1
|
Peng L, Zhang Z, Li Q, Song Z, Yan C, Ling H. Unveiling the multifaceted pathogenesis and therapeutic drugs of Alzheimer's disease: A comprehensive review. Heliyon 2024; 10:e39217. [PMID: 39629139 PMCID: PMC11612466 DOI: 10.1016/j.heliyon.2024.e39217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/02/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder characterized by the accumulation of β-amyloid (Aβ) plaques and tau phosphorylation-induced neurofibrillary tangles. This review comprehensively summarizes AD pathogenesis and related factors, drawing on a wealth of authoritative reports and research findings. Specifically, we delve into the intricate mechanisms underlying AD pathology, including Aβ deposition, tau protein phosphorylation, cholinergic dysfunction, neuroinflammation, mitochondrial oxidative stress, ferroptosis, imbalance in the gut microbiota, and microRNA dysregulation. We also explored the effects of these factors on the brain, including synaptic damage and cognitive impairment. Moreover, our review highlights the associations between the pathogenesis of AD and inflammatory cytokines in the peripheral blood and cerebrospinal fluid, dysbiosis of the gut microbiota, and changes in microRNA expression. Overall, we provided a systematic and illustrative overview of the pathogenesis and therapeutic drugs for AD, offering help in the prevention and treatment of this condition.
Collapse
Affiliation(s)
- Liting Peng
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
| | - Zhiming Zhang
- Department of Anesthesiology, The First People's Hospital of Chenzhou, The Chenzhou Affiliated Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, Hunan, China
| | - Qi Li
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
| | - Zhenjiang Song
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
| | - Canqun Yan
- The Health Management Center, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hongyan Ling
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
| |
Collapse
|
2
|
Puranik N, Song M. Insights into the Role of microRNAs as Clinical Tools for Diagnosis, Prognosis, and as Therapeutic Targets in Alzheimer's Disease. Int J Mol Sci 2024; 25:9936. [PMID: 39337429 PMCID: PMC11431957 DOI: 10.3390/ijms25189936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Neurodegenerative diseases (NDDs) are a diverse group of neurological disorders characterized by alterations in the structure and function of the central nervous system. Alzheimer's disease (AD), characterized by impaired memory and cognitive abilities, is the most prevalent type of senile dementia. Loss of synapses, intracellular aggregation of hyperphosphorylated tau protein, and extracellular amyloid-β peptide (Aβ) plaques are the hallmarks of AD. MicroRNAs (miRNAs/miRs) are single-stranded ribonucleic acid (RNA) molecules that bind to the 3' and 5' untranslated regions of target genes to cause post-transcriptional gene silencing. The brain expresses over 70% of all experimentally detected miRNAs, and these miRNAs are crucial for synaptic function and particular signals during memory formation. Increasing evidence suggests that miRNAs play a role in AD pathogenesis and we provide an overview of the role of miRNAs in synapse formation, Aβ synthesis, tau protein accumulation, and brain-derived neurotrophic factor-associated AD pathogenesis. We further summarize and discuss the role of miRNAs as potential therapeutic targets and biomarkers for AD detection and differentiation between early- and late-stage AD, based on recent research. In conclusion, altered expression of miRNAs in the brain and peripheral circulation demonstrates their potential as biomarkers and therapeutic targets in AD.
Collapse
Affiliation(s)
- Nidhi Puranik
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Islam MA, Sultana OF, Bandari M, Kshirsagar S, Manna PR, Reddy PH. MicroRNA-455-3P as a peripheral biomarker and therapeutic target for mild cognitive impairment and Alzheimer's disease. Ageing Res Rev 2024; 100:102459. [PMID: 39153602 PMCID: PMC11383742 DOI: 10.1016/j.arr.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
MicroRNAs are small non-coding RNAs evolutionary conserved molecules. They regulate cellular processes, including RNA silencing, post-translational gene expression and neurodegeneration. MicroRNAs are involved with human diseases such as cancer, Alzheimer's disease (AD) and others. Interestingly, cerebrospinal fluids (CSF) and the blood of AD patients have altered expressions of many RNAs, which may serve as potential peripheral biomarkers. The intensive investigation from our lab revealed that microRNA-455-3 P (miR-455-3p) is a strong candidate as a potential biomarker and therapeutic target for AD. Several genes implicated in the pathogenesis of AD are directly targeted by miR-455-3p. Several years of our lab research revealed that miR-455-3p regulates important physiological processes associated with AD, such as the processing of the amyloid precursor protein (APP), TGF-β signaling, the regulation of oxidative stress, mitochondrial biogenesis, and synaptic damages. The expression of miR-455-3p in mild cognitive impaired subjects and AD patients pointed out its involvement in AD progression. Recently, our lab generated both transgenic and knockout mice for miR-455-3p. Interestingly miR-455-3p transgenic mice showed superior cognitive learning, improved memory and extended lifespan compared to age matched wild-type mice, whereas miR-455-3-p knockout mice showed cognitive decline and reduced lifespan. Information derived from mouse models further demonstrated the advantageous impact of miR-455-3p on dendritic growth, synaptogenesis, and mitochondrial biogenesis in preventing the onset and progression of AD. The identification of miR-455-3p as a biomarker was suggested by its presence in postmortem AD brains, B-lymphocytes, and fibroblasts. Our hypothesis that miR-455-3p could be a peripheral biomarker and therapeutic target for AD.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Madhuri Bandari
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Pulak R Manna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
4
|
Hernández-Contreras KA, Martínez-Díaz JA, Hernández-Aguilar ME, Herrera-Covarrubias D, Rojas-Durán F, Chi-Castañeda LD, García-Hernández LI, Aranda-Abreu GE. Alterations of mRNAs and Non-coding RNAs Associated with Neuroinflammation in Alzheimer's Disease. Mol Neurobiol 2024; 61:5826-5840. [PMID: 38236345 DOI: 10.1007/s12035-023-03908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Alzheimer's disease is a neurodegenerative pathology whose pathognomonic hallmarks are increased generation of β-amyloid (Aβ) peptide, production of hyperphosphorylated (pTau), and neuroinflammation. The last is an alteration closely related to the progression of AD and although it is present in multiple neurodegenerative diseases, the pathophysiological events that characterize neuroinflammatory processes vary depending on the disease. In this article, we focus on mRNA and non-coding RNA alterations as part of the pathophysiological events characteristic of neuroinflammation in AD and the influence of these alterations on the course of the disease through interaction with multiple RNAs related to the generation of Aβ, pTau, and neuroinflammation itself.
Collapse
Affiliation(s)
- Karla Aketzalli Hernández-Contreras
- Doctorado en Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Jorge Antonio Martínez-Díaz
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - María Elena Hernández-Aguilar
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Deissy Herrera-Covarrubias
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Fausto Rojas-Durán
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Lizbeth Donají Chi-Castañeda
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Luis Isauro García-Hernández
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Gonzalo Emiliano Aranda-Abreu
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México.
| |
Collapse
|
5
|
Zhou X, Zhu Z, Kuang S, Huang K, Li Y, Wang Y, Chen H, Hoi MPM, Xu B, Yang X, Zhang Z. Tetramethylpyrazine Nitrone (TBN) Reduces Amyloid β Deposition in Alzheimer's Disease Models by Modulating APP Expression, BACE1 Activity, and Autophagy Pathways. Pharmaceuticals (Basel) 2024; 17:1005. [PMID: 39204110 PMCID: PMC11357250 DOI: 10.3390/ph17081005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with age. A wealth of evidence indicates that the amyloid β (Aβ) aggregates result from dyshomeostasis between Aβ production and clearance, which plays a pivotal role in the pathogenesis of AD. Consequently, therapies targeting Aβ reduction represent a promising strategy for AD intervention. Tetramethylpyrazine nitrone (TBN) is a novel tetramethylpyrazine derivative with potential for the treatment of AD. Previously, we demonstrated that TBN markedly enhanced cognitive functions and decreased the levels of Aβ, APP, BACE 1, and hyperphosphorylated tau in 3×Tg-AD mice. However, the mechanism by which TBN inhibits Aβ deposition is still unclear. In this study, we employed APP/PS1 mice treated with TBN (60 mg/kg, ig, bid) for six months, and N2a/APP695swe cells treated with TBN (300 μM) to explore the mechanism of TBN in Aβ reduction. Our results indicate that TBN significantly alleviated cognitive impairment and reduced Aβ deposition in APP/PS1 mice. Further investigation of the underlying mechanisms revealed that TBN decreased the expression of APP and BACE1, activated the AMPK/mTOR/ULK1 autophagy pathway, inhibited the PI3K/AKT/mTOR/ULK1 autophagy pathway, and decreased the phosphorylation levels of JNK and ERK in APP/PS1 mice. Moreover, TBN was found to significantly reduce the mRNA levels of APP and BACE1, as well as those of SP1, CTCF, TGF-β, and NF-κB, transcription factors involved in regulating gene expression. Additionally, TBN was observed to decrease the level of miR-346 and increase the levels of miR-147 and miR-106a in the N2a/APP695swe cells. These findings indicate that TBN may reduce Aβ levels likely by reducing APP expression by regulating APP gene transcriptional factors and miRNAs, reducing BACE1 expression, and promoting autophagy activities.
Collapse
Affiliation(s)
- Xinhua Zhou
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (X.Z.); (S.K.); (K.H.); (Y.L.)
| | - Zeyu Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Institute of New Drug Research, Jinan University, Guangzhou 511436, China; (Z.Z.); (Y.W.)
| | - Shaoming Kuang
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (X.Z.); (S.K.); (K.H.); (Y.L.)
| | - Kaipeng Huang
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (X.Z.); (S.K.); (K.H.); (Y.L.)
| | - Yueping Li
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (X.Z.); (S.K.); (K.H.); (Y.L.)
| | - Yuqiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Institute of New Drug Research, Jinan University, Guangzhou 511436, China; (Z.Z.); (Y.W.)
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University College of Pharmacy, Guangzhou 511436, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 511436, China
| | - Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinse Medical Sciences, University of Macau, Macau, China;
| | - Benhong Xu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China;
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China;
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Institute of New Drug Research, Jinan University, Guangzhou 511436, China; (Z.Z.); (Y.W.)
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University College of Pharmacy, Guangzhou 511436, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 511436, China
| |
Collapse
|
6
|
Pan AL, Audrain M, Sakakibara E, Joshi R, Zhu X, Wang Q, Wang M, Beckmann ND, Schadt EE, Gandy S, Zhang B, Ehrlich ME, Salton SR. Dual-specificity protein phosphatase 6 (DUSP6) overexpression reduces amyloid load and improves memory deficits in male 5xFAD mice. Front Aging Neurosci 2024; 16:1400447. [PMID: 39006222 PMCID: PMC11239576 DOI: 10.3389/fnagi.2024.1400447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Dual specificity protein phosphatase 6 (DUSP6) was recently identified as a key hub gene in a causal VGF gene network that regulates late-onset Alzheimer's disease (AD). Importantly, decreased DUSP6 levels are correlated with an increased clinical dementia rating (CDR) in human subjects, and DUSP6 levels are additionally decreased in the 5xFAD amyloidopathy mouse model. Methods To investigate the role of DUSP6 in AD, we stereotactically injected AAV5-DUSP6 or AAV5-GFP (control) into the dorsal hippocampus (dHc) of both female and male 5xFAD or wild type mice, to induce overexpression of DUSP6 or GFP. Results Barnes maze testing indicated that DUSP6 overexpression in the dHc of 5xFAD mice improved memory deficits and was associated with reduced amyloid plaque load, Aß1-40 and Aß1-42 levels, and amyloid precursor protein processing enzyme BACE1, in male but not in female mice. Microglial activation, which was increased in 5xFAD mice, was significantly reduced by dHc DUSP6 overexpression in both males and females, as was the number of "microglial clusters," which correlated with reduced amyloid plaque size. Transcriptomic profiling of female 5xFAD hippocampus revealed upregulation of inflammatory and extracellular signal-regulated kinase pathways, while dHc DUSP6 overexpression in female 5xFAD mice downregulated a subset of genes in these pathways. Gene ontology analysis of DEGs (p < 0.05) identified a greater number of synaptic pathways that were regulated by DUSP6 overexpression in male compared to female 5xFAD. Discussion In summary, DUSP6 overexpression in dHc reduced amyloid deposition and memory deficits in male but not female 5xFAD mice, whereas reduced neuroinflammation and microglial activation were observed in both males and females, suggesting that DUSP6-induced reduction of microglial activation did not contribute to sex-dependent improvement in memory deficits. The sex-dependent regulation of synaptic pathways by DUSP6 overexpression, however, correlated with the improvement of spatial memory deficits in male but not female 5xFAD.
