1
|
Hermouet S, Hasselbalch HC. Interleukin-1β, JAK2V617F mutation and inflammation in MPNs. Blood Adv 2024; 8:4344-4347. [PMID: 38985205 PMCID: PMC11372809 DOI: 10.1182/bloodadvances.2024013528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 07/11/2024] Open
Affiliation(s)
- Sylvie Hermouet
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
- Laboratoire d’Hématologie, CHU Nantes, Nantes, France
| | - Hans C. Hasselbalch
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
2
|
Usart M, Stetka J, Luque Paz D, Hansen N, Kimmerlin Q, Almeida Fonseca T, Lock M, Kubovcakova L, Karjalainen R, Hao-Shen H, Börsch A, El Taher A, Schulz J, Leroux JC, Dirnhofer S, Skoda RC. Loss of Dnmt3a increases self-renewal and resistance to pegIFN-α in JAK2-V617F-positive myeloproliferative neoplasms. Blood 2024; 143:2490-2503. [PMID: 38493481 PMCID: PMC11208296 DOI: 10.1182/blood.2023020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Pegylated interferon alfa (pegIFN-α) can induce molecular remissions in patients with JAK2-V617F-positive myeloproliferative neoplasms (MPNs) by targeting long-term hematopoietic stem cells (LT-HSCs). Additional somatic mutations in genes regulating LT-HSC self-renewal, such as DNMT3A, have been reported to have poorer responses to pegIFN-α. We investigated whether DNMT3A loss leads to alterations in JAK2-V617F LT-HSC functions conferring resistance to pegIFN-α treatment in a mouse model of MPN and in hematopoietic progenitors from patients with MPN. Long-term treatment with pegIFN-α normalized blood parameters and reduced splenomegaly and JAK2-V617F chimerism in single-mutant JAK2-V617F (VF) mice. However, pegIFN-α in VF;Dnmt3aΔ/Δ (VF;DmΔ/Δ) mice worsened splenomegaly and failed to reduce JAK2-V617F chimerism. Furthermore, LT-HSCs from VF;DmΔ/Δ mice compared with VF were less prone to accumulate DNA damage and exit dormancy upon pegIFN-α treatment. RNA sequencing showed that IFN-α induced stronger upregulation of inflammatory pathways in LT-HSCs from VF;DmΔ/Δ than from VF mice, indicating that the resistance of VF;DmΔ/Δ LT-HSC was not due to failure in IFN-α signaling. Transplantations of bone marrow from pegIFN-α-treated VF;DmΔ/Δ mice gave rise to more aggressive disease in secondary and tertiary recipients. Liquid cultures of hematopoietic progenitors from patients with MPN with JAK2-V617F and DNMT3A mutation showed increased percentages of JAK2-V617F-positive colonies upon IFN-α exposure, whereas in patients with JAK2-V617F alone, the percentages of JAK2-V617F-positive colonies decreased or remained unchanged. PegIFN-α combined with 5-azacytidine only partially overcame resistance in VF;DmΔ/Δ mice. However, this combination strongly decreased the JAK2-mutant allele burden in mice carrying VF mutation only, showing potential to inflict substantial damage preferentially to the JAK2-mutant clone.
Collapse
Affiliation(s)
- Marc Usart
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jan Stetka
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Damien Luque Paz
- University of Angers, Nantes Université, Centre Hospitalier Universitaire Angers, INSERM, Centre National de la Recherche Scientifique, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers, Angers, France
| | - Nils Hansen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Quentin Kimmerlin
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Tiago Almeida Fonseca
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Melissa Lock
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lucia Kubovcakova
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Riikka Karjalainen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Hui Hao-Shen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Anastasiya Börsch
- Department of Biomedicine, Bioinformatics, University of Basel and University Hospital Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Athimed El Taher
- Department of Biomedicine, Bioinformatics, University of Basel and University Hospital Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jessica Schulz
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Radek C. Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Boklund TI, Snyder J, Gudmand-Hoeyer J, Larsen MK, Knudsen TA, Eickhardt-Dalbøge CS, Skov V, Kjær L, Hasselbalch HC, Andersen M, Ottesen JT, Stiehl T. Mathematical modelling of stem and progenitor cell dynamics during ruxolitinib treatment of patients with myeloproliferative neoplasms. Front Immunol 2024; 15:1384509. [PMID: 38846951 PMCID: PMC11154009 DOI: 10.3389/fimmu.2024.1384509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/27/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction The Philadelphia chromosome-negative myeloproliferative neoplasms are a group of slowly progressing haematological malignancies primarily characterised by an overproduction of myeloid blood cells. Patients are treated with various drugs, including the JAK1/2 inhibitor ruxolitinib. Mathematical modelling can help propose and test hypotheses of how the treatment works. Materials and methods We present an extension of the Cancitis model, which describes the development of myeloproliferative neoplasms and their interactions with inflammation, that explicitly models progenitor cells and can account for treatment with ruxolitinib through effects on the malignant stem cell response to cytokine signalling and the death rate of malignant progenitor cells. The model has been fitted to individual patients' data for the JAK2 V617F variant allele frequency from the COMFORT-II and RESPONSE studies for patients who had substantial reductions (20 percentage points or 90% of the baseline value) in their JAK2 V617F variant allele frequency (n = 24 in total). Results The model fits very well to the patient data with an average root mean square error of 0.0249 (2.49%) when allowing ruxolitinib treatment to affect both malignant stem and progenitor cells. This average root mean square error is much lower than if allowing ruxolitinib treatment to affect only malignant stem or only malignant progenitor cells (average root mean square errors of 0.138 (13.8%) and 0.0874 (8.74%), respectively). Discussion Systematic simulation studies and fitting of the model to the patient data suggest that an initial reduction of the malignant cell burden followed by a monotonic increase can be recapitulated by the model assuming that ruxolitinib affects only the death rate of malignant progenitor cells. For patients exhibiting a long-term reduction of the malignant cells, the model predicts that ruxolitinib also affects stem cell parameters, such as the malignant stem cells' response to cytokine signalling.
Collapse
Affiliation(s)
- Tobias Idor Boklund
- Centre for Mathematical Modeling - Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jordan Snyder
- Centre for Mathematical Modeling - Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Johanne Gudmand-Hoeyer
- Centre for Mathematical Modeling - Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | - Trine Alma Knudsen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Morten Andersen
- Centre for Mathematical Modeling - Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Johnny T. Ottesen
- Centre for Mathematical Modeling - Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Thomas Stiehl
- Centre for Mathematical Modeling - Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Institute for Computational Biomedicine and Disease Modeling, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Zhang P, You N, Ding Y, Zhu W, Wang N, Xie Y, Huang W, Ren Q, Qin T, Fu R, Zhang L, Xiao Z, Cheng T, Ma X. Gadd45g insufficiency drives the pathogenesis of myeloproliferative neoplasms. Nat Commun 2024; 15:2989. [PMID: 38582902 PMCID: PMC10998908 DOI: 10.1038/s41467-024-47297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/22/2024] [Indexed: 04/08/2024] Open
Abstract
Despite the identification of driver mutations leading to the initiation of myeloproliferative neoplasms (MPNs), the molecular pathogenesis of MPNs remains incompletely understood. Here, we demonstrate that growth arrest and DNA damage inducible gamma (GADD45g) is expressed at significantly lower levels in patients with MPNs, and JAK2V617F mutation and histone deacetylation contribute to its reduced expression. Downregulation of GADD45g plays a tumor-promoting role in human MPN cells. Gadd45g insufficiency in the murine hematopoietic system alone leads to significantly enhanced growth and self-renewal capacity of myeloid-biased hematopoietic stem cells, and the development of phenotypes resembling MPNs. Mechanistically, the pathogenic role of GADD45g insufficiency is mediated through a cascade of activations of RAC2, PAK1 and PI3K-AKT signaling pathways. These data characterize GADD45g deficiency as a novel pathogenic factor in MPNs.
