1
|
Umbarkar P, Tousif S, Jaiswal A, Bhati AS, Toro Cora A, Sethi R, Zhang Q, Lal H. Fibroblast-specific MyD88-dependent signaling aggravates inflammation and cardiac dysfunction in the MI heart. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167703. [PMID: 39894230 DOI: 10.1016/j.bbadis.2025.167703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Excessive fibrosis and chronic inflammation are vital to adverse cardiac remodeling of the MI heart. The crosstalk of fibroblasts (FBs) (primary drivers of fibrosis) and immune cells (that govern inflammation) is critical for the repair and remodeling of the injured heart. However, the molecular mechanisms through which FBs communicate with immune cells are poorly understood. In the MI heart, substantial cardiac cell damage releases alarmins, which trigger an immune response through the TLR/MyD88 pathway. The role of MyD88-dependent signaling is well characterized in immune cell biology. However, the role of FB-derived MyD88 signaling in MI heart injury is unknown. OBJECTIVE To define the role of FB-MyD88 in MI pathology. METHODS AND RESULTS MyD88 was deleted from fibroblasts or myofibroblasts with tamoxifen-inducible Tcf21- or Postn- promoter-driven Cre recombinase. Control and MyD88 KO mice were subjected to permanent LAD ligation (MI injury), and cardiac parameters were evaluated. Additionally, co-culture experiments and chemokine profiling were conducted to identify mechanisms facilitating FB-immune cell crosstalk. FB-specific MyD88 deletion restricted MI-induced adverse cardiac remodeling and cardiac dysfunction. Surprisingly, FB-specific MyD88 deletion reduced myeloid cell recruitment and molecular markers of chronic inflammation in the KO heart. The mechanistic studies confirmed that MyD88 is required for the activation of NF-κB in FBs. Additionally, co-culture experiments demonstrated that FB-MyD88 facilitates immune cell crosstalk through chemokines and promotes an inflammatory gene program. CONCLUSION These findings suggest that FB-MyD88 promotes MI-induced chronic inflammation and cardiac dysfunction. Therefore, targeting MyD88 could serve as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Prachi Umbarkar
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, AL, USA
| | - Sultan Tousif
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, AL, USA
| | - Ashish Jaiswal
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, AL, USA
| | - Arvind Singh Bhati
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, AL, USA
| | - Angelica Toro Cora
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, AL, USA
| | - Rohan Sethi
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, AL, USA
| | - Qinkun Zhang
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, AL, USA
| | - Hind Lal
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, AL, USA.
| |
Collapse
|
2
|
Dragoni G, Ke BJ, Picariello L, Abdurahiman S, Ceni E, Biscu F, Mello T, Polvani S, Innocenti T, Spalart V, Milani S, D'Hoore A, Bislenghi G, Scaringi S, Verstockt B, De Hertogh G, Martinod K, Galli A, Matteoli G, Vermeire S. The Impact of Peptidyl Arginine Deiminase 4-Dependent Neutrophil Extracellular Trap Formation on the Early Development of Intestinal Fibrosis in Crohn's Disease. J Crohns Colitis 2025; 19:jjae121. [PMID: 39126198 DOI: 10.1093/ecco-jcc/jjae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/29/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND AND AIMS During early phases of inflammation, activated neutrophils extrude neutrophil extracellular traps (NETs) in a peptidyl arginine deiminase 4 (PAD4)-dependent manner, aggravating tissue injury and remodeling. In this study, we investigated the potential pro-fibrotic properties and signaling of NETs in Crohn's disease (CD). METHODS NETs and activated fibroblasts were labeled on resected ileum from CD patients by multiplex immunofluorescence staining. NETs-treated human primary intestinal fibroblasts were analyzed by bulk RNA sequencing to uncover cell signaling pathways, and by high-throughput imaging to assess collagen production and migratory activity. Consequentially, TLR2/NF-κB pathway was evaluated by transfection of CCD-18Co fibroblasts with an NF-κB-luciferase reporter plasmid, incorporating C29 to block TLR2 signaling. A chronic dextran sulfate sodium (DSS) mouse model was used to define the specific role of PAD4 deletion in neutrophils (MRP8-Cre, Pad4fl/fl). RESULTS Immunofluorescence showed spatial colocalization of NETs and activated fibroblasts in ileal ulcerations of CD patients. Transcriptomic analysis revealed upregulation of pro-fibrotic genes and activation of Toll-like receptor signaling pathways in NETs-treated fibroblasts. NETs treatment induced fibroblast proliferation, diminished migratory capability, and increased collagen release. Transfection experiments indicated a substantial increase in an NF-κB expression with NETs, whereas C29 led to decreased expression and release of collagen. In line, a significant reduction in collagen content was observed in the colon of MRP8-Cre, Pad4fl/fl mice subjected to chronic DSS colitis. CONCLUSIONS NETs potentially serve as an initial stimulus for pathological activation of fibroblasts within the intestine via the TLR2/NF-κB pathway. Given their early involvement in inflammation, inhibition of PAD4 might offer a strategy to modulate both inflammation and fibrogenesis in CD.
Collapse
Affiliation(s)
- Gabriele Dragoni
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
- Department of Gastroenterology, IBD Referral Center, Careggi University Hospital, Florence, Italy
| | - Bo-Jun Ke
- Laboratory for Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Lucia Picariello
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Saeed Abdurahiman
- Laboratory for Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Elisabetta Ceni
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Francesca Biscu
- Laboratory for Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Tommaso Mello
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Simone Polvani
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Tommaso Innocenti
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
- Department of Gastroenterology, IBD Referral Center, Careggi University Hospital, Florence, Italy
| | - Valérie Spalart
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Stefano Milani
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
- Department of Gastroenterology, IBD Referral Center, Careggi University Hospital, Florence, Italy
| | - André D'Hoore
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Gabriele Bislenghi
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Stefano Scaringi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Bram Verstockt
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Laboratory of Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Andrea Galli
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
- Department of Gastroenterology, IBD Referral Center, Careggi University Hospital, Florence, Italy
| | - Gianluca Matteoli
- Laboratory for Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Liu W, Mao R, Nga Le TH, West G, Varadharajan V, Banerjee R, Doyon G, Mukherjee P, Nguyen QT, Mulya A, Rennison JH, Gordon IO, Cruise M, Hu S, Czarnecki D, Plesec T, Chandra J, Banerjee S, Wang J, Massey WJ, Goren I, Lin SN, Kurada S, Cohen BL, Qazi T, Holubar SD, Lipman J, Kanters A, Gliniak CM, Scherer PE, Chen MH, Siegmund B, Ivanov AI, Fiocchi C, Van Wagoner DR, Brown JM, Rieder F. Creeping Fat-Derived Free Fatty Acids Induce Hyperplasia of Intestinal Muscularis Propria Muscle Cells: A Novel Link Between Fat and Intestinal Stricture Formation in Crohn's Disease. Gastroenterology 2024:S0016-5085(24)05659-2. [PMID: 39522890 DOI: 10.1053/j.gastro.2024.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND & AIMS In Crohn's disease, wrapping of mesenteric fat around the bowel wall, so-called "creeping fat," is highly associated with strictures. The strongest contributor to luminal narrowing in strictures is a thickening of the human intestinal muscularis propria (MP). We investigated creeping fat-derived factors and their effect on mechanisms of human intestinal MP smooth muscle cell (HIMC) hyperplasia. METHODS Free fatty acids (FFAs) in creeping fat or noncreeping mesenteric fat organ cultures were measured via lipidomic mass spectrometry. Primary HIMCs were exposed to FFAs and cell proliferation was assessed. Intracellular FFA metabolism pathways and reactive oxygen species were functionally evaluated. Muscle thickness was investigated in dextran sodium sulfate colitis with small molecule inhibition of FFA transport and a novel fat deletion mouse model. RESULTS Subserosal creeping fat is associated with a markedly thickened MP. Experimental deletion of mesenteric fat (FAT-ATTAC [fat apoptosis through targeted activation of caspase 8] mouse) reduced MP thickness. Human creeping fat-conditioned medium strongly up-regulated HIMC proliferation. Creeping fat released higher amounts of 5 long-chain FFAs, including palmitate. Inhibition of HIMC long-chain FFA metabolism or FFA uptake into mitochondria through carnitine palmitoyltransferase-1 reduced the palmitate-induced HIMC proliferation. Blockade of conversion of palmitate into phospholipids reduced HIMC proliferation. Prophylactic inhibition of carnitine palmitoyltransferase-1 in experimental dextran sodium sulfate colitis did not ameliorate inflammation, but reduced MP thickness. CONCLUSIONS Creeping fat-released long-chain FFAs induce a selective proliferative response by HIMC. These results point to creeping fat as a novel contributor to stricture formation in Crohn's disease.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Ren Mao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Thi Hong Nga Le
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Gail West
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Genevieve Doyon
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Pranab Mukherjee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Quang Tam Nguyen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Anny Mulya
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Julie H Rennison
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ilyssa O Gordon
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Michael Cruise
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Shaomin Hu
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Doug Czarnecki
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Thomas Plesec
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Jyotsna Chandra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Suhanti Banerjee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Xinxiang Key Laboratory of Inflammation and Immunology, Xinxiang Medical University, Xinxiang, China
| | - William J Massey
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Idan Goren
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Si-Nan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Satya Kurada
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Benjamin L Cohen
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Taha Qazi
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Stefan D Holubar
- Department of Colorectal Surgery, Digestive Diseases Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Jeremy Lipman
- Department of Colorectal Surgery, Digestive Diseases Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Arielle Kanters
- Department of Colorectal Surgery, Digestive Diseases Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Christy M Gliniak
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Min-Hu Chen
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Britta Siegmund
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany
| | - Andrei I Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - David R Van Wagoner
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Cleveland Clinic Program for Global Translational Inflammatory Bowel Diseases.
| |
Collapse
|
4
|
Ran K, Wang J, Li D, Jiang Z, Ding B, Yu F, Hu S, Wang L, Sun W, Xu H. Sustained-release of SOD from multivesicular liposomes accelerated the colonic mucosal healing of colitis mice by inhibiting oxidative stress. Colloids Surf B Biointerfaces 2024; 243:114143. [PMID: 39128435 DOI: 10.1016/j.colsurfb.2024.114143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Oxidative stress has long been known as a pathogenic factor of ulcerative colitis. Superoxide dismutase (SOD) has been demonstrated to mitigate gut mucosal injury via combating oxidative stress. Herein, we developed SOD-loaded multivesicular liposomes (S-MVLs) as sustained-release depot for ulcerative colitis treatment. S-MVLs were spherical honeycomb-like particles with average particle size of 27.3 ± 5.4 μm and encapsulating efficiency of 78.7 ± 2.6 %. Moreover, the two-phase release profiles of SOD from S-MVLs were exhibited, that was, the burst release phase within 4 h and the sustained-release phase within 96 h. After intraperitoneally injecting S-MVLs, in situ retention time of SOD at bowel cavity extended by 4-fold in comparison with SOD solution. In vitro cells experiment showed that S-MVLs had the protective effect on LPS-treated RAW 264.7 cells via scavenging ROS and inhibiting pro-inflammatory cytokines production. S-MVLs ameliorated the body weight loss, DAI score and the colon shortening of colitis mice. Meanwhile, the colonic morphology and the epithelial barrier of colitis mice were effectively recovered after S-MVLs treatment. The therapeutic mechanism might be associated with polymerizing M1 macrophages to M2 phenotypes and alleviating oxidative stress. Collectively, multivesicular liposomes might be a promising sustained-release depot of SOD for ulcerative colitis treatments.
