1
|
Maletz SN, Reid BT, Baekey DM, Whitaker-Fornek JR, Bateman JT, Arakawa K, Bissonnette JM, Levitt ES. Effect of positive allosteric modulation and orthosteric agonism of dopamine D2-like receptors on respiration in mouse models of Rett syndrome. Respir Physiol Neurobiol 2024; 328:104314. [PMID: 39117159 DOI: 10.1016/j.resp.2024.104314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Rett syndrome (RTT) is an autism spectrum disorder caused by loss-of-function mutations in the methyl-CPG-binding protein 2 (Mecp2) gene. Frequent apneas and irregular breathing are prevalent in RTT, and also occur in rodent models of the disorder, including Mecp2Bird and Mecp2R168X mice. Sarizotan, a serotonin 5-HT1a and dopamine D2-like receptor agonist, reduces the incidence of apneas and irregular breathing in mouse models of RTT (Abdala et al., 2014). Targeting the 5HT1a receptor alone also improves respiration in RTT mice (Levitt et al., 2013). However, the contribution of D2-like receptors in correcting these respiratory disturbances remains untested. PAOPA, a dopamine D2-like receptor positive allosteric modulator, and quinpirole, a dopamine D2-like receptor orthosteric agonist, were used in conjunction with whole-body plethysmography to evaluate whether activation of D2-like receptors is sufficient to improve breathing disturbances in female heterozygous Mecp2Bird/+ and Mecp2R168X/+ mice. PAOPA did not significantly change apnea incidence or irregularity score in RTT mice. PAOPA also had no effect on the ventilatory response to hypercapnia (7 % CO2). In contrast, quinpirole reduced apnea incidence and irregularity scores and improved the hypercapnic ventilatory response in Mecp2R168X/+ and Mecp2Bird/+ mice, while also reducing respiratory rate. These results suggest that D2-like receptors could contribute to the positive effects of sarizotan in the correction of respiratory abnormalities in Rett syndrome. However, positive allosteric modulation of D2-like receptors alone was not sufficient to evoke these effects.
Collapse
Affiliation(s)
- Sebastian N Maletz
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States
| | - Brandon T Reid
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States
| | - David M Baekey
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States
| | - Jessica R Whitaker-Fornek
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jordan T Bateman
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States
| | - Keiko Arakawa
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - John M Bissonnette
- Oregon Health and Sciences University, Portland, OR 97239, United States
| | - Erica S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
2
|
Pickenhan L, Milton AL. Opening new vistas on obsessive-compulsive disorder with the observing response task. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:249-265. [PMID: 38316708 PMCID: PMC11039534 DOI: 10.3758/s13415-023-01153-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/30/2023] [Indexed: 02/07/2024]
Abstract
Obsessive-compulsive disorder (OCD), a highly prevalent and debilitating disorder, is incompletely understood in terms of underpinning behavioural, psychological, and neural mechanisms. This is attributable to high symptomatic heterogeneity; cardinal features comprise obsessions and compulsions, including clinical subcategories. While obsessive and intrusive thoughts are arguably unique to humans, dysfunctional behaviours analogous to those seen in clinical OCD have been examined in nonhuman animals. Genetic, ethological, pharmacological, and neurobehavioural approaches all contribute to understanding the emergence and persistence of compulsive behaviour. One behaviour of particular interest is maladaptive checking, whereby human patients excessively perform checking rituals despite these serving no purpose. Dysfunctional and excessive checking is the most common symptom associated with OCD and can be readily operationalised in rodents. This review considers animal models of OCD, the neural circuitries associated with impairments in habit-based and goal-directed behaviour, and how these may link to the compulsions observed in OCD. We further review the Observing Response Task (ORT), an appetitive instrumental learning procedure that distinguishes between functional and dysfunctional checking, with translational application in humans and rodents. By shedding light on the psychological and neural bases of compulsive-like checking, the ORT has potential to offer translational insights into the underlying mechanisms of OCD, in addition to being a platform for testing psychological and neurochemical treatment approaches.