Collapse
Affiliation(s)
- Allen L. Pan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Emmy Sakakibara
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rajeev Joshi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiaodong Zhu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Noam D. Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Sharma M, Tanwar AK, Purohit PK, Pal P, Kumar D, Vaidya S, Prajapati SK, Kumar A, Dhama N, Kumar S, Gupta SK. Regulatory roles of microRNAs in modulating mitochondrial dynamics, amyloid beta fibrillation, microglial activation, and cholinergic signaling: Implications for alzheimer's disease pathogenesis. Neurosci Biobehav Rev 2024; 161:105685. [PMID: 38670299 DOI: 10.1016/j.neubiorev.2024.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Alzheimer's Disease (AD) remains a formidable challenge due to its complex pathology, notably involving mitochondrial dysfunction and dysregulated microRNA (miRNA) signaling. This study delves into the underexplored realm of miRNAs' impact on mitochondrial dynamics and their interplay with amyloid-beta (Aβ) aggregation and tau pathology in AD. Addressing identified gaps, our research utilizes advanced molecular techniques and AD models, alongside patient miRNA profiles, to uncover miRNAs pivotal in mitochondrial regulation. We illuminate novel miRNAs influencing mitochondrial dynamics, Aβ, and tau, offering insights into their mechanistic roles in AD progression. Our findings not only enhance understanding of AD's molecular underpinnings but also spotlight miRNAs as promising therapeutic targets. By elucidating miRNAs' roles in mitochondrial dysfunction and their interactions with hallmark AD pathologies, our work proposes innovative strategies for AD therapy, aiming to mitigate disease progression through targeted miRNA modulation. This contribution marks a significant step toward novel AD treatments, emphasizing the potential of miRNAs in addressing this complex disease.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India.
| | - Ankur Kumar Tanwar
- Department of Pharmacy, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | | | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.
| | - Devendra Kumar
- Department of Pharmaceutical Chemistry, NMIMS School of Pharmacy and Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur Campus, Dhule, Maharashtra, India
| | - Sandeep Vaidya
- CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | | | - Aadesh Kumar
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Nidhi Dhama
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Sokindra Kumar
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Sukesh Kumar Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
8
|
Cahill CM, Sarang SS, Bakshi R, Xia N, Lahiri DK, Rogers JT. Neuroprotective Strategies and Cell-Based Biomarkers for Manganese-Induced Toxicity in Human Neuroblastoma (SH-SY5Y) Cells. Biomolecules 2024; 14:647. [PMID: 38927051 PMCID: PMC11201412 DOI: 10.3390/biom14060647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Manganese (Mn) is an essential heavy metal in the human body, while excess Mn leads to neurotoxicity, as observed in this study, where 100 µM of Mn was administered to the human neuroblastoma (SH-SY5Y) cell model of dopaminergic neurons in neurodegenerative diseases. We quantitated pathway and gene changes in homeostatic cell-based adaptations to Mn exposure. Utilizing the Gene Expression Omnibus, we accessed the GSE70845 dataset as a microarray of SH-SY5Y cells published by Gandhi et al. (2018) and applied statistical significance cutoffs at p < 0.05. We report 74 pathway and 10 gene changes with statistical significance. ReactomeGSA analyses demonstrated upregulation of histones (5 out of 10 induced genes) and histone deacetylases as a neuroprotective response to remodel/mitigate Mn-induced DNA/chromatin damage. Neurodegenerative-associated pathway changes occurred. NF-κB signaled protective responses via Sirtuin-1 to reduce neuroinflammation. Critically, Mn activated three pathways implicating deficits in purine metabolism. Therefore, we validated that urate, a purine and antioxidant, mitigated Mn-losses of viability in SH-SY5Y cells. We discuss Mn as a hypoxia mimetic and trans-activator of HIF-1α, the central trans-activator of vascular hypoxic mitochondrial dysfunction. Mn induced a 3-fold increase in mRNA levels for antioxidant metallothionein-III, which was induced 100-fold by hypoxia mimetics deferoxamine and zinc.
Collapse
Affiliation(s)
- Catherine M. Cahill
- Neurochemistry Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; (C.M.C.); (S.S.S.); (R.B.); (N.X.)
| | - Sanjan S. Sarang
- Neurochemistry Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; (C.M.C.); (S.S.S.); (R.B.); (N.X.)
| | - Rachit Bakshi
- Neurochemistry Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; (C.M.C.); (S.S.S.); (R.B.); (N.X.)
| | - Ning Xia
- Neurochemistry Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; (C.M.C.); (S.S.S.); (R.B.); (N.X.)
| | - Debomoy K. Lahiri
- Department of Psychiatry and Medical & Molecular Genetics, Indiana Alzheimer’s Disease Research Center, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Jack T. Rogers
- Neurochemistry Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; (C.M.C.); (S.S.S.); (R.B.); (N.X.)
| |
Collapse
|
9
|
Jiang D, Liu H, Li T, Zhao S, Yang K, Yao F, Zhou B, Feng H, Wang S, Shen J, Tang J, Zhang YX, Wang Y, Guo C, Tang TS. Agomirs upregulating carboxypeptidase E expression rescue hippocampal neurogenesis and memory deficits in Alzheimer's disease. Transl Neurodegener 2024; 13:24. [PMID: 38671492 PMCID: PMC11046780 DOI: 10.1186/s40035-024-00414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Adult neurogenesis occurs in the subventricular zone (SVZ) and the subgranular zone of the dentate gyrus in the hippocampus. The neuronal stem cells in these two neurogenic niches respond differently to various physiological and pathological stimuli. Recently, we have found that the decrement of carboxypeptidase E (CPE) with aging impairs the maturation of brain-derived neurotrophic factor (BDNF) and neurogenesis in the SVZ. However, it remains unknown whether these events occur in the hippocampus, and what the role of CPE is in the adult hippocampal neurogenesis in the context of Alzheimer's disease (AD). METHODS In vivo screening was performed to search for miRNA mimics capable of upregulating CPE expression and promoting neurogenesis in both neurogenic niches. Among these, two agomirs were further assessed for their effects on hippocampal neurogenesis in the context of AD. We also explored whether these two agomirs could ameliorate behavioral symptoms and AD pathology in mice, using direct intracerebroventricular injection or by non-invasive intranasal instillation. RESULTS Restoration of CPE expression in the hippocampus improved BDNF maturation and boosted adult hippocampal neurogenesis. By screening the miRNA mimics targeting the 5'UTR region of Cpe gene, we developed two agomirs that were capable of upregulating CPE expression. The two agomirs significantly rescued adult neurogenesis and cognition, showing multiple beneficial effects against the AD-associated pathologies in APP/PS1 mice. Of note, noninvasive approach via intranasal delivery of these agomirs improved the behavioral and neurocognitive functions of APP/PS1 mice. CONCLUSIONS CPE may regulate adult hippocampal neurogenesis via the CPE-BDNF-TrkB signaling pathway. This study supports the prospect of developing miRNA agomirs targeting CPE as biopharmaceuticals to counteract aging- and disease-related neurological decline in human brains.
Collapse
Affiliation(s)
- Dongfang Jiang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongmei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Tingting Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Song Zhao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Keyan Yang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fuwen Yao
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bo Zhou
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
| | - Haiping Feng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sijia Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiaqi Shen
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinglan Tang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Present Address: Department of Psychology, UC San Diego, La Jolla, CA, 92093, USA
| | - Yu-Xin Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Caixia Guo
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tie-Shan Tang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Castillo-Ordoñez WO, Cajas-Salazar N, Velasco-Reyes MA. Genetic and epigenetic targets of natural dietary compounds as anti-Alzheimer's agents. Neural Regen Res 2024; 19:846-854. [PMID: 37843220 PMCID: PMC10664119 DOI: 10.4103/1673-5374.382232] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults. Pathogenic factors, such as oxidative stress, an increase in acetylcholinesterase activity, mitochondrial dysfunction, genotoxicity, and neuroinflammation are present in this syndrome, which leads to neurodegeneration. Neurodegenerative pathologies such as Alzheimer's disease are considered late-onset diseases caused by the complex combination of genetic, epigenetic, and environmental factors. There are two main types of Alzheimer's disease, known as familial Alzheimer's disease (onset < 65 years) and late-onset or sporadic Alzheimer's disease (onset ≥ 65 years). Patients with familial Alzheimer's disease inherit the disease due to rare mutations on the amyloid precursor protein (APP), presenilin 1 and 2 (PSEN1 and PSEN2) genes in an autosomal-dominantly fashion with closely 100% penetrance. In contrast, a different picture seems to emerge for sporadic Alzheimer's disease, which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology. Importantly, the fundamental pathophysiological mechanisms driving Alzheimer's disease are interfaced with epigenetic dysregulation. However, the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer's disease or following injury or stroke in humans. In recent years, there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer's disease. Through epigenetic mechanisms, such as DNA methylation, non-coding RNAs, histone modification, and chromatin conformation regulation, natural compounds appear to exert neuroprotective effects. While we do not purport to cover every in this work, we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer's disease-related genes.
Collapse
Affiliation(s)
- Willian Orlando Castillo-Ordoñez
- Facultad de Ciencias Naturales-Exactas y de la Educación, Departamento de Biología. Universidad del Cauca, Popayán-Cauca, Colombia
- Departamento de Estudios Psicológicos, Universidad Icesi, Cali, Colombia
| | - Nohelia Cajas-Salazar
- Facultad de Ciencias Naturales-Exactas y de la Educación, Departamento de Biología. Universidad del Cauca, Popayán-Cauca, Colombia
| | - Mayra Alejandra Velasco-Reyes
- Facultad de Ciencias Naturales-Exactas y de la Educación, Departamento de Biología. Universidad del Cauca, Popayán-Cauca, Colombia
| |
Collapse
|
11
|
Schmued L, Maloney B, Schmued C, Lahiri DK. Treatment with 1, 10 Phenanthroline-5-Amine Reduced Amyloid Burden in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2024; 97:239-247. [PMID: 38073385 PMCID: PMC10789349 DOI: 10.3233/jad-221285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent age-related dementia, and, despite numerous attempts to halt or reverse its devastating progression, no effective therapeutics have yet been confirmed clinically. However, one class of agents that has shown promise is certain metal chelators. OBJECTIVE For the novel assessment of the effect of oral administration of 1,10-phenanthroline-5-amine (PAA) on the severity of amyloid plaque load, we used a transgenic (Tg) mouse model with inserted human autosomally dominant (familial) AD genes: amyloid-β protein precursor (AβPP) and tau. METHODS AβPP/Tau transgenic mice that model AD were allotted into one of two groups. The control group received no treatment while the experimental group received PAA in their drinking water starting at 4 months of age. All animals were sacrificed at 1 year of age and their brains were stained with two different markers of amyloid plaques, Amylo-Glo+ and HQ-O. RESULTS The control animals exhibited numerous dense core plaques throughout the neo- and allo- cortical brain regions. The experimental group treated with PAA, however, showed 62% of the amyloid plaque burden seen in the control group. CONCLUSIONS Oral daily dosing with PAA will significantly reduce the amyloid plaque burden in transgenic mice that model AD. The underlying mechanism for this protection is not fully known; however, one proposed mechanism involves inhibiting the "metal-seeding" of Aβ.