Collapse
Affiliation(s)
- Kunjie Ran
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; Cixi Biomedical Research Institute of Wenzhou Medical University, China
| | - Jie Wang
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; Cixi Biomedical Research Institute of Wenzhou Medical University, China
| | - Dingwei Li
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; Cixi Biomedical Research Institute of Wenzhou Medical University, China
| | - Zhijiang Jiang
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; Cixi Biomedical Research Institute of Wenzhou Medical University, China
| | - Bingyu Ding
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; Cixi Biomedical Research Institute of Wenzhou Medical University, China
| | - Fengnan Yu
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; Cixi Biomedical Research Institute of Wenzhou Medical University, China
| | - Sunkuan Hu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China
| | - Lifen Wang
- Research Center for Drug Safety Evaluation, Hainan Medical University, Haikou City, Hainan Province, China.
| | - Wenwen Sun
- Pathology Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Helin Xu
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; Cixi Biomedical Research Institute of Wenzhou Medical University, China.
| |
Collapse
|
5
|
Li X, Hu S, Shen X, Zhang R, Liu C, Xiao L, Lin J, Huang L, He W, Wang X, Huang L, Zheng Q, Wu L, Sun C, Peng Z, Chen M, Li Z, Feng R, Zhu Y, Wang Y, Li Z, Mao R, Feng ST. Multiomics reveals microbial metabolites as key actors in intestinal fibrosis in Crohn's disease. EMBO Mol Med 2024; 16:2427-2449. [PMID: 39271960 PMCID: PMC11473649 DOI: 10.1038/s44321-024-00129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Intestinal fibrosis is the primary cause of disability in patients with Crohn's disease (CD), yet effective therapeutic strategies are currently lacking. Here, we report a multiomics analysis of gut microbiota and fecal/blood metabolites of 278 CD patients and 28 healthy controls, identifying characteristic alterations in gut microbiota (e.g., Lachnospiraceae, Ruminococcaceae, Muribaculaceae, Saccharimonadales) and metabolites (e.g., L-aspartic acid, glutamine, ethylmethylacetic acid) in moderate-severe intestinal fibrosis. By integrating multiomics data with magnetic resonance enterography features, putative links between microbial metabolites and intestinal fibrosis-associated morphological alterations were established. These potential associations were mediated by specific combinations of amino acids (e.g., L-aspartic acid), primary bile acids, and glutamine. Finally, we provided causal evidence that L-aspartic acid aggravated intestinal fibrosis both in vitro and in vivo. Overall, we offer a biologically plausible explanation for the hypothesis that gut microbiota and its metabolites promote intestinal fibrosis in CD while also identifying potential targets for therapeutic trials.
Collapse
Affiliation(s)
- Xuehua Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Shixian Hu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2nd, 510080, Guangzhou, Guangdong, People's Republic of China
| | - Xiaodi Shen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Ruonan Zhang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Caiguang Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Lin Xiao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Jinjiang Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Li Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Weitao He
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Xinyue Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Lili Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Qingzhu Zheng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Luyao Wu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Canhui Sun
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Zhenpeng Peng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Ziping Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Rui Feng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Yijun Zhu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2nd, 510080, Guangzhou, Guangdong, People's Republic of China
| | - Yangdi Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China.
| | - Zhoulei Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China.
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China.
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China.
| |
Collapse
|
6
|
Rezai S, Ghorbani E, Khazaei M, Nazari SE, Rahmani F, Naimi H, Afshari A, Avan A, Ryzhikov M, Soleimanpour S, Mehr SMH. Evaluation Recovery of Ulcerative Colitis with a Lactobacillus Cocktail Derived from Traditional Dairy Products: In vivo Study. Adv Biomed Res 2024; 13:85. [PMID: 39512406 PMCID: PMC11542696 DOI: 10.4103/abr.abr_157_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 11/15/2024] Open
Abstract
Background This investigation investigates the anti-inflammatory and fibrinolytic effects of a cocktail of probiotics derived from traditional dairy products in a murine model of ulcerative colitis (UC). Materials and Methods A mix of newly isolated probiotics containing L. plantarum, L. brevis, L. delbrueckii, and L. helveticus was characterized and orally administered to inbred eight-week-old C57BL/6 male mice (n = 6). Clinical symptoms, pathohistological changes, and inflammatory and fibrosis markers were analyzed in the existence and absence of probiotics in colitis mice. Results Dairy lactobacillus probiotics potently attenuated colitis symptoms by decreasing dextran sulfate sodium (DSS)-induced body weight loss, colon shortening, rectal bleeding, and rectal prolapse. Consistently, a cocktail of probiotics could significantly improve histopathological grading by suppressing crypt loss, mucosal damage, and inflammation scores in colitis tissues. Moreover, the mix of probiotics suppressed pro-inflammatory genes including interleukin (IL)-1β, IL-6, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ), and increased anti-oxidant markers and activity such as superoxide dismutase and catalase in colon tissue. Furthermore, compared to the no-treated group, the administration of probiotics reduced fibrosis by decreasing collagen deposition in tissue sections and down-regulating levels of pro-fibrotic genes including alpha-actin-2 (Acta2), collagen (Col) 1a1, and Col 1a2 in colitis tissue homogenates. Conclusions The results show the newly isolated cocktail of probiotics elicits a potent protective effect on UC symptoms in mice model. Further study on these probiotics is required to fully explore their effectiveness, strength, and safety considerations.
Collapse
Affiliation(s)
- Shaghayegh Rezai
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Elnaz Nazari
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Kashmar School of Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Naimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Afshari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Human Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Saint Louis University, School of Medicine, Saint Louis, MO, USA
| | - Saman Soleimanpour
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hasanian Mehr
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Wang H, Li Y, Wu N, Lv C, Wang Y. P4HB regulates the TGFβ/SMAD3 signaling pathway through PRMT1 to participate in high glucose-induced epithelial-mesenchymal transition and fibrosis of renal tubular epithelial cells. BMC Nephrol 2024; 25:297. [PMID: 39251943 PMCID: PMC11385120 DOI: 10.1186/s12882-024-03733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a common complication of diabetes mellitus, and Prolyl 4-Hydroxylase Subunit Beta (P4HB) expression is increased in high glucose (HG)-induced renal tubular epithelial cells (TECs). But it's role in HG-induced TECs remains to be elucidated. METHODS The HK-2 cells were induced using HG and transfected with SiRNA-P4HB. DCFH-DA staining was utilized for the detection of cellular levels of ROS. WB and immunofluorescence were utilized to detect the expression of P4HB, epithelial-mesenchymal transition (EMT), fibrosis, and TGFβ/SMAD3-related proteins in HK-2 cells. Online databases were utilized for predicting the interaction target of P4HB, and immunoprecipitation (IP) experiments were employed to validate the binding of P4HB with the target. SiRNA and overexpression vectors of target gene were used to verify the mechanism of action of P4HB. RESULTS HG induced an increase in the expression of P4HB and TGFβ, p-SMAD3, and ROS in HK-2 cells. Furthermore, HG downregulated the expression of E-cadherin and upregulated the expression of N-cadherin, Vimentin, α-SMA, Fibronectin, Collagen IV, SNAIL, and SLUG in HK-2 cells. Interfering with P4HB significantly reversed the expression of these proteins. Database predictions and IP experiments showed that P4HB interacts with PRMT1, and the expression of PRMT1 was increased in HG-induced HK-2 cells. Interfering with PRMT1 inhibited the changes in expression of EMT and fibrosis related proteins induced by HG. However, overexpression of PRMT1 weakened the regulatory effect of P4HB interference on the EMT, fibrosis, and TGFβ/SMAD3-related proteins in HK-2 cells. CONCLUSION P4HB regulated the TGFβ/SMAD3 signaling pathway through PRMT1 and thus participates in HG-induced EMT and fibrosis in HK-2 cells.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of nephrology, China-Japan Friendship Hospital, chaoyang District, 100029, Beijing, China
| | - Yang Li
- Comprehensive Internal Medicine Department, Beijing Xiaotangshan Hospital, Xiaotangshan Town, Changping District, 102211, Beijing, China
| | - Na Wu
- Comprehensive Internal Medicine Department, Beijing Xiaotangshan Hospital, Xiaotangshan Town, Changping District, 102211, Beijing, China
| | - Chunmei Lv
- Comprehensive Internal Medicine Department, Beijing Xiaotangshan Hospital, Xiaotangshan Town, Changping District, 102211, Beijing, China
| | - Yishu Wang
- Comprehensive Internal Medicine Department, Beijing Xiaotangshan Hospital, Xiaotangshan Town, Changping District, 102211, Beijing, China.
