Dumontet
- INSERM 1052, CNRS 5286, University of Lyon, 69361 Lyon Cedex 07, France
| | - Nicola J Camp
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
34
|
Oriol A, Abril L, Torrent A, Ibarra G, Ribera JM. The role of idecabtagene vicleucel in patients with heavily pretreated refractory multiple myeloma. Ther Adv Hematol 2021; 12:20406207211019622. [PMID: 34104374 PMCID: PMC8170343 DOI: 10.1177/20406207211019622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/04/2021] [Indexed: 11/15/2022] Open
Abstract
The development of several treatment options over the last 2 decades has led to a notable improvement in the survival of patients with multiple myeloma. Despite these advances, the disease remains incurable for most patients. Moreover, standard combinations of alkylating agents, immunomodulatory drugs, proteasome inhibitors, and monoclonal antibodies targeting CD38 and corticoids are exhausted relatively fast in a proportion of high-risk patients. Such high-risk patients account for over 20% of cases and currently represent a major unmet medical need. The challenge of drug resistance requires the development of highly active new agents with a radically different mechanism of action. Several immunotherapeutic modalities, including antibody-drug conjugates and T-cell engagers, appear to be promising choices for patients who develop resistance to standard combinations. Chimeric antigen-receptor-modified T cells (CAR-Ts) targeting B-cell maturation antigen have demonstrated encouraging efficacy and an acceptable safety profile compared with alternative options. Multiple CAR-Ts are in early stages of clinical development, but the first phase III trials with CAR-Ts are ongoing for two of them. After the recent publication of the results of a phase II trial confirming a notable efficacy and acceptable safety profile, idecabtagene vicleucel is the first CAR-T to gain regulatory US Food and Drug Administration approval to treat refractory multiple myeloma patients who have already been exposed to antibodies against CD38, proteasome inhibitors, and immunomodulatory agents and who are refractory to the last therapy. Here, we will discuss the preclinical and clinical development of idecabtagene vicleucel and its future role in the changing treatment landscape of relapsed and refractory multiple myeloma.
Collapse
Affiliation(s)
| | - Laura Abril
- Clinical Hematology Department and Clinical
Trial Unit, Institut Català d’Oncologia at Hospital Germans Trias i Pujol,
Badalona, Spain
| | - Anna Torrent
- Clinical Hematology Department and Clinical
Trial Unit, Institut Català d’Oncologia at Hospital Germans Trias i Pujol,
Badalona, Spain
| | - Gladys Ibarra
- Clinical Hematology Department and Clinical
Trial Unit, Institut Català d’Oncologia at Hospital Germans Trias i Pujol,
Badalona, Spain
| | - Josep-Maria Ribera
- Clinical Hematology Department and Clinical
Trial Unit, Institut Català d’Oncologia at Hospital Germans Trias i Pujol,
Badalona, Spain
- Josep Carreras Leukemia Research Institute,
Badalona, Spain
| |
Collapse
|
35
|
van der Lelie D, Oka A, Taghavi S, Umeno J, Fan TJ, Merrell KE, Watson SD, Ouellette L, Liu B, Awoniyi M, Lai Y, Chi L, Lu K, Henry CS, Sartor RB. Rationally designed bacterial consortia to treat chronic immune-mediated colitis and restore intestinal homeostasis. Nat Commun 2021; 12:3105. [PMID: 34050144 PMCID: PMC8163890 DOI: 10.1038/s41467-021-23460-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Environmental factors, mucosal permeability and defective immunoregulation drive overactive immunity to a subset of resident intestinal bacteria that mediate multiple inflammatory conditions. GUT-103 and GUT-108, live biotherapeutic products rationally designed to complement missing or underrepresented functions in the dysbiotic microbiome of IBD patients, address upstream targets, rather than targeting a single cytokine to block downstream inflammation responses. GUT-103, composed of 17 strains that synergistically provide protective and sustained engraftment in the IBD inflammatory environment, prevented and treated chronic immune-mediated colitis. Therapeutic application of GUT-108 reversed established colitis in a humanized chronic T cell-mediated mouse model. It decreased pathobionts while expanding resident protective bacteria; produced metabolites promoting mucosal healing and immunoregulatory responses; decreased inflammatory cytokines and Th-1 and Th-17 cells; and induced interleukin-10-producing colonic regulatory cells, and IL-10-independent homeostatic pathways. We propose GUT-108 for treating and preventing relapse for IBD and other inflammatory conditions characterized by unbalanced microbiota and mucosal permeability.