Collapse
Affiliation(s)
- Peiwen Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Na You
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yiyi Ding
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Wenqi Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Nan Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yueqiao Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Wanling Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Tiejun Qin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| | - Xiaotong Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
| |
Collapse
|
5
|
Li X, Zhang W, Wang Y, Li C, Wu Y, Shang Y, Lin H, Li Y, Wang Y, Zeng X, Cen Z, Lai X, Luo Y, Qian P, Huang H. Monocytes in allo-HSCT with aged donors secrete IL-1/IL-6/TNF to increase the risk of GVHD and damage the aged HSCs. iScience 2024; 27:109126. [PMID: 38405615 PMCID: PMC10884477 DOI: 10.1016/j.isci.2024.109126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/27/2024] Open
Abstract
Aging is considered a critical factor of poor prognosis in allogenic hemopoietic stem cell transplantation (allo-HSCT). To elucidate the underlying mechanisms, we comprehensively reintegrated our clinical data from patients after allo-HSCT and public single-cell transcriptomic profile from post-allo-HSCT and healthy individuals, demonstrating that old donors were more prone to acute GVHD (aGVHD) with pronounced inflammation accumulation and worse overall survival (OS). We also found the presence of inflammation-related CXCL2+ HSC subpopulation during aging with significantly enriched pro-inflammatory pathways. Shifting attention to the HSC microenvironment, we deciphered that IL-1/IL-6 and TRAIL (i.e., TNFSF10) ligand‒receptor pair serves as the crucial bridge between CD14/CD16 monocytes and hematopoietic stem/progenitor cells (HSPCs). The profound upregulation of these signaling pathways during aging finally causes HSC dysfunction and lineage-biased differentiation. Our findings provide the theoretical basis for achieving tailored GVHD management and enhancing allo-HSCT regimens efficacy for aged donors.
Collapse
Affiliation(s)
- Xia Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, 1369 West Wenyi Road, Hangzhou 311121, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Wanying Zhang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanan Wang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chentao Li
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yibo Wu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, 1369 West Wenyi Road, Hangzhou 311121, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Yifei Shang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haikun Lin
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yufei Li
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yufei Wang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangjun Zeng
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, 1369 West Wenyi Road, Hangzhou 311121, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Zenan Cen
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, 1369 West Wenyi Road, Hangzhou 311121, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, 1369 West Wenyi Road, Hangzhou 311121, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Yi Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, 1369 West Wenyi Road, Hangzhou 311121, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Pengxu Qian
- Liangzhu Laboratory, 1369 West Wenyi Road, Hangzhou 311121, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, 1369 West Wenyi Road, Hangzhou 311121, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
6
|
Liongue C, Ward AC. Myeloproliferative Neoplasms: Diseases Mediated by Chronic Activation of Signal Transducer and Activator of Transcription (STAT) Proteins. Cancers (Basel) 2024; 16:313. [PMID: 38254802 PMCID: PMC10813624 DOI: 10.3390/cancers16020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Myeloproliferative neoplasms (MPNs) are hematopoietic diseases characterized by the clonal expansion of single or multiple lineages of differentiated myeloid cells that accumulate in the blood and bone marrow. MPNs are grouped into distinct categories based on key clinical presentations and distinctive mutational hallmarks. These include chronic myeloid leukemia (CML), which is strongly associated with the signature BCR::ABL1 gene translocation, polycythemia vera (PV), essential thrombocythemia (ET), and primary (idiopathic) myelofibrosis (PMF), typically accompanied by molecular alterations in the JAK2, MPL, or CALR genes. There are also rarer forms such as chronic neutrophilic leukemia (CNL), which involves mutations in the CSF3R gene. However, rather than focusing on the differences between these alternate disease categories, this review aims to present a unifying molecular etiology in which these overlapping diseases are best understood as disruptions of normal hematopoietic signaling: specifically, the chronic activation of signaling pathways, particularly involving signal transducer and activator of transcription (STAT) transcription factors, most notably STAT5B, leading to the sustained stimulation of myelopoiesis, which underpins the various disease sequalae.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
7
|
de Castro FA, Mehdipour P, Chakravarthy A, Ettayebi I, Loo Yau H, Medina TS, Marhon SA, de Almeida FC, Bianco TM, Arruda AGF, Devlin R, de Figueiredo-Pontes LL, Chahud F, da Costa Cacemiro M, Minden MD, Gupta V, De Carvalho DD. Ratio of stemness to interferon signalling as a biomarker and therapeutic target of myeloproliferative neoplasm progression to acute myeloid leukaemia. Br J Haematol 2024; 204:206-220. [PMID: 37726227 DOI: 10.1111/bjh.19107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
Progression to aggressive secondary acute myeloid leukaemia (sAML) poses a significant challenge in the management of myeloproliferative neoplasms (MPNs). Since the physiopathology of MPN is closely linked to the activation of interferon (IFN) signalling and that AML initiation and aggressiveness is driven by leukaemia stem cells (LSCs), we investigated these pathways in MPN to sAML progression. We found that high IFN signalling correlated with low LSC signalling in MPN and AML samples, while MPN progression and AML transformation were characterized by decreased IFN signalling and increased LSC signature. A high LSC to IFN expression ratio in MPN patients was associated with adverse clinical prognosis and higher colony forming potential. Moreover, treatment with hypomethylating agents (HMAs) activates the IFN signalling pathway in MPN cells by inducing a viral mimicry response. This response is characterized by double-stranded RNA (dsRNA) formation and MDA5/RIG-I activation. The HMA-induced IFN response leads to a reduction in LSC signature, resulting in decreased stemness. These findings reveal the frequent evasion of viral mimicry during MPN-to-sAML progression, establish the LSC-to-IFN expression ratio as a progression biomarker, and suggests that HMAs treatment can lead to haematological response in murine models by re-activating dsRNA-associated IFN signalling.
Collapse
Affiliation(s)
- Fabíola Attié de Castro
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Parinaz Mehdipour
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Ankur Chakravarthy
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ilias Ettayebi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Helen Loo Yau
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Tiago Silva Medina
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Translational Immuno-Oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Felipe Campos de Almeida
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Investigação em Imunologia, Institutos Nacionais de Ciência e Tecnologia (INCT-iii), Salvador, Brazil
| | - Thiago Mantello Bianco
- Hematology Division, Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Andrea G F Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Rebecca Devlin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Lorena Lobo de Figueiredo-Pontes
- Hematology Division, Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando Chahud
- Department of Pathology and Forensic Medicine, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maira da Costa Cacemiro
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Vikas Gupta
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Bermes M, Rodriguez MJ, de Toledo MAS, Ernst S, Müller-Newen G, Brümmendorf TH, Chatain N, Koschmieder S, Baumeister J. Exploiting Synthetic Lethality between Germline BRCA1 Haploinsufficiency and PARP Inhibition in JAK2V617F-Positive Myeloproliferative Neoplasms. Int J Mol Sci 2023; 24:17560. [PMID: 38139386 PMCID: PMC10743753 DOI: 10.3390/ijms242417560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Myeloproliferative neoplasms (MPN) are rare hematologic disorders characterized by clonal hematopoiesis. Familial clustering is observed in a subset of cases, with a notable proportion exhibiting heterozygous germline mutations in DNA double-strand break repair genes (e.g., BRCA1). We investigated the therapeutic potential of targeting BRCA1 haploinsufficiency alongside the JAK2V617F driver mutation. We assessed the efficacy of combining the PARP inhibitor olaparib with interferon-alpha (IFNα) in CRISPR/Cas9-engineered Brca1+/- Jak2V617F-positive 32D cells. Olaparib treatment induced a higher number of DNA double-strand breaks, as demonstrated by γH2AX analysis through Western blot (p = 0.024), flow cytometry (p = 0.013), and confocal microscopy (p = 0.071). RAD51 foci formation was impaired in Brca1+/- cells compared to Brca1+/+ cells, indicating impaired homologous recombination repair due to Brca1 haploinsufficiency. Importantly, olaparib enhanced apoptosis while diminishing cell proliferation and viability in Brca1+/- cells compared to Brca1+/+ cells. These effects were further potentiated by IFNα. Olaparib induced interferon-stimulated genes and increased endogenous production of IFNα in Brca1+/- cells. These responses were abrogated by STING inhibition. In conclusion, our findings suggest that the combination of olaparib and IFNα presents a promising therapeutic strategy for MPN patients by exploiting the synthetic lethality between germline BRCA1 mutations and the JAK2V617F MPN driver mutation.
