1
|
Petrone L, Peruzzu D, Altera AMG, Salmi A, Vanini V, Cuzzi G, Coppola A, Mellini V, Gualano G, Palmieri F, Panda S, Peters B, Sette A, Arlehamn CSL, Goletti D. Therapy modulates the response to T cell epitopes over the spectrum of tuberculosis infection. J Infect 2024; 89:106295. [PMID: 39343243 DOI: 10.1016/j.jinf.2024.106295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Identifying stage-specific antigens is essential for developing tuberculosis (TB) diagnostics and vaccines. In a low TB endemic country, we characterized, the Mycobacterium tuberculosis (Mtb)-specific immune response to a pool of Mtb-derived epitopes (ATB116), demonstrated as associated with TB disease. METHODS In this prospective observational cross-sectional study, we enrolled healthy donors (HD), subjects with TB disease, and TB infection (TBI) at baseline and therapy completion. T-cell response after whole blood stimulation with the peptide pools was characterized by ELISA, flow cytometry, and multiplex assay. RESULTS ATB116-specific IFN-γ response (by ELISA) significantly associates with Mtb regardless of infection/disease (p < 0.0001) and decreases during TB therapy (p = 0.0002). Flow cytometry confirms that ATB116-specific CD4+ T-cell response associated with Mtb regardless of infection/disease (p < 0.0001) and shows a significantly higher frequency of IFN-γ/IL-2 and central memory T-cells in TBI compared to TB (p = 0.016; p = 0.0242, respectively). CD4+ T cell-specific response decreases after TB therapy completion. The antigen-specific CD8+ T-cell response mirrors the CD4+ response. Finally, the multiplex assay analysis showed that ATB116 induces several immune factors in both TB and TBI. CONCLUSION We characterized the immune response to Mtb peptide pools that is modulated by TB therapy. These results are important for our understanding of TB immunopathogenesis and vaccine design.
Collapse
Affiliation(s)
- Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Daniela Peruzzu
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Anna Maria Gerarda Altera
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy; UOS Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Andrea Coppola
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Valeria Mellini
- Respiratory Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Gina Gualano
- Respiratory Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Fabrizio Palmieri
- Respiratory Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Sudhasini Panda
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Bjoern Peters
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA; Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA; Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy.
| |
Collapse
|
2
|
Smith AA, Su H, Wallach J, Liu Y, Maiello P, Borish HJ, Winchell C, Simonson AW, Lin PL, Rodgers M, Fillmore D, Sakal J, Lin K, Vinette V, Schnappinger D, Ehrt S, Flynn JL. A "suicide" BCG strain provides enhanced immunogenicity and robust protection against Mycobacterium tuberculosis in macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.22.568105. [PMID: 38045242 PMCID: PMC10690263 DOI: 10.1101/2023.11.22.568105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Intravenous (IV) BCG delivery provides robust protection against Mycobacterium tuberculosis (Mtb) in macaques but poses safety challenges. Here, we constructed two BCG strains (BCG-TetON-DL and BCG-TetOFF-DL) in which tetracyclines regulate two phage lysin operons. Once the lysins are expressed, these strains are killed in immunocompetent and immunocompromised mice yet induced similar immune responses and provided similar protection against Mtb challenge as wild type BCG. Lysin induction resulted in release of intracellular BCG antigens and enhanced cytokine production by macrophages. In macaques, cessation of doxycycline administration resulted in rapid elimination of BCG-TetOFF-DL. However, IV BCG-TetOFF-DL induced increased pulmonary CD4 T cell responses compared to WT BCG and provided robust protection against Mtb challenge, with sterilizing immunity in 6 of 8 macaques, compared to 2 of 8 macaques immunized with WT BCG. Thus, a "suicide" BCG strain provides an additional measure of safety when delivered intravenously and robust protection against Mtb infection.
Collapse
Affiliation(s)
- Alexander A Smith
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA
- The Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Hongwei Su
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
- Present address: Center for Veterinary Science, Zhejiang University, Hangzhou, China
| | - Joshua Wallach
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yao Liu
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA
- The Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - H Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA
- The Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Caylin Winchell
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Andrew W Simonson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA
- The Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Philana Ling Lin
- The Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh PA
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Mark Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA
- The Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Daniel Fillmore
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA
- The Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Jennifer Sakal
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA
- The Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Kan Lin
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Valerie Vinette
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA
- The Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh PA
| |
Collapse
|
3
|
Cinco IR, Napier EG, Rhoades NS, Davies MH, Allison DB, Kohama SG, Bermudez L, Winthrop K, Fuss C, Spindel ER, Messaoudi I. Immunological and microbial shifts in the aging rhesus macaque lung during nontuberculous mycobacterial infection. mBio 2024; 15:e0082924. [PMID: 38771046 PMCID: PMC11237422 DOI: 10.1128/mbio.00829-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Nontuberculous mycobacteria (NTM) are environmentally ubiquitous organisms that predominately cause NTM pulmonary disease (NTMPD) in individuals over the age of 65. The incidence of NTMPD has increased in the U.S., exceeding that of Mycobacterium tuberculosis. However, the mechanisms leading to higher susceptibility and severity of NTMPD with aging are poorly defined in part due to the lack of animal models that accurately recapitulate human disease. Here, we compared bacterial load, microbial communities, and host responses longitudinally between three young (two female and one male) and two aged (two female) rhesus macaques inoculated with Mycobacterium avium subsp. hominissuis (MAH) in the right caudal lobe. Unilateral infection resulted in a low bacterial load in both young and aged animals confined to the infected side. Although a robust inflammatory response was only observed in the inoculated lung, immune cell infiltration and antigen-specific T cells were detected in both lungs. Computed tomography, gross pathology, and histopathology revealed increased disease severity and persistence of bacterial DNA in aged animals. Additional analyses showed the translocation of gut and oral-pharyngeal bacterial DNA into the lower respiratory microbiome. Finally, single-cell RNA sequencing revealed a heightened inflammatory response to MAH infection by alveolar macrophages in aged animals. These data are consistent with the model that increased disease severity in the aged is mediated by a dysregulated macrophage response that may be sustained through persistent antigen presence. IMPORTANCE Nontuberculous mycobacteria (NTM) are emerging as pathogens of high consequence, as cases of NTM pulmonary disease (NTMPD) have exceeded those of Mycobacterium tuberculosis. NTMPD can be debilitating, particularly in patients over 65 years of age, as it causes chronic cough and fatigue requiring prolonged treatments with antibiotics. The underlying mechanisms of this increased disease severity with age are poorly understood, hampering the development of therapeutics and vaccines. Here, we use a rhesus macaque model to investigate the impact of age on host-NTM interactions. This work shows that aging is associated with increased disease severity and bacterial persistence in aged rhesus macaques, thus providing a preclinical model to develop and test novel therapeutics and interventions.
Collapse
Affiliation(s)
- Isaac R. Cinco
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Ethan G. Napier
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Nicholas S. Rhoades
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Michael H. Davies
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Derek B. Allison
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Luiz Bermudez
- Department of Microbiology, College of Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Kevin Winthrop
- Division of Infectious Diseases, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
- Division of Infectious Diseases, School of Public Health, Oregon Health and Science University, Portland, Oregon, USA
| | - Cristina Fuss
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Eliot R. Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Khanna H, Gupta S, Sheikh Y. Cell-Mediated Immune Response Against Mycobacterium tuberculosis and Its Potential Therapeutic Impact. J Interferon Cytokine Res 2024; 44:244-259. [PMID: 38607324 DOI: 10.1089/jir.2024.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Cell-mediated immune response is critical for Mycobacterium tuberculosis (M.tb) control. Understanding of pathophysiology and role played by different cell mediators is essential for vaccine development and better management of patients with M.tb. A complex array of cytokines and chemokines are involved in the immune response against M.tb; however, their relative contribution in protection remains to be further explored. The purpose of this review is to summarize the current understanding regarding the cytokine and chemokine profiles in M.tb infection in order to assist research in the field to pursue new direction in prevention and control. We have also summarized recent findings on vaccine trials that have been developed and or are under trials that are targeting these molecules.
