1
|
Perez-Caballero L, Guillot de Suduiraut I, Romero LR, Grosse J, Sandi C, Andero R. Corticosterone administration immediately after peripuberty stress exposure does not prevent protracted stress-induced behavioral alterations. Psychoneuroendocrinology 2024; 170:107164. [PMID: 39146600 DOI: 10.1016/j.psyneuen.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/11/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024]
Abstract
Stress-related disorders are commonly associated with abnormalities in hypothalamic-pituitary-adrenal (HPA) axis activity. Preliminary studies with cortisol administration in the aftermath of trauma suggest that this HPA axis hormone can potentially prevent maladaptive behavioral and biological stress responses. However, the efficacy of glucocorticoid administration during the peripuberty period has not been tested yet, although this lifetime is a critical time window in brain development and is highly sensitive to the harmful effects of stress. To further examine the short and long-lasting impact of glucocorticoids treatment given during the post-peripubertal stress period, the present study utilized a rat model of peripubertal stress-induced psychopathology and animals were subjected to a battery of tests to assess anxiety-like behaviors, exploratory behavior and reactivity to novelty at late adolescence and sociability, anhedonia and stress coping behaviors at adulthood. All the experiments were performed in males and females to evaluate the potential behavioral sex differences. Overall, our results demonstrated that rats exposed to peripubertal stress show decreased sociability in adulthood without differences in anxiety and depression-like behaviors. Moreover, this study shows that the administration of corticosterone after stress exposure at peripuberty does not prevent stress-induced behavioral alterations. However, we observed that some stress-induced behavioural alterations and corticosterone responses are sex-specific. Thus, the data obtained highlight that delineating sex differences in stress-related studies may ultimately contribute to the development of effective therapeutic interventions for each sex.
Collapse
Affiliation(s)
- Laura Perez-Caballero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Isabelle Guillot de Suduiraut
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Synapsy Center for Neuroscience and Mental Health Research, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Leire R Romero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Synapsy Center for Neuroscience and Mental Health Research, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Synapsy Center for Neuroscience and Mental Health Research, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Raul Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid 28029, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; ICREA, Pg Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
2
|
Alcaide J, Gramuntell Y, Klimczak P, Bueno-Fernandez C, Garcia-Verellen E, Guicciardini C, Sandi C, Castillo-Gómez E, Crespo C, Perez-Rando M, Nacher J. Long term effects of peripubertal stress on the thalamic reticular nucleus of female and male mice. Neurobiol Dis 2024; 200:106642. [PMID: 39173845 DOI: 10.1016/j.nbd.2024.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
Adverse experiences during infancy and adolescence have an important and enduring effect on the brain and are predisposing factors for mental disorders, particularly major depression. This impact is particularly notable in regions with protracted development, such as the prefrontal cortex. The inhibitory neurons of this cortical region are altered by peripubertal stress (PPS), particularly in female mice. In this study we have explored whether the inhibitory circuits of the thalamus are impacted by PPS in male and female mice. This diencephalic structure, as the prefrontal cortex, also completes its development during postnatal life and is affected by adverse experiences. The long-term changes induced by PPS were exclusively found in adult female mice. We have found that PPS increases depressive-like behavior and induces changes in parvalbumin-expressing (PV+) cells of the thalamic reticular nucleus (TRN). We observed reductions in the volume of the TRN, together with those of parameters related to structures/molecules that regulate the plasticity and connectivity of PV+ cells: perineuronal nets, matricellular structures surrounding PV+ neurons, and the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). The expression of the GluN1, but not of GluN2C, NMDA receptor subunit was augmented in the TRN after PPS. An increase in the fluorescence intensity of PV+ puncta was also observed in the synaptic output of TRN neurons in the lateral posterior thalamic nucleus. These results demonstrate that the inhibitory circuits of the thalamus, as those of the prefrontal cortex, are vulnerable to the effects of aversive experiences during early life, particularly in females. This vulnerability is probably related to the protracted development of the TRN and might contribute to the development of psychiatric disorders.
Collapse
Affiliation(s)
- Julia Alcaide
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Yaiza Gramuntell
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Patrycja Klimczak
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Clara Bueno-Fernandez
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Erica Garcia-Verellen
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Chiara Guicciardini
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Esther Castillo-Gómez
- Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Department of Medicine, School of Medical Sciences, Universitat Jaume I, Valencia, Spain
| | - Carlos Crespo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Marta Perez-Rando
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain.
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain.
| |
Collapse
|
3
|
Cruz B, Vozella V, Borgonetti V, Bullard R, Bianchi PC, Kirson D, Bertotto LB, Bajo M, Vlkolinsky R, Messing RO, Zorrilla EP, Roberto M. Chemogenetic inhibition of central amygdala CRF-expressing neurons decreases alcohol intake but not trauma-related behaviors in a rat model of post-traumatic stress and alcohol use disorder. Mol Psychiatry 2024; 29:2611-2621. [PMID: 38509197 PMCID: PMC11415545 DOI: 10.1038/s41380-024-02514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are often comorbid. Few treatments exist to reduce comorbid PTSD/AUD. Elucidating the mechanisms underlying their comorbidity could reveal new avenues for therapy. Here, we employed a model of comorbid PTSD/AUD, in which rats were subjected to a stressful shock in a familiar context followed by alcohol drinking. We then examined fear overgeneralization and irritability in these rats. Familiar context stress elevated drinking, increased fear overgeneralization, increased alcohol-related aggressive signs, and elevated peripheral stress hormones. We then examined transcripts of stress- and fear-relevant genes in the central amygdala (CeA), a locus that regulates stress-mediated alcohol drinking. Compared with unstressed rats, stressed rats exhibited increases in CeA transcripts for Crh and Fkbp5 and decreases in transcripts for Bdnf and Il18. Levels of Nr3c1 mRNA, which encodes the glucocorticoid receptor, increased in stressed males but decreased in stressed females. Transcripts of Il18 binding protein (Il18bp), Glp-1r, and genes associated with calcitonin gene-related peptide signaling (Calca, Ramp1, Crlr-1, and Iapp) were unaltered. Crh, but not Crhr1, mRNA was increased by stress; thus, we tested whether inhibiting CeA neurons that express corticotropin-releasing factor (CRF) suppress PTSD/AUD-like behaviors. We used Crh-Cre rats that had received a Cre-dependent vector encoding hM4D(Gi), an inhibitory Designer Receptors Exclusively Activated by Designer Drugs. Chemogenetic inhibition of CeA CRF neurons reduced alcohol intake but not fear overgeneralization or irritability-like behaviors. Our findings suggest that CeA CRF modulates PTSD/AUD comorbidity, and inhibiting CRF neural activity is primarily associated with reducing alcohol drinking but not trauma-related behaviors that are associated with PTSD/AUD.