| |
Collapse
|
8
|
Liu S, Li J, Wu X. [Swertiamarin ameliorates 2, 4, 6-trinitrobenzenesulfonic acid-induced colitis in mice by inhibiting intestinal epithelial cell apoptosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1545-1552. [PMID: 39276050 PMCID: PMC11378047 DOI: 10.12122/j.issn.1673-4254.2024.08.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
OBJECTIVE To investigate the mechanism by which swertiamarin (STM) ameliorates CD-like colitis in mice. METHODS A Caco-2 cell model of TNF-α-stimulated apoptosis was established and divided into three groups: Con, TNF-α and STM, and the effects of STM on apoptosis and barrier function were assessed by Tunel staining, western blotting, immunofluorescence, and transepithelial electric resistance (TEER). A mouse model of 2, 4, 6-trinitrobenzenesulfonic acid (TNBS) -induced CD-like colitis was established to assess the effects of STM on colitis, intestinal barrier function and epithelial cell apoptosis. The regulatory role of the PI3K/AKT pathway in STM-induced resistance to intestinal epithelial cell apoptosis was investigated in both the cell model and mouse models. RESULTS TUNEL staining showed that in Caco-2 cells with TNF-α stimulation, STM treatment significantly reduced the percentage of TUNEL-stained cells (P<0.05). STM obviously reduced TNF-α-induced enhancement of cleaved-caspase 3 and Bax expressions (P<0.05), increased Bcl-2 expression (P<0.05), protected intestinal barrier integrity and function by restoring transepithelial electrical resistance (TEER) of the cells, promoted normal localization and expressions of the tight junction proteins (ZO1 and claudin 1) (P<0.05), and inhibited the expression of pro-inflammatory factors (IL-6 and CCL3) (P<0.05) in TNF-α-stimulated Caco-2 cells. In the mouse models, STM significantly alleviated TNBS-induced CD-like colitis and intestinal barrier dysfunction (P<0.05) as shown by improved weight loss, lowered Disease Activity Index (DAI) score and inflammation score, reduction of IL-6 and CCL3 release, and restoration of intestinal barrier permeability, colonic TEER, bacterial translocation, and localization and expressions of the tight junction proteins. Mechanistically, STM inhibited the expressions of p-PI3K and p-AKT in both the cell model and mouse model(P<0.05), and treatment with 740Y-P (a PI3K/AKT pathway activator) significantly attenuated the inhibitory effect of STM on TNF-α-induced apoptosis in Caco-2 cells (P<0.05). CONCLUSION STM inhibits intestinal epithelial cell apoptosis at least in part by suppressing activation of the PI3K/AKT pathway to ameliorate intestinal barrier dysfunction and colitis in mice.
Collapse
Affiliation(s)
- S Liu
- First Clinical Medical College, Anhui Medical University, Hefei 230000, China
| | - J Li
- Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233003, China
- Anhui Provincial Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu 233003, China
| | - X Wu
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| |
Collapse
|
9
|
Zhang Y, Wang J, Sun H, Xun Z, He Z, Zhao Y, Qi J, Sun S, Yang Q, Gu Y, Zhang L, Zhou C, Ye Y, Wu N, Zou D, Su B. TWIST1+FAP+ fibroblasts in the pathogenesis of intestinal fibrosis in Crohn's disease. J Clin Invest 2024; 134:e179472. [PMID: 39024569 PMCID: PMC11405050 DOI: 10.1172/jci179472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024] Open
Abstract
Intestinal fibrosis, a severe complication of Crohn's disease (CD), is characterized by excessive extracellular matrix (ECM) deposition and induces intestinal strictures, but there are no effective antifibrosis drugs available for clinical application. We performed single-cell RNA sequencing (scRNA-Seq) of fibrotic and nonfibrotic ileal tissues from patients with CD with intestinal obstruction. Analysis revealed mesenchymal stromal cells (MSCs) as the major producers of ECM and the increased infiltration of its subset FAP+ fibroblasts in fibrotic sites, which was confirmed by immunofluorescence and flow cytometry. Single-cell transcriptomic profiling of chronic dextran sulfate sodium salt murine colitis model revealed that CD81+Pi16- fibroblasts exhibited transcriptomic and functional similarities to human FAP+ fibroblasts. Consistently, FAP+ fibroblasts were identified as the key subtype with the highest level of ECM production in fibrotic intestines. Furthermore, specific knockout or pharmacological inhibition of TWIST1, which was highly expressed by FAP+ fibroblasts, could significantly ameliorate fibrosis in mice. In addition, TWIST1 expression was induced by CXCL9+ macrophages enriched in fibrotic tissues via IL-1β and TGF-β signal. These findings suggest the inhibition of TWIST1 as a promising strategy for CD fibrosis treatment.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Jiaxin Wang
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Hongxiang Sun
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Ministry of Education Key Laboratory of Cell Death and Differentiation, and
| | - Zhenzhen Xun
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Ministry of Education Key Laboratory of Cell Death and Differentiation, and
| | - Zirui He
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yizhou Zhao
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Jingjing Qi
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Ministry of Education Key Laboratory of Cell Death and Differentiation, and
| | - Sishen Sun
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Qidi Yang
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Yubei Gu
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Ling Zhang
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Chunhua Zhou
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Youqiong Ye
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Ministry of Education Key Laboratory of Cell Death and Differentiation, and
| | - Ningbo Wu
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Ministry of Education Key Laboratory of Cell Death and Differentiation, and
| | - Duowu Zou
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Bing Su
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Ministry of Education Key Laboratory of Cell Death and Differentiation, and
| |
Collapse
|
10
|
Wang J, Yang B, Chandra J, Ivanov A, Brown JM, Florian R. Preventing fibrosis in IBD: update on immune pathways and clinical strategies. Expert Rev Clin Immunol 2024; 20:727-734. [PMID: 38475672 PMCID: PMC11180587 DOI: 10.1080/1744666x.2024.2330604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION Intestinal fibrosis is a common and serious complication of inflammatory bowel diseases (IBD) driving stricture formation in Crohn's disease patients and leading to submucosal damage in ulcerative colitis. Recent studies provided novel insights into the role of immune and nonimmune components in the pathogenesis of intestinal fibrosis. Those new findings may accelerate the development of anti-fibrotic treatment in IBD patients. AREAS COVERED This review is designed to cover the recent progress in mechanistic research and therapeutic developments on intestinal fibrosis in IBD patients, including new cell clusters, cytokines, proteins, microbiota, creeping fat, and anti-fibrotic therapies. EXPERT OPINION Due to the previously existing major obstacle of missing consensus on stricture definitions and the absence of clinical trial endpoints, testing of drugs with an anti-fibrotic mechanism is just starting in stricturing Crohn's disease (CD). A biomarker to stratify CD patients at diagnosis without any complications into at-risk populations for future strictures would be highly desirable. Further investigations are needed to identify novel mechanisms of fibrogenesis in the intestine that are targetable and ideally gut specific.
Collapse
Affiliation(s)
- Jie Wang
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Bo Yang
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Jyotsna Chandra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Andrei Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - J. Mark Brown
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Rieder Florian
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Program for Global Translational Inflammatory Bowel Diseases, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Mignini I, Blasi V, Termite F, Esposto G, Borriello R, Laterza L, Scaldaferri F, Ainora ME, Gasbarrini A, Zocco MA. Fibrostenosing Crohn's Disease: Pathogenetic Mechanisms and New Therapeutic Horizons. Int J Mol Sci 2024; 25:6326. [PMID: 38928032 PMCID: PMC11204249 DOI: 10.3390/ijms25126326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Bowel strictures are well recognized as one of the most severe complications in Crohn's disease, with variable impacts on the prognosis and often needing surgical or endoscopic treatment. Distinguishing inflammatory strictures from fibrotic ones is of primary importance due to the different therapeutic approaches required. Indeed, to better understand the pathogenesis of fibrosis, it is crucial to investigate molecular processes involving genetic factors, cytokines, alteration of the intestinal barrier, and epithelial and endothelial damage, leading to an increase in extracellular matrix synthesis, which ultimately ends in fibrosis. In such a complex mechanism, the gut microbiota also seems to play a role. A better comprehension of molecular processes underlying bowel fibrosis, in addition to radiological and histopathological findings, has led to the identification of high-risk patients for personalized follow-up and testing of new therapies, primarily in preclinical models, targeting specific pathways involving Transforming Growth Factor-β, interleukins, extracellular matrix balance, and gut microbiota. Our review aims to summarize current evidence about molecular factors involved in intestinal fibrosis' pathogenesis, paving the way for potential diagnostic biomarkers or anti-fibrotic treatments for stricturing Crohn's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (I.M.); (V.B.); (G.E.); (R.B.); (L.L.); (F.S.); (M.E.A.); (A.G.)
| |
Collapse
|
12
|
Lin S, Wang J, Mukherjee PK, Mao R, West G, Czarnecki D, Zhao S, Nguyen QT, Elias M, Massey WJ, Liu W, Wang Y, Prasad A, Banerjee S, Goren I, Chandra J, Le HT, Dejanovic D, Li J, Chen M, Holubar S, Olman M, Southern B, Hu S, Gordon IO, Atabai K, Fiocchi C, Rieder F. Milk fat globule-epidermal growth factor 8 (MFGE8) prevents intestinal fibrosis. Gut 2024; 73:1110-1123. [PMID: 38378253 PMCID: PMC11248270 DOI: 10.1136/gutjnl-2022-328608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/18/2024] [Indexed: 02/22/2024]
Abstract
OBJECTIVE Intestinal fibrosis is considered an inevitable consequence of chronic IBD, leading to stricture formation and need for surgery. During the process of fibrogenesis, extracellular matrix (ECM) components critically regulate the function of mesenchymal cells. We characterised the composition and function of ECM in fibrostenosing Crohn's disease (CD) and control tissues. DESIGN Decellularised full-thickness intestinal tissue platforms were tested using three different protocols, and ECM composition in different tissue phenotypes was explored by proteomics and validated by quantitative PCR (qPCR) and immunohistochemistry. Primary human intestinal myofibroblasts (HIMFs) treated with milk fat globule-epidermal growth factor 8 (MFGE8) were evaluated regarding the mechanism of their antifibrotic response, and the action of MFGE8 was tested in two experimental intestinal fibrosis models. RESULTS We established and validated an optimal decellularisation protocol for intestinal IBD tissues. Matrisome analysis revealed elevated MFGE8 expression in CD strictured (CDs) tissue, which was confirmed at the mRNA and protein levels. Treatment with MFGE8 inhibited ECM production in normal control HIMF but not CDs HIMF. Next-generation sequencing uncovered functionally relevant integrin-mediated signalling pathways, and blockade of integrin αvβ5 and focal adhesion kinase rendered HIMF non-responsive to MFGE8. MFGE8 prevented and reversed experimental intestinal fibrosis in vitro and in vivo. CONCLUSION MFGE8 displays antifibrotic effects, and its administration may represent a future approach for prevention of IBD-induced intestinal strictures.
