1
|
Kendig MD, Corbit LH. Cue-potentiated feeding in rodents: Implications for weight regulation in obesogenic environments. Neurobiol Learn Mem 2024; 215:107984. [PMID: 39265925 DOI: 10.1016/j.nlm.2024.107984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/16/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Cue-potentiated feeding (CPF) describes instances where food intake is increased by exposure to conditioned cues associated with food, often in the absence of hunger. CPF effects have been reported in a range of experimental protocols developed by researchers working across diverse fields spanning behavioural neuroscience, social psychology and ecology. Here we review the evolution of research on cue-potentiated feeding in animal models to identify important behavioural parameters and key neural circuits and pharmacological systems underlying the effect. Overall, evidence indicates that social, discrete and contextual stimuli can be used to elicit CPF effects across multiple species, though effects are often subtle and sensitive to procedural variables. While regular exposure to food cues is thought to be a key risk factor for overeating in so-called 'obesogenic' environments, further work is needed to identify whether CPF promotes positive energy balance and weight gain over the longer term. We suggest several methodological and conceptual areas for inquiry to elucidate the contribution of CPF to the regulation of food choice and energy intake.
Collapse
Affiliation(s)
- Michael D Kendig
- School of Life Sciences, University of Technology Sydney, Australia.
| | - Laura H Corbit
- Department of Psychology and Department of Cell and Systems Biology, University of Toronto, Canada.
| |
Collapse
|
2
|
Goode TD, Alipio JB, Besnard A, Pathak D, Kritzer-Cheren MD, Chung A, Duan X, Sahay A. A dorsal hippocampus-prodynorphinergic dorsolateral septum-to-lateral hypothalamus circuit mediates contextual gating of feeding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606427. [PMID: 39149322 PMCID: PMC11326193 DOI: 10.1101/2024.08.02.606427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Adaptive regulation of feeding depends on linkage of internal states and food outcomes with contextual cues. Human brain imaging has identified dysregulation of a hippocampal-lateral hypothalamic area (LHA) network in binge eating, but mechanistic instantiation of underlying cell-types and circuitry is lacking. Here, we identify an evolutionary conserved and discrete Prodynorphin (Pdyn)-expressing subpopulation of Somatostatin (Sst)-expressing inhibitory neurons in the dorsolateral septum (DLS) that receives primarily dorsal, but not ventral, hippocampal inputs. DLS(Pdyn) neurons inhibit LHA GABAergic neurons and confer context- and internal state-dependent calibration of feeding. Viral deletion of Pdyn in the DLS mimicked effects seen with optogenetic silencing of DLS Pdyn INs, suggesting a potential role for DYNORPHIN-KAPPA OPIOID RECEPTOR signaling in contextual regulation of food-seeking. Together, our findings illustrate how the dorsal hippocampus has evolved to recruit an ancient LHA feeding circuit module through Pdyn DLS inhibitory neurons to link contextual information with regulation of food consumption.
Collapse
Affiliation(s)
- Travis D Goode
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Jason Bondoc Alipio
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Antoine Besnard
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Devesh Pathak
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Michael D Kritzer-Cheren
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Ain Chung
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Xin Duan
- Department of Ophthalmology, University of California, San Francisco, CA
- Department of Physiology, University of California, San Francisco, CA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| |
Collapse
|
3
|
Lewis-Sanders D, Bullich S, Olvera MJ, Vo J, Hwang YS, Mizrachi E, Stern SA. Conditioned overconsumption is dependent on reinforcer type in lean, but not obese, mice. Appetite 2024; 198:107355. [PMID: 38621593 PMCID: PMC11308659 DOI: 10.1016/j.appet.2024.107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Associative learning can drive many different types of behaviors, including food consumption. Previous studies have shown that cues paired with food delivery while mice are hungry will lead to increased consumption in the presence of those cues at later times. We previously showed that overconsumption can be driven in male mice by contextual cues, using chow pellets. Here we extended our findings by examining other parameters that may influence the outcome of context-conditioned overconsumption training. We found that the task worked equally well in males and females, and that palatable substances such as high-fat diet and Ensure chocolate milkshake supported learning and induced overconsumption. Surprisingly, mice did not overconsume when sucrose was used as the reinforcer during training, suggesting that nutritional content is a critical factor. Interestingly, we also observed that diet-induced obese mice did not learn the task. Overall, we find that context-conditioned overconsumption can be studied in lean male and female mice, and with multiple reinforcer types.