Collapse
Affiliation(s)
- Luise Pickenhan
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
| | - Amy L Milton
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK.
| |
Collapse
|
3
|
Frankot M, Mueller PM, Young ME, Vonder Haar C. Statistical power and false positive rates for interdependent outcomes are strongly influenced by test type: Implications for behavioral neuroscience. Neuropsychopharmacology 2023; 48:1612-1622. [PMID: 37142665 PMCID: PMC10516944 DOI: 10.1038/s41386-023-01592-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/23/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
Statistical errors in preclinical science are a barrier to reproducibility and translation. For instance, linear models (e.g., ANOVA, linear regression) may be misapplied to data that violate assumptions. In behavioral neuroscience and psychopharmacology, linear models are frequently applied to interdependent or compositional data, which includes behavioral assessments where animals concurrently choose between chambers, objects, outcomes, or types of behavior (e.g., forced swim, novel object, place/social preference). The current study simulated behavioral data for a task with four interdependent choices (i.e., increased choice of a given outcome decreases others) using Monte Carlo methods. 16,000 datasets were simulated (1000 each of 4 effect sizes by 4 sample sizes) and statistical approaches evaluated for accuracy. Linear regression and linear mixed effects regression (LMER) with a single random intercept resulted in high false positives (>60%). Elevated false positives were attenuated in an LMER with random effects for all choice-levels and a binomial logistic mixed effects regression. However, these models were underpowered to reliably detect effects at common preclinical sample sizes. A Bayesian method using prior knowledge for control subjects increased power by up to 30%. These results were confirmed in a second simulation (8000 datasets). These data suggest that statistical analyses may often be misapplied in preclinical paradigms, with common linear methods increasing false positives, but potential alternatives lacking power. Ultimately, using informed priors may balance statistical requirements with ethical imperatives to minimize the number of animals used. These findings highlight the importance of considering statistical assumptions and limitations when designing research studies.
Collapse
Affiliation(s)
- Michelle Frankot
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, Columbus, OH, USA
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Peyton M Mueller
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Michael E Young
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Cole Vonder Haar
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Li H, Jin X. Multiple dynamic interactions from basal ganglia direct and indirect pathways mediate action selection. eLife 2023; 12:RP87644. [PMID: 37751468 PMCID: PMC10522336 DOI: 10.7554/elife.87644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
The basal ganglia are known to be essential for action selection. However, the functional role of basal ganglia direct and indirect pathways in action selection remains unresolved. Here, by employing cell-type-specific neuronal recording and manipulation in mice trained in a choice task, we demonstrate that multiple dynamic interactions from the direct and indirect pathways control the action selection. While the direct pathway regulates the behavioral choice in a linear manner, the indirect pathway exerts a nonlinear inverted-U-shaped control over action selection, depending on the inputs and the network state. We propose a new center (direct)-surround (indirect)-context (indirect) 'Triple-control' functional model of basal ganglia, which can replicate the physiological and behavioral experimental observations that cannot be simply explained by either the traditional 'Go/No-go' or more recent 'Co-activation' model. These findings have important implications on understanding the basal ganglia circuitry and action selection in health and disease.
Collapse
Affiliation(s)
- Hao Li
- Molecular Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Xin Jin
- Molecular Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
- Center for Motor Control and Disease, Key Laboratory of Brain Functional Genomics, East China Normal UniversityShanghaiChina
- NYU–ECNU Institute of Brain and Cognitive Science, New York University ShanghaiShanghaiChina
| |
Collapse
|
5
|
Klem L, Nielsen MM, Gestsdóttir SB, Frandsen SL, Prichardt S, Andreasen JT. Assessing attention and impulsivity in the variable stimulus duration and variable intertrial interval rodent continuous performance test schedules using dopamine receptor antagonists in female C57BL/6JRj mice. Psychopharmacology (Berl) 2023; 240:1651-1666. [PMID: 37378887 PMCID: PMC10349733 DOI: 10.1007/s00213-023-06387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023]
Abstract
RATIONALE Dopaminergic dysfunction is implicated in disorders of impulsivity and inattention. The rodent continuous performance test (rCPT) has been used to quantify changes in attention and impulsivity. OBJECTIVE To examine the roles of dopamine receptors in attention and impulsivity behaviours measured in the rCPT variable stimulus duration (vSD) and the variable intertrial interval schedules (vITI) using DA receptor antagonists. METHODS Two cohorts of 35 and 36 female C57BL/6JRj mice were examined separately in the rCPT, vSD, and vITI schedules, respectively. Both cohorts received antagonists of the following receptors: D1/5 (SCH23390, SCH: 0.01, 0.02, 0.04 mg/kg) and D2/3 (raclopride, RAC 0.03, 0.10, 0.30 mg/kg) in consecutive balanced Latin square designs with flanking reference measurements. The antagonists were subsequently examined for effects on locomotor activity. RESULTS SCH showed similar effects in both schedules, and the effects were reference-dependent in the vITI schedule. SCH reduced responding, but improved response accuracy, impulsivity, discriminability, and locomotor activity. RAC showed mixed effects on responsivity, but improved accuracy and discriminability. The discriminability improvement was driven by an increase in hit rate in the vITI schedule and a reduction in false alarm rate in the vSD schedule. RAC also decreased locomotor activity. CONCLUSION Both D1/5 and D2/3 receptor antagonism reduced responding, but the outcome on discriminability differed, stemming from individual effects on hit and false alarm rate, and the weight of omissions within the calculation. The effects of SCH and RAC suggest that endogenous DA increases responding and impulsivity, but reduces accuracy and shows mixed effects on discriminability.