Collapse
Affiliation(s)
- Sinan Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Pranab K Mukherjee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ren Mao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gail West
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Doug Czarnecki
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shuai Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Quang Tam Nguyen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Michael Elias
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - William J Massey
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - WeiWei Liu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yan Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ankita Prasad
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Suhanti Banerjee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Idan Goren
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jyotsna Chandra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hongnga T Le
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Dina Dejanovic
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Minhu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Stefan Holubar
- Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mitchell Olman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Brian Southern
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shaomin Hu
- Department of Pathology, Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ilyssa O Gordon
- Department of Pathology, Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kamran Atabai
- Cardiovascular Research Institute, Lung Biology Center, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Program for Global Translational Inflammatory Bowel Diseases, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
13
|
Liu B, Wei Y, He J, Feng B, Chen Y, Guo R, Griffin MD, Hynes SO, Shen S, Liu Y, Cui H, Ma J, O'Brien T. Human umbilical cord-derived mesenchymal stromal cells improve myocardial fibrosis and restore miRNA-133a expression in diabetic cardiomyopathy. Stem Cell Res Ther 2024; 15:120. [PMID: 38659015 PMCID: PMC11040946 DOI: 10.1186/s13287-024-03715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a serious health-threatening complication of diabetes mellitus characterized by myocardial fibrosis and abnormal cardiac function. Human umbilical cord mesenchymal stromal cells (hUC-MSCs) are a potential therapeutic tool for DCM and myocardial fibrosis via mechanisms such as the regulation of microRNA (miRNA) expression and inflammation. It remains unclear, however, whether hUC-MSC therapy has beneficial effects on cardiac function following different durations of diabetes and which mechanistic aspects of DCM are modulated by hUC-MSC administration at different stages of its development. This study aimed to investigate the therapeutic effects of intravenous administration of hUC-MSCs on DCM following different durations of hyperglycemia in an experimental male model of diabetes and to determine the effects on expression of candidate miRNAs, target mRNA and inflammatory mediators. METHODS A male mouse model of diabetes was induced by multiple low-dose streptozotocin injections. The effects on severity of DCM of intravenous injections of hUC-MSCs and saline two weeks previously were compared at 10 and 18 weeks after diabetes induction. At both time-points, biochemical assays, echocardiography, histopathology, polymerase chain reaction (PCR), immunohistochemistry and enzyme-linked immunosorbent assays (ELISA) were used to analyze blood glucose, body weight, cardiac structure and function, degree of myocardial fibrosis and expression of fibrosis-related mRNA, miRNA and inflammatory mediators. RESULTS Saline-treated diabetic male mice had impaired cardiac function and increased cardiac fibrosis after 10 and 18 weeks of diabetes. At both time-points, cardiac dysfunction and fibrosis were improved in hUC-MSC-treated mice. Pro-fibrotic indicators (α-SMA, collagen I, collagen III, Smad3, Smad4) were reduced and anti-fibrotic mediators (FGF-1, miRNA-133a) were increased in hearts of diabetic animals receiving hUC-MSCs compared to saline. Increased blood levels of pro-inflammatory cytokines (IL-6, TNF, IL-1β) and increased cardiac expression of IL-6 were also observed in saline-treated mice and were reduced by hUC-MSCs at both time-points, but to a lesser degree at 18 weeks. CONCLUSION Intravenous injection of hUC-MSCs ameliorated key functional and structural features of DCM in male mice with diabetes of shorter and longer duration. Mechanistically, these effects were associated with restoration of intra-myocardial expression of miRNA-133a and its target mRNA COL1AI as well as suppression of systemic and localized inflammatory mediators.
Collapse
Affiliation(s)
- Boxin Liu
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China
| | - Yan Wei
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China
| | - Jingjing He
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China
| | - Baofeng Feng
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
- Human Anatomy Department, Hebei Medical University, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China
| | - Yimeng Chen
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China
| | - Ruiyun Guo
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China
| | - Matthew D Griffin
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
| | - Seán O Hynes
- Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| | - Sanbing Shen
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
| | - Yan Liu
- Department of Endocrinology, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, 050051, China
| | - Huixian Cui
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China.
- Human Anatomy Department, Hebei Medical University, Hebei Province, 050017, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China.
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China.
| | - Jun Ma
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China.
- Human Anatomy Department, Hebei Medical University, Hebei Province, 050017, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China.
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China.
| | - Timothy O'Brien
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China.
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland.
| |
Collapse
|
14
|
Rieder F, Mukherjee PK, Massey WJ, Wang Y, Fiocchi C. Fibrosis in IBD: from pathogenesis to therapeutic targets. Gut 2024; 73:854-866. [PMID: 38233198 PMCID: PMC10997492 DOI: 10.1136/gutjnl-2023-329963] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Intestinal fibrosis resulting in stricture formation and obstruction in Crohn's disease (CD) and increased wall stiffness leading to symptoms in ulcerative colitis (UC) is among the largest unmet needs in inflammatory bowel disease (IBD). Fibrosis is caused by a multifactorial and complex process involving immune and non-immune cells, their soluble mediators and exposure to luminal contents, such as microbiota and environmental factors. To date, no antifibrotic therapy is available. Some progress has been made in creating consensus definitions and measurements to quantify stricture morphology for clinical practice and trials, but approaches to determine the degree of fibrosis within a stricture are still lacking. OBJECTIVE We herein describe the current state of stricture pathogenesis, measuring tools and clinical trial endpoints development. DESIGN Data presented and discussed in this review derive from the past and recent literature and the authors' own research and experience. RESULTS AND CONCLUSIONS Significant progress has been made in better understanding the pathogenesis of fibrosis, but additional studies and preclinical developments are needed to define specific therapeutic targets.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Pranab K Mukherjee
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - William J Massey
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Yan Wang
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Lenti MV, Santacroce G, Broglio G, Rossi CM, Di Sabatino A. Recent advances in intestinal fibrosis. Mol Aspects Med 2024; 96:101251. [PMID: 38359700 DOI: 10.1016/j.mam.2024.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Despite many progresses have been made in the treatment of inflammatory bowel disease, especially due to the increasing number of effective therapies, the development of tissue fibrosis is a very common occurrence along the natural history of this condition. To a certain extent, fibrogenesis is a physiological and necessary process in all those conditions characterised by chronic inflammation. However, the excessive deposition of extracellular matrix within the bowel wall will end up in the formation of strictures, with the consequent need for surgery. A number of mechanisms have been described in this process, but some of them are not yet clear. For sure, the main trigger is the presence of a persistent inflammatory status within the mucosa, which in turn favours the occurrence of a pro-fibrogenic environment. Among the main key players, myofibroblasts, fibroblasts, immune cells, growth factors and cytokines must be mentioned. Although there are no available therapies able to target fibrosis, the only way to prevent it is by controlling inflammation. In this review, we summarize the state of art of the mechanisms involved in gut fibrogenesis, how to diagnose it, and which potential targets could be druggable to tackle fibrosis.
Collapse
Affiliation(s)
- Marco Vincenzo Lenti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Giovanni Santacroce
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Giacomo Broglio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Carlo Maria Rossi
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy.
| |
Collapse
|
16
|
Yang W, Yu T, Cong Y. Stromal Cell Regulation of Intestinal Inflammatory Fibrosis. Cell Mol Gastroenterol Hepatol 2024; 17:703-711. [PMID: 38246590 PMCID: PMC10958116 DOI: 10.1016/j.jcmgh.2024.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Intestinal inflammatory fibrosis is a severe consequence of inflammatory bowel diseases (IBDs). There is currently no cure for the treatment of intestinal fibrosis in IBD. Although inflammation is necessary for triggering fibrosis, the anti-inflammatory agents used to treat IBD are ineffective in preventing the progression of intestinal fibrosis and stricture formation once initiated, suggesting that inflammatory signals are not the sole drivers of fibrosis progression once it is established. Among multiple mechanisms involved in the initiation and progression of intestinal fibrosis in IBD, stromal cells play critical roles in mediating the process. In this review, we summarize recent progress on how stromal cells regulate intestinal fibrosis in IBD and how they are regulated by focusing on immune regulation and gut microbiota. We also outline the challenges moving forward in the field.
Collapse
Affiliation(s)
- Wenjing Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Center for Human Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Tianming Yu
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Center for Human Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yingzi Cong
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Center for Human Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
17
|
M. S. Barron A, Fabre T, De S. Distinct fibroblast functions associated with fibrotic and immune-mediated inflammatory diseases and their implications for therapeutic development. F1000Res 2024; 13:54. [PMID: 38681509 PMCID: PMC11053351 DOI: 10.12688/f1000research.143472.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts are ubiquitous cells that can adopt many functional states. As tissue-resident sentinels, they respond to acute damage signals and shape the earliest events in fibrotic and immune-mediated inflammatory diseases. Upon sensing an insult, fibroblasts produce chemokines and growth factors to organize and support the response. Depending on the size and composition of the resulting infiltrate, these activated fibroblasts may also begin to contract or relax thus changing local stiffness within the tissue. These early events likely contribute to the divergent clinical manifestations of fibrotic and immune-mediated inflammatory diseases. Further, distinct changes to the cellular composition and signaling dialogue in these diseases drive progressive fibroblasts specialization. In fibrotic diseases, fibroblasts support the survival, activation and differentiation of myeloid cells, granulocytes and innate lymphocytes, and produce most of the pathogenic extracellular matrix proteins. Whereas, in immune-mediated inflammatory diseases, sequential accumulation of dendritic cells, T cells and B cells programs fibroblasts to support local, destructive adaptive immune responses. Fibroblast specialization has clear implications for the development of effective induction and maintenance therapies for patients with these clinically distinct diseases.
Collapse
Affiliation(s)
- Alexander M. S. Barron
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Thomas Fabre
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Saurav De
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
18
|
Cavagnero KJ, Gallo RL. Essential immune functions of fibroblasts in innate host defense. Front Immunol 2022; 13:1058862. [PMID: 36591258 PMCID: PMC9797514 DOI: 10.3389/fimmu.2022.1058862] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
The term fibroblast has been used generally to describe spindle-shaped stromal cells of mesenchymal origin that produce extracellular matrix, establish tissue structure, and form scar. Current evidence has found that cells with this morphology are highly heterogeneous with some fibroblastic cells actively participating in both innate and adaptive immune defense. Detailed analysis of barrier tissues such as skin, gut, and lung now show that some fibroblasts directly sense pathogens and other danger signals to elicit host defense functions including antimicrobial activity, leukocyte recruitment, and production of cytokines and lipid mediators relevant to inflammation and immunosuppression. This review will synthesize current literature focused on the innate immune functions performed by fibroblasts at barrier tissues to highlight the previously unappreciated importance of these cells in immunity.