Collapse
Affiliation(s)
- Darielle Lewis-Sanders
- Laboratory for Integrative Neural Circuits and Behavior, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, 33458, USA
| | - Sebastien Bullich
- Laboratory for Integrative Neural Circuits and Behavior, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, 33458, USA
| | - Maria-Jose Olvera
- Laboratory for Integrative Neural Circuits and Behavior, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, 33458, USA
| | - John Vo
- Laboratory for Integrative Neural Circuits and Behavior, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, 33458, USA
| | - Yang-Sun Hwang
- Laboratory for Integrative Neural Circuits and Behavior, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, 33458, USA
| | - Elisa Mizrachi
- Laboratory for Integrative Neural Circuits and Behavior, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, 33458, USA
| | - Sarah A Stern
- Laboratory for Integrative Neural Circuits and Behavior, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, 33458, USA.
| |
Collapse
|
4
|
Zhao Z, Xu B, Loomis CL, Anthony SA, McKie I, Srigiriraju A, Bolton M, Stern SA. INGEsT: An Open-Source Behavioral Setup for Studying Self-motivated Ingestive Behavior and Learned Operant Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584229. [PMID: 38558985 PMCID: PMC10979871 DOI: 10.1101/2024.03.10.584229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Ingestive behavior is driven by negative internal hunger and thirst states, as well as by positive expected rewards. Although the neural substrates underlying feeding and drinking behaviors have been widely investigated, they have primarily been studied in isolation, even though eating can also trigger thirst, and vice versa. Thus, it is still unclear how the brain encodes body states, recalls the memory of food and water reward outcomes, generates feeding/drinking motivation, and triggers ingestive behavior. Here, we developed an INstrument for Gauging Eating and Thirst (INGEsT), a custom-made behavioral chamber which allows for precise measurement of both feeding and drinking by combining a FED3 food dispenser, lickometers for dispensing liquid, a camera for behavioral tracking, LED light for optogenetics, and calcium imaging miniscope. In addition, in vivo calcium imaging, optogenetics, and video recordings are well synchronized with animal behaviors, e.g., nose pokes, pellet retrieval, and water licking, by using a Bpod microprocessor and timestamping behavioral and imaging data. The INGEsT behavioral chamber enables many types of experiments, including free feeding/drinking, operant behavior to obtain food or water, and food/water choice behavior. Here, we tracked activity of insular cortex and mPFC Htr3a neurons using miniscopes and demonstrate that these neurons encode many aspects of ingestive behavior during operant learning and food/water choice and that their activity can be tuned by internal state. Overall, we have built a platform, consisting of both hardware and software, to precisely monitor innate ingestive, and learned operant, behaviors and to investigate the neural correlates of self-motivated and learned feeding/drinking behaviors.
Collapse
|
5
|
Lewis-Sanders D, Bullich S, Olvera MJ, Vo J, Hwang YS, Stern SA. Conditioned overconsumption is dependent on reinforcer type in lean, but not obese, mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573797. [PMID: 38260511 PMCID: PMC10802361 DOI: 10.1101/2023.12.31.573797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Associative learning can drive many different types of behaviors, including food consumption. Previous studies have shown that cues paired with food delivery while mice are hungry will lead increased consumption in the presence of those cues at later times. We previously showed that overconsumption can be driven in male mice by contextual cues, using chow pellets. Here we extended our findings by examining other parameters that may influence the outcome of context-conditioned overconsumption training. We found that the task worked equally well in males and females, and that palatable substances such as high-fat diet and Ensure chocolate milkshake supported learning and induced overconsumption. Surprisingly, mice did not overconsume when sucrose was used as the reinforcer during training, suggesting that nutritional content is a critical factor. Interestingly, we also observed that diet-induced obese mice did not learn the task. Overall, we find that context-conditioned overconsumption can be studied in lean males and female mice, and with multiple reinforcer types.
