1
|
Zhang XX, Yu XY, Xu SJ, Shi XQ, Chen Y, Shi Q, Sun C. rs2736098, a synonymous polymorphism, is associated with carcinogenesis and cell count in multiple tissue types by regulating TERT expression. Heliyon 2024; 10:e27802. [PMID: 38496869 PMCID: PMC10944260 DOI: 10.1016/j.heliyon.2024.e27802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
rs2736098 is a synonymous polymorphism in TERT (telomerase reverse transcriptase), an enzyme involved in tumor onset of multiple tissues, and should play no roles in carcinogenesis. However, a search in cancer somatic mutation database indicated that the mutation frequency at rs2736098 is much higher than the average one for TERT. Moreover, there are significant H3K4me1 and H3K27Ac signals, two universal histone modifications for active enhancers, surrounding rs2736098. Therefore, we hypothesized that rs2736098 might be within an enhancer region, regulate TERT expression and influence cancer risk. Through luciferase assay, it was verified that the enhancer activity of rs2736098C allele is significantly higher than that of T in multiple tissues. Transfection of plasmids containing TERT coding region with two different alleles indicated that rs2736098C allele can induce a significantly higher TERT expression than T. By chromatin immunoprecipitation, it was observed that the fragment spanning rs2736098 can interact with USF1 (upstream transcription factor 1). The two alleles of rs2736098 present evidently different binding affinity with nuclear proteins. Database and literature search indicated that rs2736098 is significantly associated with carcinogenesis in multiple tissues and count of multiple cell types. All these facts indicated that rs2736098 is also an oncogenic polymorphism and plays important role in cell proliferation.
Collapse
Affiliation(s)
- Xin-Xin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Xin-Yi Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Shuang-Jia Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Xiao-Qian Shi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Ying Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Qiang Shi
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi, 726000, PR China
| | - Chang Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| |
Collapse
|
2
|
Gaynor-Gillett SC, Cheng L, Shi M, Liu J, Wang G, Spector M, Flaherty M, Wall M, Hwang A, Gu M, Chen Z, Chen Y, Consortium P, Moran JR, Zhang J, Lee D, Gerstein M, Geschwind D, White KP. Validation of Enhancer Regions in Primary Human Neural Progenitor Cells using Capture STARR-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585066. [PMID: 38562832 PMCID: PMC10983874 DOI: 10.1101/2024.03.14.585066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Genome-wide association studies (GWAS) and expression analyses implicate noncoding regulatory regions as harboring risk factors for psychiatric disease, but functional characterization of these regions remains limited. We performed capture STARR-sequencing of over 78,000 candidate regions to identify active enhancers in primary human neural progenitor cells (phNPCs). We selected candidate regions by integrating data from NPCs, prefrontal cortex, developmental timepoints, and GWAS. Over 8,000 regions demonstrated enhancer activity in the phNPCs, and we linked these regions to over 2,200 predicted target genes. These genes are involved in neuronal and psychiatric disease-associated pathways, including dopaminergic synapse, axon guidance, and schizophrenia. We functionally validated a subset of these enhancers using mutation STARR-sequencing and CRISPR deletions, demonstrating the effects of genetic variation on enhancer activity and enhancer deletion on gene expression. Overall, we identified thousands of highly active enhancers and functionally validated a subset of these enhancers, improving our understanding of regulatory networks underlying brain function and disease.