Collapse
Affiliation(s)
| | - Richard L. Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
19
|
Lin SN, Musso A, Wang J, Mukherjee PK, West GA, Mao R, Lyu R, Li J, Zhao S, Elias M, Haberman Y, Denson LA, Kugathasan S, Chen MH, Czarnecki D, Dejanovic D, Le HT, Chandra J, Lipman J, Steele SR, Nguyen QT, Fiocchi C, Rieder F. Human intestinal myofibroblasts deposited collagen VI enhances adhesiveness for T cells - A novel mechanism for maintenance of intestinal inflammation. Matrix Biol 2022; 113:1-21. [PMID: 36108990 PMCID: PMC10043923 DOI: 10.1016/j.matbio.2022.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Inflammatory bowel diseases (IBD) cause chronic intestinal damage and extracellular matrix (ECM) remodeling. The ECM may play an active role in inflammation by modulating immune cell functions, including cell adhesion, but this hypothesis has not been tested in IBD. DESIGN Primary human intestinal myofibroblast (HIMF)-derived ECM from IBD and controls, 3D decellularized colon or ECM molecule-coated scaffolds were tested for their adhesiveness for T cells. Matrisome was analysed via proteomics. Functional integrin blockade was used to investigate the underlying mechanism. Analysis of the pediatric Crohn's disease (CD) RISK inception cohort was used to explore an altered ECM gene expression as a potential predictor for a future complicated disease course. RESULTS HIMF-derived ECM and 3D decellularized colonic ECM from IBD bound more T cells compared to control. Control HIMFs exposed to the pro-inflammatory cytokines Iinterleukin-1β (IL-1β) and tumor necrosis factor (TNF) increased, and to transforming growth factor-β1 (TGF-β1) decreased ECM adhesiveness to T cells. Matrisome analysis of the HIMF-derived ECM revealed collagen VI as a major culprit for differences in T cell adhesion. Collagen VI knockdown in HIMF reduced adhesion T cell as did the blockage of integrin αvβ1. Elevated gene expression of collagen VI in biopsies of pediatric CD patients was linked to risk for future stricturing disease. CONCLUSION HIMF-derived ECM in IBD binds a remarkably enhanced number of T cells, which is dependent on Collagen VI and integrin αvβ1. Collagen VI expression is a risk factor for a future complicated CD course. Blocking immune cells retention may represent a novel approach to treatment in IBD.
Collapse
Affiliation(s)
- Si-Nan Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alessandro Musso
- Division of Gastroenterology, Città della Salute e della Scienza di Torino, Molinette Hospital, Turin, Italy
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, China
| | - Pranab K Mukherjee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gail A West
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ren Mao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ruishen Lyu
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shuai Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Michael Elias
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yael Haberman
- Sheba Medical Center, Tel Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lee A Denson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Min-Hu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Doug Czarnecki
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dina Dejanovic
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hongnga T Le
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jyotsna Chandra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeremy Lipman
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Scott R Steele
- Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Quang Tam Nguyen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, 9500 Euclid Avenue - NC22, Cleveland, OH, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, 9500 Euclid Avenue - NC22, Cleveland, OH, USA.
| |
Collapse
|
20
|
Tissue Niches Formed by Intestinal Mesenchymal Stromal Cells in Mucosal Homeostasis and Immunity. Int J Mol Sci 2022; 23:ijms23095181. [PMID: 35563571 PMCID: PMC9100044 DOI: 10.3390/ijms23095181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 12/17/2022] Open
Abstract
The gastrointestinal tract is the largest mucosal surface in our body and accommodates the majority of the total lymphocyte population. Being continuously exposed to both harmless antigens and potentially threatening pathogens, the intestinal mucosa requires the integration of multiple signals for balancing immune responses. This integration is certainly supported by tissue-resident intestinal mesenchymal cells (IMCs), yet the molecular mechanisms whereby IMCs contribute to these events remain largely undefined. Recent studies using single-cell profiling technologies indicated a previously unappreciated heterogeneity of IMCs and provided further knowledge which will help to understand dynamic interactions between IMCs and hematopoietic cells of the intestinal mucosa. In this review, we focus on recent findings on the immunological functions of IMCs: On one hand, we discuss the steady-state interactions of IMCs with epithelial cells and hematopoietic cells. On the other hand, we summarize our current knowledge about the contribution of IMCs to the development of intestinal inflammatory conditions, such as infections, inflammatory bowel disease, and fibrosis. By providing a comprehensive list of cytokines and chemokines produced by IMCs under homeostatic and inflammatory conditions, we highlight the significant immunomodulatory and tissue niche forming capacities of IMCs.
Collapse
|
21
|
Estrada HQ, Patel S, Rabizadeh S, Casero D, Targan SR, Barrett RJ. Development of a Personalized Intestinal Fibrosis Model Using Human Intestinal Organoids Derived From Induced Pluripotent Stem Cells. Inflamm Bowel Dis 2022; 28:667-679. [PMID: 34918082 PMCID: PMC9074870 DOI: 10.1093/ibd/izab292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intestinal fibrosis is a serious complication of Crohn's disease. Numerous cell types including intestinal epithelial and mesenchymal cells are implicated in this process, yet studies are hampered by the lack of personalized in vitro models. Human intestinal organoids (HIOs) derived from induced pluripotent stem cells (iPSCs) contain these cell types, and our goal was to determine the feasibility of utilizing these to develop a personalized intestinal fibrosis model. METHODS iPSCs from 2 control individuals and 2 very early onset inflammatory bowel disease patients with stricturing complications were obtained and directed to form HIOs. Purified populations of epithelial and mesenchymal cells were derived from HIOs, and both types were treated with the profibrogenic cytokine transforming growth factor β (TGFβ). Quantitative polymerase chain reaction and RNA sequencing analysis were used to assay their responses. RESULTS In iPSC-derived mesenchymal cells, there was a significant increase in the expression of profibrotic genes (Col1a1, Col5a1, and TIMP1) in response to TGFβ. RNA sequencing analysis identified further profibrotic genes and demonstrated differential responses to this cytokine in each of the 4 lines. Increases in profibrotic gene expression (Col1a1, FN, TIMP1) along with genes associated with epithelial-mesenchymal transition (vimentin and N-cadherin) were observed in TGFβ -treated epithelial cells. CONCLUSIONS We demonstrate the feasibility of utilizing iPSC-HIO technology to model intestinal fibrotic responses in vitro. This now permits the generation of near unlimited quantities of patient-specific cells that could be used to reveal cell- and environmental-specific mechanisms underpinning intestinal fibrosis.
Collapse
Affiliation(s)
- Hannah Q Estrada
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shachi Patel
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shervin Rabizadeh
- Division of Pediatric Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, USAand
| | - David Casero
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephan R Targan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robert J Barrett
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
22
|
Zhao Y, Xue P, Lin G, Tong M, Yang J, Zhang Y, Ran K, Zhuge D, Yao Q, Xu H. A KPV-binding double-network hydrogel restores gut mucosal barrier in an inflamed colon. Acta Biomater 2022; 143:233-252. [PMID: 35245681 DOI: 10.1016/j.actbio.2022.02.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/29/2022] [Accepted: 02/25/2022] [Indexed: 02/08/2023]
Abstract
Ulcerative colitis (UC) usually occurs in the superficial mucosa of the colorectum. Here, a double-network hydrogel (PMSP) was constructed from maleimided γ-polyglutamic acid and thiolated γ-polyglutamic acid through crosslinking of thiol-maleimide and self-oxidized thiols. PMSP with a negative charge specifically adhered to the inflamed mucosa with positively charged proteins rather than to the healthy mucosa. PMSP exhibited good mechanical strength with storage modulus (G') of 17.6 Pa and a linear viscoelastic region (LVR) of 107.2% strain. Moreover, PMSP showed a stronger bio-adhesive force toward the inflamed tissue-mimicking substrate than toward its healthy counterpart. In vivo imaging confirmed that PMSP specifically adhered to the inflamed colonic mucosa of rats with TNBS-induced UC. KPV (Lys-Pro-Val) as a model drug was easily captured by PMSP through electrostatic interactions, thus retaining its bioactivity for a longer time under high temperature conditions. Moreover, the alleviating effect of KPV on rats with TNBS-induced colitis was significantly improved by PMSP after intracolonic administration. The epithelial barrier of the colon also effectively recovered following PMSP-KPV treatment. PMSP-KPV also modulated the gut flora, markedly augmenting the abundance of beneficial microorganisms in gut homeostasis. The mechanism by which PMSP-KPV induces a therapeutic effect may be associated with the inhibition of oxidative stress. Conclusively, the PMSP hydrogel seems to be a promising rectal delivery system for the therapy of UC. STATEMENT OF SIGNIFICANCE: Ulcerative colitis (UC) is a chronic and relapsing disease of the gastrointestinal tract. A key therapeutic approach to treat UC is to repair the mucosal barriers. Here, a double-network hydrogel (PMSP) was constructed from maleimided and thiolated γ-polyglutamic acid through crosslinking of thiol-maleimide and self-oxidized thiols. The negatively charged PMSP specifically adhered to the inflamed colon rather than its healthy counterpart and was retained for a longer time. KPV as a model drug was easily captured by PMSP, which provided better stability to KPV when exposed to high temperature of 50 °C. The epithelial mucosal barrier of the colon was effectively recovered by the rectal administration of PMSP-KPV to rats with TNBS-induced UC. Moreover, PMSP-KPV modulated the gut flora of colitic rats, markedly augmenting the abundance of beneficial microorganisms. Conclusively, PMSP seems to be a promising rectal delivery system for UC therapy.