Collapse
|
6
|
Reed F, Reichenbach A, Dempsey H, Clarke RE, Mequinion M, Stark R, Rawlinson S, Foldi CJ, Lockie SH, Andrews ZB. Acute inhibition of hunger-sensing AgRP neurons promotes context-specific learning in mice. Mol Metab 2023; 77:101803. [PMID: 37690518 PMCID: PMC10523265 DOI: 10.1016/j.molmet.2023.101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE An environmental context, which reliably predicts food availability, can increase the appetitive food drive within the same environment context. However, hunger is required for the development of such a context-induced feeding (CIF) response, suggesting the neural circuits sensitive to hunger link an internal energy state with a particular environment context. Since Agouti related peptide (AgRP) neurons are activated by energy deficit, we hypothesised that AgRP neurons are both necessary and sufficient to drive CIF. METHODS To examine the role of AgRP neurons in the CIF process, we used fibre photometry with GCaMP7f, chemogenetic activation of AgRP neurons, as well as optogenetic control of AgRP neurons to facilitate acute temporal control not permitted with chemogenetics. RESULTS A CIF response at test was only observed when mice were fasted during context training and AgRP population activity at test showed an attenuated inhibitory response to food, suggesting increased food-seeking and/or decreased satiety signalling drives the increased feeding response at test. Intriguingly, chemogenetic activation of AgRP neurons during context training did not increase CIF, suggesting precise temporal firing properties may be required. Indeed, termination of AgRP neuronal photostimulation during context training (ON-OFF in context), in the presence or absence of food, increased CIF. Moreover, photoinhibition of AgRP neurons during context training in fasted mice was sufficient to drive a subsequent CIF in the absence of food. CONCLUSIONS Our results suggest that AgRP neurons regulate the acquisition of CIF when the acute inhibition of AgRP activity is temporally matched to context exposure. These results establish acute AgRP inhibition as a salient neural event underscoring the effect of hunger on associative learning.
Collapse
Affiliation(s)
- Felicia Reed
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Alex Reichenbach
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Harry Dempsey
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Rachel E Clarke
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Mathieu Mequinion
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Sasha Rawlinson
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Claire J Foldi
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Sarah H Lockie
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia.
| |
Collapse
|
7
|
Hanssen R, Rigoux L, Kuzmanovic B, Iglesias S, Kretschmer AC, Schlamann M, Albus K, Edwin Thanarajah S, Sitnikow T, Melzer C, Cornely OA, Brüning JC, Tittgemeyer M. Liraglutide restores impaired associative learning in individuals with obesity. Nat Metab 2023; 5:1352-1363. [PMID: 37592007 PMCID: PMC10447249 DOI: 10.1038/s42255-023-00859-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/07/2023] [Indexed: 08/19/2023]
Abstract
Survival under selective pressure is driven by the ability of our brain to use sensory information to our advantage to control physiological needs. To that end, neural circuits receive and integrate external environmental cues and internal metabolic signals to form learned sensory associations, consequently motivating and adapting our behaviour. The dopaminergic midbrain plays a crucial role in learning adaptive behaviour and is particularly sensitive to peripheral metabolic signals, including intestinal peptides, such as glucagon-like peptide 1 (GLP-1). In a single-blinded, randomized, controlled, crossover basic human functional magnetic resonance imaging study relying on a computational model of the adaptive learning process underlying behavioural responses, we show that adaptive learning is reduced when metabolic sensing is impaired in obesity, as indexed by reduced insulin sensitivity (participants: N = 30 with normal insulin sensitivity; N = 24 with impaired insulin sensitivity). Treatment with the GLP-1 receptor agonist liraglutide normalizes impaired learning of sensory associations in men and women with obesity. Collectively, our findings reveal that GLP-1 receptor activation modulates associative learning in people with obesity via its central effects within the mesoaccumbens pathway. These findings provide evidence for how metabolic signals can act as neuromodulators to adapt our behaviour to our body's internal state and how GLP-1 receptor agonists work in clinics.