Collapse
Affiliation(s)
| | - Akihiko Oka
- Departments of Medicine, Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Shimane, Japan
| | | | - Junji Umeno
- Departments of Medicine, Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | | | | | | | | | - Bo Liu
- Departments of Medicine, Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Muyiwa Awoniyi
- Departments of Medicine, Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yunjia Lai
- Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Liang Chi
- Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - R Balfour Sartor
- Departments of Medicine, Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
36
|
The immunomodulatory drugs lenalidomide and pomalidomide enhance the potency of AMG 701 in multiple myeloma preclinical models. Blood Adv 2021; 4:4195-4207. [PMID: 32898244 DOI: 10.1182/bloodadvances.2020002524] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022] Open
Abstract
We investigated here the novel immunomodulation and anti-multiple myeloma (MM) function of T cells engaged by the bispecific T-cell engager molecule AMG 701, and further examined the impact of AMG 701 in combination with immunomodulatory drugs (IMiDs; lenalidomide and pomalidomide). AMG 701 potently induced T-cell-dependent cellular cytotoxicity (TDCC) against MM cells expressing B-cell maturation antigen, including autologous cells from patients with relapsed and refractory MM (RRMM) (half maximal effective concentration, <46.6 pM). Besides inducing T-cell proliferation and cytolytic activity, AMG 701 also promoted differentiation of patient T cells to central memory, effector memory, and stem cell-like memory (scm) phenotypes, more so in CD8 vs CD4 T subsets, resulting in increased CD8/CD4 ratios in 7-day ex vivo cocultures. IMiDs and AMG 701 synergistically induced TDCC against MM cell lines and autologous RRMM patient cells, even in the presence of immunosuppressive bone marrow stromal cells or osteoclasts. IMiDs further upregulated AMG 701-induced patient T-cell differentiation toward memory phenotypes, associated with increased CD8/CD4 ratios, increased Tscm, and decreased interleukin 10-positive T and T regulatory cells (CD25highFOXP3high), which may downregulate T effector cells. Importantly, the combination of AMG 701 with lenalidomide induced sustained inhibition of MM cell growth in SCID mice reconstituted with human T cells; tumor regrowth was eventually observed in cohorts treated with either agent alone (P < .001). These results strongly support AMG 701 clinical studies as monotherapy in patients with RRMM (NCT03287908) and the combination with IMiDs to improve patient outcomes in MM.
Collapse
|
37
|
Teoh PJ, Chng WJ. CAR T-cell therapy in multiple myeloma: more room for improvement. Blood Cancer J 2021; 11:84. [PMID: 33927192 PMCID: PMC8085238 DOI: 10.1038/s41408-021-00469-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
The emergence of various novel therapies over the last decade has changed the therapeutic landscape for multiple myeloma. While the clinical outcomes have improved significantly, the disease remains incurable, typically in patients with relapsed and refractory disease. Chimeric antigen receptor (CAR) T-cell therapies have achieved remarkable clinical success in B-cell malignancies. This scope of research has more recently been extended to the field of myeloma. While B-cell maturation antigen (BCMA) is currently the most well-studied CAR T antigen target in this disease, many other antigens are also undergoing intensive investigations. Some studies have shown encouraging results, whereas some others have demonstrated unfavorable results due to reasons such as toxicity and lack of clinical efficacy. Herein, we provide an overview of CAR T-cell therapies in myeloma, highlighted what has been achieved over the past decade, including the latest updates from ASH 2020 and discussed some of the challenges faced. Considering the current hits and misses of CAR T therapies, we provide a comprehensive analysis on the current manufacturing technologies, and deliberate on the future of CAR T-cell domain in MM.