Collapse
Affiliation(s)
| | - Bryan Maloney
- Department of Psychiatry, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Debomoy K. Lahiri
- Department of Psychiatry, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Departments of Medical & Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
12
|
Vijayan M, Reddy PH. Unveiling the Role of Novel miRNA PC-5P-12969 in Alleviating Alzheimer's Disease. J Alzheimers Dis 2024; 98:1329-1348. [PMID: 38552115 DOI: 10.3233/jad-231281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Background The intricate and complex molecular mechanisms that underlie the progression of Alzheimer's disease (AD) have prompted a concerted and vigorous research endeavor aimed at uncovering potential avenues for therapeutic intervention. Objective This study aims to elucidate the role of miRNA PC-5P-12969 in the pathogenesis of AD. Methods We assessed the differential expression of miRNA PC-5P-12969 in postmortem AD brains, AD animal and cell models using real-time reverse-transcriptase RT-PCR, we also checked the gene and protein expression of GSK3α and APP. Results Our investigation revealed a notable upregulation of miRNA PC-5P-12969 in postmortem brains of AD patients, in transgenic mouse models of AD, and in mutant APP overexpressing-HT22 cells. Additionally, our findings indicate that overexpression of miRNA PC-5P-12969 exerts a protective effect on cell survival, while concurrently mitigating apoptotic cell death. Further-more, we established a robust and specific interaction between miRNA PC-5P-12969 and GSK3α. Our luciferase reporter assays provided confirmation of the binding between miRNA PC-5P-12969 and the 3'-UTR of the GSK3α gene. Manipulation of miRNA PC-5P-12969 levels in cellular models of AD yielded noteworthy alterations in the gene and protein expression levels of both GSK3α and APP. Remarkably, the manipulation of miRNA PC-5P-12969 levels yielded significant enhancements in mitochondrial respiration and ATP production, concurrently with a reduction in mitochondrial fragmentation, thus unveiling a potential regulatory role of miRNA PC-5P-12969 in these vital cellular processes. Conclusions In summary, this study sheds light on the crucial role of miRNA PC-5P-12969 and its direct interaction with GSK3α in the context of AD.
Collapse
Affiliation(s)
- Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Pharmacology and Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
13
|
Kaur S, Verma H, Kaur S, Gangwar P, Yadav A, Yadav B, Rao R, Dhiman M, Mantha AK. Understanding the multifaceted role of miRNAs in Alzheimer's disease pathology. Metab Brain Dis 2024; 39:217-237. [PMID: 37505443 DOI: 10.1007/s11011-023-01265-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
Small non-coding RNAs (miRNAs) regulate gene expression by binding to mRNA and mediating its degradation or inhibiting translation. Since miRNAs can regulate the expression of several genes, they have multiple roles to play in biological processes and human diseases. The majority of miRNAs are known to be expressed in the brain and are involved in synaptic functions, thus marking their presence and role in major neurodegenerative disorders, including Alzheimer's disease (AD). In AD, amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) are known to be the major hallmarks. The clearance of Aβ and tau is known to be associated with miRNA dysregulation. In addition, the β-site APP cleaving enzyme (BACE 1), which cleaves APP to form Aβ, is also found to be regulated by miRNAs, thus directly affecting Aβ accumulation. Growing evidences suggest that neuroinflammation can be an initial event in AD pathology, and miRNAs have been linked with the regulation of neuroinflammation. Inflammatory disorders have also been associated with AD pathology, and exosomes associated with miRNAs are known to regulate brain inflammation, suggesting for the role of systemic miRNAs in AD pathology. Several miRNAs have been related in AD, years before the clinical symptoms appear, most of which are associated with regulating the cell cycle, immune system, stress responses, cellular senescence, nerve growth factor (NGF) signaling, and synaptic regulation. Phytochemicals, especially polyphenols, alter the expression of various miRNAs by binding to miRNAs or binding to the transcriptional activators of miRNAs, thus control/alter various metabolic pathways. Awing to the sundry biological processes being regulated by miRNAs in the brain and regulation of expression of miRNAs via phytochemicals, miRNAs and the regulatory bioactive phytochemicals can serve as therapeutic agents in the treatment and management of AD.
Collapse
Affiliation(s)
- Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Sukhchain Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Prabhakar Gangwar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Anuradha Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Bharti Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Rashmi Rao
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India.
| |
Collapse
|
14
|
Yin R, Lu H, Cao Y, Zhang J, Liu G, Guo Q, Kai X, Zhao J, Wei Y. The Mechanisms of miRNAs on Target Regulation and their Recent Advances in Atherosclerosis. Curr Med Chem 2024; 31:5779-5804. [PMID: 37807413 DOI: 10.2174/0109298673253678230920054220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/25/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023]
Abstract
miRNAs are crucial regulators in a variety of physiological and pathological processes, while their regulation mechanisms were usually described as negatively regulating gene expression by targeting the 3'-untranslated region(3'-UTR) of target gene miRNAs through seed sequence in tremendous studies. However, recent evidence indicated the existence of non-canonical mechanisms mediated by binding other molecules besides mRNAs. Additionally, accumulating evidence showed that functions of intracellular and intercellular miRNAs exhibited spatiotemporal patterns. Considering that detailed knowledge of the miRNA regulating mechanism is essential for understanding the roles and further clinical applications associated with their dysfunction and dysregulation, which is complicated and not fully clarified. Based on that, we summarized the recently reported regulation mechanisms of miRNAs, including recognitions, patterns of actions, and chemical modifications. And we also highlight the novel findings of miRNAs in atherosclerosis progression researches to provide new insights for non-coding RNA-based therapy in intractable diseases.
Collapse
Affiliation(s)
- Runting Yin
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Hongyu Lu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yixin Cao
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jia Zhang
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Geng Liu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Qian Guo
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Xinyu Kai
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Jiemin Zhao
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| |
Collapse
|
15
|
Sharma C, Mazumder A. A Comprehensive Review on Potential Molecular Drug Targets for the Management of Alzheimer's Disease. Cent Nerv Syst Agents Med Chem 2024; 24:45-56. [PMID: 38305393 DOI: 10.2174/0118715249263300231116062740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/25/2023] [Accepted: 10/04/2023] [Indexed: 02/03/2024]
Abstract
Alzheimer's disease (AD) is an onset and incurable neurodegenerative disorder that has been linked to various genetic, environmental, and lifestyle factors. Recent research has revealed several potential targets for drug development, such as the prevention of Aβ production and removal, prevention of tau hyperphosphorylation, and keeping neurons alive. Drugs that target numerous ADrelated variables have been developed, and early results are encouraging. This review provides a concise map of the different receptor signaling pathways associated with Alzheimer's Disease, as well as insight into drug design based on these pathways. It discusses the molecular mechanisms of AD pathogenesis, such as oxidative stress, aging, Aβ turnover, thiol groups, and mitochondrial activities, and their role in the disease. It also reviews the potential drug targets, in vivo active agents, and docking studies done in AD and provides prospects for future drug development. This review intends to provide more clarity on the molecular processes that occur in Alzheimer's patient's brains, which can be of use in diagnosing and preventing the condition.
Collapse
Affiliation(s)
- Chanchal Sharma
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida-201306, Uttar Pradesh, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida-201306, Uttar Pradesh, India
| |
Collapse
|
16
|
Wang L, Shui X, Diao Y, Chen D, Zhou Y, Lee TH. Potential Implications of miRNAs in the Pathogenesis, Diagnosis, and Therapeutics of Alzheimer's Disease. Int J Mol Sci 2023; 24:16259. [PMID: 38003448 PMCID: PMC10671222 DOI: 10.3390/ijms242216259] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a complex multifactorial disorder that poses a substantial burden on patients, caregivers, and society. Considering the increased aging population and life expectancy, the incidence of AD will continue to rise in the following decades. However, the molecular pathogenesis of AD remains controversial, superior blood-based biomarker candidates for early diagnosis are still lacking, and effective therapeutics to halt or slow disease progression are urgently needed. As powerful genetic regulators, microRNAs (miRNAs) are receiving increasing attention due to their implications in the initiation, development, and theranostics of various diseases, including AD. In this review, we summarize miRNAs that directly target microtubule-associated protein tau (MAPT), amyloid precursor protein (APP), and β-site APP-cleaving enzyme 1 (BACE1) transcripts and regulate the alternative splicing of tau and APP. We also discuss related kinases, such as glycogen synthase kinase (GSK)-3β, cyclin-dependent kinase 5 (CDK5), and death-associated protein kinase 1 (DAPK1), as well as apolipoprotein E, that are directly targeted by miRNAs to control tau phosphorylation and amyloidogenic APP processing leading to Aβ pathologies. Moreover, there is evidence of miRNA-mediated modulation of inflammation. Furthermore, circulating miRNAs in the serum or plasma of AD patients as noninvasive biomarkers with diagnostic potential are reviewed. In addition, miRNA-based therapeutics optimized with nanocarriers or exosomes as potential options for AD treatment are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Ying Zhou
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (L.W.)
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (L.W.)
| |
Collapse
|
17
|
Mir FA, Amanullah A, Jain BP, Hyderi Z, Gautam A. Neuroepigenetics of ageing and neurodegeneration-associated dementia: An updated review. Ageing Res Rev 2023; 91:102067. [PMID: 37689143 DOI: 10.1016/j.arr.2023.102067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gene expression is tremendously altered in the brain during memory acquisition, recall, and forgetfulness. However, non-genetic factors, including environmental elements, epigenetic changes, and lifestyle, have grabbed significant attention in recent years regarding the etiology of neurodegenerative diseases (NDD) and age-associated dementia. Epigenetic modifications are essential in regulating gene expression in all living organisms in a DNA sequence-independent manner. The genes implicated in ageing and NDD-related memory disorders are epigenetically regulated by processes such as DNA methylation, histone acetylation as well as messenger RNA editing machinery. The physiological and optimal state of the epigenome, especially within the CNS of humans, plays an intricate role in helping us adjust to the changing environment, and alterations in it cause many brain disorders, but the mechanisms behind it still need to be well understood. When fully understood, these epigenetic landscapes could act as vital targets for pharmacogenetic rescue strategies for treating several diseases, including neurodegeneration- and age-induced dementia. Keeping this objective in mind, this updated review summarises the epigenetic changes associated with age and neurodegeneration-associated dementia.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Zeeshan Hyderi
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
18
|
Abidin SZ, Mat Pauzi NA, Mansor NI, Mohd Isa NI, Hamid AA. A new perspective on Alzheimer's disease: microRNAs and circular RNAs. Front Genet 2023; 14:1231486. [PMID: 37790702 PMCID: PMC10542399 DOI: 10.3389/fgene.2023.1231486] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
microRNAs (miRNAs) play a multifaceted role in the pathogenesis of Alzheimer's disease (AD). miRNAs regulate several aspects of the disease, such as Aβ metabolism, tau phosphorylation, neuroinflammation, and synaptic function. The dynamic interaction between miRNAs and their target genes depends upon various factors, including the subcellular localization of miRNAs, the relative abundance of miRNAs and target mRNAs, and the affinity of miRNA-mRNA interactions. The miRNAs are released into extracellular fluids and subsequently conveyed to specific target cells through various modes of transportation, such as exosomes. In comparison, circular RNAs (circRNAs) are non-coding RNA (ncRNA) characterized by their covalently closed continuous loops. In contrast to linear RNA, RNA molecules are circularized by forming covalent bonds between the 3'and 5'ends. CircRNA regulates gene expression through interaction with miRNAs at either the transcriptional or post-transcriptional level, even though their precise functions and mechanisms of gene regulation remain to be elucidated. The current stage of research on miRNA expression profiles for diagnostic purposes in complex disorders such as Alzheimer's disease is still in its early phase, primarily due to the intricate nature of the underlying pathological causes, which encompass a diverse range of pathways and targets. Hence, this review comprehensively addressed the alteration of miRNA expression across diverse sources such as peripheral blood, exosome, cerebrospinal fluid, and brain in AD patients. This review also addresses the nascent involvement of circRNAs in the pathogenesis of AD and their prospective utility as biomarkers and therapeutic targets for these conditions in future research.