Collapse
Affiliation(s)
- Max Bermes
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (M.B.); (M.J.R.); (M.A.S.d.T.); (T.H.B.); (N.C.); (J.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Maria Jimena Rodriguez
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (M.B.); (M.J.R.); (M.A.S.d.T.); (T.H.B.); (N.C.); (J.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Marcelo Augusto Szymanski de Toledo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (M.B.); (M.J.R.); (M.A.S.d.T.); (T.H.B.); (N.C.); (J.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Sabrina Ernst
- Confocal Microscopy Facility, Interdisciplinary Center for Clinical Research IZKF, RWTH Aachen University, 52074 Aachen, Germany;
| | - Gerhard Müller-Newen
- Department of Biochemistry, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | - Tim Henrik Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (M.B.); (M.J.R.); (M.A.S.d.T.); (T.H.B.); (N.C.); (J.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (M.B.); (M.J.R.); (M.A.S.d.T.); (T.H.B.); (N.C.); (J.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (M.B.); (M.J.R.); (M.A.S.d.T.); (T.H.B.); (N.C.); (J.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (M.B.); (M.J.R.); (M.A.S.d.T.); (T.H.B.); (N.C.); (J.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| |
Collapse
|
9
|
Hermange G, Cournède PH, Plo I. Optimizing IFN Alpha Therapy against Myeloproliferative Neoplasms. J Pharmacol Exp Ther 2023; 387:31-43. [PMID: 37391225 DOI: 10.1124/jpet.122.001561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are hematologic malignancies that result from acquired driver mutations in hematopoietic stem cells (HSCs), causing overproduction of blood cells and an increased risk of thrombohemorrhagic events. The most common MPN driver mutation affects the JAK2 gene (JAK2V617F ). Interferon alpha (IFNα) is a promising treatment against MPNs by inducing a hematologic response and molecular remission for some patients. Mathematical models have been proposed to describe how IFNα targets mutated HSCs, indicating that a minimal dose is necessary for long-term remission. This study aims to determine a personalized treatment strategy. First, we show the capacity of an existing model to predict cell dynamics for new patients from data that can be easily obtained in clinic. Then, we study different treatment scenarios in silico for three patients, considering potential IFNα dose-toxicity relations. We assess when the treatment should be interrupted depending on the response, the patient's age, and the inferred development of the malignant clone without IFNα We find that an optimal strategy would be to treat patients with a constant dose so that treatment could be interrupted as quickly as possible. Higher doses result in earlier discontinuation but also higher toxicity. Without knowledge of the dose-toxicity relationship, trade-off strategies can be found for each patient. A compromise strategy is to treat patients with medium doses (60-120 μg/week) for 10-15 years. Altogether, this work demonstrates how a mathematical model calibrated from real data can help build a clinical decision-support tool to optimize long-term IFNα therapy for MPN patients. SIGNIFICANCE STATEMENT: Myeloproliferative neoplasms (MPNs) are chronic blood cancers. Interferon alpha (IFNα) is a promising treatment with the potential to induce a molecular response by targeting mutated hematopoietic stem cells. MPN patients are treated over several years, and there is a lack of knowledge concerning the posology strategy and the best timing for interrupting therapy. The study opens avenues for rationalizing how to treat MPN patients with IFNα over several years, promoting a more personalized approach to treatment.
Collapse
Affiliation(s)
- Gurvan Hermange
- Université Paris-Saclay, CentraleSupélec, Laboratory of Mathematics and Informatics (MICS), Gif-sur-Yvette, France (G.H., P.-H.C.); INSERM U1287, Villejuif, France (I.P.); Gustave Roussy, Villejuif, France (I.P.); and Université Paris-Saclay, Villejuif, France (I.P.)
| | - Paul-Henry Cournède
- Université Paris-Saclay, CentraleSupélec, Laboratory of Mathematics and Informatics (MICS), Gif-sur-Yvette, France (G.H., P.-H.C.); INSERM U1287, Villejuif, France (I.P.); Gustave Roussy, Villejuif, France (I.P.); and Université Paris-Saclay, Villejuif, France (I.P.)
| | - Isabelle Plo
- Université Paris-Saclay, CentraleSupélec, Laboratory of Mathematics and Informatics (MICS), Gif-sur-Yvette, France (G.H., P.-H.C.); INSERM U1287, Villejuif, France (I.P.); Gustave Roussy, Villejuif, France (I.P.); and Université Paris-Saclay, Villejuif, France (I.P.)
| |
Collapse
|
10
|
罗 冬, 罗 洁, 梁 瀚, 何 哲, 陈 红, 温 紫, 王 蔷, 周 璇, 刘 晓, 许 娜. [Efficacy and safety of peginterferon-α2b for treatment of myeloproliterative neoplasms]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1029-1034. [PMID: 37439177 PMCID: PMC10339308 DOI: 10.12122/j.issn.1673-4254.2023.06.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 07/14/2023]
Abstract
OBJECTIVE To evaluate the clinical efficacy and adverse reactions of peginterferon-α2b for treatment of chronic myeloproliferative neoplasms (MPN). METHODS We retrospectively analyzed the data of 107 patients with MPN, including 95 with essential thrombocythemia (ET) and 12 with polycythemia vera (PV), who all received peginterferon-α2b treatment for at least 12 months. The clnical and follow-up data of the patients were analyzed to evaluate the efficacy and adverse reactions of the treatment. RESULTS After receiving peginterferon- α2b treatment, both ET and PV patients achieved high hematological remission rates, and the total remission rates did not differ significantly between the two groups (86% vs 78%, P>0.05). In the overall patients, the spleen index decreased by 13.5% (95%CI: 8.5%-18.5%) after the treatment. The patients with hematological remission showed a significantly greater reduction of the total symptom score than those without hematological remission (P < 0.01). The median percentage of JAK2V617F allele load of PV patients decreased from 67.23% (49.6%-84.86%) at baseline to 19.7% (0.57%-74.6%) after the treatment, and that of JAK2V617F-positive ET patients decreased from 48.97% (0.45%-74.24%) at baseline to 22.1% (0.33%-65.42%) after the treatment. Mild adverse reactions (grade 1-2) were observed in both ET and PV groups without significant differences between them. The overall incidence of thrombotic events during the treatment was 2.8% in these patients, and no serious adverse reactions were observed. CONCLUSION For patients with chronic myelodysplasia, peginterferon-α2b treatment can achieve a high peripheral blood cell remission rate and maintain a long-term stable state with good effect in relieving symptoms such as splenomegaly. Peginterferon- α2b treatment caused only mild adverse reactions, which can be tolerated by most of the patients.