Collapse
Affiliation(s)
- Phaik Ju Teoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, Singapore, Singapore
| | - Wee Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Cancer Science Institute of Singapore, Singapore, Singapore.
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore.
| |
Collapse
|
38
|
Marofi F, Tahmasebi S, Rahman HS, Kaigorodov D, Markov A, Yumashev AV, Shomali N, Chartrand MS, Pathak Y, Mohammed RN, Jarahian M, Motavalli R, Motavalli Khiavi F. Any closer to successful therapy of multiple myeloma? CAR-T cell is a good reason for optimism. Stem Cell Res Ther 2021; 12:217. [PMID: 33781320 PMCID: PMC8008571 DOI: 10.1186/s13287-021-02283-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Despite many recent advances on cancer novel therapies, researchers have yet a long way to cure cancer. They have to deal with tough challenges before they can reach success. Nonetheless, it seems that recently developed immunotherapy-based therapy approaches such as adoptive cell transfer (ACT) have emerged as a promising therapeutic strategy against various kinds of tumors even the cancers in the blood (liquid cancers). The hematological (liquid) cancers are hard to be targeted by usual cancer therapies, for they do not form localized solid tumors. Until recently, two types of ACTs have been developed and introduced; tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR)-T cells which the latter is the subject of our discussion. It is interesting about engineered CAR-T cells that they are genetically endowed with unique cancer-specific characteristics, so they can use the potency of the host immune system to fight against either solid or liquid cancers. Multiple myeloma (MM) or simply referred to as myeloma is a type of hematological malignancy that affects the plasma cells. The cancerous plasma cells produce immunoglobulins (antibodies) uncontrollably which consequently damage the tissues and organs and break the immune system function. Although the last few years have seen significant progressions in the treatment of MM, still a complete remission remains unconvincing. MM is a medically challenging and stubborn disease with a disappointingly low rate of survival rate. When comparing the three most occurring blood cancers (i.e., lymphoma, leukemia, and myeloma), myeloma has the lowest 5-year survival rate (around 40%). A low survival rate indicates a high mortality rate with difficulty in treatment. Therefore, novel CAR-T cell-based therapies or combination therapies along with CAT-T cells may bring new hope for multiple myeloma patients. CAR-T cell therapy has a high potential to improve the remission success rate in patients with MM. To date, many preclinical and clinical trial studies have been conducted to investigate the ability and capacity of CAR T cells in targeting the antigens on myeloma cells. Despite the problems and obstacles, CAR-T cell experiments in MM patients revealed a robust therapeutic potential. However, several factors might be considered during CAR-T cell therapy for better response and reduced side effects. Also, incorporating the CAT-T cell method into a combinational treatment schedule may be a promising approach. In this paper, with a greater emphasis on CAR-T cell application in the treatment of MM, we will discuss and introduce CAR-T cell's history and functions, their limitations, and the solutions to defeat the limitations and different types of modifications on CAR-T cells.