Collapse
Affiliation(s)
- Sophia C. Gaynor-Gillett
- Tempus Labs, Inc.; Chicago, IL, 60654, USA
- Department of Biology, Cornell College; Mount Vernon, IA, 52314, USA
| | | | - Manman Shi
- Tempus Labs, Inc.; Chicago, IL, 60654, USA
| | - Jason Liu
- Computational Biology and Bioinformatics Program, Yale University; New Haven, CT, 06511, USA
| | - Gaoyuan Wang
- Computational Biology and Bioinformatics Program, Yale University; New Haven, CT, 06511, USA
| | | | | | | | - Ahyeon Hwang
- Department of Computer Science, University of California Irvine; Irvine, CA, 92697, USA
| | - Mengting Gu
- Computational Biology and Bioinformatics Program, Yale University; New Haven, CT, 06511, USA
| | - Zhanlin Chen
- Computational Biology and Bioinformatics Program, Yale University; New Haven, CT, 06511, USA
| | - Yuhang Chen
- Computational Biology and Bioinformatics Program, Yale University; New Haven, CT, 06511, USA
| | | | | | - Jing Zhang
- Department of Computer Science, University of California Irvine; Irvine, CA, 92697, USA
| | - Donghoon Lee
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai; New York, NY, 10029, USA
| | - Mark Gerstein
- Computational Biology and Bioinformatics Program, Yale University; New Haven, CT, 06511, USA
- Department of Statistics and Data Science, Yale University; New Haven, CT, 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale University; New Haven, CT, 06511, USA
- Department of Computer Science, Yale University; New Haven, CT, 06511, USA
| | - Daniel Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles; Los Angeles, CA, 90095, USA
- Department of Psychiatry and Semel Institute, David Geffen School of Medicine, University of California Los Angeles; Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles; Los Angeles, CA, 90095, USA
| | - Kevin P. White
- Yong Loo Lin School of Medicine, National University of Singapore; Singapore, 117597
| |
Collapse
|
3
|
Li Y, Xu M, Xiang BL, Li X, Zhang DF, Zhao H, Bi R, Yao YG. Functional genomics identify causal variant underlying the protective CTSH locus for Alzheimer's disease. Neuropsychopharmacology 2023; 48:1555-1566. [PMID: 36739351 PMCID: PMC10516988 DOI: 10.1038/s41386-023-01542-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/30/2022] [Accepted: 01/25/2023] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disease, which has a high heritability of up to 79%. Exploring the genetic basis is essential for understanding the pathogenic mechanisms underlying AD development. Recent genome-wide association studies (GWASs) reported an AD-associated signal in the Cathepsin H (CTSH) gene in European populations. However, the exact functional/causal variant(s), and the genetic regulating mechanism of CTSH in AD remain to be determined. In this study, we carried out a comprehensive study to characterize the role of CTSH variants in the pathogenesis of AD. We identified rs2289702 in CTSH as the most significant functional variant that is associated with a protective effect against AD. The genetic association between rs2289702 and AD was validated in independent cohorts of the Han Chinese population. The CTSH mRNA expression level was significantly increased in AD patients and AD animal models, and the protective allele T of rs2289702 was associated with a decreased expression level of CTSH through the disruption of the binding affinity of transcription factors. Human microglia cells with CTSH knockout showed a significantly increased phagocytosis of Aβ peptides. Our study identified CTSH as being involved in AD genetic susceptibility and uncovered the genetic regulating mechanism of CTSH in pathogenesis of AD.
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Bo-Lin Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Xiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Hui Zhao
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan, 650204, Kunming, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan, 650204, Kunming, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
4
|
Raj Shekhar B, Rupani K, Raghunath Parkar S, Sunil Nayak A, Vasant Kumbhar B, Khare SP, Menon S, Gawde H, Kumar Das D. Identifying Novel Risk Conferring Genes Involved in Glycosylation Processes with Familial Schizophrenia in an Indian Cohort: Prediction of ADAMTS9 gene Variant for Structural Stability. Gene 2023; 872:147443. [PMID: 37105505 DOI: 10.1016/j.gene.2023.147443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
Schizophrenia is a complex neuropsychiatric disorder and heritability is as high as 80% making it the most heritable mental disorder. Although GWAS has identified numerous variants, the pathophysiology is still elusive. Here, an attempt was made to identify genetic risk factors in familial cases of schizophrenia that are associated with a common causative pathway. To achieve this objective, exome sequencing was done in 4 familial cases and identified six unique coding variants in five genes. Among these genes, PIGQ gene has two pathogenic variants, one nonsense and in-frame deletion. One missense variant in GALNT16 and one in GALNT5 have variable damaging score, however, the other variants, in ADAMTS9 and in LTBP4 have the highest damaging score. Further analysis showed that the variant of LTBP4 was not present in the functional domain. The other missense variant in the ADAMTS9 gene was found to be significant and was present in the thrombospondin repeat motif, one of the important motifs. Detailed molecular dynamics simulation study on this variant showed a damaging effect on structural stability. Since, all these genes culminated into the glycosylation process, it was evident that an aberrant glycosylation process may be one of the risk factors. Although, extracellular matrix formation through glycosylation have been shown to be associated, the involvement of ADAMTS9 and PIGQ gene mediated glycosylation has not been reported. In this paper, a novel link between ADAMTS9 and PIGQ gene with schizophrenia have been reported. Therefore, this novel observation has contributed immensely to the existing knowledge on risk factor of Schizophrenia.