Collapse
Affiliation(s)
- 冬梅 罗
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 洁 罗
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 瀚尹 梁
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 哲柔 何
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 红 陈
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 紫玉 温
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 蔷 王
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 璇 周
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 晓力 刘
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 娜 许
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
How J, Garcia JS, Mullally A. Biology and therapeutic targeting of molecular mechanisms in MPNs. Blood 2023; 141:1922-1933. [PMID: 36534936 PMCID: PMC10163317 DOI: 10.1182/blood.2022017416] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell disorders characterized by activated Janus kinase (JAK)-signal transducer and activator of transcription signaling. As a result, JAK inhibitors have been the standard therapy for treatment of patients with myelofibrosis (MF). Although currently approved JAK inhibitors successfully ameliorate MPN-related symptoms, they are not known to substantially alter the MF disease course. Similarly, in essential thrombocythemia and polycythemia vera, treatments are primarily aimed at reducing the risk of cardiovascular and thromboembolic complications, with a watchful waiting approach often used in patients who are considered to be at a lower risk for thrombosis. However, better understanding of MPN biology has led to the development of rationally designed therapies, with the goal of not only addressing disease complications but also potentially modifying disease course. We review the most recent data elucidating mechanisms of disease pathogenesis and highlight emerging therapies that target MPN on several biologic levels, including JAK2-mutant MPN stem cells, JAK and non-JAK signaling pathways, mutant calreticulin, and the inflammatory bone marrow microenvironment.
Collapse
Affiliation(s)
- Joan How
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jacqueline S. Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute, Cambridge, MA
| |
Collapse
|
12
|
Dong H, Li H, Fang L, Zhang A, Liu X, Xue F, Chen Y, Liu W, Chi Y, Wang W, Sun T, Ju M, Dai X, Yang R, Fu R, Zhang L. Increased reactive oxygen species lead to overactivation of platelets in essential thrombocythemia. Thromb Res 2023; 226:18-29. [PMID: 37087805 DOI: 10.1016/j.thromres.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Platelet function, rather than platelet count, plays a crucial role in thrombosis in essential thrombocythemia (ET). However, little is known about the abnormal function of platelets in ET. Here, we investigated the functional characteristics of platelets in ET hemostasis to explore the causes of ET platelet dysfunction and new therapeutic strategies for ET. MATERIALS AND METHODS We analyzed platelet aggregation, activation, apoptosis, and reactive oxygen species (ROS) in ET patients and JAK2V617F-positive ET-like mice. The effects of ROS on platelet function and the underlying mechanism were investigated by inhibiting ROS using N-acetylcysteine (NAC). RESULTS Platelet aggregation, activation, apoptosis, ROS, and clot retraction were elevated in ET. No significant differences were observed between ET patients with JAK2V617F or CALR mutations. Increased ROS activated the JAK-STAT pathway, which may further influence platelet function. Inhibition of platelet ROS by NAC reduced platelet aggregation, activation, and apoptosis, and prolonged bleeding time. Furthermore, NAC treatment reduced platelet count in ET-like mice by inhibiting platelet production from megakaryocytes. CONCLUSIONS Elevated ROS in ET platelets resulted in enhanced platelet activation, function and increased risk of thrombosis. NAC offers a potential therapeutic strategy for reducing platelet count.
Collapse
Affiliation(s)
- Huan Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Lijun Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Anqi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xiaofan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Feng Xue
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yunfei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Ying Chi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Wentian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Ting Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xinyue Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| |
Collapse
|
13
|
Paving the way to improve therapy for Myeloproliferative Neoplasms. Nat Commun 2022; 13:5025. [PMID: 36028499 PMCID: PMC9418146 DOI: 10.1038/s41467-022-32694-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
|
14
|
Interferon-alpha2 treatment of patients with polycythemia vera and related neoplasms favorably impacts deregulation of oxidative stress genes and antioxidative defense mechanisms. PLoS One 2022; 17:e0270669. [PMID: 35771847 PMCID: PMC9246201 DOI: 10.1371/journal.pone.0270669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation is considered a major driving force for clonal expansion and evolution in the Philadelphia-negative myeloproliferative neoplasms, which include essential thrombocythemia, polycythemia vera and primary myelofibrosis (MPNs). One of the key mutation drivers is the JAK2V617F mutation, which has been shown to induce the generation of reactive oxygen species (ROS). Using whole blood gene expression profiling, deregulation of several oxidative stress and anti-oxidative defense genes has been identified in MPNs, including significant downregulation of TP53, the NFE2L2 or NRF2 genes. These genes have a major role for maintaining genomic stability, regulation of the oxidative stress response and in modulating migration or retention of hematopoietic stem cells. Therefore, their deregulation might give rise to increasing genomic instability, increased chronic inflammation and disease progression with egress of hematopoietic stem cells from the bone marrow to seed in the spleen, liver and elsewhere. Interferon-alpha2 (rIFNα) is increasingly being recognized as the drug of choice for the treatment of patients with MPNs. Herein, we report the first gene expression profiling study on the impact of rIFNα upon oxidative stress and antioxidative defense genes in patients with MPNs (n = 33), showing that rIFNα downregulates several upregulated oxidative stress genes and upregulates downregulated antioxidative defense genes. Treatment with rIFNα induced upregulation of 19 genes in ET and 29 genes in PV including CXCR4 and TP53. In conclusion, this rIFNα- mediated dampening of genotoxic damage to hematopoietic cells may ultimately diminish the risk of additional mutations and accordingly clonal evolution and disease progression towards myelofibrotic and leukemic transformation.
Collapse
|
15
|
Analysis of the Clinical Significance and Safety of Interferon in the Treatment of Chronic Myeloproliferative Tumors. JOURNAL OF ONCOLOGY 2022; 2022:6551868. [PMID: 35615245 PMCID: PMC9126710 DOI: 10.1155/2022/6551868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
Objective To investigate the clinical significance and safety of interferon in the treatment of chronic myeloproliferative tumors (MPN). Methods In this prospective study, a total of 120 patients with advanced chronic MPN admitted to our hospital between April 2016 and August 2020 were assessed for eligibility and recruited, including 62 patients with JAK2V617F mutation-positive ET (ET group) and 58 patients with JAK2V617F mutation-positive PV (PV group). 62 patients with JAK2V617F mutation-positive ET were assigned (1 : 1) to receive interferon-α (IFN-α) or hydroxyurea (HU). A similar subgrouping method for treatment of IFN-α and HU was introduced to patients with JAK2V617F mutation-positive PV. Outcome measures included efficacy and adverse reactions. Results For patients with JAK2V617F mutation-positive ET and PV, there were no significant differences in the overall response rate between the groups treated with IFN-α or HU (P > 0.05); however, the patients treated with IFN-α had a significantly higher 5-year progression-free survival (PFS) than those treated with HU (P < 0.05). IFN-α was associated with a significantly lower incidence of disease progression, thrombotic events, splenomegaly, myelofibrosis, nausea, and vomiting and a higher incidence of hematological adverse reactions and flu-like symptoms versus HU (P < 0.05). After six months of treatment, the PV group had 12 cases of hematological response both in the IFN-α subgroup and the HU subgroup and fewer PV patients treated with IFN-α required phlebotomy versus those treated with HU (P < 0.05), in which 4 patients in the IFN-α subgroup had no hematological response and 6 patients in the HU subgroup had no hematological response. There was no significant difference in the number of cases with phlebotomy between the two subgroups of PV patients without hematological response (P > 0.05). Conclusion The use of IFN in the treatment of JAK2V617F mutation-positive ET and PV patients yields a prominent clinical effect by prolonging PFS and avoiding phlebotomy for JAK2V617F mutation-positive PV patients.