Collapse
|
23
|
Wang Y, Huang B, Jin T, Ocansey DKW, Jiang J, Mao F. Intestinal Fibrosis in Inflammatory Bowel Disease and the Prospects of Mesenchymal Stem Cell Therapy. Front Immunol 2022; 13:835005. [PMID: 35370998 PMCID: PMC8971815 DOI: 10.3389/fimmu.2022.835005] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal fibrosis is an important complication of inflammatory bowel disease (IBD). In the course of the development of fibrosis, certain parts of the intestine become narrowed, significantly destroying the structure and function of the intestine and affecting the quality of life of patients. Chronic inflammation is an important initiating factor of fibrosis. Unfortunately, the existing anti-inflammatory drugs cannot effectively prevent and alleviate fibrosis, and there is no effective anti-fibrotic drug, which makes surgical treatment the mainstream treatment for intestinal fibrosis and stenosis. Mesenchymal stem cells (MSCs) are capable of tissue regeneration and repair through their self-differentiation, secretion of cytokines, and secretion of extracellular vesicles. MSCs have been shown to play an important therapeutic role in the fibrosis of many organs. However, the role of MSC in intestinal fibrosis largely remained unexplored. This review summarizes the mechanism of intestinal fibrosis, including the role of immune cells, TGF-β, and the gut microbiome and metabolites. Available treatment options for fibrosis, particularly, MSCs are also discussed.
Collapse
Affiliation(s)
- Yifei Wang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Bin Huang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- General Surgery Department, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
| | - Tao Jin
- Department of Gastrointestinal and Endoscopy, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Jiajia Jiang, ; Fei Mao,
| | - Fei Mao
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Jiajia Jiang, ; Fei Mao,
| |
Collapse
|
24
|
D'Alessio S, Ungaro F, Noviello D, Lovisa S, Peyrin-Biroulet L, Danese S. Revisiting fibrosis in inflammatory bowel disease: the gut thickens. Nat Rev Gastroenterol Hepatol 2022; 19:169-184. [PMID: 34876680 DOI: 10.1038/s41575-021-00543-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
Intestinal fibrosis, which is usually the consequence of chronic inflammation, is a common complication of inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In the past few years, substantial advances have been made in the areas of pathogenesis, diagnosis and management of intestinal fibrosis. Of particular interest have been inflammation-independent mechanisms behind the gut fibrotic process, genetic and environmental risk factors (such as the role of the microbiota), and the generation of new in vitro and in vivo systems to study fibrogenesis in the gut. A huge amount of work has also been done in the area of biomarkers to predict or detect intestinal fibrosis, including novel cross-sectional imaging techniques. In parallel, researchers are embarking on developing and validating clinical trial end points and protocols to test novel antifibrotic agents, although no antifibrotic therapies are currently available. This Review presents the state of the art on the most recently identified pathogenic mechanisms of this serious IBD-related complication, focusing on possible targets of antifibrotic therapies, management strategies, and factors that might predict fibrosis progression or response to treatment.
Collapse
Affiliation(s)
| | - Federica Ungaro
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Daniele Noviello
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Sara Lovisa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IBD Centre, Laboratory of Gastrointestinal Immunopathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Laurent Peyrin-Biroulet
- INSERM NGERE, University of Lorraine, Vandoeuvre-les-Nancy, Nancy, France.,Nancy University Hospital, Vandoeuvre-les-Nancy, Nancy, France
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy. .,University Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
25
|
Hayashi Y, Nakase H. The Molecular Mechanisms of Intestinal Inflammation and Fibrosis in Crohn’s Disease. Front Physiol 2022; 13:845078. [PMID: 35222098 PMCID: PMC8874128 DOI: 10.3389/fphys.2022.845078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Crohn’s disease (CD) is an inflammatory bowel disease (IBD) with repeated remissions and relapses. As the disease progresses, fibrosis and narrowing of the intestine occur, leading to severe complications such as intestinal obstruction. Endoscopic balloon dilatation, surgical stricture plasty, and bowel resection have been performed to treat intestinal stenosis. The clinical issue is that some patients with CD have a recurrence of intestinal stenosis even after the medical treatments. On the other hand, there exist no established medical therapies to prevent stenosis. With the progressive intestinal inflammation, cytokines and growth factors, including transforming growth factor (TGF-β), stimulate intestinal myofibroblasts, contributing to fibrosis of the intestine, smooth muscle hypertrophy, and mesenteric fat hypertrophy. Therefore, chronically sustained inflammation has long been considered a cause of intestinal fibrosis and stenosis. Still, even after the advent of biologics and tighter control of inflammation, intestinal fibrosis’s surgical rate has not necessarily decreased. It is essential to elucidate the mechanisms involved in intestinal fibrosis in CD from a molecular biological level to overcome clinical issues. Recently, much attention has been paid to several key molecules of intestinal fibrosis: peroxisome proliferator-activating receptor gamma (PPARγ), toll-like receptor 4 (TLR4), adherent-invasive Escherichia coli (AIEC), Th17 immune response, and plasminogen activator inhibitor 1 (PAI-1). As a major problem in the treatment of CD, the pathophysiology of patients with CD is not the same and varies depending on each patient. It is necessary to integrate these key molecules for a better understanding of the mechanism of intestinal inflammation and fibrosis.
Collapse
|
26
|
Watanabe D, Kamada N. Contribution of the Gut Microbiota to Intestinal Fibrosis in Crohn's Disease. Front Med (Lausanne) 2022; 9:826240. [PMID: 35198577 PMCID: PMC8859331 DOI: 10.3389/fmed.2022.826240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 12/16/2022] Open
Abstract
In Crohn's disease (CD), intestinal fibrosis is a critical determinant of a patient's prognosis. Although inflammation may be a prerequisite for the initiation of intestinal fibrosis, research shows that the progression or continuation of intestinal fibrosis can occur independently of inflammation. Thus, once initiated, intestinal fibrosis may persist even if medical treatment controls inflammation. Clearly, an understanding of the pathophysiological mechanisms of intestinal fibrosis is required to diminish its occurrence. Accumulating evidence suggests that the gut microbiota contributes to the pathogenesis of intestinal fibrosis. For example, the presence of antibodies against gut microbes can predict which CD patients will have intestinal complications. In addition, microbial ligands can activate intestinal fibroblasts, thereby inducing the production of extracellular matrix. Moreover, in various animal models, bacterial infection can lead to the development of intestinal fibrosis. In this review, we summarize the current knowledge of the link between intestinal fibrosis in CD and the gut microbiota. We highlight basic science and clinical evidence that the gut microbiota can be causative for intestinal fibrosis in CD and provide valuable information about the animal models used to investigate intestinal fibrosis.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
27
|
Ueno A, Jijon HB, Peng R, Sparksman S, Mainoli B, Filyk A, Li Y, Wilson S, Novak K, Panaccione R, Hirota S, Dufour A, Lu C, Beck PL. Association of Circulating Fibrocytes With Fibrostenotic Small Bowel Crohn's Disease. Inflamm Bowel Dis 2022; 28:246-258. [PMID: 34428284 DOI: 10.1093/ibd/izab157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fibrocytes are hematopoietic cells with features of mesenchymal cells found in the circulation and inflammatory sites implicated in promoting fibrosis in many fibroinflammatory diseases. However, their role(s) in the development of intestinal fibrosis is poorly understood. Here, we investigated a potential role of fibrocytes in the development of fibrosis in Crohn's disease (CD) and sought factors that may impact their development and function. METHODS Plasma and mononuclear cells were collected from patients with and without fibrostenotic CD. Fibrocytes defined as CD11b+, CD34+, and Collagen 1+ were correlated with clinical assessments of fibrosis, including evaluation using intestinal ultrasound. We measured the levels of relevant circulating molecules via Luminex and studied the effect of patient plasma proteins on fibrocyte differentiation. RESULTS Fibrocyte numbers were increased in CD patients with stricturing Crohn's disease compared with patients with an inflammatory phenotype (P = .0013), with strong correlation between fibrocyte numbers and acoustic radiation force impulse (ARFI), a measure of bowel elasticity on intestinal ultrasound (R = .8383, P = .0127). Fibrostenotic plasma was a more potent inducer of fibrocyte differentiation in both primary human monocytes and cell line and contained increased levels of cytokines implicated in fibrocyte differentiation compared with plasma from inflammatory patients. Interestingly, increased fibrocyte numbers at time of ultrasound were associated with escalation of medical therapy and endoscopic/surgical management of small bowel strictures at 30 months follow-up. CONCLUSIONS Circulating fibrocytes strongly correlate with fibrostenotic disease in CD, and they may serve as predictors for escalation of medical +/- surgical therapy.
Collapse
Affiliation(s)
- Aito Ueno
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Humberto B Jijon
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Richard Peng
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Steven Sparksman
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Barbara Mainoli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Alexis Filyk
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Yan Li
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Stephanie Wilson
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Kerri Novak
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Remo Panaccione
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Simon Hirota
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Antoine Dufour
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Cathy Lu
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Paul L Beck
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
28
|
Bamias G, Pizarro TT, Cominelli F. Immunological Regulation of Intestinal Fibrosis in Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 28:337-349. [PMID: 34904152 PMCID: PMC8919810 DOI: 10.1093/ibd/izab251] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 02/06/2023]
Abstract
Intestinal fibrosis is a late-stage phenotype of inflammatory bowel disease (IBD), which underlies most of the long-term complications and surgical interventions in patients, particularly those with Crohn's disease. Despite these issues, antifibrotic therapies are still scarce, mainly due to the current lack of understanding concerning the pathogenetic mechanisms that mediate fibrogenesis in patients with chronic intestinal inflammation. In the current review, we summarize recent evidence regarding the cellular and molecular factors of innate and adaptive immunity that are considered critical for the initiation and amplification of extracellular matrix deposition and stricture formation. We focus on the role of cytokines by dissecting the pro- vs antifibrotic components of the immune response, while taking into consideration their temporal association to the progressive stages of the natural history of IBD. We critically present evidence from animal models of intestinal fibrosis and analyze inflammation-fibrosis interactions that occur under such experimental scenarios. In addition, we comment on recent findings from large-scale, single-cell profiling of fibrosis-relevant populations in IBD patients. Based on such evidence, we propose future potential targets for antifibrotic therapies to treat patients with IBD.