Collapse
Affiliation(s)
- Shahidee Zainal Abidin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Terengganu, Malaysia
- Biological Security and Sustainability (BIOSIS) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Nurul Asykin Mat Pauzi
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Nur Izzati Mansor
- Department of Nursing, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Iffah Mohd Isa
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Singh R, Hussain J, Kaur A, Jamdare BG, Pathak D, Garg K, Kaur R, Shankar S, Sunkaria A. The hidden players: Shedding light on the significance of post-translational modifications and miRNAs in Alzheimer's disease development. Ageing Res Rev 2023; 90:102002. [PMID: 37423542 DOI: 10.1016/j.arr.2023.102002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent, expensive, lethal, and burdening neurodegenerative disease of this century. The initial stages of this disease are characterized by a reduced ability to encode and store new memories. Subsequent cognitive and behavioral deterioration occurs during the later stages. Abnormal cleavage of amyloid precursor protein (APP) resulting in amyloid-beta (Aβ) accumulation along with hyperphosphorylation of tau protein are the two characteristic hallmarks of AD. Recently, several post-translational modifications (PTMs) have been identified on both Aβ as well as tau proteins. However, a complete understanding of how different PTMs influence the structure and function of proteins in both healthy and diseased conditions is still lacking. It has been speculated that these PTMs might play vital roles in the progression of AD. In addition, several short non-coding microRNA (miRNA) sequences have been found to be deregulated in the peripheral blood of Alzheimer patients. The miRNAs are single-stranded RNAs that control gene expression by causing mRNA degradation, deadenylation, or translational repression and have been implicated in the regulation of several neuronal and glial activities. The lack of comprehensive understanding regarding disease mechanisms, biomarkers, and therapeutic targets greatly hampers the development of effective strategies for early diagnosis and the identification of viable therapeutic targets. Moreover, existing treatment options for managing the disease have proven to be ineffective and provide only temporary relief. Therefore, understanding the role of miRNAs and PTMs in AD can provide valuable insights into disease mechanisms, aid in the identification of biomarkers, facilitate the discovery of novel therapeutic targets, and inspire innovative treatments for this challenging condition.
Collapse
Affiliation(s)
- Ravinder Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Julfequar Hussain
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Amandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Balaji Gokul Jamdare
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Deepti Pathak
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Kanchan Garg
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Ramanpreet Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Shivani Shankar
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Aditya Sunkaria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
20
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
21
|
Wang H, Liu X, Song L, Yang W, Li M, Chen Q, Lv H, Zhao P, Yang Z, Liu W, Wang ZC. Dysfunctional Coupling of Cerebral Blood Flow and Susceptibility Value in the Bilateral Hippocampus is Associated with Cognitive Decline in Nondialysis Patients with CKD. J Am Soc Nephrol 2023; 34:1574-1588. [PMID: 37476849 PMCID: PMC10482064 DOI: 10.1681/asn.0000000000000185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/13/2023] [Indexed: 07/22/2023] Open
Abstract
SIGNIFICANCE STATEMENT Patients with end stage CKD often develop cognitive decline, but whether this is related to the underlying disease or to hemodialysis remains unclear. We performed three-dimensional pseudocontinuous arterial spin labeling and quantitative susceptibility mapping prospectively in 40 patients with stage 1-4 CKD, 47 nondialysis patients with stage 5 CKD, and 44 healthy controls. Our magnetic resonance imaging data demonstrate that changes in cerebral blood flow-susceptibility coupling might underlie this cognitive decline, perhaps in the hippocampus and thalamus. These results suggest that magnetic resonance imaging parameters are potential biomarkers of cognitive decline in patients with CKD. Moreover, our findings may lead to discovery of novel therapeutic targets to prevent cognitive decline in patients with CKD. BACKGROUND Cerebral blood flow (CBF) and susceptibility values reflect vascular and iron metabolism, providing mechanistic insights into conditions of health and disease. Nondialysis patients with CKD show a cognitive decline, but the pathophysiological mechanisms underlying this remain unclear. METHODS Three-dimensional pseudocontinuous arterial spin labeling and quantitative susceptibility mapping were prospectively performed in 40 patients with stage 1-4 CKD (CKD 1-4), 47 nondialysis patients with stage 5 CKD (CKD 5ND), and 44 healthy controls (HCs). Voxel-based global and regional analyses of CBF, susceptibility values, and vascular-susceptibility coupling were performed. Furthermore, the association between clinical performance and cerebral perfusion and iron deposition was analyzed. RESULTS For CBF, patients with CKD 5ND had higher normalized CBF in the hippocampus and thalamus than HCs. Patients with CKD 5ND had higher normalized CBF in the hippocampus and thalamus than those with CKD 1-4. The susceptibility values in the hippocampus and thalamus were lower in patients with CKD 5ND than in HCs. Patients with CKD 5ND had higher susceptibility value in the caudate nucleus than those with CKD 1-4. More importantly, patients with CKD 5ND had lower CBF-susceptibility coupling than HCs. In addition, CBF and susceptibility values were significantly associated with clinical performance. CONCLUSIONS Our findings demonstrate a new neuropathological mechanism in patients with CKD, which leads to regional changes in CBF-susceptibility coupling. These changes are related to cognitive decline, providing potential imaging markers for assessing clinical disability and cognitive decline in these patients.
Collapse
Affiliation(s)
- Hao Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xu Liu
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijun Song
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenbo Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mingan Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenhu Liu
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhen-chang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Olufunmilayo EO, Holsinger RMD. Roles of Non-Coding RNA in Alzheimer's Disease Pathophysiology. Int J Mol Sci 2023; 24:12498. [PMID: 37569871 PMCID: PMC10420049 DOI: 10.3390/ijms241512498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is accompanied by deficits in memory and cognitive functions. The disease is pathologically characterised by the accumulation and aggregation of an extracellular peptide referred to as amyloid-β (Aβ) in the form of amyloid plaques and the intracellular aggregation of a hyperphosphorelated protein tau in the form of neurofibrillary tangles (NFTs) that cause neuroinflammation, synaptic dysfunction, and oxidative stress. The search for pathomechanisms leading to disease onset and progression has identified many key players that include genetic, epigenetic, behavioural, and environmental factors, which lend support to the fact that this is a multi-faceted disease where failure in various systems contributes to disease onset and progression. Although the vast majority of individuals present with the sporadic (non-genetic) form of the disease, dysfunctions in numerous protein-coding and non-coding genes have been implicated in mechanisms contributing to the disease. Recent studies have provided strong evidence for the association of non-coding RNAs (ncRNAs) with AD. In this review, we highlight the current findings on changes observed in circular RNA (circRNA), microRNA (miRNA), short interfering RNA (siRNA), piwi-interacting RNA (piRNA), and long non-coding RNA (lncRNA) in AD. Variations in these ncRNAs could potentially serve as biomarkers or therapeutic targets for the diagnosis and treatment of Alzheimer's disease. We also discuss the results of studies that have targeted these ncRNAs in cellular and animal models of AD with a view for translating these findings into therapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Edward O. Olufunmilayo
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Department of Medicine, University College Hospital, Queen Elizabeth Road, Oritamefa, Ibadan 200212, Nigeria
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
23
|
Jahangir S, Allala M, Khan AS, Muyolema Arce VE, Patel A, Soni K, Sharafshah A. A Review of Biomarkers in Delirium Superimposed on Dementia (DSD) and Their Clinical Application to Personalized Treatment and Management. Cureus 2023; 15:e38627. [PMID: 37159618 PMCID: PMC10163832 DOI: 10.7759/cureus.38627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/11/2023] Open
Abstract
Delirium superimposed on dementia (DSD) occurs when patients with pre-existing dementia develop delirium. This complication causes patients to become impaired, posing safety concerns for both hospital staff and patients. Furthermore, there is an increased risk of worsening functional disability and death. Despite medical advances, DSD provides both diagnostic and therapeutic challenges to providers. Identifying at-risk patients and providing personalized medicine and patient care can decrease disease burden in a time-efficient manner. This review delves into bioinformatics-based studies of DSD in order to design and implement a personalized medicine-based approach. Our findings suggest alternative medical treatment methods based on gene-gene interactions, gene-microRNA (miRNA) interactions, gene-drug interactions, and pharmacogenetic variants involved in dementia and psychiatric disorders. We identify 17 genes commonly associated with both dementia and delirium including apolipoprotein E (ApoE), brain-derived neurotrophic factor (BDNF), catechol-O-methyltransferase (COMT), butyrylcholinesterase (BChE), acetylcholinesterase (AChE), DNA methyltransferase 1 (DNMT1), prion protein (PrP), tumor necrosis factor (TNF), serine palmitoyltransferase long chain base subunit 1 (SPTLC1), microtubule-associated protein tau (MAPT), alpha-synuclein (αS), superoxide dismutase 1 (SOD1), amyloid beta precursor protein (APP), neurofilament light (NFL), neurofilament heavy, 5-hydroxytryptamine receptor 2A (HTR2A), and serpin family A member 3 (ERAP3). In addition, we identify six main genes that form an inner concentric model, as well as their associated miRNA. The FDA-approved medications that were found to be effective against the six main genes were identified. Furthermore, the PharmGKB database was used to identify variants of these six genes in order to suggest future treatment options. We also looked at previous research and evidence on biomarkers that could be used to detect DSD. According to research, there are three types of biomarkers that can be used depending on the stage of delirium. The pathological mechanisms underlying delirium are also discussed. This review will identify treatment and diagnostic options for personalized DSD management.
Collapse
Affiliation(s)
- Saira Jahangir
- Neurology, Dow University of Health Sciences, Civil Hospital Karachi, Karachi, PAK
| | - Manoj Allala
- Internal Medicine, Mediciti Institute of Medical Sciences, Medchal, IND
| | - Armughan S Khan
- Internal Medicine, Midwest Sleep and Wellness, Gurnee, USA
- Internal Medicine, JC Medical Center, Florida, USA
| | | | - Anandkumar Patel
- Medicine, Maharshi Hospital Private Limited, Surendranagar, IND
- Neurology, Shalby Hospitals Naroda, Ahmedabad, IND
| | - Karsh Soni
- Neurology, Grodno State Medical University, Ahmedabad, IND
| | | |
Collapse
|
24
|
Rogers JT, Cahill CM. Iron Responsiveness to Lysosomal Disruption: A Novel Pathway to Alzheimer's Disease. J Alzheimers Dis 2023; 96:41-45. [PMID: 37781810 DOI: 10.3233/jad-230953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Familial Alzheimer's disease (fAD) mutations in the amyloid-β protein precursor (AβPP) enhance brain AβPP C-Terminal Fragment (CTF) levels to inhibit lysosomal v-ATPase. Consequent disrupted acidification of the endolysosomal pathway may trigger brain iron deficiencies and mitochondrial dysfunction. The iron responsive element (IRE) in the 5'Untranslated-region of AβPP mRNA should be factored into this cycle where reduced bioavailable Fe-II would decrease IRE-dependent AβPP translation and levels of APP-CTFβ in a cycle to adaptively restore iron homeostasis while increases of transferrin-receptors is evident. In healthy younger individuals, Fe-dependent translational modulation of AβPP is part of the neuroprotective function of sAβPPα with its role in iron transport.