Collapse
Affiliation(s)
- Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Vittoria Borgonetti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Ryan Bullard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Paula C Bianchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Dean Kirson
- Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Luisa B Bertotto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Roman Vlkolinsky
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Eric P Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA.
| |
Collapse
|
4
|
Sanguino-Gómez J, Krugers HJ. Early-life stress impairs acquisition and retrieval of fear memories: sex-effects, corticosterone modulation, and partial prevention by targeting glucocorticoid receptors at adolescent age. Neurobiol Stress 2024; 31:100636. [PMID: 38883213 PMCID: PMC11177066 DOI: 10.1016/j.ynstr.2024.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/11/2024] [Accepted: 04/20/2024] [Indexed: 06/18/2024] Open
Abstract
The early postnatal period is a sensitive time window that is characterized by several neurodevelopmental processes that define neuronal architecture and function later in life. Here, we examined in young adult mice, using an auditory fear conditioning paradigm, whether stress during the early postnatal period 1) impacts fear acquisition and memory consolidation in male and female mice; 2) alters the fear responsiveness to corticosterone and 3) whether effects of early-life stress (ELS) can be prevented by treating mice with a glucocorticoid (GR) antagonist at adolescence. Male and female mice were exposed to a limited nesting and bedding model of ELS from postnatal day (PND) 2-9 and injected i.p with RU38486 (RU486) at adolescent age (PND 28-30). At two months of age, mice were trained in the fear conditioning (FC) paradigm (with and without post training administration of corticosterone - CORT) and freezing behavior during fear acquisition and contextual and auditory memory retrieval was scored. We observed that ELS impaired fear acquisition specifically in male mice and reduced both contextual and auditory memory retrieval in male and female mice. Acute post-training administration of CORT increased freezing levels during auditory memory retrieval in female mice but reduced freezing levels during the tone presentation in particular in control males. Treatment with RU486 prevented ELS-effects in acquisition in male mice and in females during auditory memory retrieval. In conclusion, this study highlights the long-lasting consequences of early-life stress on fear memory processing and further illustrates 1) the potential of a glucocorticoid antagonist intervention during adolescence to mitigate these effects and 2) the partial modulation of the auditory retrieval upon post training administration of CORT, with all these effects being sex-dependent.
Collapse
Affiliation(s)
| | - Harm J Krugers
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Hori H, Yoshida F, Ishida I, Matsuo J, Ogawa S, Hattori K, Kim Y, Kunugi H. Blood mRNA expression levels of glucocorticoid receptors and FKBP5 are associated with depressive disorder and altered HPA axis. J Affect Disord 2024; 349:244-253. [PMID: 38199409 DOI: 10.1016/j.jad.2024.01.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND While depression has been associated with alterations in the hypothalamic-pituitary adrenal (HPA) axis function, there is still controversy regarding the nature and extent of the dysfunction, such as in the debate about hypercortisolism vs. hypocortisolism. It may therefore be necessary to understand whether and how HPA axis function in depression is linked to mRNA expression of key genes regulating this system. METHODS We studied 163 depressed outpatients, most of whom were chronically ill, and 181 healthy controls. Blood mRNA expression levels of NR3C1 (including GRα, GRβ, and GR-P isoforms), FKBP4, and FKBP5 were measured at baseline. HPA axis feedback sensitivity was measured by the dexamethasone (Dex)/corticotropin-releasing hormone (CRH) test. The association between mRNA expression levels and HPA axis feedback sensitivity was examined. RESULTS Compared to controls, patients showed significantly higher expression of GRα and lower expression of FKBP5, and higher post-Dex cortisol levels, even after controlling for age and sex. FKBP5 expression was significantly positively correlated with cortisol levels in patients, while GRα expression was significantly negatively correlated with cortisol levels in controls. LIMITATIONS Most patients were taking psychotropic medications. The large number of correlation tests may have caused type I errors. CONCLUSIONS The tripartite relationship between depression, mRNA expression of GR and FKBP5, and HPA axis function suggests that the altered gene expression affects HPA axis dysregulation and, as a result, impacts the development and/or illness course of depressive disorder. The combination of increased GRα expression and decreased FKBP5 expression may serve as a biomarker for chronic depression.
Collapse
Affiliation(s)
- Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Fuyuko Yoshida
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ikki Ishida
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Junko Matsuo
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shintaro Ogawa
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoshiharu Kim
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
6
|
de Kloet ER, Joëls M. The cortisol switch between vulnerability and resilience. Mol Psychiatry 2024; 29:20-34. [PMID: 36599967 DOI: 10.1038/s41380-022-01934-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
In concert with neuropeptides and transmitters, the end products of the hypothalamus-pituitary-adrenal (HPA) axis, the glucocorticoid hormones cortisol and corticosterone (CORT), promote resilience: i.e., the ability to cope with threats, adversity, and trauma. To exert this protective action, CORT activates mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) that operate in a complementary manner -as an on/off switch- to coordinate circadian events, stress-coping, and adaptation. The evolutionary older limbic MR facilitates contextual memory retrieval and supports an on-switch in the selection of stress-coping styles at a low cost. The rise in circulating CORT concentration after stress subsequently activates a GR-mediated off-switch underlying recovery of homeostasis by providing the energy for restraining the primary stress reactions and promoting cognitive control over emotional reactivity. GR activation facilitates contextual memory storage of the experience to enable future stress-coping. Such complementary MR-GR-mediated actions involve rapid non-genomic and slower gene-mediated mechanisms; they are time-dependent, conditional, and sexually dimorphic, and depend on genetic background and prior experience. If coping fails, GR activation impairs cognitive control and promotes emotional arousal which eventually may compromise resilience. Such breakdown of resilience involves a transition to a chronic stress construct, where information processing is crashed; it leads to an imbalanced MR-GR switch and hence increased vulnerability. Novel MR-GR modulators are becoming available that may reset a dysregulated stress response system to reinstate the cognitive flexibility required for resilience.
Collapse
Affiliation(s)
- E Ronald de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, The Netherlands.
- Leiden/Amsterdam Center of Drug Research, Leiden University, Leiden, The Netherlands.
| | - Marian Joëls
- Dept. Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Santos-Silva T, Hazar Ülgen D, Lopes CFB, Guimarães FS, Alberici LC, Sandi C, Gomes FV. Transcriptomic analysis reveals mitochondrial pathways associated with distinct adolescent behavioral phenotypes and stress response. Transl Psychiatry 2023; 13:351. [PMID: 37978166 PMCID: PMC10656500 DOI: 10.1038/s41398-023-02648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Adolescent individuals exhibit great variability in cortical dynamics and behavioral outcomes. The developing adolescent brain is highly sensitive to social experiences and environmental insults, influencing how personality traits emerge. A distinct pattern of mitochondrial gene expression in the prefrontal cortex (PFC) during adolescence underscores the essential role of mitochondria in brain maturation and the development of mental illnesses. Mitochondrial features in certain brain regions account for behavioral differences in adulthood. However, it remains unclear whether distinct adolescent behavioral phenotypes and the behavioral consequences of early adolescent stress exposure in rats are accompanied by changes in PFC mitochondria-related genes and mitochondria respiratory chain capacity. We performed a behavioral characterization during late adolescence (postnatal day, PND 47-50), including naïve animals and a group exposed to stress from PND 31-40 (10 days of footshock and 3 restraint sessions) by z-normalized data from three behavioral domains: anxiety (light-dark box tests), sociability (social interaction test) and cognition (novel-object recognition test). Employing principal component analysis, we identified three clusters: naïve with higher-behavioral z-score (HBZ), naïve with lower-behavioral z-score (LBZ), and stressed animals. Genome-wide transcriptional profiling unveiled differences in the expression of mitochondria-related genes in both naïve LBZ and stressed animals compared to naïve HBZ. Genes encoding subunits of oxidative phosphorylation complexes were significantly down-regulated in both naïve LBZ and stressed animals and positively correlated with behavioral z-score of phenotypes. Our network topology analysis of mitochondria-associated genes found Ndufa10 and Cox6a1 genes as central identifiers for naïve LBZ and stressed animals, respectively. Through high-resolution respirometry analysis, we found that both naïve LBZ and stressed animals exhibited a reduced prefrontal phosphorylation capacity and redox dysregulation. Our findings identify an association between mitochondrial features and distinct adolescent behavioral phenotypes while also underscoring the detrimental functional consequences of adolescent stress on the PFC.