Collapse
Affiliation(s)
- Bipin Raj Shekhar
- Genetic Research Centre, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, Maharashtra-400012, India; Stem Cell Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, Maharashtra-400012, India
| | - Karishma Rupani
- Department of Psychiatry, Seth GS Medical College and KEM Hospital, Parel, Mumbai, Maharashtra-400012, India
| | - Shubhangi Raghunath Parkar
- Department of Psychiatry, Seth GS Medical College and KEM Hospital, Parel, Mumbai, Maharashtra-400012, India
| | - Ajita Sunil Nayak
- Department of Psychiatry, Seth GS Medical College and KEM Hospital, Parel, Mumbai, Maharashtra-400012, India
| | - Bajarang Vasant Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS University (Deemed), Mumbai, Maharashtra-400012, India
| | - Satyajeet P Khare
- Symbiosis School of Biological Sciences, Symbiosis International University, Pune, Maharashtra-412115, India
| | - Shyla Menon
- Stem Cell Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, Maharashtra-400012, India
| | - Harshavardhan Gawde
- Genetic Research Centre, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, Maharashtra-400012, India
| | - Dhanjit Kumar Das
- Stem Cell Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, Maharashtra-400012, India.
| |
Collapse
|
5
|
Basavaraju R, France J, Sigmon HC, Girgis RR, Brucato G, Lieberman JA, Small SA, Provenzano FA. Increased parietal and occipital lobe gyrification predicts conversion to syndromal psychosis in a clinical high-risk cohort. Schizophr Res 2023; 255:246-255. [PMID: 37043842 DOI: 10.1016/j.schres.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/15/2023] [Accepted: 03/12/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Local gyrification index (lGI), indicative of the degree of cortical folding is a proxy marker for early cortical neurodevelopmental abnormalities. We studied the difference in lGI between those who do and do not convert to psychosis (non-converters) in a clinical high-risk (CHR) cohort, and whether lGI predicts conversion to psychosis. METHODS Seventy-two CHR participants with attenuated positive symptom syndrome were followed up for two years. The difference in baseline whole-brain lGI was examined on the T1-weighted MRIs between, i)CHR (N = 72) and healthy controls (N = 19), ii)Converters to psychosis (N = 24) and non-converters (N = 48), adjusting for age and sex, on Freesurfer-6.0. The significant cluster obtained in the converters versus non-converters comparison was registered as a region of interest to individual images of all 72 participants and lGI values were extracted from this region. A cox proportional hazards model was applied with these values to study whether lGI predicts conversion to psychosis. RESULTS lGI was not different between CHR and healthy controls. lGI was increased in converters in the right-sided inferior parietal and lateral occipital areas (corrected cluster-wise-p-value = 0.009, cohen's f = 0.42) compared to non-converters, which significantly increased the risk of onset of psychosis (p = 0.029, hazard ratio = 1.471). CONCLUSIONS Increased gyrification in the right-sided inferior parietal and lateral occipital area differentiates converters to psychosis in CHR, significantly increasing the risk of conversion to psychosis. This measure may reflect underlying traits in parts of the brain that develop earliest in-utero (parietal and occipital), conferring a heightened vulnerability to convert to syndromal psychosis subsequently.
Collapse
Affiliation(s)
- Rakshathi Basavaraju
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, USA
| | - Jeanelle France
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, USA
| | - Hannah C Sigmon
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, USA
| | - Ragy R Girgis
- Department of Psychiatry, College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University Medical Center, USA
| | - Gary Brucato
- Department of Psychiatry, College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University Medical Center, USA
| | - Jeffrey A Lieberman
- Department of Psychiatry, College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University Medical Center, USA
| | - Scott A Small
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, USA
| | - Frank A Provenzano
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, USA.