Collapse
Affiliation(s)
- Ruth Hanssen
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Policlinic for Endocrinology, Diabetology and Preventive Medicine (PEPD), University of Cologne, Cologne, Germany
| | - Lionel Rigoux
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | | | - Sandra Iglesias
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Alina C Kretschmer
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Marc Schlamann
- Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Kerstin Albus
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sharmili Edwin Thanarajah
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Tamara Sitnikow
- Faculty of Medicine and University Hospital Cologne, Policlinic for Endocrinology, Diabetology and Preventive Medicine (PEPD), University of Cologne, Cologne, Germany
| | - Corina Melzer
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Oliver A Cornely
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Policlinic for Endocrinology, Diabetology and Preventive Medicine (PEPD), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
8
|
Takemoto M, Kato S, Kobayashi K, Song WJ. Dissection of insular cortex layer 5 reveals two sublayers with opposing modulatory roles in appetitive drinking behavior. iScience 2023; 26:106985. [PMID: 37378339 PMCID: PMC10291511 DOI: 10.1016/j.isci.2023.106985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/12/2022] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The insular cortex (insula) is known to play a modulatory role in feeding and drinking. Previous studies have revealed anterior-posterior differences of subcortical projections and roles for the insula, yet the anatomical and functional heterogeneity among the cortical layers remains poorly understood. Here, we show that layer 5 of the mouse dysgranular insula has two distinct neuronal subpopulations along the entire anterior-posterior axis: The L5a population, expressing NECAB1, projects bilaterally to the lateral and capsular divisions of the central amygdala, and the L5b population, expressing CTIP2, projects ipsilaterally to the parasubthalamic nucleus and the medial division of the central amygdala. Optogenetically activating L5a and L5b neuronal populations in thirsty male mice led to suppressed and facilitated water spout licking, respectively, without avoidance against or preference for the spout paired with the opto-stimulation. Our results suggest sublayer-specific bidirectional modulatory roles of insula layer 5 in the motivational aspect of appetitive behavior.
Collapse
Affiliation(s)
- Makoto Takemoto
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Wen-Jie Song
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
9
|
Prilutski Y, Livneh Y. Physiological Needs: Sensations and Predictions in the Insular Cortex. Physiology (Bethesda) 2023; 38:0. [PMID: 36040864 DOI: 10.1152/physiol.00019.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Physiological needs create powerful motivations (e.g., thirst and hunger). Studies in humans and animal models have implicated the insular cortex in the neural regulation of physiological needs and need-driven behavior. We review prominent mechanistic models of how the insular cortex might achieve this regulation and present a conceptual and analytical framework for testing these models in healthy and pathological conditions.
Collapse
Affiliation(s)
- Yael Prilutski
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Livneh
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Holcomb FR, Multhaup KS, Erwin SR, Daniels SE. Spaced training enhances equine learning performance. Anim Cogn 2022; 25:683-690. [PMID: 34860336 PMCID: PMC9107396 DOI: 10.1007/s10071-021-01580-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022]
Abstract
This field experiment examined whether the well-documented benefit of spaced over massed training for humans and other animals generalizes to horses. Twenty-nine randomly selected horses (Equus ferus caballus) repeatedly encountered a novel obstacle-crossing task while under saddle. Horses were randomly assigned to the spaced-training condition (2 min work, 2 min rest, 2 min work, 2 min rest) or the massed-training condition (4 min work, 4 min rest). Total training time per session and total rest per session were held constant. Days between sessions (M = 3) were held as consistent as possible given the constraints of conducting research on a working ranch and safety-threatening weather conditions. During each training session, the same hypothesis-naïve rider shaped horses to cross a novel obstacle. Fifteen of 16 horses in the spaced-training condition reached performance criterion (94% success) while only 5 of 13 horses in the massed-training condition reached performance criterion (39% success). Horses in the spaced-training condition also initiated their first obstacle-crossing faster than horses in the massed-training condition and were faster at completing eight crossings than horses in the massed-training condition. Overall, task acquisition was higher for horses undergoing spaced training despite both groups experiencing the same total work and rest time per session. These findings generalize the learning-performance benefit observed in human spaced practice to horses and offer applied benefit to equine training.