Collapse
|
16
|
Wang F, Qiu T, Wang H, Yang Q. State-of-the-Art Review on Myelofibrosis Therapies. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e350-e362. [PMID: 34903489 DOI: 10.1016/j.clml.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Myelofibrosis (MF) is a BCR-ABL1-negative myeloproliferative neoplasm characterized by anemia, extramedullary hematopoiesis, bone marrow fibrosis, splenomegaly, constitutional symptoms and acute myeloid leukemia progression. Currently, allogeneic haematopoietic stem cell transplantation (AHSCT) therapy is the only curative option for MF patients. However, AHSCT is strictly limited due to the high rates of morbidity and mortality. Janus kinase 2 (JAK2) inhibitor Ruxolitinib is the first-line treatment for intermediate-II or high-risk MF patients with splenomegaly and constitutional symptoms, but most MF patients develop resistance or intolerance to Ruxolitinib. Therefore, MF treatment is a challenge for the medical community. This review summarizes 3 investigated directions for MF therapy: monotherapies of JAK inhibitors, monotherapies of non-JAK targeted agents, combination therapies of Ruxolitinib and other agents. We emphasize combination of Ruxolitinib and other agents is a promising strategy.
Collapse
Affiliation(s)
- Fuping Wang
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Tian Qiu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Wang
- Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qiong Yang
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
17
|
Discovery of a signaling feedback circuit that defines interferon responses in myeloproliferative neoplasms. Nat Commun 2022; 13:1750. [PMID: 35365653 PMCID: PMC8975834 DOI: 10.1038/s41467-022-29381-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
Interferons (IFNs) are key initiators and effectors of the immune response against malignant cells and also directly inhibit tumor growth. IFNα is highly effective in the treatment of myeloproliferative neoplasms (MPNs), but the mechanisms of action are unclear and it remains unknown why some patients respond to IFNα and others do not. Here, we identify and characterize a pathway involving PKCδ-dependent phosphorylation of ULK1 on serine residues 341 and 495, required for subsequent activation of p38 MAPK. We show that this pathway is essential for IFN-suppressive effects on primary malignant erythroid precursors from MPN patients, and that increased levels of ULK1 and p38 MAPK correlate with clinical response to IFNα therapy in these patients. We also demonstrate that IFNα treatment induces cleavage/activation of the ULK1-interacting ROCK1/2 proteins in vitro and in vivo, triggering a negative feedback loop that suppresses IFN responses. Overexpression of ROCK1/2 is seen in MPN patients and their genetic or pharmacological inhibition enhances IFN-anti-neoplastic responses in malignant erythroid precursors from MPN patients. These findings suggest the clinical potential of pharmacological inhibition of ROCK1/2 in combination with IFN-therapy for the treatment of MPNs. Interferon alpha (IFNalpha) therapy is showing promising results to treat myeloproliferative neoplasms (MPNs). Here, the authors show that IFNalpha response requires ULK1 phosphorylation to induce p38-MAPK signalling but it is counteracted by ROCK1-2 activation suggesting combination therapy of IFNalpha-ROCK1-2 inhibition may improve MPNs treatment.
Collapse
|
18
|
Sun Y, Cai Y, Cen J, Zhu M, Pan J, Wang Q, Wu D, Chen S. Pegylated Interferon Alpha-2b in Patients With Polycythemia Vera and Essential Thrombocythemia in the Real World. Front Oncol 2021; 11:797825. [PMID: 34993148 PMCID: PMC8724125 DOI: 10.3389/fonc.2021.797825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Several clinical trials have shown promising efficacy of pegylated interferon (Peg-IFN) in the first- and second-line polycythemia vera (PV) and essential thrombocythemia (ET). However, the efficacy and safety of Peg-IFN in the real world have rarely been reported. Hence, we conducted a prospective, single-center, single-arm, open exploratory study, which aimed to explore the hematologic response, molecular response, safety, and tolerability of patients with PV and ET treated with Peg-IFN in the real world. This study included newly diagnosed or previously treated patients with PV and ET, aged 18 years or older, admitted to the Department of Hematology of the First Affiliated Hospital of Soochow University from November 2017 to October 2019. The results revealed that complete hematological response (CHR) was achieved in 66.7% of patients with PV and 76.2% of patients with ET, and the molecular response was obtained in 38.5% of patients with PV and 50% of patients with ET after 48 weeks of Peg-IFN treatment. Peg-IFN is safe, effective and well tolerated in most patients. In the entire cohort, 4 patients (9.1%) discontinued treatment due to drug-related toxicity. In conclusion, Peg-IFN is a promising strategy in myeloproliferative neoplasms (MPNs), and Peg-IFN alone or in combination with other drugs should be further explored to reduce treatment-related toxicity and improve tolerability.
Collapse
Affiliation(s)
- Yingxin Sun
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Yifeng Cai
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Jiannong Cen
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Mingqing Zhu
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Jinlan Pan
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Qian Wang
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Depei Wu
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Suning Chen
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- *Correspondence: Suning Chen,
| |
Collapse
|
19
|
Progression of Myeloproliferative Neoplasms (MPN): Diagnostic and Therapeutic Perspectives. Cells 2021; 10:cells10123551. [PMID: 34944059 PMCID: PMC8700229 DOI: 10.3390/cells10123551] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
Classical BCR-ABL-negative myeloproliferative neoplasms (MPN) are a heterogeneous group of hematologic malignancies, including essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF), as well as post-PV-MF and post-ET-MF. Progression to more symptomatic disease, such as overt MF or acute leukemia, represents one of the major causes of morbidity and mortality. There are clinically evident but also subclinical types of MPN progression. Clinically evident progression includes evolution from ET to PV, ET to post-ET-MF, PV to post-PV-MF, or pre-PMF to overt PMF, and transformation of any of these subtypes to myelodysplastic neoplasms or acute leukemia. Thrombosis, major hemorrhage, severe infections, or increasing symptom burden (e.g., pruritus, night sweats) may herald progression. Subclinical types of progression may include increases in the extent of bone marrow fibrosis, increases of driver gene mutational allele burden, and clonal evolution. The underlying causes of MPN progression are diverse and can be attributed to genetic alterations and chronic inflammation. Particularly, bystander mutations in genes encoding epigenetic regulators or splicing factors were associated with progression. Finally, comorbidities such as systemic inflammation, cardiovascular diseases, and organ fibrosis may augment the risk of progression. The aim of this review was to discuss types and mechanisms of MPN progression and how their knowledge might improve risk stratification and therapeutic intervention. In view of these aspects, we discuss the potential benefits of early diagnosis using molecular and functional imaging and exploitable therapeutic strategies that may prevent progression, but also highlight current challenges and methodological pitfalls.
Collapse
|
20
|
Mosca M, Hermange G, Tisserand A, Noble R, Marzac C, Marty C, Le Sueur C, Campario H, Vertenoeil G, El-Khoury M, Catelain C, Rameau P, Gella C, Lenglet J, Casadevall N, Favier R, Solary E, Cassinat B, Kiladjian JJ, Constantinescu SN, Pasquier F, Hochberg ME, Raslova H, Villeval JL, Girodon F, Vainchenker W, Cournède PH, Plo I. Inferring the dynamics of mutated hematopoietic stem and progenitor cells induced by IFNα in myeloproliferative neoplasms. Blood 2021; 138:2231-2243. [PMID: 34407546 PMCID: PMC8641097 DOI: 10.1182/blood.2021010986] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/15/2021] [Indexed: 11/20/2022] Open
Abstract
Classical BCR-ABL-negative myeloproliferative neoplasms (MPNs) are clonal disorders of hematopoietic stem cells (HSCs) caused mainly by recurrent mutations in genes encoding JAK2 (JAK2), calreticulin (CALR), or the thrombopoietin receptor (MPL). Interferon α (IFNα) has demonstrated some efficacy in inducing molecular remission in MPNs. To determine factors that influence molecular response rate, we evaluated the long-term molecular efficacy of IFNα in patients with MPN by monitoring the fate of cells carrying driver mutations in a prospective observational and longitudinal study of 48 patients over more than 5 years. We measured the clonal architecture of early and late hematopoietic progenitors (84 845 measurements) and the global variant allele frequency in mature cells (409 measurements) several times per year. Using mathematical modeling and hierarchical Bayesian inference, we further inferred the dynamics of IFNα-targeted mutated HSCs. Our data support the hypothesis that IFNα targets JAK2V617F HSCs by inducing their exit from quiescence and differentiation into progenitors. Our observations indicate that treatment efficacy is higher in homozygous than heterozygous JAK2V617F HSCs and increases with high IFNα dose in heterozygous JAK2V617F HSCs. We also found that the molecular responses of CALRm HSCs to IFNα were heterogeneous, varying between type 1 and type 2 CALRm, and a high dose of IFNα correlates with worse outcomes. Our work indicates that the long-term molecular efficacy of IFNα implies an HSC exhaustion mechanism and depends on both the driver mutation type and IFNα dose.