Collapse
Affiliation(s)
- Harshika Khanna
- Department of Pediatrics, King George's Medical University, Lucknow, India
| | | | - Yasmeen Sheikh
- Department of Pediatrics, King George's Medical University, Lucknow, India
| |
Collapse
|
5
|
Ogongo P, Tran A, Marzan F, Gingrich D, Krone M, Aweeka F, Lindestam Arlehamn CS, Martin JN, Deeks SG, Hunt PW, Ernst JD. High-parameter phenotypic characterization reveals a subset of human Th17 cells that preferentially produce IL-17 against M. tuberculosis antigen. Front Immunol 2024; 15:1378040. [PMID: 38698866 PMCID: PMC11064812 DOI: 10.3389/fimmu.2024.1378040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
Background Interleukin-17-producing CD4 T cells contribute to the control of Mycobacterium tuberculosis (Mtb) infection in humans; whether infection with human immunodeficiency virus (HIV) disproportionately affects distinct Th17-cell subsets that respond to Mtb is incompletely defined. Methods We performed high-definition characterization of circulating Mtb-specific Th17 cells by spectral flow cytometry in people with latent TB and treated HIV (HIV-ART). We also measured kynurenine pathway activity by liquid chromatography-mass spectrometry (LC/MS) on plasma and tested the hypothesis that tryptophan catabolism influences Th17-cell frequencies in this context. Results We identified two subsets of Th17 cells: subset 1 defined as CD4+Vα7.2-CD161+CD26+and subset 2 defined as CD4+Vα7.2-CCR6+CXCR3-cells of which subset 1 was significantly reduced in latent tuberculosis infection (LTBI) with HIV-ART, yet Mtb-responsive IL-17-producing CD4 T cells were preserved; we found that IL-17-producing CD4 T cells dominate the response to Mtb antigen but not cytomegalovirus (CMV) antigen or staphylococcal enterotoxin B (SEB), and tryptophan catabolism negatively correlates with both subset 1 and subset 2 Th17-cell frequencies. Conclusions We found differential effects of ART-suppressed HIV on distinct subsets of Th17 cells, that IL-17-producing CD4 T cells dominate responses to Mtb but not CMV antigen or SEB, and that kynurenine pathway activity is associated with decreases of circulating Th17 cells that may contribute to tuberculosis immunity.
Collapse
Affiliation(s)
- Paul Ogongo
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
| | - Anthony Tran
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Florence Marzan
- Drug Research Unit, Department of Clinical Pharmacy, School of Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| | - David Gingrich
- Drug Research Unit, Department of Clinical Pharmacy, School of Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| | - Melissa Krone
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Francesca Aweeka
- Drug Research Unit, Department of Clinical Pharmacy, School of Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| | | | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Peter W. Hunt
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Joel D. Ernst
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
6
|
Panda S, Kearns K, Cheng C, Lindestam Arlehamn CS. From antigens to immune responses: Shaping the future of TB detection and prevention. Int J Infect Dis 2024; 141S:106983. [PMID: 38417617 DOI: 10.1016/j.ijid.2024.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024] Open
Abstract
OBJECTIVES Tuberculosis (TB) remains a global health challenge due to various factors, including delayed diagnoses leading to the spread of infection, limited efficacy of current vaccination strategies, and emergence of drug-resistant strains. Here, we explore the significance of Mycobacterium tuberculosis (Mtb)-specific antigens to overcome these challenges. METHODS A narrative review exploring the dynamics of Mtb-specific antigens and the related T cell immune responses across the TB spectrum. RESULTS A variety of antigens are expressed at different stages of Mtb infection, driving its diverse antigenic landscape and associated T cell functional heterogeneity. Recent advances in high-coverage genomic and proteomic approaches may lead to the identification and characterization of antigens/epitopes within the context of TB. CONCLUSION Factors such as magnitude of memory response, cytokine profile, immunodominance, and conservation of epitopes should be emphasized as crucial parameters in assessing the potential efficacy of these antigens in diagnostics or vaccine research. Recognizing the antigenic repertoire of Mtb changes with the infection stage, it is important to assess the availability of different subsets of Mtb antigens across the spectrum of infection for more precise disease classifications. Targeting specific antigens holds promise as a pathway for developing specific immunological biomarkers to predict TB reactivation in populations.
Collapse
Affiliation(s)
- Sudhasini Panda
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kendall Kearns
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Catherine Cheng
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | |
Collapse
|
7
|
Rosenfeld G, Gabrielian A, Hurt D, Rosenthal A. Predictive capabilities of baseline radiological findings for early and late disease outcomes within sensitive and multi-drug resistant tuberculosis cases. Eur J Radiol Open 2023; 11:100518. [PMID: 37808069 PMCID: PMC10556559 DOI: 10.1016/j.ejro.2023.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose This study compares performance of Timika Score to standardized, detailed radiologist observations of Chest X rays (CXR) for predicting early infectiousness and subsequent treatment outcome in drug sensitive (DS) or multi-drug resistant (MDR) tuberculosis cases. It seeks improvement in prediction of these clinical events through these additional observations. Method This is a retrospective study analyzing cases from the NIH/NIAID supported TB Portals database, a large, trans-national, multi-site cohort of primarily drug-resistant tuberculosis patients. We analyzed patient records with sputum microscopy readings, radiologist annotated CXR, and treatment outcome including a matching step on important covariates of age, gender, HIV status, case definition, Body Mass Index (BMI), smoking, drug use, and Timika Score across resistance type for comparison. Results 2142 patients with tuberculosis infection (374 with poor outcome and 1768 with good treatment outcome) were retrospectively reviewed. Bayesian ANOVA demonstrates radiologist observations did not show greater predictive ability for baseline infectiousness (0.77 and 0.74 probability in DS and MDR respectively); however, the observations provided superior prediction of treatment outcome (0.84 and 0.63 probability in DS and MDR respectively). Estimated lung abnormal area and cavity were identified as important predictors underlying the Timika Score's performance. Conclusions Timika Score simplifies the usage of baseline CXR for prediction of early infectiousness of the case and shows comparable performance to using detailed, standardized radiologist observations. The score's utility diminishes for treatment outcome prediction and is exceeded by the usage of the detailed observations although prediction performance on treatment outcome decreases especially in MDR TB cases.
Collapse
Affiliation(s)
- Gabriel Rosenfeld
- Office of Cyber Infrastructure and Computational Biology, National Institutes of Allergy and Infectious Diseases, 5601 Fishers Lane, Rockville, MD 20852, USA
| | - Andrei Gabrielian
- Office of Cyber Infrastructure and Computational Biology, National Institutes of Allergy and Infectious Diseases, 5601 Fishers Lane, Rockville, MD 20852, USA
| | - Darrell Hurt
- Office of Cyber Infrastructure and Computational Biology, National Institutes of Allergy and Infectious Diseases, 5601 Fishers Lane, Rockville, MD 20852, USA
| | - Alex Rosenthal
- Office of Cyber Infrastructure and Computational Biology, National Institutes of Allergy and Infectious Diseases, 5601 Fishers Lane, Rockville, MD 20852, USA
| |
Collapse
|
8
|
Silva APB, Roque-Borda CA, Carnero Canales CS, Duran Gleriani Primo LM, Silva IC, Ribeiro CM, Chorilli M, da Silva PB, Silva JL, Pavan FR. Activity of Bacteriophage D29 Loaded on Nanoliposomes against Macrophages Infected with Mycobacterium tuberculosis. Diseases 2023; 11:150. [PMID: 37987261 PMCID: PMC10660732 DOI: 10.3390/diseases11040150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023] Open
Abstract
The search for new antimicrobial agents is a continuous struggle, mainly because more and more cases of resistant strains are being reported. Mycobacterium tuberculosis (MTB) is the main microorganism responsible for millions of deaths worldwide. The development of new antimicrobial agents is generally aimed at finding strong interactions with one or more bacterial receptors. It has been proven that bacteriophages have the ability to adhere to specific and selective regions. However, their transport and administration must be carefully evaluated as an excess could prevent a positive response and the bacteriophages may be eliminated during their journey. With this in mind, the mycobacteriophage D29 was encapsulated in nanoliposomes, which made it possible to determine its antimicrobial activity during transport and its stability in the treatment of active and latent Mycobacterium tuberculosis. The antimicrobial activity, the cytotoxicity in macrophages and fibroblasts, as well as their infection and time-kill were evaluated. Phage nanoencapsulation showed efficient cell internalization to induce MTB clearance with values greater than 90%. Therefore, it was shown that nanotechnology is capable of assisting in the activity of degradation-sensitive compounds to achieve better therapy and evade the immune response against phages during treatment.