Collapse
Affiliation(s)
- Frederick R. Holcomb
- Psychology Department, Davidson College, Davidson, NC 28035 USA
- Present Address: Veterinary Medicine, Texas A&M, College Station, TX USA
| | | | - Savannah R. Erwin
- Psychology Department, Davidson College, Davidson, NC 28035 USA
- Present Address: Psychology & Neuroscience, Duke University, Durham, NC USA
| | - Sarah E. Daniels
- Psychology Department, Davidson College, Davidson, NC 28035 USA
- Present Address: Savannah, GA USA
| |
Collapse
|
11
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
12
|
José Olvera M, Miranda MI. Differential effects of NMDA receptors activation in the insular cortex during memory formation and updating of a motivational conflict task. Neuroscience 2022; 497:39-52. [PMID: 35276308 DOI: 10.1016/j.neuroscience.2022.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
Abstract
Recognizing and weighing the value of stimuli is necessary for survival, as it allows living things to respond quickly and adequately to new experiences by comparing them with previous ones. Recent evidence shows that context change could affect flavor learning, suggesting a more intricate scenario during complex associations of stimuli with opposite or different valence in a motivational conflict task. Furthermore, linked to the ability to weigh the value of stimuli is the ability to predict the consequences associated with them from previous experiences. The insular cortex (IC) is a brain hub connecting and integrating different sensory, emotional, motivational, and cognitive processing systems. In this regard, previous evidence indicates that glutamatergic activity in this area, mediated by N-methyl-D-aspartate receptors (NMDARs), could be important during positive or negative valence encoding. Hence, the present study examines the involvement of NMDARs in the IC during a complex association of stimuli with opposite valence through the modified inhibitory avoidance (MIA) task and memory updating of a previously learned appetitive context during latent inhibition of the MIA process. This study demonstrates that during a motivational conflict-learning task with stimuli of opposite valences, avoidance memory formation will prevail. NMDARs activation in the IC decreases avoidance memory formation during a complex task (MIA) but not memory formation for an appetitive context. Furthermore, NMDARs activation does not affect the transition from appetitive to aversive learning. Overall, our results propose a different IC-NMDARs function during novel learning and memory updating.
Collapse
Affiliation(s)
- María José Olvera
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla No. 3001, Juriquilla, Querétaro, Querétaro 76230, México
| | - María-Isabel Miranda
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla No. 3001, Juriquilla, Querétaro, Querétaro 76230, México.
| |
Collapse
|
13
|
Livneh Y, Andermann ML. Cellular activity in insular cortex across seconds to hours: Sensations and predictions of bodily states. Neuron 2021; 109:3576-3593. [PMID: 34582784 PMCID: PMC8602715 DOI: 10.1016/j.neuron.2021.08.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 02/09/2023]
Abstract
Our wellness relies on continuous interactions between our brain and body: different organs relay their current state to the brain and are regulated, in turn, by descending visceromotor commands from our brain and by actions such as eating, drinking, thermotaxis, and predator escape. Human neuroimaging and theoretical studies suggest a key role for predictive processing by insular cortex in guiding these efforts to maintain bodily homeostasis. Here, we review recent studies recording and manipulating cellular activity in rodent insular cortex at timescales from seconds to hours. We argue that consideration of these findings in the context of predictive processing of future bodily states may reconcile several apparent discrepancies and offer a unifying, heuristic model for guiding future work.
Collapse
Affiliation(s)
- Yoav Livneh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
14
|
A neural circuit for excessive feeding driven by environmental context in mice. Nat Neurosci 2021; 24:1132-1141. [PMID: 34168339 DOI: 10.1038/s41593-021-00875-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/13/2021] [Indexed: 02/05/2023]
Abstract
Despite notable genetic influences, obesity mainly results from the overconsumption of food, which arises from the interplay of physiological, cognitive and environmental factors. In patients with obesity, eating is determined more by external cues than by internal physiological needs. However, how environmental context drives non-homeostatic feeding is elusive. Here, we identify a population of somatostatin (TNSST) neurons in the mouse hypothalamic tuberal nucleus that are preferentially activated by palatable food. Activation of TNSST neurons enabled a context to drive non-homeostatic feeding in sated mice and required inputs from the subiculum. Pairing a context with palatable food greatly potentiated synaptic transmission between the subiculum and TNSST neurons and drove non-homeostatic feeding that could be selectively suppressed by inhibiting TNSST neurons or the subiculum but not other major orexigenic neurons. These results reveal how palatable food, through a specific hypothalamic circuit, empowers environmental context to drive non-homeostatic feeding.