Collapse
Affiliation(s)
- Matthieu Mosca
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Gurvan Hermange
- Université Paris-Saclay, CentraleSupélec, Laboratory MICS (Laboratory of Applied Mathematics and Computer Science), Gif-sur-Yvette, France
| | - Amandine Tisserand
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Laboratoire d'Excellence GR-Ex, Paris, France
- Université de Paris, Paris, France
| | - Robert Noble
- Department of Biosciences and Engineering, ETH Zurich, Basel, Switzerland
- Institut des Sciences de l'Evolution, University of Montpellier, Montpellier, France
- Institute of Evolutionary Biology and Environmental Studies (IEU), University of Zurich, Zurich, Switzerland
- University of London, London, United Kingdom
| | - Christophe Marzac
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
- Laboratoire d'Immuno-Hématologie, Gustave Roussy, Villejuif, France
| | - Caroline Marty
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Cécile Le Sueur
- Department of Biosciences and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Gaëlle Vertenoeil
- Ludwig Institute for Cancer Research and Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Mira El-Khoury
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Cyril Catelain
- UMS AMMICa-Plateforme Imagerie et Cytométries, Gustave Roussy, Villejuif, France
| | - Philippe Rameau
- UMS AMMICa-Plateforme Imagerie et Cytométries, Gustave Roussy, Villejuif, France
| | - Cyril Gella
- Laboratoire d'Immuno-Hématologie, Gustave Roussy, Villejuif, France
| | | | - Nicole Casadevall
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Assistance Publique des Hôpitaux de Paris, Laboratoire d'Hématologie, Hôpital Saint-Antoine, Paris, France
| | - Rémi Favier
- Assistance Publique des Hôpitaux de Paris, Service d'Hématologie Biologique, Hôpital d'Enfants Armand-Trousseau, Paris, France
| | - Eric Solary
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Département d'Hématologie, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Bruno Cassinat
- Université de Paris, INSERM UMR-S 1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France
- Assistance Publique des Hôpitaux de Paris, Laboratoire de Biologie Cellulaire
| | - Jean-Jacques Kiladjian
- Université de Paris, INSERM UMR-S 1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France
- Assistance Publique des Hôpitaux de Paris, Centre d'Investigations Cliniques, Hôpital Saint-Louis, Paris, France
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research and Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Florence Pasquier
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
- Département d'Hématologie, Gustave Roussy, Villejuif, France
| | - Michael E Hochberg
- Institut des Sciences de l'Evolution, University of Montpellier, Montpellier, France
- Santa Fe Institute, Santa Fe, NM
| | - Hana Raslova
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-Luc Villeval
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
| | - François Girodon
- Laboratoire d'Hématologie, CHU Dijon, Dijon, France
- INSERM, UMR 866, Centre de Recherche, Dijon, France; and
| | - William Vainchenker
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
- Laboratoire d'Excellence GR-Ex, Paris, France
- Assistance Publique des Hôpitaux de Paris, Service d'Immunopathologie Clinique, Polyclinique d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Paul-Henry Cournède
- Université Paris-Saclay, CentraleSupélec, Laboratory MICS (Laboratory of Applied Mathematics and Computer Science), Gif-sur-Yvette, France
| | - Isabelle Plo
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
21
|
Hasselbalch HC, Silver RT. New Perspectives of Interferon-alpha2 and Inflammation in Treating Philadelphia-negative Chronic Myeloproliferative Neoplasms. Hemasphere 2021; 5:e645. [PMID: 34805764 PMCID: PMC8601345 DOI: 10.1097/hs9.0000000000000645] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Hans C Hasselbalch
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Richard T Silver
- Myeloproliferative Neoplasms Center, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
22
|
Dagher T, Maslah N, Edmond V, Cassinat B, Vainchenker W, Giraudier S, Pasquier F, Verger E, Niwa-Kawakita M, Lallemand-Breitenbach V, Plo I, Kiladjian JJ, Villeval JL, de Thé H. JAK2V617F myeloproliferative neoplasm eradication by a novel interferon/arsenic therapy involves PML. J Exp Med 2021; 218:211476. [PMID: 33075130 PMCID: PMC7579737 DOI: 10.1084/jem.20201268] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/31/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022] Open
Abstract
Interferon α (IFNα) is used to treat JAK2V617F-driven myeloproliferative neoplasms (MPNs) but rarely clears the disease. We investigated the IFNα mechanism of action focusing on PML, an interferon target and key senescence gene whose targeting by arsenic trioxide (ATO) drives eradication of acute promyelocytic leukemia. ATO sharply potentiated IFNα-induced growth suppression of JAK2V617F patient or mouse hematopoietic progenitors, which required PML and was associated with features of senescence. In a mouse MPN model, combining ATO with IFNα enhanced and accelerated responses, eradicating MPN in most mice by targeting disease-initiating cells. These results predict potent clinical efficacy of the IFNα+ATO combination in patients and identify PML as a major effector of therapy, even in malignancies with an intact PML gene.
Collapse
Affiliation(s)
- Tracy Dagher
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Nabih Maslah
- Université de Paris, INSERM UMR-S1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France.,Service de Biologie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Saint-Louis, Paris, France
| | - Valérie Edmond
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Bruno Cassinat
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, INSERM UMR-S1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France.,Service de Biologie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Saint-Louis, Paris, France
| | - William Vainchenker
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Stéphane Giraudier
- Université de Paris, INSERM UMR-S1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France.,Service de Biologie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Saint-Louis, Paris, France
| | - Florence Pasquier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Département d'Hématologie, Gustave Roussy, Villejuif, France
| | - Emmanuelle Verger
- Université de Paris, INSERM UMR-S1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France.,Service de Biologie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Saint-Louis, Paris, France
| | - Michiko Niwa-Kawakita
- INSERM U944, Centre National de la Recherche Scientifique (CNRS) UMR7212, IRSL, Hôpital Saint-Louis, Paris, France.,Collège de France, Paris Sciences et Lettres Research University, INSERM U1050, CNRS UMR7241, Paris, France
| | - Valérie Lallemand-Breitenbach
- INSERM U944, Centre National de la Recherche Scientifique (CNRS) UMR7212, IRSL, Hôpital Saint-Louis, Paris, France.,Collège de France, Paris Sciences et Lettres Research University, INSERM U1050, CNRS UMR7241, Paris, France
| | - Isabelle Plo
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Jean-Jacques Kiladjian
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, INSERM UMR-S1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France.,Centre d'Investigations Cliniques, APHP, Hôpital Saint-Louis, Paris, France
| | - Jean-Luc Villeval
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Hugues de Thé
- INSERM U944, Centre National de la Recherche Scientifique (CNRS) UMR7212, IRSL, Hôpital Saint-Louis, Paris, France.,Collège de France, Paris Sciences et Lettres Research University, INSERM U1050, CNRS UMR7241, Paris, France.,Service de Biochimie, APHP, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
23
|
JAK2-V617F and interferon-α induce megakaryocyte-biased stem cells characterized by decreased long-term functionality. Blood 2021; 137:2139-2151. [PMID: 33667305 DOI: 10.1182/blood.2020005563] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
We studied a subset of hematopoietic stem cells (HSCs) that are defined by elevated expression of CD41 (CD41hi) and showed bias for differentiation toward megakaryocytes (Mks). Mouse models of myeloproliferative neoplasms (MPNs) expressing JAK2-V617F (VF) displayed increased frequencies and percentages of the CD41hi vs CD41lo HSCs compared with wild-type controls. An increase in CD41hi HSCs that correlated with JAK2-V617F mutant allele burden was also found in bone marrow from patients with MPN. CD41hi HSCs produced a higher number of Mk-colonies of HSCs in single-cell cultures in vitro, but showed reduced long-term reconstitution potential compared with CD41lo HSCs in competitive transplantations in vivo. RNA expression profiling showed an upregulated cell cycle, Myc, and oxidative phosphorylation gene signatures in CD41hi HSCs, whereas CD41lo HSCs showed higher gene expression of interferon and the JAK/STAT and TNFα/NFκB signaling pathways. Higher cell cycle activity and elevated levels of reactive oxygen species were confirmed in CD41hi HSCs by flow cytometry. Expression of Epcr, a marker for quiescent HSCs inversely correlated with expression of CD41 in mice, but did not show such reciprocal expression pattern in patients with MPN. Treatment with interferon-α further increased the frequency and percentage of CD41hi HSCs and reduced the number of JAK2-V617F+ HSCs in mice and patients with MPN. The shift toward the CD41hi subset of HSCs by interferon-α provides a possible mechanism of how interferon-α preferentially targets the JAK2 mutant clone.