Collapse
Affiliation(s)
- Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Tahmasebi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Suleimanyah, Sulaymaniyah, Iraq
| | - Denis Kaigorodov
- Director of Research Institute "MitoKey", Moscow State Medical University, Moscow, Russian Federation
| | | | - Alexei Valerievich Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Trubetskaya St., 8-2, Moscow, Russian Federation, 119991
| | - Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yashwant Pathak
- Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA.,Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Rebar N Mohammed
- Bone Marrow Transplant Center, Hiwa Cancer Hospital, Suleimanyah, Iraq
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, 69120, Heidelberg, Germany
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
39
|
Joshua DE, Vuckovic S, Favaloro J, Lau KHA, Yang S, Bryant CE, Gibson J, Ho PJ. Treg and Oligoclonal Expansion of Terminal Effector CD8 + T Cell as Key Players in Multiple Myeloma. Front Immunol 2021; 12:620596. [PMID: 33708212 PMCID: PMC7940512 DOI: 10.3389/fimmu.2021.620596] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
The classical paradigm of host-tumor interaction, i.e. elimination, equilibrium, and escape (EEE), is reflected in the clinical behavior of myeloma which progresses from the premalignant condition, Monoclonal Gammopathy of Unknown Significance (MGUS). Despite the role of other immune cells, CD4+ regulatory T cells (Treg) and cytotoxic CD8+ T cells have emerged as the dominant effectors of host control of the myeloma clone. Progression from MGUS to myeloma is associated with alterations in Tregs and terminal effector CD8+ T cells (TTE). These changes involve CD39 and CD69 expression, affecting the adenosine pathway and residency in the bone marrow (BM) microenvironment, together with oligoclonal expansion within CD8+ TTE cells. In this mini-review article, in the context of earlier data, we summarize our recent understanding of Treg involvement in the adenosine pathway, the significance of oligoclonal expansion within CD8+ TTE cells and BM-residency of CD8+ TTE cells in MGUS and newly diagnosed multiple myeloma patients.
Collapse
Affiliation(s)
- Douglas E Joshua
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Slavica Vuckovic
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - James Favaloro
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Ka Hei Aleks Lau
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Shihong Yang
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Christian E Bryant
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - John Gibson
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Phoebe Joy Ho
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
40
|
The Immune Microenvironment in Multiple Myeloma: Friend or Foe? Cancers (Basel) 2021; 13:cancers13040625. [PMID: 33562441 PMCID: PMC7914424 DOI: 10.3390/cancers13040625] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The crosstalk between multiple myeloma and immune cells within the bone marrow niche has been identified as an emerging hallmark of this hematological disease. As our knowledge on this interplay increases, it becomes more evident that successful treatment approaches need to boost the body’s natural defenses through immunotherapy. The present review will focus on the mechanisms by which myeloma cancer cells turn immune populations into their “partners in crime”. Additionally, we will provide an overview of currently ongoing pre-clinical studies targeting the bone marrow immune microenvironment. Abstract Multiple myeloma (MM) is one of the most prevalent hematological cancers worldwide, characterized by the clonal expansion of neoplastic plasma cells in the bone marrow (BM). A combination of factors is implicated in disease progression, including BM immune microenvironment changes. Increasing evidence suggests that the disruption of immunological processes responsible for myeloma control ultimately leads to the escape from immune surveillance and resistance to immune effector function, resulting in an active form of myeloma. In fact, one of the hallmarks of MM is the development of a permissive BM milieu that provides a growth advantage to the malignant cells. Consequently, a better understanding of how myeloma cells interact with the BM niche compartments and disrupt the immune homeostasis is of utmost importance to develop more effective treatments. This review focuses on the most up-to-date knowledge regarding microenvironment-related mechanisms behind MM immune evasion and suppression, as well as promising molecules that are currently under pre-clinical tests targeting immune populations.
Collapse
|
41
|
The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression. Cancers (Basel) 2021; 13:cancers13020217. [PMID: 33435306 PMCID: PMC7827690 DOI: 10.3390/cancers13020217] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Multiple Myeloma (MM) is a hematologic malignancy caused by aberrant plasma cell proliferation in the bone marrow (BM) and constitutes the second most common hematological disease after non-Hodgkin lymphoma. The disease progression is drastically regulated by the immunosuppressive tumor microenvironment (TME) generated by soluble factors and different cells that naturally reside in the BM. This microenvironment does not remain unchanged and alterations favor cancer dissemination. Despite therapeutic advances over the past 15 years, MM remains incurable and therefore understanding the elements that control the TME in MM would allow better-targeted therapies to cure this disease. In this review, we discuss the main events and changes that occur in the BM milieu during MM development. Abstract Multiple myeloma (MM) is a hematologic cancer characterized by clonal proliferation of plasma cells in the bone marrow (BM). The progression, from the early stages of the disease as monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) to MM and occasionally extramedullary disease, is drastically affected by the tumor microenvironment (TME). Soluble factors and direct cell–cell interactions regulate MM plasma cell trafficking and homing to the BM niche. Mesenchymal stromal cells, osteoclasts, osteoblasts, myeloid and lymphoid cells present in the BM create a unique milieu that favors MM plasma cell immune evasion and promotes disease progression. Moreover, TME is implicated in malignant cell protection against anti-tumor therapy. This review describes the main cellular and non-cellular components located in the BM, which condition the immunosuppressive environment and lead the MM establishment and progression.