Collapse
Affiliation(s)
- Ana P. B. Silva
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Cesar Augusto Roque-Borda
- Facultad de Ciencias Farmaceuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Christian S. Carnero Canales
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Laura Maria Duran Gleriani Primo
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Isabel C. Silva
- Department of Genetics and Morphology of the Institute of Biological Sciences, University of Brasilia (UNB), Brasília 70910-900, Brazil
| | - Camila M. Ribeiro
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Marlus Chorilli
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Patrícia Bento da Silva
- Department of Genetics and Morphology of the Institute of Biological Sciences, University of Brasilia (UNB), Brasília 70910-900, Brazil
| | - Joás L. Silva
- National Heart, Lung, and Blood Institute, National Institute of Health (NIH), Bethesda, MD 20892, USA
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| |
Collapse
|
9
|
Riou C, du Bruyn E, Kim GHJ, da Costa I, Lee J, Sher A, Wilkinson RJ, Allwood BW, Goldin J. Derivation of a high-resolution CT-based, semi-automated radiographic score in tuberculosis and its relationship to bacillary load and antitubercular therapy. Eur Respir J 2023; 62:2300600. [PMID: 37678952 PMCID: PMC7615118 DOI: 10.1183/13993003.00600-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/04/2023] [Indexed: 09/09/2023]
Affiliation(s)
- Catherine Riou
- Wellcome Centre for Infectious Disease Research in Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, Cape Town, South Africa
| | - Elsa du Bruyn
- Wellcome Centre for Infectious Disease Research in Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, South Africa
| | - Grace Hyun J. Kim
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Center for Computer Vision and Imaging Biomarkers, Los Angeles, CA, USA
| | - Irene da Costa
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Center for Computer Vision and Imaging Biomarkers, Los Angeles, CA, USA
| | - Jihey Lee
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Center for Computer Vision and Imaging Biomarkers, Los Angeles, CA, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert J. Wilkinson
- Wellcome Centre for Infectious Disease Research in Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Observatory, Cape Town, South Africa
- Department of Infectious Diseases, Imperial College London, W12 0NN, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Brian W. Allwood
- Division of Pulmonology, Department of Medicine, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Jonathan Goldin
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Center for Computer Vision and Imaging Biomarkers, Los Angeles, CA, USA
| |
Collapse
|
10
|
Diatlova A, Linkova N, Lavrova A, Zinchenko Y, Medvedev D, Krasichkov A, Polyakova V, Yablonskiy P. Molecular Markers of Early Immune Response in Tuberculosis: Prospects of Application in Predictive Medicine. Int J Mol Sci 2023; 24:13261. [PMID: 37686061 PMCID: PMC10487556 DOI: 10.3390/ijms241713261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Tuberculosis (TB) remains an important public health problem and one of the leading causes of death. Individuals with latent tuberculosis infection (LTBI) have an increased risk of developing active TB. The problem of the diagnosis of the various stages of TB and the identification of infected patients in the early stages has not yet been solved. The existing tests (the tuberculin skin test and the interferon-gamma release assay) are useful to distinguish between active and latent infections. But these tests cannot be used to predict the development of active TB in individuals with LTBI. The purpose of this review was to analyze the extant data of the interaction of M. tuberculosis with immune cells and identify molecular predictive markers and markers of the early stages of TB. An analysis of more than 90 sources from the literature allowed us to determine various subpopulations of immune cells involved in the pathogenesis of TB, namely, macrophages, dendritic cells, B lymphocytes, T helper cells, cytotoxic T lymphocytes, and NK cells. The key molecular markers of the immune response to M. tuberculosis are cytokines (IL-1β, IL-6, IL-8, IL-10, IL-12, IL-17, IL-22b, IFNɣ, TNFa, and TGFß), matrix metalloproteinases (MMP-1, MMP-3, and MMP-9), and their inhibitors (TIMP-1, TIMP-2, TIMP-3, and TIMP-4). It is supposed that these molecules could be used as biomarkers to characterize different stages of TB infection, to evaluate the effectiveness of its treatment, and as targets of pharmacotherapy.
Collapse
Affiliation(s)
- Anastasiia Diatlova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Natalia Linkova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Biogerontology Department, St. Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, 197110 St. Petersburg, Russia
| | - Anastasia Lavrova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Department of Hospital Surgery, Faculty of Medicine, St. Petersburg State University, University Embankment, 7–9, 199034 St. Petersburg, Russia
| | - Yulia Zinchenko
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Dmitrii Medvedev
- Biogerontology Department, St. Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, 197110 St. Petersburg, Russia
| | - Alexandr Krasichkov
- Department of Radio Engineering Systems, Electrotechnical University “LETI”, Prof. Popova Street 5F, 197022 St. Petersburg, Russia
| | - Victoria Polyakova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Piotr Yablonskiy
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Department of Hospital Surgery, Faculty of Medicine, St. Petersburg State University, University Embankment, 7–9, 199034 St. Petersburg, Russia
| |
Collapse
|
11
|
Foreman TW, Nelson CE, Sallin MA, Kauffman KD, Sakai S, Otaizo-Carrasquero F, Myers TG, Barber DL. CD30 co-stimulation drives differentiation of protective T cells during Mycobacterium tuberculosis infection. J Exp Med 2023; 220:e20222090. [PMID: 37097292 PMCID: PMC10130742 DOI: 10.1084/jem.20222090] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/24/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
Control of Mycobacterium tuberculosis (Mtb) infection requires generation of T cells that migrate to granulomas, complex immune structures surrounding sites of bacterial replication. Here we compared the gene expression profiles of T cells in pulmonary granulomas, bronchoalveolar lavage, and blood of Mtb-infected rhesus macaques to identify granuloma-enriched T cell genes. TNFRSF8/CD30 was among the top genes upregulated in both CD4 and CD8 T cells from granulomas. In mice, CD30 expression on CD4 T cells is required for survival of Mtb infection, and there is no major role for CD30 in protection by other cell types. Transcriptomic comparison of WT and CD30-/- CD4 T cells from the lungs of Mtb-infected mixed bone marrow chimeric mice showed that CD30 directly promotes CD4 T cell differentiation and the expression of multiple effector molecules. These results demonstrate that the CD30 co-stimulatory axis is highly upregulated on granuloma T cells and is critical for protective T cell responses against Mtb infection.
Collapse
Affiliation(s)
- Taylor W. Foreman
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christine E. Nelson
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michelle A. Sallin
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Keith D. Kauffman
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shunsuke Sakai
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francisco Otaizo-Carrasquero
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Timothy G. Myers
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel L. Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Stewart P, Patel S, Comer A, Muneer S, Nawaz U, Quann V, Bansal M, Venketaraman V. Role of B Cells in Mycobacterium Tuberculosis Infection. Vaccines (Basel) 2023; 11:vaccines11050955. [PMID: 37243059 DOI: 10.3390/vaccines11050955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Historically, research on the immunologic response to Mycobacterium tuberculosis (M. tb) infection has focused on T cells and macrophages, as their role in granuloma formation has been robustly characterized. In contrast, the role of B cells in the pathophysiology of M. tb infection has been relatively overlooked. While T cells are well-known as an essential for granuloma formation and maintenance, B cells play a less understood role in the host response. Over the past decade, scarce research on the topic has attempted to elucidate the varying roles of B cells during mycobacterial infection, which appears to be primarily time dependent. From acute to chronic infection, the role of B cells changes with time as evidenced by cytokine release, immunological regulation, and histological morphology of tuberculous granulomas. The goal of this review is to carefully analyze the role of humoral immunity in M. tb infection to find the discriminatory nature of humoral immunity in tuberculosis (TB). We argue that there is a need for more research on the B-cell response against TB, as a better understanding of the role of B cells in defense against TB could lead to effective vaccines and therapies. By focusing on the B-cell response, we can develop new strategies to enhance immunity against TB and reduce the burden of disease.
Collapse
Affiliation(s)
- Paul Stewart
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Shivani Patel
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Andrew Comer
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Shafi Muneer
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Uzma Nawaz
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Violet Quann
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Mira Bansal
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
13
|
du Bruyn E, Stek C, Daroowala R, Said-Hartley Q, Hsiao M, Schafer G, Goliath RT, Abrahams F, Jackson A, Wasserman S, Allwood BW, Davis AG, Lai RPJ, Coussens AK, Wilkinson KA, de Vries J, Tiffin N, Cerrone M, Ntusi NAB, Riou C, Wilkinson RJ. Effects of tuberculosis and/or HIV-1 infection on COVID-19 presentation and immune response in Africa. Nat Commun 2023; 14:188. [PMID: 36635274 PMCID: PMC9836341 DOI: 10.1038/s41467-022-35689-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/19/2022] [Indexed: 01/14/2023] Open
Abstract
Few studies from Africa have described the clinical impact of co-infections on SARS-CoV-2 infection. Here, we investigate the presentation and outcome of SARS-CoV-2 infection in an African setting of high HIV-1 and tuberculosis prevalence by an observational case cohort of SARS-CoV-2 patients. A comparator group of non SARS-CoV-2 participants is included. The study includes 104 adults with SARS-CoV-2 infection of whom 29.8% are HIV-1 co-infected. Two or more co-morbidities are present in 57.7% of participants, including HIV-1 (30%) and active tuberculosis (14%). Amongst patients dually infected by tuberculosis and SARS-CoV-2, clinical features can be typical of either SARS-CoV-2 or tuberculosis: lymphopenia is exacerbated, and some markers of inflammation (D-dimer and ferritin) are further elevated (p < 0.05). Amongst HIV-1 co-infected participants those with low CD4 percentage strata exhibit reduced total, but not neutralising, anti-SARS-CoV-2 antibodies. SARS-CoV-2 specific CD8 T cell responses are present in 35.8% participants overall but undetectable in combined HIV-1 and tuberculosis. Death occurred in 30/104 (29%) of all COVID-19 patients and in 6/15 (40%) of patients with coincident SARS-CoV-2 and tuberculosis. This shows that in a high incidence setting, tuberculosis is a common co-morbidity in patients admitted to hospital with COVID-19. The immune response to SARS-CoV-2 is adversely affected by co-existent HIV-1 and tuberculosis.