Collapse
|
24
|
Benlabiod C, Dagher T, Marty C, Villeval JL. Lessons from mouse models of MPN. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 366:125-185. [PMID: 35153003 DOI: 10.1016/bs.ircmb.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the past decades, a variety of MPN mouse models have been developed to express in HSC the main mutations identified in patients: JAK2V617F, CALRdel52 or ins5 and MPLW515L. These models mimic quite faithfully human PV or ET with their natural evolutions into MF and their hemostasis complications, demonstrating the driver function of these mutations in MPN. Here, we review these models and show how they have improved our general understanding of MPN regarding (1) the mechanisms of fibrosis, thrombosis/hemorrhages and disease initiation, (2) the roles of additional mutations and signaling pathways in disease progression and (3) the preclinical development of novel therapies. We also address controversial results between these models and remind how these models may differ from human MPN onset and also how basically mice are not humans, encouraging caution when one draw lessons from mice to humans. Furthermore, the contribution of germline genetic predisposition, HSC and niche aging, metabolic, oxidative, replicative or genotoxic stress, inflammation, immune escape and additional mutations need to be considered in further investigations to encompass the full complexity of human MPN in mice.
Collapse
Affiliation(s)
- Camelia Benlabiod
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France
| | - Tracy Dagher
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France
| | - Caroline Marty
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France.
| | - Jean-Luc Villeval
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France.
| |
Collapse
|
25
|
Tong J, Sun T, Ma S, Zhao Y, Ju M, Gao Y, Zhu P, Tan P, Fu R, Zhang A, Wang D, Wang D, Xiao Z, Zhou J, Yang R, Loughran SJ, Li J, Green AR, Bresnick EH, Wang D, Cheng T, Zhang L, Shi L. Hematopoietic stem cell heterogeneity is linked to the initiation and therapeutic response of myeloproliferative neoplasms. Cell Stem Cell 2021; 28:780. [PMID: 33798424 PMCID: PMC7613297 DOI: 10.1016/j.stem.2021.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The implications of stem cell heterogeneity for disease pathogenesis and therapy are poorly defined. JAK2V617F+ myeloproliferative neoplasms (MPNs), harboring the same mutation in hematopoietic stem cells (HSCs), display diverse phenotypes, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). These chronic malignant disorders are ideal models to analyze the pathological consequences of stem cell heterogeneity. Single-cell gene expression profiling with parallel mutation detection demonstrated that the megakaryocyte (Mk)-primed HSC subpopulation expanded significantly with enhanced potential in untreated individuals with JAK2V617F+ ET, driven primarily by the JAK2 mutation and elevated interferon signaling. During treatment, mutant HSCs were targeted preferentially in the Mk-primed HSC subpopulation. Interestingly, homozygous mutant HSCs were forced to re-enter quiescence, whereas their heterozygous counterparts underwent apoptosis. This study provides important evidence for the association of stem cell heterogeneity with the pathogenesis and therapeutic response of a malignant disease.
Collapse
Affiliation(s)
- Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Ting Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
- Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Yanhong Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
- Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Yuchen Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
- Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Puwen Tan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
- Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Anqi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
- CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Di Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
- Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Stephen J. Loughran
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge CB2 0AW, UK
| | - Juan Li
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge CB2 0AW, UK
| | - Anthony R. Green
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge CB2 0AW, UK
| | - Emery H. Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53562, USA
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence: (D.W.), (T.C.), (L.Z.), (L.S.)
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
- Correspondence: (D.W.), (T.C.), (L.Z.), (L.S.)
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
- CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
- Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
- Correspondence: (D.W.), (T.C.), (L.Z.), (L.S.)
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
- Correspondence: (D.W.), (T.C.), (L.Z.), (L.S.)
| |
Collapse
|
26
|
Tong J, Sun T, Ma S, Zhao Y, Ju M, Gao Y, Zhu P, Tan P, Fu R, Zhang A, Wang D, Wang D, Xiao Z, Zhou J, Yang R, Loughran SJ, Li J, Green AR, Bresnick EH, Wang D, Cheng T, Zhang L, Shi L. Hematopoietic Stem Cell Heterogeneity Is Linked to the Initiation and Therapeutic Response of Myeloproliferative Neoplasms. Cell Stem Cell 2021; 28:502-513.e6. [PMID: 33621485 DOI: 10.1016/j.stem.2021.01.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 11/23/2020] [Accepted: 01/27/2021] [Indexed: 12/19/2022]
Abstract
The implications of stem cell heterogeneity for disease pathogenesis and therapy are poorly defined. JAK2V617F+ myeloproliferative neoplasms (MPNs), harboring the same mutation in hematopoietic stem cells (HSCs), display diverse phenotypes, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). These chronic malignant disorders are ideal models to analyze the pathological consequences of stem cell heterogeneity. Single-cell gene expression profiling with parallel mutation detection demonstrated that the megakaryocyte (Mk)-primed HSC subpopulation expanded significantly with enhanced potential in untreated individuals with JAK2V617F+ ET, driven primarily by the JAK2 mutation and elevated interferon signaling. During treatment, mutant HSCs were targeted preferentially in the Mk-primed HSC subpopulation. Interestingly, homozygous mutant HSCs were forced to re-enter quiescence, whereas their heterozygous counterparts underwent apoptosis. This study provides important evidence for the association of stem cell heterogeneity with the pathogenesis and therapeutic response of a malignant disease.
Collapse
Affiliation(s)
- Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Ting Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Yanhong Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Yuchen Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Puwen Tan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Anqi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China; CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Di Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Stephen J Loughran
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge CB2 0AW, UK
| | - Juan Li
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge CB2 0AW, UK
| | - Anthony R Green
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge CB2 0AW, UK
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53562, USA
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China; CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China.