Collapse
|
42
|
Nadeem O, Tai YT, Anderson KC. Immunotherapeutic and Targeted Approaches in Multiple Myeloma. Immunotargets Ther 2020; 9:201-215. [PMID: 33117743 PMCID: PMC7569026 DOI: 10.2147/itt.s240886] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
The multiple myeloma (MM) therapeutic landscape has evolved significantly with the approval of numerous novel agents, including next generation proteasome inhibitors (PIs), immunomodulatory agents (IMIDs), and monoclonal antibodies (MoABs) targeting CD38 and SLAMF7. While these discoveries have led to an unprecedented improval in patient outcomes, the disease still remains incurable. Immunotherapeutic approaches have shown substantial promise in recent studies of chimeric antigen receptor T-cell (CAR T-cell) therapy, bispecific antibodies, and antibody drug conjugates targeting B-cell maturation antigen (BCMA). This review will highlight these novel and targeted therapies in MM, with particular focus on PIs, IMIDs, MoAb and BCMA-directed immunotherapy.
Collapse
Affiliation(s)
- Omar Nadeem
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yu-Tzu Tai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
43
|
Magliozzi R, Marastoni D, Calabrese M. The BAFF / APRIL system as therapeutic target in multiple sclerosis. Expert Opin Ther Targets 2020; 24:1135-1145. [PMID: 32900236 DOI: 10.1080/14728222.2020.1821647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The complex system of BAFF (B-cell-activating factor of the TNF family) and APRIL (A proliferation-inducing ligand) has been studied in animal models of autoimmune diseases such as those resembling human systemic lupus erythematosus and Sjogren's syndrome and multiple sclerosis (MS). Accumulating evidence suggests that BAFF and APRIL have a physiological role in B cell immunity regulation, however inappropriate production of these factors may represent a key event which disrupts immune tolerance which is associated with systemic autoimmune diseases. AREAS COVERED We provide an update on the latest studies of the BAFF/APRIL system in multiple sclerosis, as well as on related clinical trials. EXPERT OPINION Experimental and clinical evidence suggests that increased BAFF levels may interfere directly and indirectly with B cell immunity; this can lead to breakdown of immune tolerance, the production of autoantibodies and continuous local intracerebral inflammation and brain tissue destruction. A more comprehensive understanding of the cell/molecular mechanism immune reactions specifically regulated by BAFF/APRIL in MS would better elucidate the specific cell phenotype targeted by actual anti-BAFF/APRIL therapies; this may enable the identification of either specific biomarkers of MS subgroups that would benefit of anti-BAFF/APRIL treatments or new targets of MS-specific anti-BAFF/APRIL therapies.
Collapse
Affiliation(s)
- Roberta Magliozzi
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona , Verona, Italy
| | - Damiano Marastoni
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona , Verona, Italy
| | - Massimiliano Calabrese
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona , Verona, Italy
| |
Collapse
|
44
|
Emerging Insights on the Biological Impact of Extracellular Vesicle-Associated ncRNAs in Multiple Myeloma. Noncoding RNA 2020; 6:ncrna6030030. [PMID: 32764460 PMCID: PMC7549345 DOI: 10.3390/ncrna6030030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates that extracellular vesicles (EVs) released from both tumor cells and the cells of the bone marrow microenvironment contribute to the pathobiology of multiple myeloma (MM). Recent studies on the mechanisms by which EVs exert their biological activity have indicated that the non-coding RNA (ncRNA) cargo is key in mediating their effect on MM development and progression. In this review, we will first discuss the role of EV-associated ncRNAs in different aspects of MM pathobiology, including proliferation, angiogenesis, bone disease development, and drug resistance. Finally, since ncRNAs carried by MM vesicles have also emerged as a promising tool for early diagnosis and therapy response prediction, we will report evidence of their potential use as clinical biomarkers.