Collapse
Affiliation(s)
- Jack T Rogers
- Neurochemistry Laboratory, Massachusetts General Hospital (East), and Harvard Medical School, Charlestown, MA, USA
| | - Catherine M Cahill
- Neurochemistry Laboratory, Massachusetts General Hospital (East), and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
25
|
Ge X, Yao T, Zhang C, Wang Q, Wang X, Xu LC. Human microRNA-4433 (hsa-miR-4443) Targets 18 Genes to be a Risk Factor of Neurodegenerative Diseases. Curr Alzheimer Res 2022; 19:511-522. [PMID: 35929619 PMCID: PMC9906632 DOI: 10.2174/1567205019666220805120303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Neurodegenerative diseases, such as Alzheimer's disease patients (AD), Huntington's disease (HD) and Parkinson's disease (PD), are common causes of morbidity, mortality, and cognitive impairment in older adults. OBJECTIVE We aimed to understand the transcriptome characteristics of the cortex of neurodegenerative diseases and to provide an insight into the target genes of differently expressed microRNAs in the occurrence and development of neurodegenerative diseases. METHODS The Limma package of R software was used to analyze GSE33000, GSE157239, GSE64977 and GSE72962 datasets to identify the differentially expressed genes (DEGs) and microRNAs in the cortex of neurodegenerative diseases. Bioinformatics methods, such as GO enrichment analysis, KEGG enrichment analysis and gene interaction network analysis, were used to explore the biological functions of DEGs. Weighted gene co-expression network analysis (WGCNA) was used to cluster DEGs into modules. RNA22, miRDB, miRNet 2.0 and TargetScan7 databases were performed to predict the target genes of microRNAs. RESULTS Among 310 Alzheimer's disease (AD) patients, 157 Huntington's disease (HD) patients and 157 non-demented control (Con) individuals, 214 co-DEGs were identified. Those co-DEGs were filtered into 2 different interaction network complexes, representing immune-related genes and synapserelated genes. The WGCNA results identified five modules: yellow, blue, green, turquoise, and brown. Most of the co-DEGs were clustered into the turquoise module and blue module, which respectively regulated synapse-related function and immune-related function. In addition, human microRNA-4433 (hsa-miR-4443), which targets 18 co-DEGs, was the only 1 co-up-regulated microRNA identified in the cortex of neurodegenerative diseases. CONCLUSION 214 DEGs and 5 modules regulate the immune-related and synapse-related function of the cortex in neurodegenerative diseases. Hsa-miR-4443 targets 18 co-DEGs and may be a potential molecular mechanism in neurodegenerative diseases' occurrence and development.
Collapse
Affiliation(s)
- Xing Ge
- Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China;
| | - Tingting Yao
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China;
| | - Chaoran Zhang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China;
| | - Qingqing Wang
- Department of Nephrology, Xuzhou Children’s Hospital, Xuzhou, Jiangsu 221000, China
| | - Xuxu Wang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China;
| | - Li-Chun Xu
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; ,Address correspondence to this author at the School of Public Health, Xuzhou Medical University, Xuzhou, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China; Tel: +86-516-83262650; Fax: +86-516-83262650; E-mail:
| |
Collapse
|
26
|
Aerqin Q, Wang ZT, Wu KM, He XY, Dong Q, Yu JT. Omics-based biomarkers discovery for Alzheimer's disease. Cell Mol Life Sci 2022; 79:585. [PMID: 36348101 DOI: 10.1007/s00018-022-04614-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorders presenting with the pathological hallmarks of amyloid plaques and tau tangles. Over the past few years, great efforts have been made to explore reliable biomarkers of AD. High-throughput omics are a technology driven by multiple levels of unbiased data to detect the complex etiology of AD, and it provides us with new opportunities to better understand the pathophysiology of AD and thereby identify potential biomarkers. Through revealing the interaction networks between different molecular levels, the ultimate goal of multi-omics is to improve the diagnosis and treatment of AD. In this review, based on the current AD pathology and the current status of AD diagnostic biomarkers, we summarize how genomics, transcriptomics, proteomics and metabolomics are all conducing to the discovery of reliable AD biomarkers that could be developed and used in clinical AD management.
Collapse
Affiliation(s)
- Qiaolifan Aerqin
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Kai-Min Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Xiao-Yu He
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
27
|
Migliore L, Coppedè F. Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol 2022; 18:643-660. [PMID: 36180553 DOI: 10.1038/s41582-022-00714-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
With the exception of a few monogenic forms, Alzheimer disease (AD) has a complex aetiology that is likely to involve multiple susceptibility genes and environmental factors. The role of environmental factors is difficult to determine and, until a few years ago, the molecular mechanisms underlying gene-environment (G × E) interactions in AD were largely unknown. Here, we review evidence that has emerged over the past two decades to explain how environmental factors, such as diet, lifestyle, alcohol, smoking and pollutants, might interact with the human genome. In particular, we discuss how various environmental AD risk factors can induce epigenetic modifications of key AD-related genes and pathways and consider how epigenetic mechanisms could contribute to the effects of oxidative stress on AD onset. Studies on early-life exposures are helping to uncover critical time windows of sensitivity to epigenetic influences from environmental factors, thereby laying the foundations for future primary preventative approaches. We conclude that epigenetic modifications need to be considered when assessing G × E interactions in AD.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy. .,Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy.
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
28
|
Kumar S, Orlov E, Gowda P, Bose C, Swerdlow RH, Lahiri DK, Reddy PH. Synaptosome microRNAs regulate synapse functions in Alzheimer's disease. NPJ Genom Med 2022; 7:47. [PMID: 35941185 PMCID: PMC9359989 DOI: 10.1038/s41525-022-00319-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/15/2022] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) are found in nerve terminals, synaptic vesicles, and synaptosomes, but it is unclear whether synaptic and cytosolic miRNA populations differ in Alzheimer's disease (AD) or if synaptosomal miRNAs affect AD synapse activity. To address these questions, we generated synaptosomes and cytosolic fractions from postmortem brains of AD and unaffected control (UC) samples and analyzed them using a global Affymetrix miRNAs microarray platform. A group of miRNAs significantly differed (P < 0.0001) with high fold changes variance (+/- >200-fold) in their expressions in different comparisons: (1) UC synaptosome vs UC cytosol, (2) AD synaptosomes vs AD cytosol, (3) AD cytosol vs UC cytosol, and (4) AD synaptosomes vs UC synaptosomes. MiRNAs data analysis revealed that some potential miRNAs were consistently different across sample groups. These differentially expressed miRNAs were further validated using AD postmortem brains, brains of APP transgenic (Tg2576), Tau transgenic (P301L), and wild-type mice. The miR-501-3p, miR-502-3p, and miR-877-5p were identified as potential synaptosomal miRNAs upregulated with disease progression based on AD Braak stages. Gene Ontology Enrichment and Ingenuity Pathway Analysis of synaptosomal miRNAs showed the involvement of miRNAs in nervous system development, cell junction organization, synapse assembly formation, and function of GABAergic synapse. This is the first description of synaptic versus cytosolic miRNAs in AD and their significance in synapse function.
Collapse
Affiliation(s)
- Subodh Kumar
- grid.416992.10000 0001 2179 3554Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905 USA ,grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Erika Orlov
- grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA
| | - Prashanth Gowda
- grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA
| | - Chhanda Bose
- grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA
| | - Russell H. Swerdlow
- grid.266515.30000 0001 2106 0692Department of Neurology, the University of Kansas Medical Center, University of Kansas Alzheimer’s Disease Research Center, Fairway, KS 66205 USA
| | - Debomoy K. Lahiri
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics’ Departments of Psychiatry and Medical & Molecular Genetics, Indiana University School of Medicine’ Indiana Alzheimer’s Disease Research Center, Stark Neuroscience Research Institute, Indianapolis, IN 46202 USA
| | - P. Hemachandra Reddy
- grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Department of Neurology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Department of Public Health, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA
| |
Collapse
|
29
|
Internal Ribosome Entry Site (IRES)-Mediated Translation and Its Potential for Novel mRNA-Based Therapy Development. Biomedicines 2022; 10:biomedicines10081865. [PMID: 36009412 PMCID: PMC9405587 DOI: 10.3390/biomedicines10081865] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Many conditions can benefit from RNA-based therapies, namely, those targeting internal ribosome entry sites (IRESs) and their regulatory proteins, the IRES trans-acting factors (ITAFs). IRES-mediated translation is an alternative mechanism of translation initiation, known for maintaining protein synthesis when canonical translation is impaired. During a stress response, it contributes to cell reprogramming and adaptation to the new environment. The relationship between IRESs and ITAFs with tumorigenesis and resistance to therapy has been studied in recent years, proposing new therapeutic targets and treatments. In addition, IRES-dependent translation initiation dysregulation is also related to neurological and cardiovascular diseases, muscular atrophies, or other syndromes. The participation of these structures in the development of such pathologies has been studied, yet to a far lesser extent than in cancer. Strategies involving the disruption of IRES–ITAF interactions or the modification of ITAF expression levels may be used with great impact in the development of new therapeutics. In this review, we aim to comprehend the current data on groups of human pathologies associated with IRES and/or ITAF dysregulation and their application in the designing of new therapeutic approaches using them as targets or tools. Thus, we wish to summarise the evidence in the field hoping to open new promising lines of investigation toward personalised treatments.
Collapse
|
30
|
Zhu Y, Zhu L, Wang X, Jin H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis 2022; 13:644. [PMID: 35871216 PMCID: PMC9308039 DOI: 10.1038/s41419-022-05075-2] [Citation(s) in RCA: 222] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/21/2023]
Abstract
The growing understanding of RNA functions and their crucial roles in diseases promotes the application of various RNAs to selectively function on hitherto "undruggable" proteins, transcripts and genes, thus potentially broadening the therapeutic targets. Several RNA-based medications have been approved for clinical use, while others are still under investigation or preclinical trials. Various techniques have been explored to promote RNA intracellular trafficking and metabolic stability, despite significant challenges in developing RNA-based therapeutics. In this review, the mechanisms of action, challenges, solutions, and clinical application of RNA-based therapeutics have been comprehensively summarized.