Collapse
Affiliation(s)
- Thamyris Santos-Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Doğukan Hazar Ülgen
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Caio Fábio Baeta Lopes
- Ribeirão Preto Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luciane Carla Alberici
- Ribeirão Preto Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carmen Sandi
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
8
|
de Kloet ER. Glucocorticoid feedback paradox: a homage to Mary Dallman. Stress 2023; 26:2247090. [PMID: 37589046 DOI: 10.1080/10253890.2023.2247090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
As the end product of the hypothalamus-pituitary-adrenal (HPA) axis, the glucocorticoid hormones cortisol and corticosterone coordinate circadian activities, stress-coping, and adaptation to change. For this purpose, the hormone promotes energy metabolism and controls defense reactions in the body and brain. This life-sustaining action exerted by glucocorticoids occurs in concert with the autonomic nervous and immune systems, transmitters, growth factors/cytokines, and neuropeptides. The current contribution will focus on the glucocorticoid feedback paradox in the HPA-axis: the phenomenon that stress responsivity remains resilient if preceded by stress-induced secretion of glucocorticoid hormone, but not if this hormone is previously administered. Furthermore, in animal studies, the mixed progesterone/glucocorticoid antagonist RU486 or mifepristone switches to an apparent partial agonist upon repeated administration. To address these enigmas several interesting phenomena are highlighted. These include the conditional nature of the excitation/inhibition balance in feedback regulation, the role of glucose as a determinant of stress responsivity, and the potential of glucocorticoids in resetting the stress response system. The analysis of the feedback paradox provides also a golden opportunity to review the progress in understanding the role of glucocorticoid hormone in resilience and vulnerability during stress, the science that was burned deeply in Mary Dallman's emotions.
Collapse
Affiliation(s)
- Edo Ronald de Kloet
- Department of Clinical Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Linsen F, Broeder C, Sep MSC, Verhoeven JE, Bet PM, Penninx BWJH, Meijer OC, Vinkers CH. Glucocorticoid Receptor (GR) antagonism as disease-modifying treatment for MDD with childhood trauma: protocol of the RESET-medication randomized controlled trial. BMC Psychiatry 2023; 23:331. [PMID: 37170109 PMCID: PMC10173560 DOI: 10.1186/s12888-023-04830-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a heterogeneous psychiatric disorder. Childhood trauma (CT, emotional/physical/sexual abuse or neglect before the age of 18) is one of the largest and most consistent risk factors for development and poor course of MDD. Overactivity of the HPA-axis and the stress hormone cortisol is thought to play a role in the vulnerability for MDD following exposure to CT. Rodent experiments showed that antagonism of the glucocorticoid receptor (GR) at adult age reversed the effects of early life stress. Similarly, we aim to target MDD in individuals with CT exposure using the GR antagonist mifepristone. METHODS The RESET-medication study is a placebo-controlled double-blind randomized controlled trial (RCT) which aims to include 158 adults with MDD and CT. Participants will be randomized (1:1) to a 7-day treatment arm of mifepristone (1200 mg/day) or a control arm (placebo). Participants are allowed to receive usual care for MDD including antidepressants. Measurements include three face-to-face meetings at baseline (T0), day 8 (T1), week 6 (T2), and two online follow-up meetings at 12 weeks (T3) and 6 months (T4). A subgroup of participants (N = 80) are included in a fMRI sub-study (T0, T2). The main study outcome will be depressive symptom severity as measured with the Inventory of Depressive Symptomatology-Self Rated (IDS-SR) at T2. Secondary outcomes include, among others, depressive symptom severity at other time points, disability, anxiety, sleep and subjective stress. To address underlying mechanisms mifepristone plasma levels, cortisol, inflammation, epigenetic regulation and fMRI measurements are obtained. DISCUSSION The RESET-medication study will provide clinical evidence whether GR antagonism is a disease-modifying treatment for MDD in individuals exposed to CT. If effective, this hypothesis-driven approach may extend to other psychiatric disorders where CT plays an important role. TRIAL REGISTRATION The trial protocol has been registered 01-02-2022 on ClinicalTrials.gov with ID "NCT05217758".
Collapse
Affiliation(s)
- F Linsen
- Department of Psychiatry, Amsterdam University Medical Center Location Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands.
- Department of Anatomy & Neurosciences, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands.
| | - C Broeder
- Department of Psychiatry, Amsterdam University Medical Center Location Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Department of Anatomy & Neurosciences, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - M S C Sep
- Department of Psychiatry, Amsterdam University Medical Center Location Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
- GGZ inGeest Mental Health Care, Amsterdam, 1081 HJ, The Netherlands
| | - J E Verhoeven
- Department of Psychiatry, Amsterdam University Medical Center Location Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
- GGZ inGeest Mental Health Care, Amsterdam, 1081 HJ, The Netherlands
| | - P M Bet
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, the Netherlands
| | - B W J H Penninx
- Department of Psychiatry, Amsterdam University Medical Center Location Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Amsterdam Public Health, Mental Health Program and Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands
| | - O C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, 2333 ZA, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, 2333 ZA, the Netherlands
| | - C H Vinkers
- Department of Psychiatry, Amsterdam University Medical Center Location Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Department of Anatomy & Neurosciences, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
- GGZ inGeest Mental Health Care, Amsterdam, 1081 HJ, The Netherlands
- Amsterdam Public Health, Mental Health Program and Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Mancini GF, Meijer OC, Campolongo P. Stress in adolescence as a first hit in stress-related disease development: Timing and context are crucial. Front Neuroendocrinol 2023; 69:101065. [PMID: 37001566 DOI: 10.1016/j.yfrne.2023.101065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 04/06/2023]
Abstract
The two-hit stress model predicts that exposure to stress at two different time-points in life may increase or decrease the risk of developing stress-related disorders later in life. Most studies based on the two-hit stress model have investigated early postnatal stress as the first hit with adult stress as the second hit. Adolescence, however, represents another highly sensitive developmental window during which exposure to stressful events may affect programming outcomes following exposure to stress in adulthood. Here, we discuss the programming effects of different types of stressors (social and nonsocial) occurring during adolescence (first hit) and how such stressors affect the responsiveness toward an additional stressor occurring during adulthood (second hit) in rodents. We then provide a comprehensive overview of the potential mechanisms underlying interindividual and sex differences in the resilience/susceptibility to developing stress-related disorders later in life when stress is experienced in two different life stages.
Collapse
Affiliation(s)
- Giulia F Mancini
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Patrizia Campolongo
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; Neuropsychopharmacology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy.
| |
Collapse
|
11
|
Meijer M, Franke B, Sandi C, Klein M. Epigenome-wide DNA methylation in externalizing behaviours: A review and combined analysis. Neurosci Biobehav Rev 2023; 145:104997. [PMID: 36566803 DOI: 10.1016/j.neubiorev.2022.104997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
DNA methylation (DNAm) is one of the most frequently studied epigenetic mechanisms facilitating the interplay of genomic and environmental factors, which can contribute to externalizing behaviours and related psychiatric disorders. Previous epigenome-wide association studies (EWAS) for externalizing behaviours have been limited in sample size, and, therefore, candidate genes and biomarkers with robust evidence are still lacking. We 1) performed a systematic literature review of EWAS of attention-deficit/hyperactivity disorder (ADHD)- and aggression-related behaviours conducted in peripheral tissue and cord blood and 2) combined the most strongly associated DNAm sites observed in individual studies (p < 10-3) to identify candidate genes and biological systems for ADHD and aggressive behaviours. We observed enrichment for neuronal processes and neuronal cell marker genes for ADHD. Astrocyte and granulocytes cell markers among genes annotated to DNAm sites were relevant for both ADHD and aggression-related behaviours. Only 1 % of the most significant epigenetic findings for ADHD/ADHD symptoms were likely to be directly explained by genetic factors involved in ADHD. Finally, we discuss how the field would greatly benefit from larger sample sizes and harmonization of assessment instruments.