| |
Collapse
|
6
|
Yao W, Zhou P, Yan Q, Wu X, Xia Y, Li W, Li X, Zhu F. ERVWE1 Reduces Hippocampal Neuron Density and Impairs Dendritic Spine Morphology through Inhibiting Wnt/JNK Non-Canonical Pathway via miR-141-3p in Schizophrenia. Viruses 2023; 15:168. [PMID: 36680208 PMCID: PMC9863209 DOI: 10.3390/v15010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancestral germline infections by exogenous retroviruses. Human endogenous retroviruses W family envelope gene (HERV-W env, also called ERVWE1), located on chromosome 7q21-22, encodes an envelope glycoprotein from the HERV-W family. Mounting evidence suggests that aberrant expression of ERVWE1 involves the etiology of schizophrenia. Moreover, the genetic and morphological studies indicate that dendritic spine deficits may contribute to the onset of schizophrenia. Here, we reported that ERVWE1 changed the density and morphology of the dendritic spine through inhibiting Wingless-type (Wnt)/c-Jun N-terminal kinases (JNK) non-canonical pathway via miR-141-3p in schizophrenia. In this paper, we found elevated levels of miR-141-3p and a significant positive correlation with ERVWE1 in schizophrenia. Moreover, serum Wnt5a and actin-related protein 2 (Arp2) levels decreased and demonstrated a significant negative correlation with ERVWE1 in schizophrenia. In vitro experiments disclosed that ERVWE1 up-regulated miR-141-3p expression by interacting with transcription factor (TF) Yin Yang 1 (YY1). YY1 modulated miR-141-3p expression by binding to its promoter. The luciferase assay revealed that YY1 enhanced the promoter activity of miR-141-3p. Using the miRNA target prediction databases and luciferase reporter assays, we demonstrated that miR-141-3p targeted Wnt5a at its 3' untranslated region (3' UTR). Furthermore, ERVWE1 suppressed the expression of Arp2 through non-canonical pathway, Wnt5a/JNK signaling pathway. In addition, ERVWE1 inhibited Wnt5a/JNK/Arp2 signal pathway through miR-141-3p. Finally, functional assays showed that ERVWE1 induced the abnormalities in hippocampal neuron morphology and spine density through inhibiting Wnt/JNK non-canonical pathway via miR-141-3p in schizophrenia. Our findings indicated that miR-141-3p, Wnt5a, and Arp2 might be potential clinical blood-based biomarkers or therapeutic targets for schizophrenia. Our work also provided new insight into the role of ERVWE1 in schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Wei Yao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiujin Yan
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaru Xia
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xuhang Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, China
| |
Collapse
|
7
|
The schizophrenia-associated missense variant rs13107325 regulates dendritic spine density. Transl Psychiatry 2022; 12:361. [PMID: 36056013 PMCID: PMC9440106 DOI: 10.1038/s41398-022-02137-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
The missense variant rs13107325 (C/T, p.Ala391Thr) in SLC39A8 consistently showed robust association with schizophrenia in recent genome-wide association studies (GWASs), suggesting the potential pathogenicity of this non-synonymous risk variant. Nevertheless, how this missense variant confers schizophrenia risk remains unknown. Here we constructed a knock-in mouse model (by introducing a threonine at the 393th amino acid of mouse SLC39A8 (SLC39A8-p.393T), which corresponds to rs13107325 (p.Ala391Thr) of human SLC39A8) to explore the potential roles and biological effects of this missense variant in schizophrenia pathogenesis. We assessed multiple phenotypes and traits (associated with rs13107325) of the knock-in mice, including body and brain weight, concentrations of metal ions (including cadmium, zinc, manganese, and iron) transported by SLC39A8, blood lipids, proliferation and migration of neural stem cells (NSCs), cortical development, behaviors and cognition, transcriptome, dendritic spine density, and synaptic transmission. Many of the tested phenotypes did not show differences in SLC39A8-p.393T knock-in and wild-type mice. However, we found that zinc concentration in brain and blood of SLC39A8-p.393T knock-in mice was dysregulated compared with wild-types, validating the functionality of rs13107325. Further analysis indicated that cortical dendritic spine density of the SLC39A8-p.393T knock-in mice was significantly decreased compared with wild-types, indicating the important role of SLC39A8-p.393T in dendritic spine morphogenesis. These results indicated that SLC39A8-p.393T knock-in resulted in decreased dendritic spine density, thus mimicking the dendritic spine pathology observed in schizophrenia. Our study indicates that rs13107325 might confer schizophrenia risk by regulating zinc concentration and dendritic spine density, a featured characteristic that was frequently reported to be decreased in schizophrenia.
Collapse
|
8
|
Wang J, Li S, Li X, Liu J, Yang J, Li Y, Li W, Yang Y, Li J, Chen R, Li K, Huang D, Liu Y, Lv L, Li M, Xiao X, Luo XJ. Functional variant rs2270363 on 16p13.3 confers schizophrenia risk by regulating NMRAL1. Brain 2022; 145:2569-2585. [PMID: 35094059 PMCID: PMC9612800 DOI: 10.1093/brain/awac020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2023] Open
Abstract
Recent genome-wide association studies have reported multiple schizophrenia risk loci, yet the functional variants and their roles in schizophrenia remain to be characterized. Here we identify a functional single nucleotide polymorphism (rs2270363: G>A) at the schizophrenia risk locus 16p13.3. rs2270363 lies in the E-box element of the promoter of NMRAL1 and disrupts binding of the basic helix-loop-helix leucine zipper family proteins, including USF1, MAX and MXI1. We validated the regulatory effects of rs2270363 using reporter gene assays and electrophoretic mobility shift assay. Besides, expression quantitative trait loci analysis showed that the risk allele (A) of rs2270363 was significantly associated with elevated NMRAL1 expression in the human brain. Transcription factors knockdown and CRISPR-Cas9-mediated editing further confirmed the regulatory effects of the genomic region containing rs2270363 on NMRAL1. Intriguingly, NMRAL1 was significantly downregulated in the brain of schizophrenia patients compared with healthy subjects, and knockdown of Nmral1 expression affected proliferation and differentiation of mouse neural stem cells, as well as genes and pathways associated with brain development and synaptic transmission. Of note, Nmral1 knockdown resulted in significant decrease of dendritic spine density, revealing the potential pathophysiological mechanisms of NMRAL1 in schizophrenia. Finally, we independently confirmed the association between rs2270363 and schizophrenia in the Chinese population and found that the risk allele of rs2270363 was the same in European and Chinese populations. These lines of evidence suggest that rs2270363 may confer schizophrenia risk by regulating NMRAL1, a gene whose expression dysregulation might be involved in the pathogenesis of schizophrenia by affecting neurodevelopment and synaptic plasticity.