Collapse
Affiliation(s)
- Yiran Zhu
- grid.13402.340000 0004 1759 700XLaboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang China
| | - Liyuan Zhu
- grid.13402.340000 0004 1759 700XLaboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang China
| | - Xian Wang
- grid.13402.340000 0004 1759 700XDepartment of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang China
| | - Hongchuan Jin
- grid.13402.340000 0004 1759 700XLaboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang China
| |
Collapse
|
31
|
Sato K, Takayama KI, Hashimoto M, Inoue S. Transcriptional and Post-Transcriptional Regulations of Amyloid-β Precursor Protein (APP ) mRNA. FRONTIERS IN AGING 2022; 2:721579. [PMID: 35822056 PMCID: PMC9261399 DOI: 10.3389/fragi.2021.721579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023]
Abstract
Alzheimer’s disease (AD) is an age-associated neurodegenerative disorder characterized by progressive impairment of memory, thinking, behavior, and dementia. Based on ample evidence showing neurotoxicity of amyloid-β (Aβ) aggregates in AD, proteolytically derived from amyloid precursor protein (APP), it has been assumed that misfolding of Aβ plays a crucial role in the AD pathogenesis. Additionally, extra copies of the APP gene caused by chromosomal duplication in patients with Down syndrome can promote AD pathogenesis, indicating the pathological involvement of the APP gene dose in AD. Furthermore, increased APP expression due to locus duplication and promoter mutation of APP has been found in familial AD. Given this background, we aimed to summarize the mechanism underlying the upregulation of APP expression levels from a cutting-edge perspective. We first reviewed the literature relevant to this issue, specifically focusing on the transcriptional regulation of APP by transcription factors that bind to the promoter/enhancer regions. APP expression is also regulated by growth factors, cytokines, and hormone, such as androgen. We further evaluated the possible involvement of post-transcriptional regulators of APP in AD pathogenesis, such as RNA splicing factors. Indeed, alternative splicing isoforms of APP are proposed to be involved in the increased production of Aβ. Moreover, non-coding RNAs, including microRNAs, post-transcriptionally regulate the APP expression. Collectively, elucidation of the novel mechanisms underlying the upregulation of APP would lead to the development of clinical diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Kaoru Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Makoto Hashimoto
- Department of Basic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
32
|
Chia SY, Vipin A, Ng KP, Tu H, Bommakanti A, Wang BZ, Tan YJ, Zailan FZ, Ng ASL, Ling SC, Okamura K, Tan EK, Kandiah N, Zeng L. Upregulated Blood miR-150-5p in Alzheimer’s Disease Dementia Is Associated with Cognition, Cerebrospinal Fluid Amyloid-β, and Cerebral Atrophy. J Alzheimers Dis 2022; 88:1567-1584. [DOI: 10.3233/jad-220116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: There is an urgent need for noninvasive, cost-effective biomarkers for Alzheimer’s disease (AD), such as blood-based biomarkers. They will not only support the clinical diagnosis of dementia but also allow for timely pharmacological and nonpharmacological interventions and evaluations. Objective: To identify and validate a novel blood-based microRNA biomarker for dementia of the Alzheimer’s type (DAT). Methods: We conducted microRNA sequencing using peripheral blood mononuclear cells isolated from a discovery cohort and validated the identified miRNAs in an independent cohort and AD postmortem tissues. miRNA correlations with AD pathology and AD clinical-radiological imaging were conducted. We also performed bioinformatics and cell-based assay to identify miRNA target genes. Results: We found that miR-150-5p expression was significantly upregulated in DAT compared to mild cognitive impairment and healthy subjects. Upregulation of miR-150-5p was observed in AD hippocampus. We further found that higher miR-150-5p levels were correlated with the clinical measures of DAT, including lower global cognitive scores, lower CSF Aβ 42, and higher CSF total tau. Interestingly, we observed that higher miR-150-5p levels were associated with MRI brain volumes within the default mode and executive control networks, two key networks implicated in AD. Furthermore, pathway analysis identified the targets of miR-150-5p to be enriched in the Wnt signaling pathway, including programmed cell death 4 (PDCD4). We found that PDCD4 was downregulated in DAT blood and was downregulated by miR-150-5p at both the transcriptional and protein levels Conclusion: Our findings demonstrated that miR-150-5p is a promising clinical blood-based biomarker for DAT
Collapse
Affiliation(s)
- Sook-Yoong Chia
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Ashwati Vipin
- Department of Neurology, National Neuroscience Institute, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| | - Kok Pin Ng
- Department of Neurology, National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| | - Haitao Tu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Ananth Bommakanti
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore
| | | | - Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Fatin Zahra Zailan
- Department of Neurology, National Neuroscience Institute, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| | - Adeline Su-Lyn Ng
- Department of Neurology, National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
| | - Shuo-Chian Ling
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neuroscience & Behavioral Disorders Program, Duke-NUS Medical School, Singapore
| | - Katsutomo Okamura
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore
- Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Eng-King Tan
- Neuroscience & Behavioral Disorders Program, Duke-NUS Medical School, Singapore
- Research Department, National Neuroscience Institute, Singapore General Hospital Campus, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
- Neuroscience & Behavioral Disorders Program, Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| |
Collapse
|
33
|
Liu J, Liang Y, Qiao L, Xia D, Pan Y, Liu W. MiR-128-1-5p regulates differentiation of ovine stromal vascular fraction by targeting the KLF11 5'-UTR. Domest Anim Endocrinol 2022; 80:106711. [PMID: 35338828 DOI: 10.1016/j.domaniend.2022.106711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/22/2022]
Abstract
Fat content is an important index to evaluate the individual performance of livestock animals such as sheep for meat production purposes. Reducing the subcutaneous and visceral fat while increasing the intramuscular fat is a valuable goal to achieve for the meat production industry. Here, we investigated the effect of miR-128-1-5p on adipogenesis of subcutaneous fat by targeting 5'-UTR in KLF11, a rare mechanism where most miRNAs bind the 3'-UTR of mRNAs. A dual fluorescence reporter assay was conducted to validate the binding sites of miR-128-1-5p on 5'-UTR of KLF11 mRNA. Roles of miR-128-1-5p in KLF11 expression were measured through co-transfecting miRNA mimics with KLF11-expressing vectors (CDSs together with or without the 5'-UTR) into ovine stromal vascular fractions (SVF). Additionally, functional roles of miR-128-1-5p, and KLF11 in adipogenesis of ovine subcutaneous fat were investigated. Results showed that miR-128-1-5p targeted KLF11 5'-UTR, reduced the fluorescence activity of the dual fluorescent reporter vector, as well as KLF11 mRNA, and protein expression levels. During the differentiation of SVF, disturbing the expression of miR-128-1-5p and KLF11 changed the adipogenic differentiation of SVF as observed in the lipid formation, and adipogenic marker genes. This study indicates that miR-128-1-5p promotes the expression of lipogenic marker genes and the formation of lipid droplets by targeting KLF11 5'-UTR. Furthermore, overexpression, and inhibition of KLF11 indicate that KLF11 inhibited SVF differentiation. In summary, the 5'-UTR binding mechanism discovered in this study extends the understanding of miRNA functions. Key roles of miR-128-1-5p and KLF11 in the adipogenesis of sheep subcutaneous fat have potential values for improving the meat and/or fat ratio of domestic animals.
Collapse
Affiliation(s)
- Jianhua Liu
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Yu Liang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Liying Qiao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Dong Xia
- Royal Veterinary College, University of London, London NW1 0TU, UK
| | - Yangyang Pan
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Wenzhong Liu
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
34
|
Nikolaeva NS, Yandulova EY, Aleksandrova YR, Starikov AS, Neganova ME. The Role of a Pathological Interaction between β-amyloid and Mitochondria in the Occurrence and Development of Alzheimer's Disease. Acta Naturae 2022; 14:19-34. [PMID: 36348714 PMCID: PMC9611857 DOI: 10.32607/actanaturae.11723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in existence. It is characterized by an impaired cognitive function that is due to a progressive loss of neurons in the brain. Extracellular β-amyloid (Aβ) plaques are the main pathological features of the disease. In addition to abnormal protein aggregation, increased mitochondrial fragmentation, altered expression of the genes involved in mitochondrial biogenesis, disruptions in the ER-mitochondria interaction, and mitophagy are observed. Reactive oxygen species are known to affect Aβ expression and aggregation. In turn, oligomeric and aggregated Aβ cause mitochondrial disorders. In this review, we summarize available knowledge about the pathological effects of Aβ on mitochondria and the potential molecular targets associated with proteinopathy and mitochondrial dysfunction for the pharmacological treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- N. S. Nikolaeva
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - E. Yu. Yandulova
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - Yu. R. Aleksandrova
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - A. S. Starikov
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - M. E. Neganova
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| |
Collapse
|
35
|
Delport A, Hewer R. The amyloid precursor protein: a converging point in Alzheimer's disease. Mol Neurobiol 2022; 59:4501-4516. [PMID: 35579846 DOI: 10.1007/s12035-022-02863-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 04/30/2022] [Indexed: 11/30/2022]
Abstract
The decades of evidence that showcase the role of amyloid precursor protein (APP), and its fragment amyloidβ (Aβ), in Alzheimer's disease (AD) pathogenesis are irrefutable. However, the absolute focus on the single APP metabolite Aβ as the cause for AD has resulted in APP and its other fragments that possess toxic propensity, to be overlooked as targets for treatment. The complexity of its processing and its association with systematic metabolism suggests that, if misregulated, APP has the potential to provoke an array of metabolic dysfunctions. This review discusses APP and several of its cleaved products with a particular focus on their toxicity and ability to disrupt healthy cellular function, in relation to AD development. We subsequently argue that the reduction of APP, which would result in a concurrent decrease in Aβ as well as all other toxic APP metabolites, would alleviate the toxic environment associated with AD and slow disease progression. A discussion of those drug-like compounds already identified to possess this capacity is also included.
Collapse
Affiliation(s)
- Alexandré Delport
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa.
| | - Raymond Hewer
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| |
Collapse
|
36
|
Lio CT, Kacprowski T, Klaedtke M, Jensen LR, Bouter Y, Bayer TA, Kuss AW. Small RNA Sequencing in the Tg4–42 Mouse Model Suggests the Involvement of snoRNAs in the Etiology of Alzheimer’s Disease. J Alzheimers Dis 2022; 87:1671-1681. [DOI: 10.3233/jad-220110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The Tg4-42 mouse model for sporadic Alzheimer’s disease (AD) has unique features, as the neuronal expression of wild type N-truncated Aβ4–42 induces an AD-typical neurological phenotype in the absence of plaques. It is one of the few models developing neuron death in the CA1 region of the hippocampus. As such, it could serve as a powerful tool for preclinical drug testing and identification of the underlying molecular pathways that drive the pathology of AD. Objective: The aim of this study was to use a differential co-expression analysis approach for analyzing a small RNA sequencing dataset from a well-established murine model in order to identify potentially new players in the etiology of AD. Methods: To investigate small nucleolar RNAs in the hippocampus of Tg4-42 mice, we used RNA-Seq data from this particular tissue and, instead of analyzing the data at single gene level, employed differential co-expression analysis, which takes the comparison to gene pair level and thus affords a new angle to the interpretation of these data. Results: We identified two clusters of differentially correlated small RNAs, including Snord55, Snord57, Snord49a, Snord12, Snord38a, Snord99, Snord87, Mir1981, Mir106b, Mir30d, Mir598, and Mir99b. Interestingly, some of them have been reported to be functionally relevant in AD pathogenesis, as AD biomarkers, regulating tau phosphorylation, TGF-β receptor function or Aβ metabolism. Conclusion: The majority of snoRNAs for which our results suggest a potential role in the etiology of AD were so far not conspicuously implicated in the context of AD pathogenesis and could thus point towards interesting new avenues of research in this field.
Collapse
Affiliation(s)
- Chit Tong Lio
- Chair of Experimental Bioinformatics, TechnicalUniversity of Munich, Freising, Germany
- Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
| | - Maik Klaedtke
- Department of Functional Genomics, Human Molecular Genetics Group, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Lars R. Jensen
- Department of Functional Genomics, Human Molecular Genetics Group, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center Goettingen (UMG), Georg-August-University, Goettingen, Germany
| | - Thomas A. Bayer
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center Goettingen (UMG), Georg-August-University, Goettingen, Germany
| | - Andreas W. Kuss
- Department of Functional Genomics, Human Molecular Genetics Group, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
37
|
Context-Dependent Regulation of Gene Expression by Non-Canonical Small RNAs. Noncoding RNA 2022; 8:ncrna8030029. [PMID: 35645336 PMCID: PMC9149963 DOI: 10.3390/ncrna8030029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
In recent functional genomics studies, a large number of non-coding RNAs have been identified. It has become increasingly apparent that noncoding RNAs are crucial players in a wide range of cellular and physiological functions. They have been shown to modulate gene expression on different levels, including transcription, post-transcriptional processing, and translation. This review aims to highlight the diverse mechanisms of the regulation of gene expression by small noncoding RNAs in different conditions and different types of human cells. For this purpose, various cellular functions of microRNAs (miRNAs), circular RNAs (circRNAs), snoRNA-derived small RNAs (sdRNAs) and tRNA-derived fragments (tRFs) will be exemplified, with particular emphasis on the diversity of their occurrence and on the effects on gene expression in different stress conditions and diseased cell types. The synthesis and effect on gene expression of these noncoding RNAs varies in different cell types and may depend on environmental conditions such as different stresses. Moreover, noncoding RNAs play important roles in many diseases, including cancer, neurodegenerative disorders, and viral infections.