Collapse
Affiliation(s)
- Mandy Meijer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory of Behavioural Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carmen Sandi
- Laboratory of Behavioural Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, University of California, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
12
|
Bagues A, Girón R, Abalo R, Goicoechea C, Martín-Fontelles MI, Sánchez-Robles EM. SHORT-TERM STRESS SIGNIFICANTLY DECREASES MORPHINE ANALGESIA IN TRIGEMINAL BUT NOT IN SPINAL INNERVATED AREAS IN RATS. Behav Brain Res 2022; 435:114046. [PMID: 35933048 DOI: 10.1016/j.bbr.2022.114046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/15/2022]
Abstract
Plenty information exists regarding the effects of chronic stress, although few data exist on the effects of short-lasting stressors, which would mimic daily challenges. Differences in craniofacial and spinal nociception have been observed, thus those observations obtained in spinally innervated areas cannot be directly applied to the orofacial region. Although, opioids are considered amongst the most effective analgesics, their use is sometimes hampered by the constipation they induce. Thus, our aims were to study if a short-lasting stressor, forced swim stress (FSS), modifies nociception, morphine antinociception and constipation in rats. Animals were submitted to 10-20min of FSS for three days, nociception and gastrointestinal transit were studied 24h after the last swimming session. Nociception and morphine (0.6-5mg/kg) antinociception were evaluated in the formalin and hypertonic saline tests in the orofacial area and limbs. Morphine-induced modifications in the GI transit were studied through radiographic techniques. Naloxone was administered, before each swimming session, to analyse the involvement of the endogenous opioid system on the effect of stress. Overall, stress did not alter nociception, although interestingly it reduced the effect of morphine in the orofacial tests and in the inflammatory phase of the formalin tests. Naloxone antagonized the effect of stress and normalized the effect of morphine. Stress did not modify the constipation induced by morphine. Opioid treatment may be less effective under a stressful situation, whilst adverse effects, such as constipation, are maintained. The prevention of stress may improve the level of opioid analgesia. Keywords.
Collapse
Affiliation(s)
- Ana Bagues
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada I+D+i al Instituto de Química Médica (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM).
| | - Rocío Girón
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada I+D+i al Instituto de Química Médica (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM).
| | - Raquel Abalo
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada I+D+i al Instituto de Química Médica (CSIC), Alcorcón, Spain; High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC); Working Group of Basic Sciences in Pain and Analgesia of the Sociedad Española del Dolor.
| | - Carlos Goicoechea
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada I+D+i al Instituto de Química Médica (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM); Working Group of Basic Sciences in Pain and Analgesia of the Sociedad Española del Dolor.
| | - Ma Isabel Martín-Fontelles
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada I+D+i al Instituto de Química Médica (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM); Working Group of Basic Sciences in Pain and Analgesia of the Sociedad Española del Dolor.
| | - Eva Ma Sánchez-Robles
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada I+D+i al Instituto de Química Médica (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM).
| |
Collapse
|
13
|
Abstract
The effects of glucocorticoids on aggression can be conceptualized based on its mechanisms of action. These hormones can affect cell function non-genomically within minutes, primarily by affecting the cell membrane. Overall, such effects are activating and promote both metabolic preparations for the fight and aggressive behavior per se. Chronic increases in glucocorticoids activate genomic mechanisms and are depressing overall, including the inhibition of aggressive behavior. Finally, excessive stressors trigger epigenetic phenomena that have a large impact on brain programming and may also induce the reprogramming of neural functions. These induce qualitative changes in aggression that are deemed abnormal in animals, and psychopathological and criminal in humans. This review aims at deciphering the roles of glucocorticoids in aggression control by taking in view the three mechanisms of action often categorized as acute, chronic, and toxic stress based on the duration and the consequences of the stress response. It is argued that the tripartite way of influencing aggression can be recognized in all three animal, psychopathological, and criminal aggression and constitute a framework of mechanisms by which aggressive behavior adapts to short-term and log-term changes in the environment.
Collapse
|
14
|
de Kloet ER. Brain mineralocorticoid and glucocorticoid receptor balance in neuroendocrine regulation and stress-related psychiatric etiopathologies. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 24:100352. [PMID: 38037568 PMCID: PMC10687720 DOI: 10.1016/j.coemr.2022.100352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cortisol and corticosterone (CORT) coordinate circadian events and manage the stress response by differential activation of two complementary brain receptor systems, i.e., the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), which mediate rapid non-genomic and slow genomic actions. Several recent discoveries are highlighted from molecular fine-tuning of the MR/GR balance by FKBP5 to CORTs role in neural network regulation underlying stress adaptation in emotional, cognitive, and social domains of behavior. The data suggest that MR mediates CORT action on risk assessment, social interaction, and response selection, while GR activation promotes memory consolidation and behavioral adaptation; there are also sex differences in CORT action. New evidence suggests that targeting the MR/GR balance resets a dysregulated stress response system and promotes resilience.
Collapse
Affiliation(s)
- Edo Ronald de Kloet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, University of Leiden, Leiden, the Netherlands
| |
Collapse
|
15
|
Daskalakis NP, Meijer OC, de Kloet ER. Mineralocorticoid receptor and glucocorticoid receptor work alone and together in cell-type-specific manner: Implications for resilience prediction and targeted therapy. Neurobiol Stress 2022; 18:100455. [PMID: 35601687 PMCID: PMC9118500 DOI: 10.1016/j.ynstr.2022.100455] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
'You can't roll the clock back and reverse the effects of experiences' Bruce McEwen used to say when explaining how allostasis labels the adaptive process. Here we will for once roll the clock back to the times that the science of the glucocorticoid hormone was honored with a Nobel prize and highlight the discovery of their receptors in the hippocampus as inroad to its current status as master regulator in control of stress coping and adaptation. Glucocorticoids operate in concert with numerous neurotransmitters, neuropeptides, and other hormones with the aim to facilitate processing of information in the neurocircuitry of stress, from anticipation and perception of a novel experience to behavioral adaptation and memory storage. This action, exerted by the glucocorticoids, is guided by two complementary receptor systems, mineralocorticoid receptors (MR) and glucocorticoid receptors (GR), that need to be balanced for a healthy stress response pattern. Here we discuss the cellular, neuroendocrine, and behavioral studies underlying the MR:GR balance concept, highlight the relevance of hypothalamic-pituitary-adrenal (HPA) -axis patterns and note the limited understanding yet of sexual dimorphism in glucocorticoid actions. We conclude with the prospect that (i) genetically and epigenetically regulated receptor variants dictate cell-type-specific transcriptome signatures of stress-related neuropsychiatric symptoms and (ii) selective receptor modulators are becoming available for more targeted treatment. These two new developments may help to 'restart the clock' with the prospect to support resilience.