Collapse
Affiliation(s)
- Junyang Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jinfeng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yifan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Jiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Rui Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Kaiqin Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Di Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yixing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiong Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, Jiangsu 210096, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
9
|
Chen R, Yang Z, Liu J, Cai X, Huo Y, Zhang Z, Li M, Chang H, Luo XJ. Functional genomic analysis delineates regulatory mechanisms of GWAS-identified bipolar disorder risk variants. Genome Med 2022; 14:53. [PMID: 35590387 PMCID: PMC9121601 DOI: 10.1186/s13073-022-01057-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/11/2022] [Indexed: 01/23/2023] Open
Abstract
Background Genome-wide association studies (GWASs) have identified multiple risk loci for bipolar disorder (BD). However, pinpointing functional (or causal) variants in the reported risk loci and elucidating their regulatory mechanisms remain challenging. Methods We first integrated chromatin immunoprecipitation sequencing (ChIP-Seq) data from human brain tissues (or neuronal cell lines) and position weight matrix (PWM) data to identify functional single-nucleotide polymorphisms (SNPs). Then, we verified the regulatory effects of these transcription factor (TF) binding–disrupting SNPs (hereafter referred to as “functional SNPs”) through a series of experiments, including reporter gene assays, allele-specific expression (ASE) analysis, TF knockdown, CRISPR/Cas9-mediated genome editing, and expression quantitative trait loci (eQTL) analysis. Finally, we overexpressed PACS1 (whose expression was most significantly associated with the identified functional SNPs rs10896081 and rs3862386) in mouse primary cortical neurons to investigate if PACS1 affects dendritic spine density. Results We identified 16 functional SNPs (in 9 risk loci); these functional SNPs disrupted the binding of 7 TFs, for example, CTCF and REST binding was frequently disrupted. We then identified the potential target genes whose expression in the human brain was regulated by these functional SNPs through eQTL analysis. Of note, we showed dysregulation of some target genes of the identified TF binding–disrupting SNPs in BD patients compared with controls, and overexpression of PACS1 reduced the density of dendritic spines, revealing the possible biological mechanisms of these functional SNPs in BD. Conclusions Our study identifies functional SNPs in some reported risk loci and sheds light on the regulatory mechanisms of BD risk variants. Further functional characterization and mechanistic studies of these functional SNPs and candidate genes will help to elucidate BD pathogenesis and develop new therapeutic approaches and drugs. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01057-3.
Collapse
Affiliation(s)
- Rui Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Zhihui Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yongxia Huo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210096, China.,Key Laboratory of Developmental Genes and Human Disease of Ministry of Education, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China. .,Department of Neurology, Affiliated Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210096, China. .,Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
10
|
Bioinformatics and Network-based Approaches for Determining Pathways, Signature Molecules, and Drug Substances connected to Genetic Basis of Schizophrenia etiology. Brain Res 2022; 1785:147889. [PMID: 35339428 DOI: 10.1016/j.brainres.2022.147889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Knowledge of heterogeneous etiology and pathophysiology of schizophrenia (SZP) is reasonably inadequate and non-deterministic due to its inherent complexity and underlying vast dynamics related to genetic mechanisms. The evolution of large-scale transcriptome-wide datasets and subsequent development of relevant, robust technologies for their analyses show promises toward elucidating the genetic basis of disease pathogenesis, its early risk prediction, and predicting drug molecule targets for therapeutic intervention. In this research, we have scrutinized the genetic basis of SZP through functional annotation and network-based system biology approaches. We have determined 96 overlapping differentially expressed genes (DEGs) from 2 microarray datasets and subsequently identified their interconnecting networks to reveal transcriptome signatures like hub proteins (FYN, RAD51, SOCS3, XIAP, AKAP13, PIK3C2A, CBX5, GATA3, EIF3K, and CDKN2B), transcription factors and miRNAs. In addition, we have employed gene set enrichment to highlight significant gene ontology (e.g., positive regulation of microglial cell activation) and relevant pathways (such as axon guidance and focal adhesion) interconnected to the genes associated with SZP. Finally, we have suggested candidate drug substances like Luteolin HL60 UP as a possible therapeutic target based on these key molecular signatures.