Collapse
|
38
|
Ning S, Jorfi M, Patel SR, Kim DY, Tanzi RE. Neurotechnological Approaches to the Diagnosis and Treatment of Alzheimer’s Disease. Front Neurosci 2022; 16:854992. [PMID: 35401082 PMCID: PMC8989850 DOI: 10.3389/fnins.2022.854992] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in the elderly, clinically defined by progressive cognitive decline and pathologically, by brain atrophy, neuroinflammation, and accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles. Neurotechnological approaches, including optogenetics and deep brain stimulation, have exploded as new tools for not only the study of the brain but also for application in the treatment of neurological diseases. Here, we review the current state of AD therapeutics and recent advancements in both invasive and non-invasive neurotechnologies that can be used to ameliorate AD pathology, including neurostimulation via optogenetics, photobiomodulation, electrical stimulation, ultrasound stimulation, and magnetic neurostimulation, as well as nanotechnologies employing nanovectors, magnetic nanoparticles, and quantum dots. We also discuss the current challenges in developing these neurotechnological tools and the prospects for implementing them in the treatment of AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Shen Ning
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Graduate Program for Neuroscience, Boston University School of Medicine, Boston, MA, United States
| | - Mehdi Jorfi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Mehdi Jorfi,
| | - Shaun R. Patel
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Rudolph E. Tanzi,
| |
Collapse
|
39
|
Wang B, Yin Z, Lin Y, Deng X, Liu F, Tao H, Dong R, Lin X, Bi Y. Correlation between microRNA-320 and postoperative delirium in patients undergoing tibial fracture internal fixation surgery. BMC Anesthesiol 2022; 22:75. [PMID: 35317728 PMCID: PMC8939177 DOI: 10.1186/s12871-022-01612-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/07/2022] [Indexed: 11/20/2022] Open
Abstract
Background Although the incidence of postoperative delirium (POD) in the elderly after surgery are rising as individuals are living longer, the pathogenesis of POD remains poorly understood. It has been suggested that miRNA-320 may play a role in POD based on animal study and human study. Methods We first carried out an animal study, and designed and conducted a human study based on the result of animal study. The aged rats were randomly assigned to five groups: the control (C), anesthesia and surgery (AS), saline (NS), agomir-320 (AG), and antagomir-320 (AT) groups. Postoperative spatial learning and memory in rats were analyzed by the Morris water maze and the open field tests. The plasma levels of insulin-like growth factor-1 (IGF-1), amyloid precursor protein (APP) proteins, miRNA320 and IGF-1mRNA were measured by ELISA and qRT-PCR, respectively. A total of 240 Chinese Han patients over 65 years who underwent tibial fracture internal fixation were included in the PNDABLE study. POD cases and non-POD controls (1:1 matched) were selected by an anesthesiologist using Confusion Assessment Method. Results For Group AS, the escape latency was significantly longer and the ratio of time spent in the target quadrant was significantly reduced, APP and miR-320 were upregulated and IGF-1mRNA was downregulated compared with Group C. For Group AG, the escape latency was significantly longer and the ratio of time spent in the target quadrant was significantly reduced, APP and miR-320 were upregulated and IGF-1mRNA was downregulated compared with Group AS. For Group AT, the escape latency was significantly reduced and the ratio of time spent in the target quadrant was significantly longer, APP and miR-320 were downregulated and IGF-1mRNAwas upregulated compared with Group AS. Compared with NPOD patients, the expressions of plasma miR-320 and APP protein were increased and the expression of plasma IGF-1 mRNA was decreased in POD patients after surgery. Conclusions MiRNA-320 might play a role in up-regulating the levels of IGF-1mRNA and APP protein, which offered a new target for POD treatment. Trial registration Correlation of perioperative neurocognitive disorders with lifestyle and biomarkers. ChiCTR2000033439. Registered 1 June 2020. Supplementary Information The online version contains supplementary material available at 10.1186/s12871-022-01612-w.
Collapse
Affiliation(s)
- Bin Wang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, NO. 5 Donghai Middle Road, Qingdao, 266071, Shandong, China
| | - Zeng Yin
- Department of Emergency, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong province, China
| | - Yanan Lin
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong province, China
| | - Xiyuan Deng
- Department of Anesthesiology, Dalian Medical University, Dalian, Liaoning province, China
| | - Fanghao Liu
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, NO. 5 Donghai Middle Road, Qingdao, 266071, Shandong, China
| | - He Tao
- Department of Anesthesiology, Dalian Medical University, Dalian, Liaoning province, China
| | - Rui Dong
- Department of Anesthesiology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Xu Lin
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, NO. 5 Donghai Middle Road, Qingdao, 266071, Shandong, China
| | - Yanlin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, NO. 5 Donghai Middle Road, Qingdao, 266071, Shandong, China.
| |
Collapse
|
40
|
Fan C, Li Y, Lan T, Wang W, Long Y, Yu SY. Microglia secrete miR-146a-5p-containing exosomes to regulate neurogenesis in depression. Mol Ther 2022; 30:1300-1314. [PMID: 34768001 PMCID: PMC8899528 DOI: 10.1016/j.ymthe.2021.11.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/20/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
Enhancing neurogenesis within the hippocampal dentate gyrus (DG) is critical for maintaining brain development and function in many neurological diseases. However, the neural mechanisms underlying neurogenesis in depression remain unclear. Here, we show that microglia transfer a microglia-enriched microRNA, miR-146a-5p, via secreting exosomes to inhibit neurogenesis in depression. Overexpression of miR-146a-5p in hippocampal DG suppresses neurogenesis and spontaneous discharge of excitatory neurons by directly targeting Krüppel-like factor 4 (KLF4). Downregulation of miR-146a-5p expression ameliorates adult neurogenesis deficits in DG regions and depression-like behaviors in rats. Intriguingly, circular RNA ANKS1B acts as a miRNA sequester for miR-146a-5p to mediate post-transcriptional regulation of KLF4 expression. Collectively, these results indicate that miR-146a-5p can function as a critical factor regulating neurogenesis under conditions of pathological processes resulting from depression and suggest that microglial exosomes generate new crosstalk channels between glial cells and neurons.
Collapse
Affiliation(s)
- Cuiqin Fan
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ye Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tian Lan
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenjing Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yifei Long
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shu Yan Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
41
|
Wang R, Lahiri DK. Effects of microRNA-298 on APP and BACE1 translation differ according to cell type and 3'-UTR variation. Sci Rep 2022; 12:3074. [PMID: 35197498 PMCID: PMC8866491 DOI: 10.1038/s41598-022-05164-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is marked by neurofibrillary tangles and senile plaques composed of amyloid β (Aβ) peptides. However, specific contributions of different cell types to Aβ deposition remain unknown. Non-coding microRNAs (miRNA) play important roles in AD by regulating translation of major associated proteins, such as Aβ precursor protein (APP) and β-site APP-cleaving enzyme (BACE1), two key proteins associated with Aβ biogenesis. MiRNAs typically silence protein expression via binding specific sites in mRNAs' 3'-untranslated regions (3'-UTR). MiRNAs regulate protein levels in a cell-type specific manner; however, mechanisms of the variation of miRNA activity remain unknown. We report that miR-298 treatment reduced native APP and BACE1 protein levels in an astrocytic but not in a neuron-like cell line. From miR-298's effects on APP-3'-UTR activity and native protein levels, we infer that differences in APP 3'-UTR length could explain differential miR-298 activity. Such varied or truncated, but natural, 3'-UTR specific to a given cell type provides an opportunity to regulate native protein levels by particular miRNA. Thus, miRNA's effect tailoring to a specific cell type, bypassing another undesired cell type with a truncated 3'-UTR would potentially advance clinically-relevant translational research.
Collapse
Affiliation(s)
- Ruizhi Wang
- Laboratory of Molecular Neurogenetics' Departments of Psychiatry and Medical & Molecular Genetics' Indiana University School of Medicine' Indiana Alzheimer's Disease Research Center, Stark Neuroscience Research Institute, Indianapolis, 320 West 15th Street, IN, 46202, USA
| | - Debomoy K Lahiri
- Laboratory of Molecular Neurogenetics' Departments of Psychiatry and Medical & Molecular Genetics' Indiana University School of Medicine' Indiana Alzheimer's Disease Research Center, Stark Neuroscience Research Institute, Indianapolis, 320 West 15th Street, IN, 46202, USA.
| |
Collapse
|
42
|
Wang R, Chopra N, Nho K, Maloney B, Obukhov AG, Nelson PT, Counts SE, Lahiri DK. Human microRNA (miR-20b-5p) modulates Alzheimer's disease pathways and neuronal function, and a specific polymorphism close to the MIR20B gene influences Alzheimer's biomarkers. Mol Psychiatry 2022; 27:1256-1273. [PMID: 35087196 PMCID: PMC9054681 DOI: 10.1038/s41380-021-01351-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with loss of cognitive, executive, and other mental functions, and is the most common form of age-related dementia. Amyloid-β peptide (Aβ) contributes to the etiology and progression of the disease. Aβ is derived from the amyloid-β precursor protein (APP). Multiple microRNA (miRNA) species are also implicated in AD. We report that human hsa-miR20b-5p (miR-20b), produced from the MIR20B gene on Chromosome X, may play complex roles in AD pathogenesis, including Aβ regulation. Specifically, miR-20b-5p miRNA levels were altered in association with disease progression in three regions of the human brain: temporal neocortex, cerebellum, and posterior cingulate cortex. In cultured human neuronal cells, miR-20b-5p treatment interfered with calcium homeostasis, neurite outgrowth, and branchpoints. A single-nucleotide polymorphism (SNP) upstream of the MIR20B gene (rs13897515) associated with differences in levels of cerebrospinal fluid (CSF) Aβ1-42 and thickness of the entorhinal cortex. We located a miR-20b-5p binding site in the APP mRNA 3'-untranslated region (UTR), and treatment with miR-20b-5p reduced APP mRNA and protein levels. Network analysis of protein-protein interactions and gene coexpression revealed other important potential miR-20b-5p targets among AD-related proteins/genes. MiR-20b-5p, a miRNA that downregulated APP, was paradoxically associated with an increased risk for AD. However, miR-20b-5p also reduced, and the blockade of APP by siRNA likewise reduced calcium influx. As APP plays vital roles in neuronal health and does not exist solely to be the source of "pathogenic" Aβ, the molecular etiology of AD is likely to not just be a disease of "excess" but a disruption of delicate homeostasis.
Collapse
Affiliation(s)
- Ruizhi Wang
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nipun Chopra
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- DePauw University, Greencastle, IN, 46135, USA
| | - Kwangsik Nho
- Radiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bryan Maloney
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alexander G Obukhov
- Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Kentucky Alzheimer's Disease Research Center, Lexington, KY, 40536, USA
| | - Scott E Counts
- Departments of Translational Neuroscience & Family Medicine, Michigan State University, Grand Rapids, and Michigan Alzheimer's Disease Research Center, Ann Arbor, MI, USA
| | - Debomoy K Lahiri
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
43
|
MicroRNAs in the pathophysiology of Alzheimer's disease and Parkinson's disease: an overview. Mol Neurobiol 2022; 59:1589-1603. [PMID: 35001356 DOI: 10.1007/s12035-022-02727-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterized by a progressive loss of neurons of the central nervous system (CNS) and serve as a major cause of morbidity, mortality and functional dependence especially among the elderly. Despite extensive research and development efforts, the success rate of clinical pipelines has been very limited. However, microRNAs (miRs) have been proved to be of crucial importance in regulating intracellular pathways for various pathologic conditions including those of a neurodegenerative nature. There is ample evidence of altered levels of various miRs in clinical samples of Alzheimer's disease and Parkinson's disease patients with potentially major clinical implications. In the current review, we aim to summarize the relevant literature on the role of miRs in the pathophysiology of Alzheimer's disease (AD) and Parkinson's disease (PD) as the two globally predominant neurodegenerative conditions.