Collapse
Affiliation(s)
| | - Onno C. Meijer
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - E. Ron de Kloet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
16
|
Nicolas C, Hofford RS, Dugast E, Lardeux V, Belujon P, Solinas M, Bardo MT, Thiriet N. Prevention of relapse to methamphetamine self-administration by environmental enrichment: involvement of glucocorticoid receptors. Psychopharmacology (Berl) 2022; 239:1009-1018. [PMID: 33768375 DOI: 10.1007/s00213-021-05770-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/21/2021] [Indexed: 12/17/2022]
Abstract
RATIONALE In rodents, environmental enrichment (EE) produces both preventive and curative effects on drug addiction, and this effect is believed to depend at least in part on EE's actions on the stress system. OBJECTIVES This study investigated whether exposure to EE during abstinence reduces methamphetamine seeking after extended self-administration. In addition, we investigated whether these effects are associated with alterations in the levels of glucocorticoid receptors (GR) in the brain and whether administration of GR antagonists blocks methamphetamine relapse. METHODS We allowed rats to self-administer methamphetamine for twenty 14-h sessions. After 3 weeks of abstinence either in standard (SE) or EE conditions, we measured methamphetamine seeking in a single 3-h session. Then, we used western blot techniques to measure GR levels in several brain areas. Finally, in an independent group of rats, after methamphetamine self-administration and abstinence in SE, we administered the GR antagonist mifepristone, and we investigated methamphetamine seeking. RESULTS Exposure to EE reduced methamphetamine seeking and reversed methamphetamine-induced increases in GR levels in the ventral and dorsal hippocampus. In addition, EE decreased GR levels in the amygdala in drug-naive animals, but this effect was prevented by previous exposure to methamphetamine. Administration of mifepristone significantly decreased methamphetamine seeking. CONCLUSIONS The anti-craving effects of EE are paralleled by restoration of methamphetamine-induced dysregulation of GR in the hippocampus. These results provide support for the hypothesis that the effect of EE on methamphetamine relapse is at least in part mediated by EE's action on the brain stress system.
Collapse
Affiliation(s)
- Céline Nicolas
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Rebecca S Hofford
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Emilie Dugast
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France.,CHU de Poitiers, Poitiers, France
| | - Virginie Lardeux
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pauline Belujon
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France.
| |
Collapse
|
17
|
Sanacora G, Yan Z, Popoli M. The stressed synapse 2.0: pathophysiological mechanisms in stress-related neuropsychiatric disorders. Nat Rev Neurosci 2022; 23:86-103. [PMID: 34893785 DOI: 10.1038/s41583-021-00540-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/25/2022]
Abstract
Stress is a primary risk factor for several neuropsychiatric disorders. Evidence from preclinical models and clinical studies of depression have revealed an array of structural and functional maladaptive changes, whereby adverse environmental factors shape the brain. These changes, observed from the molecular and transcriptional levels through to large-scale brain networks, to the behaviours reveal a complex matrix of interrelated pathophysiological processes that differ between sexes, providing insight into the potential underpinnings of the sex bias of neuropsychiatric disorders. Although many preclinical studies use chronic stress protocols, long-term changes are also induced by acute exposure to traumatic stress, opening a path to identify determinants of resilient versus susceptible responses to both acute and chronic stress. Epigenetic regulation of gene expression has emerged as a key player underlying the persistent impact of stress on the brain. Indeed, histone modification, DNA methylation and microRNAs are closely involved in many aspects of the stress response and reveal the glutamate system as a key player. The success of ketamine has stimulated a whole line of research and development on drugs directly or indirectly targeting glutamate function. However, the challenge of translating the emerging understanding of stress pathophysiology into effective clinical treatments remains a major challenge.
Collapse
Affiliation(s)
- Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Department of Pharmaceutical Sciences, University of Milano, Milan, Italy.
| |
Collapse
|
18
|
de Azevedo Camin N, Andrey Ariza Traslaviña G, Cleber Gama de Barcellos Filho P, Rodrigues Franci C. Early post-stress administration of MR or GR antagonist in adolescent female rats restored anxiogenic-like behavior and modified the HPA axis response in the adulthood. Brain Res 2022; 1782:147833. [DOI: 10.1016/j.brainres.2022.147833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/09/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022]
|
19
|
Cordero MI, Stenz L, Moser DA, Rusconi Serpa S, Paoloni-Giacobino A, Schechter DS. The relationship of maternal and child methylation of the glucocorticoid receptor NR3C1 during early childhood and subsequent child psychopathology at school-age in the context of maternal interpersonal violence-related post-traumatic stress disorder. Front Psychiatry 2022; 13:919820. [PMID: 36061270 PMCID: PMC9437341 DOI: 10.3389/fpsyt.2022.919820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Interpersonal violent (IPV) experiences when they begin in childhood and continue in various forms during adulthood often lead to chronic post-traumatic stress disorder (PTSD) that is associated in multiple studies with hypocortisolism and lower percentage of methylation of the promoter region of the gene coding for the glucocorticoid receptor (NR3C1). This prospective, longitudinal study examined the relationship of NR3C1 methylation among mothers with IPV-related PTSD and their toddlers and then looked at the relationship of maternal NR3C1 methylation and child psychopathology at school age. METHODS Forty-eight mothers were evaluated for life-events history and post-traumatic stress disorder via structured clinical interview when their children were ages 12-42 months (mean age 26.7 months, SD 8.8). Their children's psychopathology in terms of internalizing symptoms and externalizing behaviors was evaluated using the Child Behavior Checklist at ages 5-9 years (mean age 7 years, SD 1.1). Percentage of methylation for the NR3C1 gene promoter region was assessed from DNA extracted from maternal and child saliva using bisulfite pyrosequencing. Data analysis involved parametric and non-parametric correlations and multiple linear and logistic regression modeling. RESULTS Logistic regression models using child NR3C1 methylation as the dependent variable and maternal NR3C1 methylation and PTSD group status as predictors, as well as the interaction indicated that all three of these significantly predicted child NR3C1 methylation. These findings remained significant when controlling for child age, sex and maternal child abuse history. Overall, maternal NR3C1 methylation when children were toddlers was negatively and significantly associated with child externalizing behavior severity at school age. DISCUSSION We found that correlations between mothers and their children of NR3C1 methylation levels overall and at all individual CpG sites of interest were significant only in the IPV-PTSD group. The latter findings support that NR3C1 methylation in mothers positively and statistically significantly correlates with NR3C1 methylation in their children only in presence of IPV-PTSD in the mothers. This maternal epigenetic signature with respect to this glucocorticoid receptor is significantly associated with child behavior that may well pose a risk for intergenerational transmission of violence and related psychopathology.
Collapse
Affiliation(s)
- María I Cordero
- Department of Psychology, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ludwig Stenz
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Dominik A Moser
- Child and Adolescent Psychiatry Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Sandra Rusconi Serpa
- Department of Psychology, University of Geneva Faculty of Psychology, Social Science and Education, Geneva, Switzerland
| | - Ariane Paoloni-Giacobino
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Daniel Scott Schechter
- Child and Adolescent Psychiatry Service, Lausanne University Hospital, Lausanne, Switzerland.,Department of Psychiatry, Lausanne University Faculty of Biology and Medicine, Lausanne, Switzerland.,Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
20
|
Ding J, Chen X, Han F, Meijer OC. An Advanced Transcriptional Response to Corticosterone After Single Prolonged Stress in Male Rats. Front Behav Neurosci 2021; 15:756903. [PMID: 34867228 PMCID: PMC8636037 DOI: 10.3389/fnbeh.2021.756903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/13/2021] [Indexed: 11/15/2022] Open
Abstract
Stress-related neuropsychiatric disorders are often accompanied by dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. In patients suffering from post-traumatic stress disorder (PTSD), increased sensitivity of glucocorticoid negative feedback has regularly been observed. The single prolonged stress (SPS) paradigm was developed to model increased negative feedback and other aspects of PTSD in rats. In this study, we used a setup that precluded the evaluation of negative feedback but rather served to test the hypothesis of the enhanced glucocorticoid receptor (GR) signaling in higher brain areas. We injected corticosterone or vehicle 7 days after SPS and evaluated plasma corticosterone, as well as gene expression in the dorsal hippocampus and amygdala. We observed a strikingly rapid change in the expression of established GR target genes (t = 30 min) only in the SPS group on exogenous corticosterone injection. Our results extend the notion of increased GR sensitivity in PTSD to include transcriptional responses in the hippocampus.