Collapse
|
15
|
Stern SA, Azevedo EP, Pomeranz LE, Doerig KR, Ivan VJ, Friedman JM. Top-down control of conditioned overconsumption is mediated by insular cortex Nos1 neurons. Cell Metab 2021; 33:1418-1432.e6. [PMID: 33761312 PMCID: PMC8628615 DOI: 10.1016/j.cmet.2021.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/29/2020] [Accepted: 02/26/2021] [Indexed: 12/17/2022]
Abstract
Associative learning allows animals to adapt their behavior in response to environmental cues. For example, sensory cues associated with food availability can trigger overconsumption even in sated animals. However, the neural mechanisms mediating cue-driven non-homeostatic feeding are poorly understood. To study this, we recently developed a behavioral task in which contextual cues increase feeding even in sated mice. Here, we show that an insular cortex to central amygdala circuit is necessary for conditioned overconsumption, but not for homeostatic feeding. This projection is marked by a population of glutamatergic nitric oxide synthase-1 (Nos1)-expressing neurons, which are specifically active during feeding bouts. Finally, we show that activation of insular cortex Nos1 neurons suppresses satiety signals in the central amygdala. The data, thus, indicate that the insular cortex provides top-down control of homeostatic circuits to promote overconsumption in response to learned cues.
Collapse
Affiliation(s)
- Sarah A Stern
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA.
| | - Estefania P Azevedo
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Lisa E Pomeranz
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Katherine R Doerig
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Violet J Ivan
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
16
|
Boughter JD, Fletcher M. Rethinking the role of taste processing in insular cortex and forebrain circuits. CURRENT OPINION IN PHYSIOLOGY 2021; 20:52-56. [PMID: 33681544 PMCID: PMC7932132 DOI: 10.1016/j.cophys.2020.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the years, many approaches towards studying the taste-responsive area of insular cortex have focused on how basic taste information is represented, and how lesions or silencing of this area impact taste-focused behaviors. Here, we review and highlight recent studies that imply that insular cortex does not contain a "primary" taste cortex in the traditional sense. Rather, taste is employed in concert with other internal and external sensory modalities by highly interconnected regions of insular cortex to guide ingestive decision-making, especially in context of estimating risk and reward. In rodent models, this may best be seen in context of foraging behaviors, which require flexibility and are dependent on learning and memory processes.
Collapse
Affiliation(s)
- John D. Boughter
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave., Memphis TN 38163 USA
| | - Max Fletcher
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave., Memphis TN 38163 USA
| |
Collapse
|
17
|
Lauterborn JC, Schultz MN, Le AA, Amani M, Friedman AE, Leach PT, Gall CM, Lynch GS, Crawley JN. Spaced training improves learning in Ts65Dn and Ube3a mouse models of intellectual disabilities. Transl Psychiatry 2019; 9:166. [PMID: 31182707 PMCID: PMC6557858 DOI: 10.1038/s41398-019-0495-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/14/2019] [Accepted: 03/23/2019] [Indexed: 12/29/2022] Open
Abstract
Benefits of distributed learning strategies have been extensively described in the human literature, but minimally investigated in intellectual disability syndromes. We tested the hypothesis that training trials spaced apart in time could improve learning in two distinct genetic mouse models of neurodevelopmental disorders characterized by intellectual impairments. As compared to training with massed trials, spaced training significantly improved learning in both the Ts65Dn trisomy mouse model of Down syndrome and the maternally inherited Ube3a mutant mouse model of Angelman syndrome. Spacing the training trials at 1 h intervals accelerated acquisition of three cognitive tasks by Ts65Dn mice: (1) object location memory, (2) novel object recognition, (3) water maze spatial learning. Further, (4) spaced training improved water maze spatial learning by Ube3a mice. In contrast, (5) cerebellar-mediated rotarod motor learning was not improved by spaced training. Corroborations in three assays, conducted in two model systems, replicated within and across two laboratories, confirm the strength of the findings. Our results indicate strong translational relevance of a behavioral intervention strategy for improving the standard of care in treating the learning difficulties that are characteristic and clinically intractable features of many neurodevelopmental disorders.
Collapse
Affiliation(s)
- J C Lauterborn
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - M N Schultz
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - A A Le
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - M Amani
- Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - A E Friedman
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Harvard University, Cambridge, MA, USA
| | - P T Leach
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Biogen Inc., Cambridge, MA, USA
| | - C M Gall
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - G S Lynch
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
- Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - J N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|