Collapse
|
11
|
Mealer RG, Williams SE, Noel M, Yang B, D’Souza AK, Nakata T, Graham DB, Creasey EA, Cetinbas M, Sadreyev RI, Scolnick EM, Woo CM, Smoller JW, Xavier RJ, Cummings RD. The schizophrenia-associated variant in SLC39A8 alters protein glycosylation in the mouse brain. Mol Psychiatry 2022; 27:1405-1415. [PMID: 35260802 PMCID: PMC9106890 DOI: 10.1038/s41380-022-01490-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 01/13/2023]
Abstract
A missense mutation (A391T) in SLC39A8 is strongly associated with schizophrenia in genomic studies, though the molecular connection to the brain is unknown. Human carriers of A391T have reduced serum manganese, altered plasma glycosylation, and brain MRI changes consistent with altered metal transport. Here, using a knock-in mouse model homozygous for A391T, we show that the schizophrenia-associated variant changes protein glycosylation in the brain. Glycosylation of Asn residues in glycoproteins (N-glycosylation) was most significantly impaired, with effects differing between regions. RNAseq analysis showed negligible regional variation, consistent with changes in the activity of glycosylation enzymes rather than gene expression. Finally, nearly one-third of detected glycoproteins were differentially N-glycosylated in the cortex, including members of several pathways previously implicated in schizophrenia, such as cell adhesion molecules and neurotransmitter receptors that are expressed across all cell types. These findings provide a mechanistic link between a risk allele and potentially reversible biochemical changes in the brain, furthering our molecular understanding of the pathophysiology of schizophrenia and a novel opportunity for therapeutic development.
Collapse
Affiliation(s)
- Robert G. Mealer
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital. Harvard Medical School, Boston, MA.,National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA.,Corresponding Author: Robert Gene Mealer, M.D., Ph.D., Richard B. Simches Research Center, 185 Cambridge St, 6th Floor, Boston, MA 02114,
| | - Sarah E. Williams
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Maxence Noel
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Bo Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | | | - Toru Nakata
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel B. Graham
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elizabeth A. Creasey
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Edward M. Scolnick
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | - Jordan W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital. Harvard Medical School, Boston, MA.,The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA
| | - Ramnik J. Xavier
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Richard D. Cummings
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Chen R, Liu J, Li S, Li X, Huo Y, Yao YG, Xiao X, Li M, Luo XJ. Functional genomics elucidates regulatory mechanisms of Parkinson's disease-associated variants. BMC Med 2022; 20:68. [PMID: 35168626 PMCID: PMC8848643 DOI: 10.1186/s12916-022-02264-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWASs) have identified multiple risk loci for Parkinson's disease (PD). However, identifying the functional (or potential causal) variants in the reported risk loci and elucidating their roles in PD pathogenesis remain major challenges. To identify the potential causal (or functional) variants in the reported PD risk loci and to elucidate their regulatory mechanisms, we report a functional genomics study of PD. METHODS We first integrated chromatin immunoprecipitation sequencing (ChIP-Seq) (from neuronal cells and human brain tissues) data and GWAS-identified single-nucleotide polymorphisms (SNPs) in PD risk loci. We then conducted a series of experiments and analyses to validate the regulatory effects of these (i.e., functional) SNPs, including reporter gene assays, allele-specific expression (ASE), transcription factor (TF) knockdown, CRISPR-Cas9-mediated genome editing, and expression quantitative trait loci (eQTL) analysis. RESULTS We identified 44 SNPs (from 11 risk loci) affecting the binding of 12 TFs and we validated the regulatory effects of 15 TF binding-disrupting SNPs. In addition, we also identified the potential target genes regulated by these TF binding-disrupting SNPs through eQTL analysis. Finally, we showed that 4 eQTL genes of these TF binding-disrupting SNPs were dysregulated in PD cases compared with controls. CONCLUSION Our study systematically reveals the gene regulatory mechanisms of PD risk variants (including widespread disruption of CTCF binding), generates the landscape of potential PD causal variants, and pinpoints promising candidate genes for further functional characterization and drug development.