Collapse
Affiliation(s)
- Jinlan Ding
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, Netherlands.,PTSD Lab, Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Xinzhao Chen
- PTSD Lab, Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Fang Han
- PTSD Lab, Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Onno C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| |
Collapse
|
21
|
Zutshi I, Gupta S, Zanoletti O, Sandi C, Poirier GL. Early life adoption shows rearing environment supersedes transgenerational effects of paternal stress on aggressive temperament in the offspring. Transl Psychiatry 2021; 11:533. [PMID: 34657124 PMCID: PMC8520526 DOI: 10.1038/s41398-021-01659-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022] Open
Abstract
Prenatal experience and transgenerational influences are increasingly recognized as critical for defining the socio-emotional system, through the development of social competences and of their underlying neural circuitries. Here, we used an established rat model of social stress resulting from male partner aggression induced by peripubertal (P28-42) exposure to unpredictable fearful experiences. Using this model, we aimed to first, characterize adult emotionality in terms of the breadth of the socio-emotional symptoms and second, to determine the relative impact of prenatal vs postnatal influences. For this purpose, male offspring of pairs comprising a control or a peripubertally stressed male were cross-fostered at birth and tested at adulthood on a series of socio-emotional tests. In the offspring of peripubertally stressed males, the expected antisocial phenotype was observed, as manifested by increased aggression towards a female partner and a threatening intruder, accompanied by lower sociability. This negative outcome was yet accompanied by better social memory as well as enhanced active coping, based on more swimming and longer latency to immobility in the forced swim test, and less immobility in the shock probe test. Furthermore, the cross-fostering manipulation revealed that these adult behaviors were largely influenced by the post- but not the prenatal environment, an observation contrasting with both pre- and postnatal effects on attacks during juvenile play behavior. Adult aggression, other active coping behaviors, and social memory were determined by the predominance at this developmental stage of postnatal over prenatal influences. Together, our data highlight the relative persistence of early life influences.
Collapse
Affiliation(s)
- Ipshita Zutshi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
- Neuroscience Institute and Department of Neurology, Langone Medical Center, New York University, New York, NY, USA.
| | - Sonakshi Gupta
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Pharmacy Department, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Hyderabad, India
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| | - Guillaume L Poirier
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
22
|
Tumanova TS, Кokurina TN, Rybakova GI, Aleksandrov VG. Dexamethasone attenuates the modulatory effect of the insular cortex on the baroreflex in anesthetized rat. Can J Physiol Pharmacol 2021; 100:334-340. [PMID: 34644509 DOI: 10.1139/cjpp-2021-0385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The arterial baroreflex (BR) is an important neural mechanism for the stabilization of arterial pressure (AP). It is known that the insular cortex (IC) and other parts of the central autonomic network (CAN) are able to modulate the BR arc, altering baroreflex sensitivity (BRS). In addition, the sensitivity of the BR changes under the influence of hormones, in particular glucocorticoids (GC). It has been suggested that GC may influence BRS by altering the ability of the IC to modulate the BR. This hypothesis has been tested in experiments on rats anesthetized with urethane. It was found that microelectrostimulation of the visceral area in the left IC causes a short-term drop in AP, which is accompanied by bradycardia, and impairs BRS. The synthetic GC dexamethasone (DEX) did not significantly affect the magnitude of depressor responses but increased BRS and impaired the effect of IC stimulation on the BR. The results obtained confirm the hypothesis put forward and suggest that GC can attenuate the inhibitory effects of the IC on the BR arc, thereby enhancing the sensitivity of the BR.
Collapse
Affiliation(s)
- Tatiana Sergeevna Tumanova
- Pavlov Institute of Physiology RAS, 68594, Sankt Peterburg, Russian Federation.,Herzen State Pedagogical University of Russia, 104720, Biology, Sankt-Peterburg, Russian Federation;
| | | | | | - Viacheslav G Aleksandrov
- Pavlov Institute of Physiology RAS, 68594, 6, nab. Makarova, Sankt Peterburg, Russian Federation, 199034;
| |
Collapse
|
23
|
da Silva Calixto P, de Almeida RN, Stiebbe Salvadori MGS, Dos Santos Maia M, Filho JMB, Scotti MT, Scotti L. In Silico Study Examining New Phenylpropanoids Targets with Antidepressant Activity. Curr Drug Targets 2021; 22:539-554. [PMID: 32881667 DOI: 10.2174/1389450121666200902171838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/09/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Natural products, such as phenylpropanoids, which are found in essential oils derived from aromatic plants, have been explored during non-clinical psychopharmacology studies, to discover new molecules with relevant pharmacological activities in the central nervous system, especially antidepressant and anxiolytic activities. Major depressive disorder is a highly debilitating psychiatric disorder and is considered to be a disabling public health problem, worldwide, as a primary factor associated with suicide. Current clinically administered antidepressants have late-onset therapeutic actions, are associated with several side effects, and clinical studies have reported that some patients do not respond well to treatment or reach complete remission. OBJECTIVE To review important new targets for antidepressant activity and to select phenylpropanoids with antidepressant activity, using Molegro Virtual Docker and Ossis Data Warris, and to verify substances with more promising antidepressant activity. RESULTS AND CONCLUSION An in silico molecular modeling study, based on homology, was conducted to determine the three-dimensional structure of the 5-hydroxytryptamine 2A receptor (5- HT2AR), then molecular docking studies were performed and the predisposition for cytotoxicity risk among identified molecules was examined. A model for 5-HT2AR homology, with satisfactory results, was obtained indicating the good stereochemical quality of the model. The phenylpropanoid 4-allyl-2,6-dimethoxyphenol showed the lowest binding energy for 5-HT2AR, with results relevant to the L-arginine/nitric oxide (NO)/cGMP pathway, and showed no toxicity within the parameters of mutagenicity, carcinogenicity, reproductive system toxicity, and skin-tissue irritability, when evaluated in silico; therefore, this molecule can be considered promising for the investigation of antidepressant activity.
Collapse
Affiliation(s)
| | - Reinaldo Nóbrega de Almeida
- Department of Physiology and Pathology, Laboratory of Psychopharmacology, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | | | - José Maria Barbosa Filho
- Department of Pharmaceutical Sciences, Pharmaceutical Technology Laboratory, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | - Luciana Scotti
- Laboratory of Chemoinformatics, Federal University of Paraiba, Joao Pessoa, Brazil
| |
Collapse
|
24
|
Tan T, Wang W, Liu T, Zhong P, Conrow-Graham M, Tian X, Yan Z. Neural circuits and activity dynamics underlying sex-specific effects of chronic social isolation stress. Cell Rep 2021; 34:108874. [PMID: 33761364 DOI: 10.1016/j.celrep.2021.108874] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2020] [Accepted: 02/25/2021] [Indexed: 01/03/2023] Open
Abstract
Exposure to prolonged stress in critical developmental periods induces heightened vulnerability to psychiatric disorders, which may have sex-specific consequences. Here we investigate the neuronal circuits mediating behavioral changes in mice after chronic adolescent social isolation stress. Escalated aggression is exhibited in stressed males, while social withdrawal is shown in stressed females. In vivo multichannel recordings of free-moving animals indicate that pyramidal neurons in prefrontal cortex (PFC) from stressed males exhibit the significantly decreased spike activity during aggressive attacks, while PFC pyramidal neurons from stressed females show a blunted increase of discharge rates during sociability tests. Chemogenetic and electrophysiological evidence shows that PFC hypofunctioning and BLA principal neuron hyperactivity contribute to the elevated aggression in stressed males, while PFC hypofunctioning and VTA dopamine neuron hypoactivity contribute to the diminished sociability in stressed females. These results establish a framework for understanding the circuit and physiological mechanisms underlying sex-specific divergent effects of stress.