Collapse
Affiliation(s)
- Elsa du Bruyn
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
| | - Cari Stek
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
- Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Remi Daroowala
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
- Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Qonita Said-Hartley
- Department of Radiology, University of Cape Town, Observatory, 7925, Republic of South Africa
| | - Marvin Hsiao
- Department of Pathology, University of Cape Town, Observatory, 7925, Republic of South Africa
- National Health Laboratory Service, Groote Schuur Complex, Department of Clinical Virology, Observatory, 7925, Cape Town, Republic of South Africa
| | - Georgia Schafer
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
- Department of Integrated Biomedical Sciences, University of Cape Town, Observatory, 7925, Republic of South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | - Rene T Goliath
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
| | - Fatima Abrahams
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
| | - Amanda Jackson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
| | - Sean Wasserman
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
| | - Brian W Allwood
- Division of Pulmonology, Department of Medicine, Stellenbosch University and Tygerberg Hospital, Cape Town, Republic of South Africa
| | - Angharad G Davis
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
- The Francis Crick Institute, Midland Road, London, NW1 1AT, UK
- Division of Life Sciences, University College London, London, WC1E 6BT, UK
| | - Rachel P-J Lai
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
- Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
- The Francis Crick Institute, Midland Road, London, NW1 1AT, UK
| | - Anna K Coussens
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
- Department of Pathology, University of Cape Town, Observatory, 7925, Republic of South Africa
- The Walter and Eliza Hall Institute of Medical Research, Parkville Victoria, 3052, Australia
| | - Katalin A Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
- The Francis Crick Institute, Midland Road, London, NW1 1AT, UK
- Division of Life Sciences, University College London, London, WC1E 6BT, UK
| | - Jantina de Vries
- Department of Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
| | - Nicki Tiffin
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
- Health Impact Assessment unit, Western Cape Department of Health, Cape Town, Republic of South Africa
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
- Division of Computational Biology, University of Cape Town, Observatory, 7925, Republic of South Africa
| | - Maddalena Cerrone
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
- Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
- The Francis Crick Institute, Midland Road, London, NW1 1AT, UK
| | - Ntobeko A B Ntusi
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
| | - Catherine Riou
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa.
- Department of Pathology, University of Cape Town, Observatory, 7925, Republic of South Africa.
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa.
- Department of Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa.
- Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK.
- The Francis Crick Institute, Midland Road, London, NW1 1AT, UK.
- Division of Life Sciences, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
14
|
Chandra P, Grigsby SJ, Philips JA. Immune evasion and provocation by Mycobacterium tuberculosis. Nat Rev Microbiol 2022; 20:750-766. [PMID: 35879556 PMCID: PMC9310001 DOI: 10.1038/s41579-022-00763-4] [Citation(s) in RCA: 156] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, has infected humans for millennia. M. tuberculosis is well adapted to establish infection, persist in the face of the host immune response and be transmitted to uninfected individuals. Its ability to complete this infection cycle depends on it both evading and taking advantage of host immune responses. The outcome of M. tuberculosis infection is often a state of equilibrium characterized by immunological control and bacterial persistence. Recent data have highlighted the diverse cell populations that respond to M. tuberculosis infection and the dynamic changes in the cellular and intracellular niches of M. tuberculosis during the course of infection. M. tuberculosis possesses an arsenal of protein and lipid effectors that influence macrophage functions and inflammatory responses; however, our understanding of the role that specific bacterial virulence factors play in the context of diverse cellular reservoirs and distinct infection stages is limited. In this Review, we discuss immune evasion and provocation by M. tuberculosis during its infection cycle and describe how a more detailed molecular understanding is crucial to enable the development of novel host-directed therapies, disease biomarkers and effective vaccines.
Collapse
Affiliation(s)
- Pallavi Chandra
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Steven J Grigsby
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
15
|
Du Bruyn E, Ruzive S, Howlett P, Cerrone M, Jacobs A, Arlehamn CSL, Sette A, Sher A, Mayer-Barber KD, Barber DL, Mayosi B, Ntsekhe M, Wilkinson RJ, Riou C. Comparison of the frequency and phenotypic profile of Mycobacterium tuberculosis-specific CD4 T cells between the site of disease and blood in pericardial tuberculosis. Front Immunol 2022; 13:1009016. [PMID: 36439130 PMCID: PMC9692124 DOI: 10.3389/fimmu.2022.1009016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Studies of the immune response at the site of disease in extra-pulmonary tuberculosis (EPTB) disease are scarce. In this study, we compared the cellular profile of Mycobacterium tuberculosis (Mtb)-specific T cells in pericardial fluid and peripheral blood in patients with pericardial TB (PCTB). Whole blood and pericardial fluid (PCF) samples were collected at the time of diagnostic sampling, with repeat blood sampling after completion of anti-tubercular treatment (ATT) in 16 PCTB patients, most of them being HIV-1 infected (n=14). These samples were stimulated ex vivo and the phenotypic and functional cellular profile of PCF and blood was assessed by flow cytometry. We found that lymphocytes were the predominant cell type in PCF in PCTB, with a preferential influx of CD4 T cells. The frequencies of TNF-α producing Mtb-specific granulocytes and Mtb-specific CD4 T cells were significantly higher in PCF compared to blood. Mtb-specific CD4 T cells in PCF exhibited a distinct phenotype compared to those in blood, with greater GrB expression and lower CD27 and KLRG1 expression. We observed no difference in the production IFNγ, TNF or IL-2 by Mtb-specific CD4 T cells between the two compartments, but MIP-1β production was lower in the PCF T cells. Bacterial loads were not associated with alterations in the phenotype or function of Mtb-specific CD4 T cells. Upon ATT completion, HLA-DR, Ki-67 and GrB expression was significantly decreased, and relative IL-2 production was increased in peripheral Mtb-specific CD4 T cells. Overall, using an ex vivo assay to compare the immune response towards Mtb in PCF and in blood, we identified significant difference in the phenotypic profile of Mtb-specific CD4 T response between these two compartments. Moreover, we show that the activation profile of peripheral Mtb-specific CD4 T cells could be used to monitor treatment response in PCTB.
Collapse
Affiliation(s)
- Elsa Du Bruyn
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sheena Ruzive
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Patrick Howlett
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Maddalena. Cerrone
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Department of Infectious Diseases, Imperial College London, London, United Kingdom,Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ashley J. Jacobs
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Daniel L. Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Bongani Mayosi
- Department of Medicine, University of Cape Town, Cape Town, South Africa,Division of Cardiology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Mpiko Ntsekhe
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Department of Medicine, University of Cape Town, Cape Town, South Africa,Division of Cardiology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Robert J. Wilkinson
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Department of Infectious Diseases, Imperial College London, London, United Kingdom,Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Catherine Riou
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa,*Correspondence: Catherine Riou,
| |
Collapse
|
16
|
Amaral EP, Foreman TW, Namasivayam S, Hilligan KL, Kauffman KD, Barbosa Bomfim CC, Costa DL, Barreto-Duarte B, Gurgel-Rocha C, Santana MF, Cordeiro-Santos M, Du Bruyn E, Riou C, Aberman K, Wilkinson RJ, Barber DL, Mayer-Barber KD, Andrade BB, Sher A. GPX4 regulates cellular necrosis and host resistance in Mycobacterium tuberculosis infection. J Exp Med 2022; 219:e20220504. [PMID: 36069923 PMCID: PMC9458471 DOI: 10.1084/jem.20220504] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/23/2022] [Accepted: 08/11/2022] [Indexed: 01/15/2023] Open
Abstract
Cellular necrosis during Mycobacterium tuberculosis (Mtb) infection promotes both immunopathology and bacterial dissemination. Glutathione peroxidase-4 (Gpx4) is an enzyme that plays a critical role in preventing iron-dependent lipid peroxidation-mediated cell death (ferroptosis), a process previously implicated in the necrotic pathology seen in Mtb-infected mice. Here, we document altered GPX4 expression, glutathione levels, and lipid peroxidation in patients with active tuberculosis and assess the role of this pathway in mice genetically deficient in or overexpressing Gpx4. We found that Gpx4-deficient mice infected with Mtb display substantially increased lung necrosis and bacterial burdens, while transgenic mice overexpressing the enzyme show decreased bacterial loads and necrosis. Moreover, Gpx4-deficient macrophages exhibited enhanced necrosis upon Mtb infection in vitro, an outcome suppressed by the lipid peroxidation inhibitor, ferrostatin-1. These findings provide support for the role of ferroptosis in Mtb-induced necrosis and implicate the Gpx4/GSH axis as a target for host-directed therapy of tuberculosis.