Collapse
|
45
|
Cytokine-Mediated Dysregulation of Signaling Pathways in the Pathogenesis of Multiple Myeloma. Int J Mol Sci 2020; 21:ijms21145002. [PMID: 32679860 PMCID: PMC7403981 DOI: 10.3390/ijms21145002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic disorder of B lymphocytes characterized by the accumulation of malignant plasma cells (PCs) in the bone marrow. The altered plasma cells overproduce abnormal monoclonal immunoglobulins and also stimulate osteoclasts. The host’s immune system and microenvironment are of paramount importance in the growth of PCs and, thus, in the pathogenesis of the disease. The interaction of MM cells with the bone marrow (BM) microenvironment through soluble factors and cell adhesion molecules causes pathogenesis of the disease through activation of multiple signaling pathways, including NF-κβ, PI3K/AKT and JAK/STAT. These activated pathways play a critical role in the inhibition of apoptosis, sustained proliferation, survival and migration of MM cells. Besides, these pathways also participate in developing resistance against the chemotherapeutic drugs in MM. The imbalance between inflammatory and anti-inflammatory cytokines in MM leads to an increased level of pro-inflammatory cytokines, which in turn play a significant role in dysregulation of signaling pathways and proliferation of MM cells; however, the association appears to be inadequate and needs more research. In this review, we are highlighting the recent findings on the roles of various cytokines and growth factors in the pathogenesis of MM and the potential therapeutic utility of aberrantly activated signaling pathways to manage the MM disease.
Collapse
|
46
|
TNFSF13 upregulation confers chemotherapeutic resistance via triggering autophagy initiation in triple-negative breast cancer. J Mol Med (Berl) 2020; 98:1255-1267. [PMID: 32671412 DOI: 10.1007/s00109-020-01952-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/26/2020] [Accepted: 07/10/2020] [Indexed: 12/31/2022]
Abstract
Since chemotherapy is a main strategy to treat triple-negative breast cancer (TNBC) patients currently, identifying a biomarker to predict chemotherapeutic responses is urgently needed for patients to avoid suffering through unnecessary chemotherapeutic treatments. Here, we found that the endogenous expression of TNFSF13 in a panel of TNBC cell lines highly correlates with paclitaxel (PTX) and doxorubicin IC50 concentrations. Whereas knocking down TNFSF13 enhances PTX effectiveness in PTX-insensitive MDA-MB231 cells, recombinant TNFSF13 (recTNFSF13) desensitizes PTX-sensitive HCC1806 cells to PTX treatment. Moreover, Kaplan-Meier analysis revealed that higher TNFSF13 mRNA expression significantly predicts an increased risk for cancer recurrence in estrogen receptor (ER)-negative breast cancer patients receiving an anthracycline-based treatment. Accordingly, immunohistochemistry experiments indicated that higher levels of TNFSF13 protein are detected in TNBC patients who do not respond to an anthracycline-based treatment. The in silico analysis and Western blotting demonstrated that TNFSF13 expression inversely associates with the activity of the Akt-mTOR pathway, which acts as a negative regulator of autophagy activity. Significantly, the pharmaceutical inhibition of autophagy activity restores the therapeutic effectiveness of PTX in TNFSF13-treated HCC1806 cells. These findings suggest that TNFSF13 can serve as a predictive biomarker for TNBC patients, who can use it to decide whether to receive chemotherapy. KEY MESSAGES: TNFSF13 upregulation correlates with a poor response to chemotherapy in TNBCs. TNFSF13 promotes autophagy initiation in chemotherapeutic resistant TNBCs. Therapeutic targeting of autophagy initiation overcomes the TNFSF13-related chemoresistance. TNFSF13 could be a predictive biomarker for TNBC patients receiving chemotherapy.