Collapse
Affiliation(s)
- Tao Tan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Wei Wang
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Tiaotiao Liu
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA; School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Ping Zhong
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Megan Conrow-Graham
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Xin Tian
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
25
|
Differential Susceptibility to the Impact of the COVID-19 Pandemic on Working Memory, Empathy, and Perceived Stress: The Role of Cortisol and Resilience. Brain Sci 2021; 11:brainsci11030348. [PMID: 33803413 PMCID: PMC7998983 DOI: 10.3390/brainsci11030348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
There are important individual differences in adaptation and reactivity to stressful challenges. Being subjected to strict social confinement is a distressful psychological experience leading to reduced emotional well-being, but it is not known how it can affect the cognitive and empathic tendencies of different individuals. Cortisol, a key glucocorticoid in humans, is a strong modulator of brain function, behavior, and cognition, and the diurnal cortisol rhythm has been postulated to interact with environmental stressors to predict stress adaptation. The present study investigates in 45 young adults (21.09 years old, SD = 6.42) whether pre-pandemic diurnal cortisol indices, overall diurnal cortisol secretion (AUCg) and cortisol awakening response (CAR) can predict individuals' differential susceptibility to the impact of strict social confinement during the Coronavirus Disease 2019 (COVID-19) pandemic on working memory, empathy, and perceived stress. We observed that, following long-term home confinement, there was an increase in subjects' perceived stress and cognitive empathy scores, as well as an improvement in visuospatial working memory. Moreover, during confinement, resilient coping moderated the relationship between perceived stress scores and pre-pandemic AUCg and CAR. In addition, in mediation models, we observed a direct effect of AUCg and an indirect effect of both CAR and AUCg, on change in perceived self-efficacy. These effects were parallelly mediated by the increase in working memory span and cognitive empathy. In summary, our findings reveal the role of the diurnal pattern of cortisol in predicting the emotional impact of the COVID-19 pandemic, highlighting a potential biomarker for the identification of at-risk groups following public health crises.
Collapse
|
26
|
Molendijk ML, de Kloet ER. Forced swim stressor: Trends in usage and mechanistic consideration. Eur J Neurosci 2021; 55:2813-2831. [PMID: 33548153 PMCID: PMC9291081 DOI: 10.1111/ejn.15139] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
The acquired immobility response during the “forced swim test (FST)” is not a rodent model of depression, but the test has some validity in predicting a compound's antidepressant potential. Nevertheless, 60% of the about 600 papers that were published annually the past 2 years label the rodent's immobility response as depression‐like behaviour, but the relative contribution per country is changing. When the Editors‐in‐Chief of 5 journals publishing most FST papers were asked for their point of view on labelling immobility as depression‐like behaviour and despair, they responded that they primarily rely on the reviewers regarding scientific merit of the submission. One Editor informs authors of the recent NIMH notice (https://grants.nih.gov/grants/guide/notice‐files/NOT‐MH‐19‐053.html) which encourages investigators to use animal models “for” addressing neurobiological questions rather than as model “of” specific mental disorders. The neurobiological questions raised by use of the FST fall in two categories. First, research on the role of endocrine and metabolic factors, with roots in the 1980s, and with focus on the bottom‐up action of glucocorticoids on circuits processing salient information, executive control and memory consolidation. Second, recent findings using novel technological and computational advances that have allowed great progress in charting top‐down control in the switch from active to passive coping with the inescapable stressor executed by neuronal ensembles of the medial prefrontal cortex via the peri‐aquaductal grey. It is expected that combining neural top‐down and endocrine bottom‐up approaches will provide new insights in the role of stress‐coping and adaptation in pathogenesis of mental disorders.
Collapse
Affiliation(s)
- Marc L Molendijk
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, The Netherlands
| | - E Ronald de Kloet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
Tzanoulinou S, Gantelet E, Sandi C, Márquez C. Programming effects of peripubertal stress on spatial learning. Neurobiol Stress 2020; 13:100282. [PMID: 33344733 PMCID: PMC7739188 DOI: 10.1016/j.ynstr.2020.100282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/03/2020] [Accepted: 11/25/2020] [Indexed: 01/30/2023] Open
Abstract
Exposure to adversity during early life can have profound influences on brain function and behavior later in life. The peripubertal period is emerging as an important time-window of susceptibility to stress, with substantial evidence documenting long-term consequences in the emotional and social domains. However, little is known about how stress during this period impacts subsequent cognitive functioning. Here, we assessed potential long-term effects of peripubertal stress on spatial learning and memory using the water maze task. In addition, we interrogated whether individual differences in stress-induced behavioral and endocrine changes are related to the degree of adaptation of the corticosterone response to repeated stressor exposure during the peripubertal period. We found that, when tested at adulthood, peripubertally stressed animals displayed a slower learning rate. Strikingly, the level of spatial orientation in the water maze completed on the last training day was predicted by the degree of adaptation of the recovery -and not the peak-of the corticosterone response to stressor exposure (i.e., plasma levels at 60 min post-stressor) across the peripubertal stress period. In addition, peripubertal stress led to changes in emotional and glucocorticoid reactivity to novelty exposure, as well as in the expression levels of the plasticity molecule PSA-NCAM in the hippocampus. Importantly, by assessing the same endpoints in another peripubertally stressed cohort tested during adolescence, we show that the observed effects at adulthood are the result of a delayed programming manifested at adulthood and not protracted effects of stress. Altogether, our results support the view that the degree of stress-induced adaptation of the hypothalamus-pituitary-adrenal axis responsiveness at the important transitional period of puberty relates to the long-term programming of cognition, behavior and endocrine reactivity.
Collapse
Affiliation(s)
- S Tzanoulinou
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - E Gantelet
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - C Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - C Márquez
- Laboratory of Neural Circuits of Social Behavior, Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), San Juan de Alicante, Spain
| |
Collapse
|
28
|
Ding J, Chen X, da Silva MS, Lingeman J, Han F, Meijer OC. Effects of RU486 treatment after single prolonged stress depend on the post-stress interval. Mol Cell Neurosci 2020; 108:103541. [PMID: 32858150 DOI: 10.1016/j.mcn.2020.103541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022] Open
Abstract
The Single Prolonged Stress protocol is considered a model for PTSD, as it induces long lasting changes in rat behaviour and endocrine regulation. Previous work demonstrated that some of these changes can be prevented by treatment with the glucocorticoid receptor antagonist RU486, administered a week after the stressor. The current study evaluated the effects of an earlier intervention with RU486, as evaluated 1 week after SPS-exposure. Most RU486 effects occurred independent of prior stress, except for the reversal of a stress-induced increase in locomotor behaviour. The accompanying changes in gene expression depended on gene, brain region, and time. DNA methylation of the robustly down-regulated Fkbp5 gene was dissociated of changes in mRNA expression. The findings reinforce the long term effects of GR antagonist treatment, but also emphasize the need to evaluate changes over time to allow the identification of robust correlates between gene expression and behavioural/endocrine outcome of stressful experiences.