Collapse
Affiliation(s)
- Eduardo P. Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Taylor W. Foreman
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Kerry L. Hilligan
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Keith D. Kauffman
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Caio Cesar Barbosa Bomfim
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Diego L. Costa
- Departmento de Bioquímica e Imunologia, Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Beatriz Barreto-Duarte
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Curso de Medicina, Universidade Salvador, Laureate Universities, Salvador, Brazil
| | - Clarissa Gurgel-Rocha
- Department of Pathology, School of Medicine of the Federal University of Bahia, Salvador, Bahia, Brazil
- Center for Biotechnology and Cell Therapy, D’Or Institute for Research and Education, Sao Rafael Hospital, Salvador, Bahia, Brazil
| | - Monique Freire Santana
- Departmento de Ensino e Pesquisa, Fundação Centro de Controle de Oncologia do Estado do Amazonas, Manaus, Brazil
- Fundação Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Marcelo Cordeiro-Santos
- Fundação Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Faculdade de Medicina, Universidade Nilton Lins, Manaus, Brazil
| | - Elsa Du Bruyn
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Catherine Riou
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Kate Aberman
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Robert John Wilkinson
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- The Francis Crick Institute, London, Northwick Park Hospital, Harrow, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Daniel L. Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Bruno B. Andrade
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Curso de Medicina, Universidade Salvador, Laureate Universities, Salvador, Brazil
- Curso de Medicina, Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
- Curso de Medicina, Universidade Faculdade de Tecnologia e Ciências, Salvador, Bahia, Brazil
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| |
Collapse
|
17
|
Roque-Borda CA, Bento da Silva P, Rodrigues MC, Di Filippo LD, Duarte JL, Chorilli M, Vicente EF, Garrido SS, Rogério Pavan F. Pharmaceutical nanotechnology: Antimicrobial peptides as potential new drugs against WHO list of critical, high, and medium priority bacteria. Eur J Med Chem 2022; 241:114640. [PMID: 35970075 DOI: 10.1016/j.ejmech.2022.114640] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 12/29/2022]
Abstract
Nanobiotechnology is a relatively unexplored area that has, nevertheless, shown relevant results in the fight against some diseases. Antimicrobial peptides (AMPs) are biomacromolecules with potential activity against multi/extensively drug-resistant bacteria, with a lower risk of generating bacterial resistance. They can be considered an excellent biotechnological alternative to conventional drugs. However, the application of several AMPs to biological systems is hampered by their poor stability and lifetime, inactivating them completely. Therefore, nanotechnology plays an important role in the development of new AMP-based drugs, protecting and carrying the bioactive to the target. This is the first review article on the different reported nanosystems using AMPs against bacteria listed on the WHO priority list. The current shortage of information implies a nanobiotechnological potential to obtain new drugs or repurpose drugs based on the AMP-drug synergistic effect.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil; Universidad Católica de Santa María, Vicerrectorado de Investigación, Facultad de Ciencias Farmacéuticas Bioquímicas y Biotecnológicas, Brazil
| | - Patricia Bento da Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Mosar Corrêa Rodrigues
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Leonardo Delello Di Filippo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Jonatas L Duarte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Eduardo Festozo Vicente
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo, CEP 17602-496, Brazil
| | - Saulo Santesso Garrido
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, CEP 14801-902, Brazil
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil.
| |
Collapse
|
18
|
Simper JD, Perez E, Schlesinger LS, Azad AK. Resistance and Susceptibility Immune Factors at Play during Mycobacterium tuberculosis Infection of Macrophages. Pathogens 2022; 11:pathogens11101153. [PMID: 36297211 PMCID: PMC9611686 DOI: 10.3390/pathogens11101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/28/2022] Open
Abstract
Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (M.tb), is responsible for >1.5 million deaths worldwide annually. Innate immune cells, especially macrophages, are the first to encounter M.tb, and their response dictates the course of infection. During infection, macrophages exert a variety of immune factors involved in either controlling or promoting the growth of M.tb. Research on this topic has been performed in both in vitro and in vivo animal models with discrepant results in some cases based on the model of study. Herein, we review macrophage resistance and susceptibility immune factors, focusing primarily on recent advances in the field. We include macrophage cellular pathways, bioeffector proteins and molecules, cytokines and chemokines, associated microbiological factors and bacterial strains, and host genetic factors in innate immune genes. Recent advances in mechanisms underlying macrophage resistance and susceptibility factors will aid in the successful development of host-directed therapeutics, a topic emphasized throughout this review.
Collapse
Affiliation(s)
- Jan D. Simper
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
- Department of Microbiology, Immunology and Molecular Genetics, UT Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Esteban Perez
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
- Translational Sciences Program, UT Health San Antonio Graduate School of Biomedical Sciences, San Antonio, TX 78229, USA
| | - Larry S. Schlesinger
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
- Correspondence: (L.S.S.); (A.K.A.); Tel.: +1-210-258-9578 (L.S.S.); +1-210-258-9467 (A.K.A.)
| | - Abul K. Azad
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
- Correspondence: (L.S.S.); (A.K.A.); Tel.: +1-210-258-9578 (L.S.S.); +1-210-258-9467 (A.K.A.)
| |
Collapse
|
19
|
Heyckendorf J, Georghiou SB, Frahm N, Heinrich N, Kontsevaya I, Reimann M, Holtzman D, Imperial M, Cirillo DM, Gillespie SH, Ruhwald M. Tuberculosis Treatment Monitoring and Outcome Measures: New Interest and New Strategies. Clin Microbiol Rev 2022; 35:e0022721. [PMID: 35311552 PMCID: PMC9491169 DOI: 10.1128/cmr.00227-21] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Despite the advent of new diagnostics, drugs and regimens, tuberculosis (TB) remains a global public health threat. A significant challenge for TB control efforts has been the monitoring of TB therapy and determination of TB treatment success. Current recommendations for TB treatment monitoring rely on sputum and culture conversion, which have low sensitivity and long turnaround times, present biohazard risk, and are prone to contamination, undermining their usefulness as clinical treatment monitoring tools and for drug development. We review the pipeline of molecular technologies and assays that serve as suitable substitutes for current culture-based readouts for treatment response and outcome with the potential to change TB therapy monitoring and accelerate drug development.
Collapse
Affiliation(s)
- Jan Heyckendorf
- Department of Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | | | - Nicole Frahm
- Bill & Melinda Gates Medical Research Institute, Cambridge, Massachusetts, USA
| | - Norbert Heinrich
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich (LMU), Munich, Germany
| | - Irina Kontsevaya
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - Maja Reimann
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - David Holtzman
- FIND, the Global Alliance for Diagnostics, Geneva, Switzerland
| | - Marjorie Imperial
- University of California San Francisco, San Francisco, California, USA, United States
| | - Daniela M. Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stephen H. Gillespie
- School of Medicine, University of St Andrewsgrid.11914.3c, St Andrews, Fife, Scotland
| | - Morten Ruhwald
- FIND, the Global Alliance for Diagnostics, Geneva, Switzerland
| | | |
Collapse
|
20
|
Lee YH, Hyun YS, Jo HA, Baek IC, Kim SM, Sohn HJ, Kim TG. Comprehensive analysis of mycobacterium tuberculosis antigen-specific CD4+ T cell responses restricted by single HLA class II allotype in an individual. Front Immunol 2022; 13:897781. [PMID: 35967347 PMCID: PMC9366214 DOI: 10.3389/fimmu.2022.897781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis infection is generally asymptomatic as latent tuberculosis, but it is still known as the world’s leading bacterial cause of death. The diagnosis of latent tuberculosis infection relies on the evidence of cellular immunity to mycobacterial antigens. Since the association between HLA class II and tuberculosis infection has been reported in several population groups, a detailed study on the CD4+ T cell response to major tuberculosis antigens is needed. To elucidate which HLA class II allotypes in an individual are preferentially used in tuberculosis, CD4+ T cells specific to TB10.4, Ag85b, ESAT-6, and CFP-10 of Mycobacterium tuberculosis antigens were analyzed comprehensively. A total of 33 healthy donors were analyzed by ex vivo and cultured ELISPOT using panels of artificial antigen-presenting cells expressing a single HLA class II allotype. The CD4+ T cell responses were increased by an average of 39-fold in cultured ELISPOT compared with ex vivo ELISPOT. In ex vivo and cultured ELISPOT, CD4+ T cell responses showed significantly higher by HLA-DR than those of HLA-DQ and HLA-DP locus. In cultured ELISPOT, 9 HLA-DR allotypes, 4 HLA-DQ allotypes, and 3 HLA-DP allotypes showed positive CD4+ T cell responses. Among ten donors with positive CD4+ T cell responses when tested for mixed Mycobacterium tuberculosis antigens, seven donors were positive for only a single allotype, and three were positive for two allotypes in an individual. However, only one allotype was used for a single antigen-specific response when a single tuberculosis antigen was used individually. These results on the distribution of HLA class II allotypes showing high CD4+ T-cell responses to Mycobacterium tuberculosis antigens and the intra-individual allotype dominance will provide valuable information for understanding the immunobiology and immunogenetics of tuberculosis, which can contribute to the development of more effective vaccines.