Collapse
|
47
|
Lin L, Cho SF, Xing L, Wen K, Li Y, Yu T, Hsieh PA, Chen H, Kurtoglu M, Zhang Y, Andrew Stewart C, Munshi N, Anderson KC, Tai YT. Preclinical evaluation of CD8+ anti-BCMA mRNA CAR T cells for treatment of multiple myeloma. Leukemia 2020; 35:752-763. [PMID: 32632095 PMCID: PMC7785573 DOI: 10.1038/s41375-020-0951-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 01/21/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy remains limited to select centers that can carefully monitor adverse events. To broaden use of CAR T cells in community clinics and in a frontline setting, we developed a novel CD8+ CAR T-cell product, Descartes-08, with predictable pharmacokinetics for treatment of multiple myeloma. Descartes-08 is engineered by mRNA transfection to express anti-BCMA CAR for a defined length of time. Descartes-08 expresses anti-BCMA CAR for 1 week, limiting risk of uncontrolled proliferation; produce inflammatory cytokines in response to myeloma target cells; and are highly cytolytic against myeloma cells regardless of the presence of myeloma-protecting bone marrow stromal cells, exogenous a proliferation-inducing ligand, or drug resistance including IMiDs. The magnitude of cytolysis correlates with anti-BCMA CAR expression duration, indicating a temporal limit in activity. In the mouse model of aggressive disseminated human myeloma, Descartes-08 induces BCMA CAR-specific myeloma growth inhibition and significantly prolongs host survival (p < 0.0001). These preclinical data, coupled with an ongoing clinical trial of Descartes-08 in relapsed/refractory myeloma (NCT03448978) showing preliminary durable responses and a favorable therapeutic index, have provided the framework for a recently initiated trial of an optimized/humanized version of Descartes-08 (i.e., Descartes-11) in newly diagnosed myeloma patients with residual disease after induction therapy.
Collapse
Affiliation(s)
- Liang Lin
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Shih-Feng Cho
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lijie Xing
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth Wen
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yuyin Li
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,School of Biotechnology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Tengteng Yu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Phillip A Hsieh
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hailin Chen
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Yi Zhang
- Cartesian Therapeutics, Gaithersburg, MD, USA
| | | | - Nikhil Munshi
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Alrasheed N, Lee L, Ghorani E, Henry JY, Conde L, Chin M, Galas-Filipowicz D, Furness AJS, Chavda SJ, Richards H, De-Silva D, Cohen OC, Patel D, Brooks A, Rodriguez-Justo M, Pule M, Herrero J, Quezada SA, Yong KL. Marrow-Infiltrating Regulatory T Cells Correlate with the Presence of Dysfunctional CD4 +PD-1 + Cells and Inferior Survival in Patients with Newly Diagnosed Multiple Myeloma. Clin Cancer Res 2020; 26:3443-3454. [PMID: 32220887 DOI: 10.1158/1078-0432.ccr-19-1714] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/21/2019] [Accepted: 03/24/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Immune dysregulation is described in multiple myeloma. While preclinical models suggest a role for altered T-cell immunity in disease progression, the contribution of immune dysfunction to clinical outcomes remains unclear. We aimed to characterize marrow-infiltrating T cells in newly diagnosed patients and explore associations with outcomes of first-line therapy. EXPERIMENTAL DESIGN We undertook detailed characterization of T cells from bone marrow (BM) samples, focusing on immune checkpoints and features of immune dysfunction, correlating with clinical features and progression-free survival. RESULTS We found that patients with multiple myeloma had greater abundance of BM regulatory T cells (Tregs) which, in turn, expressed higher levels of the activation marker CD25 compared with healthy donors. Patients with higher frequencies of Tregs had shorter PFS and a distinct Treg immune checkpoint profile (increased PD-1, LAG-3) compared with patients with lower frequencies of Tregs. Analysis of CD4 and CD8 effectors revealed that low CD4effector (CD4eff):Treg ratio and increased frequency of PD-1-expressing CD4eff cells were independent predictors of early relapse over and above conventional risk factors, such as genetic risk and depth of response. Ex vivo functional analysis and RNA sequencing revealed that CD4 and CD8 cells from patients with greater abundance of CD4effPD-1+ cells displayed transcriptional and secretory features of dysfunction. CONCLUSIONS BM-infiltrating T-cell subsets, specifically Tregs and PD-1-expressing CD4 effectors, negatively influence clinical outcomes in newly diagnosed patients. Pending confirmation in larger cohorts and further mechanistic work, these immune parameters may inform new risk models, and present potential targets for immunotherapeutic strategies.