Collapse
Affiliation(s)
- Rui Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Yongxia Huo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, Jiangsu, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
13
|
Wang LQ, Wu KT, Yang P, Hou F, Rajput SA, Qi DS, Wang S. Transcriptomics Reveals the Effect of Thymol on the Growth and Toxin Production of Fusarium graminearum. Toxins (Basel) 2022; 14:142. [PMID: 35202169 PMCID: PMC8877954 DOI: 10.3390/toxins14020142] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
Fusarium graminearum is a harmful pathogen causing head blight in cereals such as wheat and barley, and thymol has been proven to inhibit the growth of many pathogens. This study aims to explore the fungistatic effect of thymol on F. graminearum and its mechanism. Different concentrations of thymol were used to treat F. graminearum. The results showed that the EC50 concentration of thymol against F. graminearum was 40 μg/mL. Compared with the control group, 40 μg/mL of thymol reduced the production of Deoxynivalenol (DON) and 3-Ac-DON by 70.1% and 78.2%, respectively. Our results indicate that thymol can effectively inhibit the growth and toxin production of F. graminearum and cause an extensive transcriptome response. Transcriptome identified 16,727 non-redundant unigenes and 1653 unigenes that COG did not annotate. The correlation coefficients between samples were all >0.941. When FC was 2.0 times, a total of 3230 differential unigenes were identified, of which 1223 were up-regulated, and 2007 were down-regulated. Through the transcriptome, we confirmed that the expression of many genes involved in F. graminearum growth and synthesis of DON and other secondary metabolites were also changed. The gluconeogenesis/glycolysis pathway may be a potential and important way for thymol to affect the growth of F. graminearum hyphae and the production of DON simultaneously.
Collapse
Affiliation(s)
- Lian-Qun Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-Q.W.); (K.-T.W.); (P.Y.)
- Department of Animal Science, College of Animal Science and Technology, Tarim University, Aral 843300, China;
| | - Kun-Tan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-Q.W.); (K.-T.W.); (P.Y.)
| | - Ping Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-Q.W.); (K.-T.W.); (P.Y.)
| | - Fang Hou
- Department of Animal Science, College of Animal Science and Technology, Tarim University, Aral 843300, China;
| | - Shahid Ali Rajput
- Faculty of Veterinary and Animal Science, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Punjab, Pakistan;
| | - De-Sheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-Q.W.); (K.-T.W.); (P.Y.)
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-Q.W.); (K.-T.W.); (P.Y.)
| |
Collapse
|
14
|
Li Y, Ma C, Li S, Wang J, Li W, Yang Y, Li X, Liu J, Yang J, Liu Y, Li K, Li J, Huang D, Chen R, Lv L, Xiao X, Li M, Luo X. Regulatory Variant rs2535629 in ITIH3 Intron Confers Schizophrenia Risk By Regulating CTCF Binding and SFMBT1 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104786. [PMID: 34978167 PMCID: PMC8867204 DOI: 10.1002/advs.202104786] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies have identified 3p21.1 as a robust risk locus for schizophrenia. However, the underlying molecular mechanisms remain elusive. Here a functional regulatory variant (rs2535629) is identified that disrupts CTCF binding at 3p21.1. It is confirmed that rs2535629 is also significantly associated with schizophrenia in Chinese population and the regulatory effect of rs2535629 is validated. Expression quantitative trait loci analysis indicates that rs2535629 is associated with the expression of three distal genes (GLT8D1, SFMBT1, and NEK4) in the human brain, and CRISPR-Cas9-mediated genome editing confirmed the regulatory effect of rs2535629 on GLT8D1, SFMBT1, and NEK4. Interestingly, differential expression analysis of GLT8D1, SFMBT1, and NEK4 suggested that rs2535629 may confer schizophrenia risk by regulating SFMBT1 expression. It is further demonstrated that Sfmbt1 regulates neurodevelopment and dendritic spine density, two key pathological characteristics of schizophrenia. Transcriptome analysis also support the potential role of Sfmbt1 in schizophrenia pathogenesis. The study identifies rs2535629 as a plausibly causal regulatory variant at the 3p21.1 risk locus and demonstrates the regulatory mechanism and biological effect of this functional variant, indicating that this functional variant confers schizophrenia risk by altering CTCF binding and regulating expression of SFMBT1, a distal gene which plays important roles in neurodevelopment and synaptic morphogenesis.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Changguo Ma
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research CenterKunming UniversityKunmingYunnan650214China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Junyang Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Wenqiang Li
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenan453002China
- Henan Key Lab of Biological PsychiatryInternational Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangHenan453002China
| | - Yongfeng Yang
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenan453002China