Collapse
Affiliation(s)
- Yong-Hun Lee
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - You-Seok Hyun
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyeong-A Jo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sun-Mi Kim
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun-Jung Sohn
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- *Correspondence: Tai-Gyu Kim,
| |
Collapse
|
21
|
Van Dis E, Fox DM, Morrison HM, Fines DM, Babirye JP, McCann LH, Rawal S, Cox JS, Stanley SA. IFN-γ-independent control of M. tuberculosis requires CD4 T cell-derived GM-CSF and activation of HIF-1α. PLoS Pathog 2022; 18:e1010721. [PMID: 35877763 PMCID: PMC9352196 DOI: 10.1371/journal.ppat.1010721] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/04/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
The prevailing model of protective immunity to tuberculosis is that CD4 T cells produce the cytokine IFN-γ to activate bactericidal mechanisms in infected macrophages. Although IFN-γ-independent CD4 T cell based control of M. tuberculosis infection has been demonstrated in vivo it is unclear whether CD4 T cells are capable of directly activating macrophages to control infection in the absence of IFN-γ. We developed a co-culture model using CD4 T cells isolated from the lungs of infected mice and M. tuberculosis-infected murine bone marrow-derived macrophages (BMDMs) to investigate mechanisms of CD4 dependent control of infection. We found that even in the absence of IFN-γ signaling, CD4 T cells drive macrophage activation, M1 polarization, and control of infection. This IFN-γ-independent control of infection requires activation of the transcription factor HIF-1α and a shift to aerobic glycolysis in infected macrophages. While HIF-1α activation following IFN-γ stimulation requires nitric oxide, HIF-1α-mediated control in the absence of IFN-γ is nitric oxide-independent, indicating that distinct pathways can activate HIF-1α during infection. We show that CD4 T cell-derived GM-CSF is required for IFN-γ-independent control in BMDMs, but that recombinant GM-CSF is insufficient to control infection in BMDMs or alveolar macrophages and does not rescue the absence of control by GM-CSF-deficient T cells. In contrast, recombinant GM-CSF controls infection in peritoneal macrophages, induces lipid droplet biogenesis, and also requires HIF-1α for control. These results advance our understanding of CD4 T cell-mediated immunity to M. tuberculosis, reveal important differences in immune activation of distinct macrophage types, and outline a novel mechanism for the activation of HIF-1α. We establish a previously unknown functional link between GM-CSF and HIF-1α and provide evidence that CD4 T cell-derived GM-CSF is a potent bactericidal effector.
Collapse
Affiliation(s)
- Erik Van Dis
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Douglas M. Fox
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Huntly M. Morrison
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Daniel M. Fines
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Janet Peace Babirye
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Lily H. McCann
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, Berkeley, California, United States of America
| | - Sagar Rawal
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Jeffery S. Cox
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Sarah A. Stanley
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
22
|
Frequency of CD4+ regulatory T cells and modulation of CD4+T lymphocyte activation in pleural tuberculoma. Tuberculosis (Edinb) 2022; 134:102210. [DOI: 10.1016/j.tube.2022.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/17/2022] [Accepted: 04/24/2022] [Indexed: 11/21/2022]
|
23
|
Kitching AR. Immunoageing within the kidney via injury associated tertiary lymphoid tissue. Kidney Int 2022; 102:9-11. [DOI: 10.1016/j.kint.2022.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
|
24
|
Mulenga H, Fiore-Gartland A, Mendelsohn SC, Penn-Nicholson A, Mbandi SK, Borate B, Musvosvi M, Tameris M, Walzl G, Naidoo K, Churchyard G, Scriba TJ, Hatherill M. The effect of host factors on discriminatory performance of a transcriptomic signature of tuberculosis risk. EBioMedicine 2022; 77:103886. [PMID: 35183869 PMCID: PMC8861653 DOI: 10.1016/j.ebiom.2022.103886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 01/28/2023] Open
Abstract
Background We aimed to understand host factors that affect discriminatory performance of a transcriptomic signature of tuberculosis risk (RISK11). Methods HIV-negative adults aged 18–60 years were evaluated in a prospective study of RISK11 and surveilled for tuberculosis through 15 months. Generalised linear models and receiver-operating characteristic (ROC) regression were used to estimate effect of host factors on RISK11 score (%marginal effect) and on discriminatory performance for tuberculosis disease (area under the curve, AUC), respectively. Findings Among 2923 participants including 74 prevalent and 56 incident tuberculosis cases, percentage marginal effects on RISK11 score were increased among those with prevalent tuberculosis (+18·90%, 95%CI 12·66−25·13), night sweats (+14·65%, 95%CI 5·39−23·91), incident tuberculosis (+7·29%, 95%CI 1·46−13·11), flu-like symptoms (+5·13%, 95%CI 1·58−8·68), and smoking history (+2·41%, 95%CI 0·89−3·93) than those without; and reduced in males (−6·68%, 95%CI −8·31−5·04) and with every unit increase in BMI (−0·13%, −95%CI −0·25−0·01). Adjustment for host factors affecting controls did not change RISK11 discriminatory performance. Cough was associated with 72·55% higher RISK11 score in prevalent tuberculosis cases. Stratification by cough improved diagnostic performance from AUC = 0·74 (95%CI 0·67−0·82) overall, to 0·97 (95%CI 0·90−1·00, p < 0·001) in cough-positive participants. Combining host factors with RISK11 improved prognostic performance, compared to RISK11 alone, (AUC = 0·76, 95%CI 0·69−0·83 versus 0·56, 95%CI 0·46−0·68, p < 0·001) over a 15-month predictive horizon. Interpretation Several host factors affected RISK11 score, but only adjustment for cough affected diagnostic performance. Combining host factors with RISK11 should be considered to improve prognostic performance. Funding Bill and Melinda Gates Foundation, South African Medical Research Council.
Collapse
Affiliation(s)
- Humphrey Mulenga
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Fairview Ave. N., Seattle, WA 98109-1024, USA
| | - Simon C Mendelsohn
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Adam Penn-Nicholson
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Stanley Kimbung Mbandi
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Bhavesh Borate
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Fairview Ave. N., Seattle, WA 98109-1024, USA
| | - Munyaradzi Musvosvi
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Michèle Tameris
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Gerhard Walzl
- DST/NRF Centre of Excellence for Biomedical TB Research and SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie Van Zijl Dr, Parow, 7505, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, Doris Duke Medical Research Institute, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa; MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa
| | - Gavin Churchyard
- The Aurum Institute, 29 Queens Rd, Parktown, Johannesburg, Gauteng 2194, South Africa; School of Public Health, University of Witwatersrand, 27 St Andrews Road, Parktown, Johannesburg 2193, South Africa; Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7925, South Africa.
| |
Collapse
|
25
|
Joslyn LR, Linderman JJ, Kirschner DE. A virtual host model of Mycobacterium tuberculosis infection identifies early immune events as predictive of infection outcomes. J Theor Biol 2022; 539:111042. [PMID: 35114195 PMCID: PMC9169921 DOI: 10.1016/j.jtbi.2022.111042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 10/19/2022]
Abstract
Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (Mtb), is one of the world's deadliest infectious diseases and remains a significant global health burden. TB disease and pathology can present clinically across a spectrum of outcomes, ranging from total sterilization of infection to active disease. Much remains unknown about the biology that drives an individual towards various clinical outcomes as it is challenging to experimentally address specific mechanisms driving clinical outcomes. Furthermore, it is unknown whether numbers of immune cells in the blood accurately reflect ongoing events during infection within human lungs. Herein, we utilize a systems biology approach by developing a whole-host model of the immune response to Mtb across multiple physiologic and time scales. This model, called HostSim, tracks events at the cellular, granuloma, organ, and host scale and represents the first whole-host, multi-scale model of the immune response following Mtb infection. We show that this model can capture various aspects of human and non-human primate TB disease and predict that biomarkers in the blood may only faithfully represent events in the lung at early time points after infection. We posit that HostSim, as a first step toward personalized digital twins in TB research, offers a powerful computational tool that can be used in concert with experimental approaches to understand and predict events about various aspects of TB disease and therapeutics.