Collapse
Affiliation(s)
- L Klem
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - M M Nielsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S B Gestsdóttir
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S L Frandsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S Prichardt
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - J T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
6
|
Li H, Jin X. Multiple dynamic interactions from basal ganglia direct and indirect pathways mediate action selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533567. [PMID: 36993546 PMCID: PMC10055198 DOI: 10.1101/2023.03.20.533567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The basal ganglia are known to be essential for action selection. However, the functional role of basal ganglia direct and indirect pathways in action selection remains unresolved. Here by employing cell-type-specific neuronal recording and manipulation in mice trained in a choice task, we demonstrate that multiple dynamic interactions from the direct and indirect pathways control the action selection. While the direct pathway regulates the behavioral choice in a linear manner, the indirect pathway exerts a nonlinear inverted-U-shaped control over action selection, depending on the inputs and the network state. We propose a new center (direct) - surround (indirect) - context (indirect) "Triple-control" functional model of basal ganglia, which can replicate the physiological and behavioral experimental observations that cannot be simply explained by either the traditional "Go/No-go" or more recent "Co-activation" model. These findings have important implications on understanding the basal ganglia circuitry and action selection in health and disease.
Collapse
Affiliation(s)
- Hao Li
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Xin Jin
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
- Center for Motor Control and Disease, Key Laboratory of Brain Functional Genomics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- NYU–ECNU Institute of Brain and Cognitive Science, New York University Shanghai, 3663 North Zhongshan Road, Shanghai 200062, China
- Lead Contact
| |
Collapse
|
7
|
Xue J, Qian D, Zhang B, Yang J, Li W, Bao Y, Qiu S, Fu Y, Wang S, Yuan TF, Lu W. Midbrain dopamine neurons arbiter OCD-like behavior. Proc Natl Acad Sci U S A 2022; 119:e2207545119. [PMID: 36343236 PMCID: PMC9674233 DOI: 10.1073/pnas.2207545119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/28/2022] [Indexed: 08/19/2023] Open
Abstract
The neurobiological understanding of obsessive-compulsive disorder (OCD) includes dysregulated frontostriatal circuitry and altered monoamine transmission. Repetitive stereotyped behavior (e.g., grooming), a featured symptom in OCD, has been proposed to be associated with perturbed dopamine (DA) signaling. However, the precise brain circuits participating in DA's control over this behavioral phenotype remain elusive. Here, we identified that DA neurons in substantia nigra pars compacta (SNc) orchestrate ventromedial striatum (VMS) microcircuits as well as lateral orbitofrontal cortex (lOFC) during self-grooming behavior. SNc-VMS and SNc-lOFC dopaminergic projections modulate grooming behaviors and striatal microcircuit function differentially. Specifically, the activity of the SNc-VMS pathway promotes grooming via D1 receptors, whereas the activity of the SNc-lOFC pathway suppresses grooming via D2 receptors. SNc DA neuron activity thus controls the OCD-like behaviors via both striatal and cortical projections as dual gating. These results support both pharmacological and brain-stimulation treatments for OCD.
Collapse
Affiliation(s)
- Jinwen Xue
- Minister of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Dandan Qian
- Minister of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Bingqian Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jingxuan Yang
- Minister of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Wei Li
- Minister of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Yifei Bao
- Minister of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Shi Qiu
- Minister of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Yi Fu
- Minister of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Shaoli Wang
- Minister of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wei Lu
- Minister of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Shanghai Medical College of Fudan University, Shanghai 200032, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
8
|
Joshi A, Schott M, la Fleur SE, Barrot M. Role of the striatal dopamine, GABA and opioid systems in mediating feeding and fat intake. Neurosci Biobehav Rev 2022; 139:104726. [PMID: 35691472 DOI: 10.1016/j.neubiorev.2022.104726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/08/2021] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Food intake, which is a highly reinforcing behavior, provides nutrients required for survival in all animals. However, when fat and sugar consumption goes beyond the daily needs, it can favor obesity. The prevalence and severity of this health problem has been increasing with time. Besides covering nutrient and energy needs, food and in particular its highly palatable components, such as fats, also induce feelings of joy and pleasure. Experimental evidence supports a role of the striatal complex and of the mesolimbic dopamine system in both feeding and food-related reward processing, with the nucleus accumbens as a key target for reward or reinforcing-associated signaling during food intake behavior. In this review, we provide insights concerning the impact of feeding, including fat intake, on different types of receptors and neurotransmitters present in the striatal complex. Reciprocally, we also cover the evidence for a modulation of palatable food intake by different neurochemical systems in the striatal complex and in particular the nucleus accumbens, with a focus on dopamine, GABA and the opioid system.