Collapse
Affiliation(s)
- Giorgos Bamias
- Gastrointestinal Unit, Third Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Theresa T Pizarro
- Departments of Pathology and Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Fabio Cominelli
- Departments of Pathology and Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Address correspondence to: Fabio Cominelli, MD, PhD, ()
| |
Collapse
|
29
|
Fibroblasts as immune regulators in infection, inflammation and cancer. Nat Rev Immunol 2021; 21:704-717. [PMID: 33911232 DOI: 10.1038/s41577-021-00540-z] [Citation(s) in RCA: 267] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
In chronic infection, inflammation and cancer, the tissue microenvironment controls how local immune cells behave, with tissue-resident fibroblasts emerging as a key cell type in regulating activation or suppression of an immune response. Fibroblasts are heterogeneous cells, encompassing functionally distinct populations, the phenotypes of which differ according to their tissue of origin and type of inciting disease. Their immunological properties are also diverse, ranging from the maintenance of a potent inflammatory environment in chronic inflammation to promoting immunosuppression in malignancy, and encapsulating and incarcerating infectious agents within tissues. In this Review, we compare the mechanisms by which fibroblasts control local immune responses, as well as the factors regulating their inflammatory and suppressive profiles, in different tissues and pathological settings. This cross-disease perspective highlights the importance of tissue context in determining fibroblast-immune cell interactions, as well as potential therapeutic avenues to exploit this knowledge for the benefit of patients with chronic infection, inflammation and cancer.
Collapse
|
30
|
Ta AD, Ollberding NJ, Karns R, Haberman Y, Alazraki AL, Hercules D, Baldassano R, Markowitz J, Heyman MB, Kim S, Kirschner B, Shapiro JM, Noe J, Oliva-Hemker M, Otley A, Pfefferkorn M, Kellermayer R, Snapper S, Rabizadeh S, Xavier R, Dubinsky M, Hyams J, Kugathasan S, Jegga AG, Dillman JR, Denson LA. Association of Baseline Luminal Narrowing With Ileal Microbial Shifts and Gene Expression Programs and Subsequent Transmural Healing in Pediatric Crohn Disease. Inflamm Bowel Dis 2021; 27:1707-1718. [PMID: 33452801 PMCID: PMC8528150 DOI: 10.1093/ibd/izaa339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Transmural healing (TH) is associated with better long-term outcomes in Crohn disease (CD), whereas pretreatment ileal gene signatures encoding myeloid inflammatory responses and extracellular matrix production are associated with stricturing. We aimed to develop a predictive model for ileal TH and to identify ileal genes and microbes associated with baseline luminal narrowing (LN), a precursor to strictures. MATERIALS AND METHODS Baseline small bowel imaging obtained in the RISK pediatric CD cohort study was graded for LN. Ileal gene expression was determined by RNASeq, and the ileal microbial community composition was characterized using 16S rRNA amplicon sequencing. Clinical, demographic, radiologic, and genomic variables were tested for association with baseline LN and future TH. RESULTS After controlling for ileal location, baseline ileal LN (odds ratio [OR], 0.3; 95% confidence interval [CI], 0.1-0.8), increasing serum albumin (OR, 4; 95% CI, 1.3-12.3), and anti-Saccharomyces cerevisiae antibodies IgG serology (OR, 0.97; 95% CI, 0.95-1) were associated with subsequent TH. A multivariable regression model including these factors had excellent discriminant power for TH (area under the curve, 0.86; positive predictive value, 80%; negative predictive value, 87%). Patients with baseline LN exhibited increased Enterobacteriaceae and inflammatory and extracellular matrix gene signatures, coupled with reduced levels of butyrate-producing commensals and a respiratory electron transport gene signature. Taxa including Lachnospiraceae and the genus Roseburia were associated with increased respiratory and decreased inflammatory gene signatures, and Aggregatibacter and Blautia bacteria were associated with reduced extracellular matrix gene expression. CONCLUSIONS Pediatric patients with CD with LN at diagnosis are less likely to achieve TH. The association between specific microbiota, wound healing gene programs, and LN may suggest future therapeutic targets.
Collapse
Affiliation(s)
- Allison D Ta
- Cincinnati Children’s Medical Hospital Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nicholas J Ollberding
- Cincinnati Children’s Medical Hospital Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Rebekah Karns
- Cincinnati Children’s Medical Hospital Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yael Haberman
- Cincinnati Children’s Medical Hospital Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel Aviv, Israel
| | - Adina L Alazraki
- Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - David Hercules
- Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Robert Baldassano
- The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - James Markowitz
- Cohen Children’s Medical Center of New York, New Hyde Park, New York, USA
| | - Melvin B Heyman
- University of California San Francisco, San Francisco, California, USA
| | - Sandra Kim
- Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | | | | | - Joshua Noe
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | - Richard Kellermayer
- Texas Children’s Hospital, Baylor College School of Medicine, Houston, Texas, USA
| | - Scott Snapper
- Children’s Hospital-Boston, Boston, Massachusetts, USA
| | | | - Ramnik Xavier
- Broad Institute at Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Massachusetts General Hospital, Cambridge, Massachusetts, USA
| | | | - Jeffrey Hyams
- Connecticut Children’s Medical Center, Hartford, Connecticut, USA
| | - Subra Kugathasan
- Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Anil G Jegga
- Cincinnati Children’s Medical Hospital Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jonathan R Dillman
- Cincinnati Children’s Medical Hospital Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lee A Denson
- Cincinnati Children’s Medical Hospital Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
31
|
Lin SN, Mao R, Qian C, Bettenworth D, Wang J, Li J, Bruining D, Jairath V, Feagan B, Chen M, Rieder F. Development of Anti-fibrotic Therapy in Stricturing Crohn's Disease: Lessons from Randomized Trials in Other Fibrotic Diseases. Physiol Rev 2021; 102:605-652. [PMID: 34569264 DOI: 10.1152/physrev.00005.2021] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intestinal fibrosis is considered an inevitable complication of Crohn's disease (CD) that results in symptoms of obstruction and stricture formation. Endoscopic or surgical treatment is required to treat the majority of patients. Progress in the management of stricturing CD is hampered by the lack of effective anti-fibrotic therapy; however, this situation is likely to change because of recent advances in other fibrotic diseases of the lung, liver and skin. In this review, we summarized data from randomized controlled trials (RCT) of anti-fibrotic therapies in these conditions. Multiple compounds have been tested for the anti-fibrotic effects in other organs. According to their mechanisms, they were categorized into growth factor modulators, inflammation modulators, 5-hydroxy-3-methylgultaryl-coenzyme A (HMG-CoA) reductase inhibitors, intracellular enzymes and kinases, renin-angiotensin system (RAS) modulators and others. From our review of the results from the clinical trials and discussion of their implications in the gastrointestinal tract, we have identified several molecular candidates that could serve as potential therapies for intestinal fibrosis in CD.
Collapse
Affiliation(s)
- Si-Nan Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Ren Mao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Chenchen Qian
- Department of Internal Medicine, UPMC Pinnacle, Harrisburg, Pennsylvania, United States
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - David Bruining
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | - Vipul Jairath
- Alimentiv Inc., London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Biostatistics and Epidemiology, Western University, London, ON, Canada
| | - Brian Feagan
- Alimentiv Inc., London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Biostatistics and Epidemiology, Western University, London, ON, Canada
| | - Minhu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
32
|
Marion-Letellier R, Leboutte M, Amamou A, Raman M, Savoye G, Ghosh S. Diet in Intestinal Fibrosis: A Double-Edged Sword. Nutrients 2021; 13:nu13093148. [PMID: 34579023 PMCID: PMC8470259 DOI: 10.3390/nu13093148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022] Open
Abstract
The natural history of inflammatory bowel diseases, especially Crohn’s disease, is frequently complicated by intestinal fibrosis. Because of the lack of effective treatments for intestinal fibrosis, there is an urgent need to develop new therapies. Factors promoting intestinal fibrosis are currently unclear, but diet is a potential culprit. Diet may influence predisposition to develop intestinal fibrosis or alter its natural history by modification of both the host immune response and intestinal microbial composition. Few studies have documented the effects of dietary factors in modulating IBD-induced intestinal fibrosis. As the mechanisms behind fibrogenesis in the gut are believed to be broadly similar to those from extra-intestinal organs, it may be relevant to investigate which dietary components can inhibit or promote fibrosis factors such as myofibroblasts progenitor activation in other fibrotic diseases.
Collapse
Affiliation(s)
- Rachel Marion-Letellier
- UNIROUEN, INSERM UMR 1073 Nutrition, Inflammation and Gut-Brain Axis, Normandie University, 76183 Rouen, France; (M.L.); (G.S.)
- Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
- Correspondence:
| | - Mathilde Leboutte
- UNIROUEN, INSERM UMR 1073 Nutrition, Inflammation and Gut-Brain Axis, Normandie University, 76183 Rouen, France; (M.L.); (G.S.)
- Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Asma Amamou
- APC Microbiome Ireland, Biosciences Building, University College Cork, Cork, Ireland; (A.A.); (S.G.)
| | - Maitreyi Raman
- Division of Gastroenterology, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Department of Community Health Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Guillaume Savoye
- UNIROUEN, INSERM UMR 1073 Nutrition, Inflammation and Gut-Brain Axis, Normandie University, 76183 Rouen, France; (M.L.); (G.S.)
- Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
- Department of Gastroenterology, Rouen University Hospital, 76031 Rouen, France
| | - Subrata Ghosh
- APC Microbiome Ireland, Biosciences Building, University College Cork, Cork, Ireland; (A.A.); (S.G.)
| |
Collapse
|
33
|
Abstract
Mouse models are essential for investigation of underlying disease mechanisms that drive intestinal fibrosis, as well as assessment of potential therapeutic approaches to either prevent or resolve fibrosis. Here we describe several common mouse models of intestinal inflammation and fibrosis, including chemically driven colitis models, a bacterially triggered colitis model, and spontaneous intestinal inflammation in genetically susceptible mouse strains. Detailed protocols are provided for dextran sodium sulfate (DSS) colitis, 2,4,6-trinitro-benzene sulfonic acid (TNBS) colitis, adherent-invasive Escherichia coli (AIEC)-triggered colitis, the interleukin-10 knockout (IL-10KO) mouse model of spontaneous colitis, and the SAMP/YitFc model of spontaneous ileocolitis.