Collapse
Affiliation(s)
- Louis R Joslyn
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 W Medical Center Drive, 5641 Medical Science II, Ann Arbor, MI 48109-5620; Department of Chemical Engineering, University of Michigan, G045W NCRC B28, 2800 Plymouth Rd, Ann Arbor, MI 48109-2136
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, G045W NCRC B28, 2800 Plymouth Rd, Ann Arbor, MI 48109-2136.
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 W Medical Center Drive, 5641 Medical Science II, Ann Arbor, MI 48109-5620.
| |
Collapse
|
26
|
Jong RM, Van Dis E, Berry SB, Nguyenla X, Baltodano A, Pastenkos G, Xu C, Fox D, Yosef N, McWhirter SM, Stanley SA. Mucosal Vaccination with Cyclic Dinucleotide Adjuvants Induces Effective T Cell Homing and IL-17-Dependent Protection against Mycobacterium tuberculosis Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:407-419. [PMID: 34965963 PMCID: PMC8755605 DOI: 10.4049/jimmunol.2100029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/10/2021] [Indexed: 01/17/2023]
Abstract
Tuberculosis consistently causes more deaths worldwide annually than any other single pathogen, making new effective vaccines an urgent priority for global public health. Among potential adjuvants, STING-activating cyclic dinucleotides (CDNs) uniquely stimulate a cytosolic sensing pathway activated only by pathogens. Recently, we demonstrated that a CDN-adjuvanted protein subunit vaccine robustly protects against tuberculosis infection in mice. In this study, we delineate the mechanistic basis underlying the efficacy of CDN vaccines for tuberculosis. CDN vaccines elicit CD4 T cells that home to lung parenchyma and penetrate into macrophage lesions in the lung. Although CDNs, like other mucosal vaccines, generate B cell-containing lymphoid structures in the lungs, protection is independent of B cells. Mucosal vaccination with a CDN vaccine induces Th1, Th17, and Th1-Th17 cells, and protection is dependent upon both IL-17 and IFN-γ. Single-cell RNA sequencing experiments reveal that vaccination enhances a metabolic state in Th17 cells reflective of activated effector function and implicate expression of Tnfsf8 (CD153) in vaccine-induced protection. Finally, we demonstrate that simply eliciting Th17 cells via mucosal vaccination with any adjuvant is not sufficient for protection. A vaccine adjuvanted with deacylated monophosphoryl lipid A (MPLA) failed to protect against tuberculosis infection when delivered mucosally, despite eliciting Th17 cells, highlighting the unique promise of CDNs as adjuvants for tuberculosis vaccines.
Collapse
Affiliation(s)
- Robyn M Jong
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Erik Van Dis
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Samuel B Berry
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Xammy Nguyenla
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA
| | - Alexander Baltodano
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA
| | - Gabrielle Pastenkos
- Comparative Pathology Laboratory, University of California, Davis, Davis, CA
| | - Chenling Xu
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA
| | - Douglas Fox
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA; and
| | | | - Sarah A Stanley
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA;
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
27
|
Shridhar A, Garg RK, Rizvi I, Jain M, Ali W, Malhotra HS, Kumar N, Sharma PK, Verma R, Uniyal R, Pandey S. Prevalence of primary immunodeficiency syndromes in tuberculous meningitis: A case-control study. J Infect Public Health 2021; 15:29-35. [PMID: 34883295 DOI: 10.1016/j.jiph.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Only a proportion of patients with tuberculosis develop tuberculous meningitis. We hypothesize that inherent abnormalities in the host's innate or adaptive immune system may affect the outcome in tuberculous meningitis. In this study, we evaluated the proportion of underlying primary immunodeficiency in patients with tuberculous meningitis and its impact on the outcome. METHODS Newly-diagnosed cases with tuberculous meningitis and healthy controls were included. Patients with HIV disease were excluded. Blood specimen were subjected to immunological assessment to detect primary immunodeficiency syndrome/s. We estimated serum levels of IgG, IgA, IgM, IgE and IgD along with complement C3, C4, and C5 assay. Absolute lymphocyte count was obtained from an automated three-part cell counter. Flow cytometry was used to enumerate the following lymphocyte subsets: T Cell (CD3, CD4, CD8), B cell (CD19/CD20), and Natural killer cells (CD16 and CD56). Cases were followed for 6 months. Modified Barthel Index was used as a measure of disability. RESULTS We included 55 cases with tuberculous meningitis and 30 healthy controls. We notedthat among immune parameters, absolute lymphocyte count and CD4 T-cell count in the tuberculous meningitis group was lower; higher serum IgG levels were noted in the poor outcome group. On multivariate regression analysis, none of the immunological, clinical or radiological features were found to predict a poor outcome. CONCLUSION Host's immune factors contribute to the pathogenesis of tuberculous meningitis. Absolute lymphocyte count and CD4+ T-cell count were lower in tuberculous meningitis cases. Higher serum IgG levels may be associated with a poor outcome. A study with a larger sample size is needed to confirm our findings.
Collapse
Affiliation(s)
- Abhishek Shridhar
- Department of Neurology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Ravindra Kumar Garg
- Department of Neurology, King George Medical University, Lucknow, Uttar Pradesh, India.
| | - Imran Rizvi
- Department of Neurology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Mili Jain
- Department of Pathology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Wahid Ali
- Department of Pathology, King George Medical University, Lucknow, Uttar Pradesh, India
| | | | - Neeraj Kumar
- Department of Neurology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Praveen Kumar Sharma
- Department of Neurology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Rajesh Verma
- Department of Neurology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Ravi Uniyal
- Department of Neurology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Shweta Pandey
- Department of Neurology, King George Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
28
|
Bohrer AC, Castro E, Hu Z, Queiroz AT, Tocheny CE, Assmann M, Sakai S, Nelson C, Baker PJ, Ma H, Wang L, Zilu W, du Bruyn E, Riou C, Kauffman KD, Moore IN, Del Nonno F, Petrone L, Goletti D, Martineau AR, Lowe DM, Cronan MR, Wilkinson RJ, Barry CE, Via LE, Barber DL, Klion AD, Andrade BB, Song Y, Wong KW, Mayer-Barber KD. Eosinophils are part of the granulocyte response in tuberculosis and promote host resistance in mice. J Exp Med 2021; 218:e20210469. [PMID: 34347010 PMCID: PMC8348215 DOI: 10.1084/jem.20210469] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/16/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Host resistance to Mycobacterium tuberculosis (Mtb) infection requires the activities of multiple leukocyte subsets, yet the roles of the different innate effector cells during tuberculosis are incompletely understood. Here we uncover an unexpected association between eosinophils and Mtb infection. In humans, eosinophils are decreased in the blood but enriched in resected human tuberculosis lung lesions and autopsy granulomas. An influx of eosinophils is also evident in infected zebrafish, mice, and nonhuman primate granulomas, where they are functionally activated and degranulate. Importantly, using complementary genetic models of eosinophil deficiency, we demonstrate that in mice, eosinophils are required for optimal pulmonary bacterial control and host survival after Mtb infection. Collectively, our findings uncover an unexpected recruitment of eosinophils to the infected lung tissue and a protective role for these cells in the control of Mtb infection in mice.