Collapse
Affiliation(s)
- Anil Joshi
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Marion Schott
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Susanne Eva la Fleur
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
9
|
Dopamine transporter silencing in the rat: systems-level alterations in striato-cerebellar and prefrontal-midbrain circuits. Mol Psychiatry 2022; 27:2329-2339. [PMID: 35246636 PMCID: PMC9126810 DOI: 10.1038/s41380-022-01471-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
Silencing of dopamine transporter (DAT), a main controlling factor of dopaminergic signaling, results in biochemical and behavioral features characteristic for neuropsychiatric diseases with presumed hyperdopaminergia including schizophrenia, attention deficit hyperactivity disorder (ADHD), bipolar disorder, and obsessive-compulsive disorder (OCD). Investigation of DAT silencing thus provides a transdiagnostic approach towards a systems-level understanding of common underlying pathways. Using a high-field multimodal imaging approach and a highly sensitive cryogenic coil, we integrated structural, functional and metabolic investigations in tandem with behavioral assessments on a newly developed preclinical rat model, comparing DAT homozygous knockout (DAT-KO, N = 14), heterozygous knockout (N = 8) and wild-type male rats (N = 14). We identified spatially distributed structural and functional brain alterations encompassing motor, limbic and associative loops that demonstrated strong behavioral relevance and were highly consistent across imaging modalities. DAT-KO rats manifested pronounced volume loss in the dorsal striatum, negatively correlating with cerebellar volume increase. These alterations were associated with hyperlocomotion, repetitive behavior and loss of efficient functional small-world organization. Further, prefrontal and midbrain regions manifested opposite changes in functional connectivity and local network topology. These prefrontal disturbances were corroborated by elevated myo-inositol levels and increased volume. To conclude, our imaging genetics approach provides multimodal evidence for prefrontal-midbrain decoupling and striato-cerebellar neuroplastic compensation as two key features of constitutive DAT blockade, proposing them as transdiagnostic mechanisms of hyperdopaminergia. Thus, our study connects developmental DAT blockade to systems-level brain changes, underlying impaired action inhibition control and resulting in motor hyperactivity and compulsive-like features relevant for ADHD, schizophrenia and OCD.
Collapse
|
10
|
Nakagami A, Yasue M, Nakagaki K, Nakamura M, Kawai N, Ichinohe N. Reduced childhood social attention in autism model marmosets predicts impaired social skills and inflexible behavior in adulthood. Front Psychiatry 2022; 13:885433. [PMID: 35958665 PMCID: PMC9357878 DOI: 10.3389/fpsyt.2022.885433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social and communication impairments and restricted and repetitive behavior. Although there is currently no established cure for ASD, early interventions for deficits of attention to other individuals are expected to reduce the progression of ASD symptoms in later life. To confirm this hypothesis and improve early therapeutic interventions, it is desirable to develop an animal model of ASD in which social attention is impaired in childhood and ASD-like social behavior is observed in adulthood. However, rodent models of ASD have difficulty in recapitulating the deficit of gaze-based social attention. In this study, we examined the direction of gaze toward other conspecifics during childhood and puberty in a three-chamber test setting using an ASD marmoset model produced by maternal exposure to valproic acid (VPA). We also conducted a reversal learning test in adult VPA-exposed marmosets as an indicator of perseveration, a core symptom of ASD that has not previously been investigated in this model. The results showed that time spent gazing at other conspecifics was reduced in VPA-exposed marmosets in childhood, and that mature animals persisted with previous strategies that required long days for acquisition to pass the test. In a longitudinal study using the same animals, deficits in social attention in childhood correlated well with ASD-like social disturbance (inequity aversion and third-party reciprocity) and inflexible behavior in adulthood. Since VPA-exposed marmosets exhibit these diverse ASD-like behaviors that are consistent from childhood to adulthood, VPA-exposed marmosets will provide a valuable means of elucidating mechanisms for early intervention and contribute to the development of early therapies.