Collapse
Affiliation(s)
- Nouf Alrasheed
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Lydia Lee
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Ehsan Ghorani
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Jake Y Henry
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Lucia Conde
- Bill Lyons Informatics Centre, University College London Cancer Institute, London, United Kingdom
| | - Melody Chin
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Daria Galas-Filipowicz
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Andrew J S Furness
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Selina J Chavda
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Huw Richards
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Dunnya De-Silva
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Oliver C Cohen
- University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Dominic Patel
- Department of Histopathology, University College London, London, United Kingdom
| | - Anthony Brooks
- Institute of Child Health, University College London, London, United Kingdom
| | | | - Martin Pule
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Javier Herrero
- Bill Lyons Informatics Centre, University College London Cancer Institute, London, United Kingdom
| | - Sergio A Quezada
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom.
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Kwee L Yong
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom.
| |
Collapse
|
49
|
Kampa M, Notas G, Stathopoulos EN, Tsapis A, Castanas E. The TNFSF Members APRIL and BAFF and Their Receptors TACI, BCMA, and BAFFR in Oncology, With a Special Focus in Breast Cancer. Front Oncol 2020; 10:827. [PMID: 32612943 PMCID: PMC7308424 DOI: 10.3389/fonc.2020.00827] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor (TNF) superfamily consists of 19 ligands and 29 receptors and is related to multiple cellular events from proliferation and differentiation to apoptosis and tumor reduction. In this review, we overview the whole system, and we focus on A proliferation-inducing ligand (APRIL, TNFSF13) and B cell-activating factor (BAFF, TNFSF13B) and their receptors transmembrane activator and Ca2+ modulator (CAML) interactor (TACI, TNFRSF13B), B cell maturation antigen (BCMA, TNFRSF17), and BAFF receptor (BAFFR, TNFRSF13C). We explore their role in cancer and novel biological therapies introduced for multiple myeloma and further focus on breast cancer, in which the modulation of this system seems to be of potential interest, as a novel therapeutic target. Finally, we discuss some precautions which should be taken into consideration, while targeting the APRIL–BAFF system.
Collapse
Affiliation(s)
- Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklon, Greece
| | - George Notas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklon, Greece
| | | | - Andreas Tsapis
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklon, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklon, Greece
| |
Collapse
|
50
|
Role of the Bone Marrow Milieu in Multiple Myeloma Progression and Therapeutic Resistance. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e752-e768. [PMID: 32651110 DOI: 10.1016/j.clml.2020.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 01/10/2023]
Abstract
Multiple myeloma (MM) is a cancer of the plasma cells within the bone marrow (BM). Studies have shown that the cellular and noncellular components of the BM milieu, such as cytokines and exosomes, play an integral role in MM pathogenesis and progression by mediating drug resistance and inducing MM proliferation. Moreover, the BM microenvironment of patients with MM facilitates cancer tolerance and immune evasion through the expansion of regulatory immune cells, inhibition of antitumor effector cells, and disruption of the antigen presentation machinery. These are of special relevance, especially in the current era of cancer immunotherapy. An improved understanding of the supportive role of the MM BM microenvironment will allow for the development of future therapies targeting MM in the context of the BM milieu to elicit deeper and more durable responses. In the present review, we have discussed our current understanding of the role of the BM microenvironment in MM progression and resistance to therapy and discuss novel potential approaches to alter its pro-MM function.
Collapse
|