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| |
Collapse
|
27
|
Stetka J, Skoda RC. Mouse models of myeloproliferative neoplasms for pre-clinical testing of novel therapeutic agents. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 165:26-33. [PMID: 33542546 DOI: 10.5507/bp.2021.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/08/2021] [Indexed: 11/23/2022] Open
Abstract
Myeloproliferative neoplasms (MPN), are clonal hematopoietic stem cell (HSC) disorders driven by gain-of-function mutations in JAK2 (JAK2-V617F), CALR or MPL genes. MPN treatment options currently mainly consist of cytoreductive therapy with hydroxyurea and JAK2 inhibitors such as ruxolitinib and fedratinib. Pegylated interferon-alpha can induce complete molecular remission (CMR) in some MPN patients when applied at early stages of disease. The ultimate goal of modern MPN treatment is to develop novel therapies that specifically target mutant HSCs in MPN and consistently induce CMR. Basic research has identified a growing number of candidate drugs with promising effects in vitro. A first step on the way to developing these compounds into drugs approved for treatment of MPN patients often consists of examining the effects in vivo using pre-clinical mouse models of MPN. Here we review the current state of MPN mouse models and the experimental setup for their optimal use in drug testing. In addition to novel compounds, combinatorial therapeutic approaches are often considered for the treatment of MPN. Optimized and validated mouse models can provide an efficient way to rapidly assess and select the most promising combinations and thereby contribute to accelerating the development of novel therapies of MPN.
Collapse
Affiliation(s)
- Jan Stetka
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Radek C Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Bywater M, Lane SW. A knockout combination for MPN stem cells. J Exp Med 2021; 218:e20201884. [PMID: 33185683 PMCID: PMC7671566 DOI: 10.1084/jem.20201884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are a group of blood cancers that are maintained by stem cell populations. In this issue of JEM, Dagher et al. (https://doi.org/10.1084/jem.20201268) combine arsenic and interferon α to deliver a knockout punch to MPN stem cells and provide new hope to cure patients with MPNs.
Collapse
Affiliation(s)
- Megan Bywater
- Cancer Program, QIMR Berghofer Medical Research Institute, Herston, Australia
- University of Queensland, Brisbane, Australia
| | - Steven W. Lane
- Cancer Program, QIMR Berghofer Medical Research Institute, Herston, Australia
- University of Queensland, Brisbane, Australia
- Cancer Care Services, Royal Brisbane and Women’s Hospital, Herston, Australia
| |
Collapse
|
29
|
Yung Y, Lee E, Chu HT, Yip PK, Gill H. Targeting Abnormal Hematopoietic Stem Cells in Chronic Myeloid Leukemia and Philadelphia Chromosome-Negative Classical Myeloproliferative Neoplasms. Int J Mol Sci 2021; 22:ijms22020659. [PMID: 33440869 PMCID: PMC7827471 DOI: 10.3390/ijms22020659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/02/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are unique hematopoietic stem cell disorders sharing mutations that constitutively activate the signal-transduction pathways involved in haematopoiesis. They are characterized by stem cell-derived clonal myeloproliferation. The key MPNs comprise chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). CML is defined by the presence of the Philadelphia (Ph) chromosome and BCR-ABL1 fusion gene. Despite effective cytoreductive agents and targeted therapy, complete CML/MPN stem cell eradication is rarely achieved. In this review article, we discuss the novel agents and combination therapy that can potentially abnormal hematopoietic stem cells in CML and MPNs and the CML/MPN stem cell-sustaining bone marrow microenvironment.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Autophagy
- Biomarkers, Tumor
- Cell Survival/drug effects
- Cell Transformation, Neoplastic/genetics
- Combined Modality Therapy
- Disease Susceptibility
- Genetic Predisposition to Disease
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Molecular Targeted Therapy
- Myeloproliferative Disorders/etiology
- Myeloproliferative Disorders/pathology
- Myeloproliferative Disorders/therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Philadelphia Chromosome
- Signal Transduction/drug effects
- Stem Cell Niche
- Tumor Microenvironment
Collapse
Affiliation(s)
| | | | | | | | - Harinder Gill
- Correspondence: ; Tel.: +852-2255-4542; Fax: +852-2816-2863
| |
Collapse
|
30
|
Ivanova M, Tsvetkova G, Lukanov T, Stoimenov A, Hadjiev E, Shivarov V. Probable HLA-mediated immunoediting of JAK2 V617F-driven oncogenesis. Exp Hematol 2020; 92:75-88.e10. [DOI: 10.1016/j.exphem.2020.09.200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022]
|
31
|
Jacquelin S, Kramer F, Mullally A, Lane SW. Murine Models of Myelofibrosis. Cancers (Basel) 2020; 12:cancers12092381. [PMID: 32842500 PMCID: PMC7563264 DOI: 10.3390/cancers12092381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/22/2023] Open
Abstract
Myelofibrosis (MF) is subtype of myeloproliferative neoplasm (MPN) characterized by a relatively poor prognosis in patients. Understanding the factors that drive MF pathogenesis is crucial to identifying novel therapeutic approaches with the potential to improve patient care. Driver mutations in three main genes (janus kinase 2 (JAK2), calreticulin (CALR), and myeloproliferative leukemia virus oncogene (MPL)) are recurrently mutated in MPN and are sufficient to engender MPN using animal models. Interestingly, animal studies have shown that the underlying molecular mutation and the acquisition of additional genetic lesions is associated with MF outcome and transition from early stage MPN such as essential thrombocythemia (ET) and polycythemia vera (PV) to secondary MF. In this issue, we review murine models that have contributed to a better characterization of MF pathobiology and identification of new therapeutic opportunities in MPN.
Collapse
Affiliation(s)
- Sebastien Jacquelin
- Cancer program QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- Correspondence: (S.J.); (S.W.L.)
| | - Frederike Kramer
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.K.); (A.M.)
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.K.); (A.M.)
| | - Steven W. Lane
- Cancer program QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- Cancer Care Services, The Royal Brisbane and Women’s Hospital, Brisbane 4029, Australia
- University of Queensland, St Lucia, QLD 4072, Australia
- Correspondence: (S.J.); (S.W.L.)
| |
Collapse
|
32
|
MPN: The Molecular Drivers of Disease Initiation, Progression and Transformation and their Effect on Treatment. Cells 2020; 9:cells9081901. [PMID: 32823933 PMCID: PMC7465511 DOI: 10.3390/cells9081901] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) constitute a group of disorders identified by an overproduction of cells derived from myeloid lineage. The majority of MPNs have an identifiable driver mutation responsible for cytokine-independent proliferative signalling. The acquisition of coexisting mutations in chromatin modifiers, spliceosome complex components, DNA methylation modifiers, tumour suppressors and transcriptional regulators have been identified as major pathways for disease progression and leukemic transformation. They also confer different sensitivities to therapeutic options. This review will explore the molecular basis of MPN pathogenesis and specifically examine the impact of coexisting mutations on disease biology and therapeutic options.
Collapse
|
33
|
Kuykendall AT, Horvat NP, Pandey G, Komrokji R, Reuther GW. Finding a Jill for JAK: Assessing Past, Present, and Future JAK Inhibitor Combination Approaches in Myelofibrosis. Cancers (Basel) 2020; 12:E2278. [PMID: 32823910 PMCID: PMC7464183 DOI: 10.3390/cancers12082278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Myelofibrosis (MF) is a myeloproliferative neoplasm hallmarked by the upregulation of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway with associated extramedullary hematopoiesis and a high burden of disease-related symptoms. While JAK inhibitor therapy is central to the management of MF, it is not without limitations. In an effort to improve treatment for MF patients, there have been significant efforts to identify combination strategies that build upon the substantial benefits of JAK inhibition. Early efforts to combine agents with additive therapeutic profiles have given way to rationally designed combinations hoping to demonstrate clinical synergism and modify the underlying disease. In this article, we review the preclinical basis and existing clinical data for JAK inhibitor combination strategies while highlighting emerging strategies of particular interest.
Collapse
Affiliation(s)
- Andrew T. Kuykendall
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Nathan P. Horvat
- Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA;
| | - Garima Pandey
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (G.P.); (G.W.R.)
| | - Rami Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Gary W. Reuther
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (G.P.); (G.W.R.)
| |
Collapse
|