Collapse
Affiliation(s)
- Jinlan Ding
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands; PTSD Lab, Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, PR China
| | - Xinzhao Chen
- PTSD Lab, Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, PR China
| | - Marcia Santos da Silva
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Jolanthe Lingeman
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Fang Han
- PTSD Lab, Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, PR China.
| | - Onno C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
29
|
Becoming Stressed: Does the Age Matter? Reviewing the Neurobiological and Socio-Affective Effects of Stress throughout the Lifespan. Int J Mol Sci 2020; 21:ijms21165819. [PMID: 32823723 PMCID: PMC7460954 DOI: 10.3390/ijms21165819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/25/2022] Open
Abstract
Social and affective relations occur at every stage of our lives. Impairments in the quality of this “social world” can be exceptionally detrimental and lead to psychopathology or pathological behavior, including schizophrenia, autism spectrum disorder, affective disorders, social phobia or violence, among other things. Exposure to highly stressful or traumatic events, depending on the stage of life in which stress exposure occurs, could severely affect limbic structures, including the amygdala, and lead to alterations in social and affective behaviors. This review summarizes recent findings from stress research and provides an overview of its age-dependent effects on the structure and function of the amygdala, which includes molecular and cellular changes, and how they can trigger deviant social and affective behaviors. It is important to highlight that discoveries in this field may represent a breakthrough both for medical science and for society, as they may help in the development of new therapeutic approaches and prevention strategies in neuropsychiatric disorders and pathological behaviors.
Collapse
|
30
|
Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neurosci Biobehav Rev 2020; 108:48-77. [DOI: 10.1016/j.neubiorev.2019.10.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022]
|
31
|
Raineki C, Morgan EJ, Ellis L, Weinberg J. Glucocorticoid receptor expression in the stress-limbic circuitry is differentially affected by prenatal alcohol exposure and adolescent stress. Brain Res 2019; 1718:242-251. [PMID: 31102593 PMCID: PMC6579044 DOI: 10.1016/j.brainres.2019.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/25/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
The dense expression of glucocorticoid receptors (GR) within the amygdala, medial prefrontal cortex (mPFC) and paraventricular nucleus of hypothalamus (PVN) mediates many aspects of emotional and stress regulation. Importantly, both prenatal alcohol exposure (PAE) and adolescent stress are known to induce emotional and stress dysregulation. Little is known, however, about how PAE and/or adolescent stress may alter the expression of GR in the amygdala, mPFC, and PVN. To fill this gap, we exposed PAE and control adolescent male and female rats to chronic mild stress (CMS) and assessed GR mRNA expression in the amygdala, mPFC, and PVN immediately following stress or in adulthood. We found that the effects of PAE on GR expression were more prevalent in the amygdala, while effects of adolescent stress on GR expression were more prevalent in the mPFC. Moreover, PAE effects in the amygdala were more pronounced during adolescence and adolescent stress effects in the mPFC were more pronounced in adulthood. GR expression in the PVN was affected by both PAE and adolescent stress. Finally, PAE and/or adolescent stress effects were distinct between males and females. Together, these results suggest that PAE and adolescent CMS induce dynamic alterations in GR expression in the amygdala, mPFC, and PVN, which manifest differently depending on the brain area, age, and sex of the animal. Additionally, these data indicate that PAE-induced hyperresponsiveness to stress and increased vulnerability to mental health problems may be mediated by different neural mechanisms depending on the sex and age of the animal.
Collapse
Affiliation(s)
- Charlis Raineki
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.
| | - Erin J Morgan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Linda Ellis
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
32
|
Wang DM, Zhang JJ, Huang YB, Zhao YZ, Sui N. Peripubertal stress of male, but not female rats increases morphine-induced conditioned place preference and locomotion in adulthood. Dev Psychobiol 2019; 61:920-929. [PMID: 30860298 DOI: 10.1002/dev.21839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
Animal studies demonstrate that peripubertal social stress markedly increases the risk for subsequent substance use in adulthood. However, whether non-social stress has a similar long-term impact is not clear, and whether male and female animals show different sensitivity to peripubertal non-social stress has not been examined. In the present study, we addressed these issues by introducing two non-social stressors (elevated platform and predator odor 2,5-Dihydro-2,4,5-trimethylthiazoline) to male and female Wistar rats during adolescence (postnatal days 28-30, 34, 36, 40, and 42), then tested reward-related behaviors during adulthood, including morphine-induced conditioned place preference (CPP, 1 mg/kg morphine or 5 mg/kg morphine) and hyperlocomotor activity (5 mg/kg morphine). We found that adult male rats, but not females who were exposed to peripubertal non-social stressors showed enhanced morphine-induced CPP. Moreover, morphine-induced increase in locomotor activity was also significantly increased in adult male rats, but not in females. These results indicate that peripubertal exposure to repeated non-social stress may enhance sensitivity to the rewarding effects of opioids in adulthood in a sex-dependent manner, with males being even more sensitive than females in this regard.
Collapse
Affiliation(s)
- Dong-Mei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Jun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Bei Huang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yin-Zhu Zhao
- School of Life Sciences, University of Science and Technology of China, China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
de Kloet ER, de Kloet SF, de Kloet CS, de Kloet AD. Top-down and bottom-up control of stress-coping. J Neuroendocrinol 2019; 31:e12675. [PMID: 30578574 PMCID: PMC6519262 DOI: 10.1111/jne.12675] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022]
Abstract
In this 30th anniversary issue review, we focus on the glucocorticoid modulation of limbic-prefrontocortical circuitry during stress-coping. This action of the stress hormone is mediated by mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) that are co-expressed abundantly in these higher brain regions. Via both receptor types, the glucocorticoids demonstrate, in various contexts, rapid nongenomic and slower genomic actions that coordinate consecutive stages of information processing. MR-mediated action optimises stress-coping, whereas, in a complementary fashion, the memory storage of the selected coping strategy is promoted via GR. We highlight the involvement of adipose tissue in the allocation of energy resources to central regulation of stress reactions, point to still poorly understood neuronal ensembles in the prefrontal cortex that underlie cognitive flexibility critical for effective coping, and evaluate the role of cortisol as a pleiotropic regulator in vulnerability to, and treatment of, trauma-related psychiatric disorders.
Collapse
Affiliation(s)
- Edo R. de Kloet
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Sybren F. de Kloet
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive ResearchVU‐University of AmsterdamAmsterdamThe Netherlands
| | | | - Annette D. de Kloet
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleFlorida
| |
Collapse
|
34
|
Walker SE, Wood TC, Cash D, Mesquita M, Williams SCR, Sandi C. Alterations in brain microstructure in rats that develop abnormal aggression following peripubertal stress. Eur J Neurosci 2018; 48:1818-1832. [PMID: 29961949 DOI: 10.1111/ejn.14061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 01/01/2023]
Abstract
Exposure to early adversity is implicated in the development of aggressive behaviour later in life in some but not all individuals. The reasons for the variability in response to such experiences are not clear but may relate to pre-existing individual differences that influence their downstream effects. Applying structural magnetic resonance imaging (MRI) to a rat model of abnormal aggression induced by peripubertal stress, we examined whether individual differences in the development of an aggressive phenotype following stress exposure were underpinned by variation in the structure of aggression-associated, corticolimbic brain regions. We also assessed whether responsiveness of the hypothalamic-pituitary-adrenal axis to stress was associated with neurobehavioural outcome following adversity. A subset of the rats exposed to peripubertal stress developed an aggressive phenotype, while the remaining rats were affected in other behavioural domains, such as increased anxiety-like behaviours and reduced sociability. Peripubertal stress led to changes in tissue microstructure within prefrontal cortex, amygdala and hippocampal formation only in those individuals displaying an aggressive phenotype. Attenuated glucocorticoid response to stress during juvenility predicted the subsequent development of an aggressive phenotype in peripubertal stress-exposed rats. Our study establishes a link between peripubertal stress exposure in rats and structural deviations in brain regions linked to abnormal aggression and points towards low glucocorticoid responsiveness to stress as a potential underlying mechanism. We additionally highlight the importance of considering individual differences in behavioural response to stress when determining neurobiological correlates.
Collapse
Affiliation(s)
- Sophie E Walker
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tobias C Wood
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Michel Mesquita
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Steven C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|