- Henan Key Lab of Biological PsychiatryInternational Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangHenan453002China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of EducationInstitutes of Physical Science and Information TechnologyAnhui UniversityHefeiAnhui230601China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| | - Jinfeng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Yixing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Kaiqin Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Jiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Di Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| | - Rui Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Luxian Lv
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenan453002China
- Henan Key Lab of Biological PsychiatryInternational Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangHenan453002China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| | - Xiong‐Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingYunnan650204China
- KIZ‐CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| |
Collapse
|
15
|
Cao M, Wang L, Xu D, Bi X, Guo S, Xu Z, Chen L, Zheng D, Li P, Xu J, Zheng S, Wang H, Wang B, Lu J, Li K. The synergistic interaction landscape of chromatin regulators reveals their epigenetic regulation mechanisms across five cancer cell lines. Comput Struct Biotechnol J 2022; 20:5028-5039. [PMID: 36187922 PMCID: PMC9483781 DOI: 10.1016/j.csbj.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 11/03/2022] Open
|
16
|
Li Y, Li S, Liu J, Huo Y, Luo XJ. The schizophrenia susceptibility gene NAGA regulates dendritic spine density: further evidence for the dendritic spine pathology of schizophrenia. Mol Psychiatry 2021; 26:7102-7104. [PMID: 34376824 DOI: 10.1038/s41380-021-01261-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Yifan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yongxia Huo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
17
|
Liu J, Li X, Luo XJ. Proteome-wide Association Study Provides Insights Into the Genetic Component of Protein Abundance in Psychiatric Disorders. Biol Psychiatry 2021; 90:781-789. [PMID: 34454697 DOI: 10.1016/j.biopsych.2021.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/29/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Genome-wide association studies have identified multiple risk variants for psychiatric disorders. Nevertheless, how the risk variants confer risk of psychiatric disorders remains largely unknown. METHODS We performed proteome-wide association studies to identify genes whose cis-regulated protein abundance change in the human brain were associated with psychiatric disorders. RESULTS By integrating genome-wide associations of four common psychiatric disorders and two independent brain proteomes (n = 376 and n = 152, respectively) from the dorsolateral prefrontal cortex, we identified 61 genes (including 48 genes for schizophrenia, 12 genes for bipolar disorder, 5 genes for depression, and 2 genes for attention-deficit/hyperactivity disorder) whose genetically regulated protein abundance levels were associated with risk of psychiatric disorders. Comparison with transcriptome-wide association studies identified 18 overlapping genes that showed significant associations with psychiatric disorders at both proteome-wide and transcriptome-wide levels, suggesting that genetic risk variants likely confer risk of psychiatric disorders by regulating messenger RNA expression and protein abundance of these genes. CONCLUSIONS Our study not only provides new insights into the genetic component of protein abundance in psychiatric disorders but also highlights several high-confidence risk proteins (including CNNM2 and CTNND1) for schizophrenia and depression. These high-confidence risk proteins represent promising therapeutic targets for future drug development.
Collapse
Affiliation(s)
- Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
18
|
Janowski M, Milewska M, Zare P, Pękowska A. Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals (Basel) 2021; 14:765. [PMID: 34451862 PMCID: PMC8399958 DOI: 10.3390/ph14080765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/26/2022] Open
Abstract
Neurological disorders (NDs) comprise a heterogeneous group of conditions that affect the function of the nervous system. Often incurable, NDs have profound and detrimental consequences on the affected individuals' lives. NDs have complex etiologies but commonly feature altered gene expression and dysfunctions of the essential chromatin-modifying factors. Hence, compounds that target DNA and histone modification pathways, the so-called epidrugs, constitute promising tools to treat NDs. Yet, targeting the entire epigenome might reveal insufficient to modify a chosen gene expression or even unnecessary and detrimental to the patients' health. New technologies hold a promise to expand the clinical toolkit in the fight against NDs. (Epi)genome engineering using designer nucleases, including CRISPR-Cas9 and TALENs, can potentially help restore the correct gene expression patterns by targeting a defined gene or pathway, both genetically and epigenetically, with minimal off-target activity. Here, we review the implication of epigenetic machinery in NDs. We outline syndromes caused by mutations in chromatin-modifying enzymes and discuss the functional consequences of mutations in regulatory DNA in NDs. We review the approaches that allow modifying the (epi)genome, including tools based on TALENs and CRISPR-Cas9 technologies, and we highlight how these new strategies could potentially change clinical practices in the treatment of NDs.
Collapse
Affiliation(s)
| | | | | | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street, 02-093 Warsaw, Poland; (M.J.); (M.M.); (P.Z.)
| |
Collapse
|