Collapse
|
44
|
Sivagurunathan N, Ambatt ATS, Calivarathan L. Role of Long Non-coding RNAs in the Pathogenesis of Alzheimer's and Parkinson's Diseases. Curr Aging Sci 2022; 15:84-96. [PMID: 35081899 DOI: 10.2174/1874609815666220126095847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/11/2021] [Accepted: 11/06/2021] [Indexed: 06/14/2023]
Abstract
Neurodegenerative diseases are a diverse group of diseases that are now one of the leading causes of morbidity in the elderly population. These diseases include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral Sclerosis (ALS), etc. Although these diseases have a common characteristic feature of progressive neuronal loss from various parts of the brain, they differ in the clinical symptoms and risk factors, leading to the development and progression of the diseases. AD is a neurological condition that leads to dementia and cognitive decline due to neuronal cell death in the brain, whereas PD is a movement disorder affecting neuro-motor function and develops due to the death of the dopaminergic neurons in the brain, resulting in decreased dopamine levels. Currently, the only treatment available for these neurodegenerative diseases involves reducing the rate of progression of neuronal loss. This necessitates the development of efficient early biomarkers and effective therapies for these diseases. Long non-coding RNAs (LncRNAs) belong to a large family of non-coding transcripts with a minimum length of 200 nucleotides. They are implied to be involved in the development of the brain, a variety of diseases, and epigenetic, transcriptional, and posttranscriptional levels of gene regulation. Aberrant expression of lncRNAs in the CNS is considered to play a major role in the development and progression of AD and PD, two of the most leading causes of morbidity among elderly populations. In this mini-review, we discuss the role of various long non-coding RNAs in neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, which can further be studied for the development of potential biomarkers and therapeutic targets for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Department of Life Sciences, Molecular Pharmacology & Toxicology Laboratory, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur - 610005, India
| | - Aghil T S Ambatt
- Department of Life Sciences, Molecular Pharmacology & Toxicology Laboratory, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur - 610005, India
| | - Latchoumycandane Calivarathan
- Department of Life Sciences, Molecular Pharmacology & Toxicology Laboratory, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur - 610005, India
| |
Collapse
|
45
|
Rethinking IRPs/IRE system in neurodegenerative disorders: Looking beyond iron metabolism. Ageing Res Rev 2022; 73:101511. [PMID: 34767973 DOI: 10.1016/j.arr.2021.101511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/21/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022]
Abstract
Iron regulatory proteins (IRPs) and iron regulatory element (IRE) systems are well known in the progression of neurodegenerative disorders by regulating iron related proteins. IRPs are also regulated by iron homeostasis. However, an increasing number of studies have suggested a close relationship between the IRPs/IRE system and non-iron-related neurodegenerative disorders. In this paper, we reviewed that the IRPs/IRE system is not only controlled by iron ions, but also regulated by such factors as post-translational modification, oxygen, nitric oxide (NO), heme, interleukin-1 (IL-1), and metal ions. In addition, by regulating the transcription of non-iron related proteins, the IRPs/IRE system functioned in oxidative metabolism, cell cycle regulation, abnormal proteins aggregation, and neuroinflammation. Finally, by emphasizing the multiple regulations of IRPs/IRE system and its potential relationship with non-iron metabolic neurodegenerative disorders, we provided new strategies for disease treatment targeting IRPs/IRE system.
Collapse
|
46
|
Co-Expression Network Analysis of Micro-RNAs and Proteins in the Alzheimer's Brain: A Systematic Review of Studies in the Last 10 Years. Cells 2021; 10:cells10123479. [PMID: 34943987 PMCID: PMC8699941 DOI: 10.3390/cells10123479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding nucleic acids that can regulate post-transcriptional gene expression by binding to complementary sequences of target mRNA. Evidence showed that dysregulated miRNA expression may be associated with neurological conditions such as Alzheimer’s disease (AD). In this study, we combined the results of two independent systematic reviews aiming to unveil the co-expression network of miRNAs and proteins in brain tissues of AD patients. Twenty-eight studies including a total of 113 differentially expressed miRNAs (53 of them validated by qRT-PCR), and 26 studies including a total of 196 proteins differentially expressed in AD brains compared to healthy age matched controls were selected. Pathways analyses were performed on the results of the two reviews and 39 common pathways were identified. A further bioinformatic analysis was performed to match miRNA and protein targets with an inverse relation. This revealed 249 inverse relationships in 28 common pathways, representing new potential targets for therapeutic intervention. A meta-analysis, whenever possible, revealed miR-132-3p and miR-16 as consistently downregulated in late-stage AD across the literature. While no inverse relationships between miR-132-3p and proteins were found, miR-16′s inverse relationship with CLOCK proteins in the circadian rhythm pathway is discussed and therapeutic targets are proposed. The most significant miRNA dysregulated pathway highlighted in this review was the hippo signaling pathway with p = 1.66 × 10−9. Our study has revealed new mechanisms for AD pathogenesis and this is discussed along with opportunities to develop novel miRNA-based drugs to target these pathways.
Collapse
|
47
|
Posiphen Reduces the Levels of Huntingtin Protein through Translation Suppression. Pharmaceutics 2021; 13:pharmaceutics13122109. [PMID: 34959389 PMCID: PMC8708689 DOI: 10.3390/pharmaceutics13122109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/24/2023] Open
Abstract
Posiphen tartrate (Posiphen) is an orally available small molecule that targets a conserved regulatory element in the mRNAs of amyloid precursor protein (APP) and α-synuclein (αSYN) and inhibits their translation. APP and αSYN can cause neurodegeneration when their aggregates induce neurotoxicity. Therefore, Posiphen is a promising drug candidate for neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. Posiphen’s safety has been demonstrated in three independent phase I clinical trials. Moreover, in a proof of concept study, Posiphen lowered neurotoxic proteins and inflammatory markers in cerebrospinal fluid of mild cognitive impaired patients. Herein we investigated whether Posiphen reduced the expression of other proteins, as assessed by stable isotope labeling with amino acids in cell culture (SILAC) followed by mass spectrometry (MS)-based proteomics. Neuroblastoma SH-SY5Y cells, an in vitro model of neuronal function, were used for the SILAC protein profiling response. Proteins whose expression was altered by Posiphen treatment were characterized for biological functions, pathways and networks analysis. The most significantly affected pathway was the Huntington’s disease signaling pathway, which, along with huntingtin (HTT) protein, was down-regulated by Posiphen in the SH-SY5Y cells. The downregulation of HTT protein by Posiphen was confirmed by quantitative Western blotting and immunofluorescence. Unchanged mRNA levels of HTT and a comparable decay rate of HTT proteins after Posiphen treatment supported the coclusion that Posiphen reduced HTT via downregulation of the translation of HTT mRNA. Meanwhile, the downregulation of APP and αSYN proteins by Posiphen was also confirmed. The mRNAs encoding HTT, APP and αSYN contain an atypical iron response element (IRE) in their 5′-untranslated regions (5′-UTRs) that bind iron regulatory protein 1 (IRP1), and Posiphen specifically bound this complex. Conversely, Posiphen did not bind the IRP1/IRE complex of mRNAs with canonical IREs, and the translation of these mRNAs was not affected by Posiphen. Taken together, Posiphen shows high affinity binding to the IRE/IRP1 complex of mRNAs with an atypical IRE stem loop, inducing their translation suppression, including the mRNAs of neurotoxic proteins APP, αSYN and HTT.
Collapse
|
48
|
Peng Y, Chang X, Lang M. Iron Homeostasis Disorder and Alzheimer's Disease. Int J Mol Sci 2021; 22:12442. [PMID: 34830326 PMCID: PMC8622469 DOI: 10.3390/ijms222212442] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Iron is an essential trace metal for almost all organisms, including human; however, oxidative stress can easily be caused when iron is in excess, producing toxicity to the human body due to its capability to be both an electron donor and an electron acceptor. Although there is a strict regulation mechanism for iron homeostasis in the human body and brain, it is usually inevitably disturbed by genetic and environmental factors, or disordered with aging, which leads to iron metabolism diseases, including many neurodegenerative diseases such as Alzheimer's disease (AD). AD is one of the most common degenerative diseases of the central nervous system (CNS) threatening human health. However, the precise pathogenesis of AD is still unclear, which seriously restricts the design of interventions and treatment drugs based on the pathogenesis of AD. Many studies have observed abnormal iron accumulation in different regions of the AD brain, resulting in cognitive, memory, motor and other nerve damages. Understanding the metabolic balance mechanism of iron in the brain is crucial for the treatment of AD, which would provide new cures for the disease. This paper reviews the recent progress in the relationship between iron and AD from the aspects of iron absorption in intestinal cells, storage and regulation of iron in cells and organs, especially for the regulation of iron homeostasis in the human brain and prospects the future directions for AD treatments.
Collapse
Affiliation(s)
- Yu Peng
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.P.); (X.C.)
| | - Xuejiao Chang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.P.); (X.C.)
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.P.); (X.C.)
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
49
|
Bleuzé L, Triaca V, Borreca A. FMRP-Driven Neuropathology in Autistic Spectrum Disorder and Alzheimer's disease: A Losing Game. Front Mol Biosci 2021; 8:699613. [PMID: 34760921 PMCID: PMC8573832 DOI: 10.3389/fmolb.2021.699613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) is an RNA binding protein (RBP) whose absence is essentially associated to Fragile X Syndrome (FXS). As an RNA Binding Protein (RBP), FMRP is able to bind and recognize different RNA structures and the control of specific mRNAs is important for neuronal synaptic plasticity. Perturbations of this pathway have been associated with the autistic spectrum. One of the FMRP partners is the APP mRNA, the main protagonist of Alzheimer’s disease (AD), thereby regulating its protein level and metabolism. Therefore FMRP is associated to two neurodevelopmental and age-related degenerative conditions, respectively FXS and AD. Although these pathologies are characterized by different features, they have been reported to share a number of common molecular and cellular players. The aim of this review is to describe the double-edged sword of FMRP in autism and AD, possibly allowing the elucidation of key shared underlying mechanisms and neuronal circuits. As an RBP, FMRP is able to regulate APP expression promoting the production of amyloid β fragments. Indeed, FXS patients show an increase of amyloid β load, typical of other neurological disorders, such as AD, Down syndrome, Parkinson’s Disease, etc. Beyond APP dysmetabolism, the two neurodegenerative conditions share molecular targets, brain circuits and related cognitive deficits. In this review, we will point out the potential common neuropathological pattern which needs to be addressed and we will hopefully contribute to clarifying the complex phenotype of these two neurorological disorders, in order to pave the way for a novel, common disease-modifying therapy.
Collapse
Affiliation(s)
- Louis Bleuzé
- University de Rennes 1, Rennes, France.,Humanitas Clinical and Research Center-IRCCS, Rozzano (Mi), Italy
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), International Campus A. Buzzati Traverso, Monterotondo, Italy
| | - Antonella Borreca
- Humanitas Clinical and Research Center-IRCCS, Rozzano (Mi), Italy.,Institute of Neuroscience-National Research Council (CNR-IN), Milan, Italy
| |
Collapse
|
50
|
Kumar S, Morton H, Sawant N, Orlov E, Bunquin LE, Pradeepkiran JA, Alvir R, Reddy PH. MicroRNA-455-3p improves synaptic, cognitive functions and extends lifespan: Relevance to Alzheimer's disease. Redox Biol 2021; 48:102182. [PMID: 34781166 PMCID: PMC8604688 DOI: 10.1016/j.redox.2021.102182] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND MicroRNA-455-3p is one of the highly conserved miRNAs involved in multiple cellular functions in humans and we explored its relevance to learning and memory functions in Alzheimer's disease (AD). Our recent in vitro studies exhibited the protective role of miR-455-3p against AD toxicities in reducing full-length APP and amyloid-β (Aβ) levels, and also in reducing defective mitochondrial biogenesis, impaired mitochondrial dynamics and synaptic deficiencies. In the current study, we sought to determine the function of miR-455-3p in mouse models. METHODS For the first time we generated both transgenic (TG) and knockout (KO) mouse models of miR-455-3p. We determined the lifespan extension, cognitive function, mitochondrial biogenesis, mitochondrial dynamics, mitochondrial morphology, dendritic spine density, synapse numbers and synaptic activity in miR-455-3p TG and KO mice. RESULTS MiR-455-3p TG mice lived 5 months longer than wild-type (WT) counterparts, whereas KO mice lived 4 months shorter than WT mice. Morris water maze test showed improved cognitive behavior, spatial learning and memory in miR-455-3p TG mice relative to age-matched WT mice and miR-455-3p KO mice. Further, mitochondrial biogenesis, dynamics and synaptic activities were enhanced in miR-455-3p TG mice, while these were reduced in KO mice. Overall, overexpressed miR-455-3p in mice displayed protective effects, whereas depleted miR-455-3p in mice exhibited deleterious effects in relation to lifespan, cognitive behavior, and mitochondrial and synaptic activities. CONCLUSION Both mouse models could be ideal research tools to understand the molecular basis of aging and its relevance to AD and other age-related diseases.
Collapse
Affiliation(s)
- Subodh Kumar
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Hallie Morton
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Neha Sawant
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Erika Orlov
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Lloyd E Bunquin
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Razelle Alvir
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology Departments School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|