Collapse
|
34
|
Zhan S, Li N, Liu C, Mao R, Wu D, Li T, Chen M, Zhuang X, Zeng Z. Intestinal Fibrosis and Gut Microbiota: Clues From Other Organs. Front Microbiol 2021; 12:694967. [PMID: 34335525 PMCID: PMC8322786 DOI: 10.3389/fmicb.2021.694967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a complex and difficult to elucidate pathological process with no available therapies. Growing evidence implicates intestinal microbiota in the occurrence and development of fibrosis, and the potential mechanisms involved in different organs have been explored in several studies. In this review, we summarize the causative and preventive effects of gut microbiota on intestinal fibrosis, as well as the relationships between gut microbiota and fibrosis in other organs. Interestingly, several colonized microbes are associated with fibrosis via their structural components and metabolic products. They may also play essential roles in regulating inflammation and fibroblast activation or differentiation, which modulates extracellular matrix formation. While the relationships between intestinal fibrosis and gut microbiota remain unclear, lessons can be drawn from the effects of gut microbiota on hepatic, cardiac, nephritic, and pulmonary fibrosis. Various intestinal microbes alterations have been detected in different fibrotic organs; however, the results were heterogeneous. Mechanisms by which the intestinal microbiota regulate fibrotic processes in other organs, such as novel metabolic products or specific microbes, are also discussed. The specific microbiota associated with fibrosis in other organs could instruct future studies aiming to discover prospective mechanisms regulating intestinal fibrosis.
Collapse
Affiliation(s)
- Shukai Zhan
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Na Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Caiguang Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dongxuan Wu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tong Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Lin XX, Qiu Y, Zhuang XJ, Liu F, Wu XM, Chen MH, Mao R. Intestinal stricture in Crohn's disease: A 2020 update. J Dig Dis 2021; 22:390-398. [PMID: 34014617 DOI: 10.1111/1751-2980.13022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022]
Abstract
Crohn's disease (CD) is a chronic and relapsing-remitting inflammatory disorder of the gastrointestinal tract. Approximately 70% of patients inevitably develop fibrosis-associated intestinal stricture after 10 years of CD diagnosis, which seriously affects their quality of life. Current therapies play limited role in preventing or reversing the process of fibrosis and no specific anti-fibrotic therapy is yet available. Nearly half of patients thus have no alternative but to receive surgery. The potential mechanisms of intestinal fibrosis remain poorly understood; extracellular matrix remodeling, aberrant immune response, intestinal microbiome imbalance and creeping fat might exert fundamental influences on the multiple physiological and pathophysiological processes. Recently, the emerging new diagnostic techniques have markedly promoted an accurate assessment of intestinal stricture by distinguishing fibrosis from inflammation, which is crucial for guiding treatment and predicting prognosis. In this review, we concisely summarized the key studies published in the year 2020 covering pathogenesis, diagnostic modalities, and therapeutic strategy of intestinal stricture. A comprehensive and timely review of the updated researches in intestinal stricture could provide insight to further elucidate its pathogenesis and identify novel drug targets with anti-fibrotic potentiality.
Collapse
Affiliation(s)
- Xiao Xuan Lin
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yun Qiu
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao Jun Zhuang
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Fen Liu
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao Min Wu
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Min Hu Chen
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ren Mao
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
36
|
Zhou LY, Lin SN, Rieder F, Chen MH, Zhang SH, Mao R. Noncoding RNAs as Promising Diagnostic Biomarkers and Therapeutic Targets in Intestinal Fibrosis of Crohn's Disease: The Path From Bench to Bedside. Inflamm Bowel Dis 2021; 27:971-982. [PMID: 33324986 PMCID: PMC8344842 DOI: 10.1093/ibd/izaa321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Fibrosis is a major pathway to organ injury and failure, accounting for more than one-third of deaths worldwide. Intestinal fibrosis causes irreversible and serious clinical complications, such as strictures and obstruction, secondary to a complex pathogenesis. Under the stimulation of profibrotic soluble factors, excessive activation of mesenchymal cells causes extracellular matrix deposition via canonical transforming growth factor-β/Smads signaling or other pathways (eg, epithelial-to-mesenchymal transition and endothelial-to-mesenchymal transition) in intestinal fibrogenesis. In recent studies, the importance of noncoding RNAs (ncRNAs) stands out in fibrotic diseases in that ncRNAs exhibit a remarkable variety of biological functions in modulating the aforementioned fibrogenic responses. In this review, we summarize the role of ncRNAs, including the emerging long ncRNAs and circular RNAs, in intestinal fibrogenesis. Notably, the translational potential of ncRNAs as diagnostic biomarkers and therapeutic targets in the management of intestinal fibrosis is discussed based on clinical trials from fibrotic diseases in other organs. The main points of this review include the following: • Characteristics of ncRNAs and mechanisms of intestinal fibrogenesis • Wide participation of ncRNAs (especially the emerging long ncRNAs and circular RNAs) in intestinal fibrosis, including transforming growth factor-β signaling, epithelial-to-mesenchymal transition/endothelial-to-mesenchymal transition, and extracellular matrix remodeling • Translational potential of ncRNAs in the diagnosis and treatment of intestinal fibrosis based on clinical trials from fibrotic diseases in other organs.
Collapse
Affiliation(s)
- Long-Yuan Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Si-Nan Lin
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Florian Rieder
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Min-Hu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Sheng-Hong Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
37
|
Wang J, Lin S, Brown JM, van Wagoner D, Fiocchi C, Rieder F. Novel mechanisms and clinical trial endpoints in intestinal fibrosis. Immunol Rev 2021; 302:211-227. [PMID: 33993489 DOI: 10.1111/imr.12974] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The incidence of inflammatory bowel diseases (IBD) worldwide has resulted in a global public health challenge. Intestinal fibrosis leading to stricture formation and bowel obstruction is a frequent complication in Crohn's disease (CD), and the lack of anti-fibrotic therapies makes elucidation of fibrosis mechanisms a priority. Progress has shown that mesenchymal cells, cytokines, microbial products, and mesenteric adipocytes are jointly implicated in the pathogenesis of intestinal fibrosis. This recent information puts prevention or reversal of intestinal strictures within reach through innovative therapies validated by reliable clinical trial endpoints. Here, we review the role of immune and non-immune components of the pathogenesis of intestinal fibrosis, including new cell clusters, cytokine networks, host-microbiome interactions, creeping fat, and their translation for endpoint development in anti-fibrotic clinical trials.
Collapse
Affiliation(s)
- Jie Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jonathan Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - David van Wagoner
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
38
|
Sleiman J, Ouali SE, Qazi T, Cohen B, Steele SR, Baker ME, Rieder F. Prevention and Treatment of Stricturing Crohn's Disease - Perspectives and Challenges. Expert Rev Gastroenterol Hepatol 2021; 15:401-411. [PMID: 33225766 PMCID: PMC8026566 DOI: 10.1080/17474124.2021.1854732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Fibrostenosis is a hallmark of Crohn's disease (CD), remains a challenge in today's clinical management of inflammatory bowel disease patients and represents a key event in the disease course necessitating improved preventative strategies and a multidisciplinary approach to diagnosis and management. With the advent of anti-fibrotic therapies and well-defined clinical endpoints for stricturing CD, there is promise to impact the natural history of disease.Areas covered: This review summarizes current evidence in the natural history of stricturing Crohn's disease, discusses management approaches as well as future perspectives on intestinal fibrosis.Expert opinion: Currently, there are no specific therapies to prevent progression to fibrosis or to treat it after it becomes clinically apparent. In addition to the international effort by the Stenosis Therapy and Anti-Fibrotic Research (STAR) consortium to standardize definitions and propose endpoints in the management of stricturing CD, further research to improve our understanding of mechanisms of intestinal fibrosis will help pave the way for the development of future anti-fibrotic therapies.
Collapse
Affiliation(s)
- Joseph Sleiman
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Sara El Ouali
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA,Digestive Diseases Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates
| | - Taha Qazi
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Benjamin Cohen
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Scott R. Steele
- Department of Colorectal Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Mark E. Baker
- Section Abdominal Imaging, Imaging Institute, Digestive Diseases and Surgery Institute, Cleveland, Ohio, USA
| | - Florian Rieder
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA,Corresponding author: Florian Rieder, Address: Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, 9500 Euclid Avenue – NC22, Cleveland, OH, 44195,
| |
Collapse
|
39
|
Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. Nature 2020; 587:555-566. [PMID: 33239795 DOI: 10.1038/s41586-020-2938-9] [Citation(s) in RCA: 946] [Impact Index Per Article: 189.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Fibrosis can affect any organ and is responsible for up to 45% of all deaths in the industrialized world. It has long been thought to be relentlessly progressive and irreversible, but both preclinical models and clinical trials in various organ systems have shown that fibrosis is a highly dynamic process. This has clear implications for therapeutic interventions that are designed to capitalize on this inherent plasticity. However, despite substantial progress in our understanding of the pathobiology of fibrosis, a translational gap remains between the identification of putative antifibrotic targets and conversion of this knowledge into effective treatments in humans. Here we discuss the transformative experimental strategies that are being leveraged to dissect the key cellular and molecular mechanisms that regulate fibrosis, and the translational approaches that are enabling the emergence of precision medicine-based therapies for patients with fibrosis.
Collapse
Affiliation(s)
- Neil C Henderson
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Thomas A Wynn
- Inflammation & Immunology Research Unit, Pfizer Worldwide Research, Development & Medical, Cambridge, MA, USA.
| |
Collapse
|
40
|
Shen H, He Q, Dong Y, Shao L, Liu Y, Gong J. Upregulation of miRNA-1228-3p alleviates TGF-β-induced fibrosis in renal tubular epithelial cells. Histol Histopathol 2020; 35:1125-1133. [PMID: 32720699 DOI: 10.14670/hh-18-242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) has become a major public health issue, which can lead to renal fibrosis regardless of the initial injury. It has been previously reported that miRNA-1228-3p was correlate with the progression of kidney fibrosis. However, the mechanism by which miRNA-1228-3p regulates renal fibrosis remains unclear. METHODS Renal tubular epithelial cells (HK-2) were treated with TGF-β1 (10 ng/ml) in an in vitro model of renal fibrosis. Gene and protein expressions in HK-2 cells were measured by Western-blot and RT-qPCR, respectively. The relation between miRNA-1228-3p and its target gene was investigated by dual luciferase report analysis. RESULTS Upregulation of miRNA-1228-3p significantly inhibited TGF-β1-induced fibrosis of HK-2 cells in vitro by targeting GDF11. In addition, miRNA-1228-3p exhibited anti-fibrosis effect through inhibition of the smad2/smad4 signaling pathway. CONCLUSION Upregulation of miRNA-1228-3p markedly inhibited the progression of renal fibrosis in vitro, indicating that miRNA-1228-3p may serve as a potential novel target for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Huajuan Shen
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China.
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Yongze Dong
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Lina Shao
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Yueming Liu
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Jianguang Gong
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|