Collapse
Affiliation(s)
- Andrea C. Bohrer
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ehydel Castro
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Zhidong Hu
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Tuberculosis Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| | - Artur T.L. Queiroz
- The KAB group, Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador Brazil
| | - Claire E. Tocheny
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Maike Assmann
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Shunsuke Sakai
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Christine Nelson
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Paul J. Baker
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hui Ma
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Tuberculosis Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| | - Lin Wang
- Tuberculosis Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wen Zilu
- Tuberculosis Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Elsa du Bruyn
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Catherine Riou
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Keith D. Kauffman
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Tuberculosis Imaging Program
- Tuberculosis Imaging Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ian N. Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Franca Del Nonno
- Pathology Unit, National Institute for Infectious Diseases “L. Spallanzani,” Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Linda Petrone
- Translational Research Unit, Department of Epidemiology and Preclinical Research National Institute for Infectious Diseases, Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research National Institute for Infectious Diseases, Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Adrian R. Martineau
- Institute of Immunity and Transplantation, University College London, London, UK
| | - David M. Lowe
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Mark R. Cronan
- In Vivo Cell Biology of Infection Unit, Max Planck Institute for Infection Biology, Berlin, Germany
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC
| | - Robert J. Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Department of Infectious Diseases, Imperial College London, UK
- Francis Crick Institute, London, UK
| | - Clifton E. Barry
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Laura E. Via
- Tuberculosis Imaging Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Daniel L. Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Amy D. Klion
- Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Bruno B. Andrade
- The KAB group, Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador Brazil
| | - Yanzheng Song
- Tuberculosis Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ka-Wing Wong
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Tuberculosis Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
29
|
Petruccioli E, Petrone L, Chiacchio T, Farroni C, Cuzzi G, Navarra A, Vanini V, Massafra U, Lo Pizzo M, Guggino G, Caccamo N, Cantini F, Palmieri F, Goletti D. Mycobacterium tuberculosis Immune Response in Patients With Immune-Mediated Inflammatory Disease. Front Immunol 2021; 12:716857. [PMID: 34447382 PMCID: PMC8382688 DOI: 10.3389/fimmu.2021.716857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/20/2021] [Indexed: 01/09/2023] Open
Abstract
Subjects with immune-mediated inflammatory diseases (IMID), such as rheumatoid arthritis (RA), have an intrinsic higher probability to develop active-tuberculosis (TB) compared to the general population. The risk ranges from 2.0 to 8.9 in RA patients not receiving therapies. According to the WHO, the RA prevalence varies between 0.3% and 1% and is more common in women and in developed countries. Therefore, the identification and treatment of TB infection (TBI) in this fragile population is important to propose the TB preventive therapy. We aimed to study the M. tuberculosis (Mtb) specific T-cell response to find immune biomarkers of Mtb burden or Mtb clearance in patients with different TB status and different risk to develop active-TB disease. We enrolled TBI subjects as example of Mtb-containment, the active-TB as example of a replicating Mtb status, and the TBI-IMID as fragile population. To study the Mtb-specific response in a condition of possible Mtb sterilization, we longitudinally enrolled TBI subjects and active-TB patients before and after TB therapy. Peripheral blood mononuclear cells were stimulated overnight with Mtb peptides contained in TB1- and TB2-tubes of the Quantiferon-Plus kit. Then, we characterized by cytometry the Mtb-specific CD4 and CD8 T cells. In TBI-IMID, the TB therapy did not affect the ability of CD4 T cells to produce interferon-γ, tumor necrosis factor-α, and interleukin-2, their functional status, and their phenotype. The TB therapy determined a contraction of the triple functional CD4 T cells of the TBI subjects and active-TB patients. The CD45RA- CD27+ T cells stood out as a main subset of the Mtb-specific response in all groups. Before the TB-preventive therapy, the TBI subjects had higher proportion of Mtb-specific CD45RA-CD27+CD4+ T cells and the active-TB subjects had higher proportion of Mtb-specific CD45RA-CD27-CD4+ T cells compared to other groups. The TBI-IMID patients showed a phenotype similar to TBI, suggesting that the type of IMID and the IMID therapy did not affect the activation status of Mtb-specific CD4 T cells. Future studies on a larger and better-stratified TBI-IMID population will help to understand the change of the Mtb-specific immune response over time and to identify possible immune biomarkers of Mtb-containment or active replication.
Collapse
Affiliation(s)
- Elisa Petruccioli
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Teresa Chiacchio
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Chiara Farroni
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Assunta Navarra
- Clinical Epidemiology Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
- UOS Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Umberto Massafra
- Department of Internal Medicine, S. Pietro Fatebenefratelli Hospital, Rome, Italy
| | - Marianna Lo Pizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section-University of Palermo, Palermo, Italy
| | - Giuliana Guggino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section-University of Palermo, Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Fabrizio Cantini
- Rheumatology Department, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Fabrizio Palmieri
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| |
Collapse
|
30
|
Tippalagama R, Singhania A, Dubelko P, Lindestam Arlehamn CS, Crinklaw A, Pomaznoy M, Seumois G, deSilva AD, Premawansa S, Vidanagama D, Gunasena B, Goonawardhana NDS, Ariyaratne D, Scriba TJ, Gilman RH, Saito M, Taplitz R, Vijayanand P, Sette A, Peters B, Burel JG. HLA-DR Marks Recently Divided Antigen-Specific Effector CD4 T Cells in Active Tuberculosis Patients. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:523-533. [PMID: 34193602 PMCID: PMC8516689 DOI: 10.4049/jimmunol.2100011] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/09/2021] [Indexed: 01/07/2023]
Abstract
Upon Ag encounter, T cells can rapidly divide and form an effector population, which plays an important role in fighting acute infections. In humans, little is known about the molecular markers that distinguish such effector cells from other T cell populations. To address this, we investigated the molecular profile of T cells present in individuals with active tuberculosis (ATB), where we expect Ag encounter and expansion of effector cells to occur at higher frequency in contrast to Mycobacterium tuberculosis-sensitized healthy IGRA+ individuals. We found that the frequency of HLA-DR+ cells was increased in circulating CD4 T cells of ATB patients, and was dominantly expressed in M. tuberculosis Ag-specific CD4 T cells. We tested and confirmed that HLA-DR is a marker of recently divided CD4 T cells upon M. tuberculosis Ag exposure using an in vitro model examining the response of resting memory T cells from healthy IGRA+ to Ags. Thus, HLA-DR marks a CD4 T cell population that can be directly detected ex vivo in human peripheral blood, whose frequency is increased during ATB disease and contains recently divided Ag-specific effector T cells. These findings will facilitate the monitoring and study of disease-specific effector T cell responses in the context of ATB and other infections.
Collapse
Affiliation(s)
- Rashmi Tippalagama
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
| | - Akul Singhania
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
| | - Paige Dubelko
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
| | | | - Austin Crinklaw
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
| | - Mikhail Pomaznoy
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
| | - Gregory Seumois
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
| | - Aruna D deSilva
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
- Faculty of Medicine, General Sir John Kotelawala Defense University, Ratmalana, Sri Lanka
| | | | | | - Bandu Gunasena
- National Hospital for Respiratory Diseases, Welisara, Sri Lanka
| | | | - Dinuka Ariyaratne
- Faculty of Medicine, General Sir John Kotelawala Defense University, Ratmalana, Sri Lanka
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Robert H Gilman
- Johns Hopkins School of Public Health, Baltimore, MD
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Randy Taplitz
- Department of Medicine, City of Hope National Medical Center, Duarte, CA; and
| | - Pandurangan Vijayanand
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Alessandro Sette
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Bjoern Peters
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA;
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Julie G Burel
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA;
| |
Collapse
|
31
|
Morgan J, Muskat K, Tippalagama R, Sette A, Burel J, Lindestam Arlehamn CS. Classical CD4 T cells as the cornerstone of antimycobacterial immunity. Immunol Rev 2021; 301:10-29. [PMID: 33751597 PMCID: PMC8252593 DOI: 10.1111/imr.12963] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Tuberculosis is a significant health problem without an effective vaccine to combat it. A thorough understanding of the immune response and correlates of protection is needed to develop a more efficient vaccine. The immune response against Mycobacterium tuberculosis (Mtb) is complex and involves all aspects of the immune system, however, the optimal protective, non‐pathogenic T cell response against Mtb is still elusive. This review will focus on discussing CD4 T cell immunity against mycobacteria and its importance in Mtb infection with a primary focus on human studies. We will in particular discuss the large heterogeneity of immune cell subsets that have been revealed by recent immunological investigations at an unprecedented level of detail. These studies have identified specific classical CD4 T cell subsets important for immune responses against Mtb in various states of infection. We further discuss the functional attributes that have been linked to the various subsets such as upregulation of activation markers and cytokine production. Another important topic to be considered is the antigenic targets of Mtb‐specific immune responses, and how antigen reactivity is influenced by both disease state and environmental exposure(s). These are key points for both vaccines and immune diagnostics development. Ultimately, these factors are holistically considered in the definition and investigations of what are the correlates on protection and resolution of disease.
Collapse
Affiliation(s)
- Jeffrey Morgan
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kaylin Muskat
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Rashmi Tippalagama
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Julie Burel
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | |
Collapse
|