Collapse
Affiliation(s)
- Akiko Nakagami
- Graduate School of Information Science, Nagoya University, Nagoya, Japan.,Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Psychology, Japan Women's University, Bunkyo-ku, Japan
| | - Miyuki Yasue
- Graduate School of Information Science, Nagoya University, Nagoya, Japan.,Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Keiko Nakagaki
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Madoka Nakamura
- Graduate School of Information Science, Nagoya University, Nagoya, Japan.,Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Nobuyuki Kawai
- Graduate School of Information Science, Nagoya University, Nagoya, Japan.,Academy of Emerging Science, Chubu University, Kasugai, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
11
|
Zmigrod L, Robbins TW. Dopamine, Cognitive Flexibility, and IQ: Epistatic Catechol-O-MethylTransferase:DRD2 Gene-Gene Interactions Modulate Mental Rigidity. J Cogn Neurosci 2021; 34:153-179. [PMID: 34818409 DOI: 10.1162/jocn_a_01784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cognitive flexibility has been hypothesized to be neurochemically rooted in dopamine neurotransmission. Nonetheless, underpowered sample sizes and contradictory meta-analytic findings have obscured the role of dopamine genes in cognitive flexibility and neglected potential gene-gene interactions. In this largest neurocognitive-genetic study to date (n = 1400), single nucleotide polymorphisms associated with elevated prefrontal dopamine levels (catechol-O-methyltransferase; rs4680) and diminished striatal dopamine (C957T; rs6277) were both implicated in Wisconsin Card Sorting Test performance. Crucially, however, these genetic effects were only evident in low-IQ participants, suggesting high intelligence compensates for, and eliminates, the effect of dispositional dopamine functioning on flexibility. This interaction between cognitive systems may explain and resolve previous empirical inconsistencies in highly educated participant samples. Moreover, compensatory gene-gene interactions were discovered between catechol-O-methyltransferase and DRD2, such that genotypes conferring either elevated prefrontal dopamine or diminished striatal dopamine-via heightened striatally concentrated D2 dopamine receptor availability-are sufficient for cognitive flexibility, but neither is necessary. The study has therefore revealed a form of epistatic redundancy or substitutability among dopamine systems in shaping adaptable thought and action, thus defining boundary conditions for dopaminergic effects on flexible behavior. These results inform theories of clinical disorders and psychopharmacological interventions and uncover complex fronto-striatal synergies in human flexible cognition.
Collapse
|
12
|
Furman DJ, Pappas I, White RL, Kayser AS, D'Esposito M. Enhancing dopamine tone modulates global and local cortical perfusion as a function of COMT val158met genotype. Neuroimage 2021; 242:118472. [PMID: 34390874 DOI: 10.1016/j.neuroimage.2021.118472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022] Open
Abstract
The cognitive effects of pharmacologically enhancing cortical dopamine (DA) tone are variable across healthy human adults. It has been postulated that individual differences in drug responses are linked to baseline cortical DA activity according to an inverted-U-shaped function. To better understand the effect of divergent starting points along this curve on DA drug responses, researchers have leveraged a common polymorphism (rs4680) in the gene encoding the enzyme catechol-O-methyltransferase (COMT) that gives rise to greater (Met allele) or lesser (Val allele) extracellular levels of cortical DA. Here we examined the extent to which changes in resting cortical perfusion following the administration of two mechanistically-distinct dopaminergic drugs vary by COMT genotype, and thereby track predictions of the inverted-U model. Using arterial spin labeling (ASL) and a double-blind, within-subject design, perfusion was measured in 75 healthy, genotyped participants once each after administration of tolcapone (a COMT inhibitor), bromocriptine (a DA D2/3 agonist), and placebo. COMT genotype and drug interacted such that COMT Val homozygotes exhibited increased prefusion in response to both drugs, whereas Met homozygotes did not. Additionally, tolcapone-related perfusion changes in the right inferior frontal gyrus correlated with altered performance on a task of executive function. No comparable effects were found for a genetic polymorphism (rs1800497) affecting striatal DA system function. Together, these results indicate that both the directionality and magnitude of drug-induced perfusion change provide meaningful information about individual differences in response to enhanced cortical DA tone.
Collapse
Affiliation(s)
- Daniella J Furman
- Department of Neurology, University of California, San Francisco, CA, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| | - Ioannis Pappas
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States; Division of Neurology, VA Northern California Health Care System, United States.
| | - Robert L White
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrew S Kayser
- Department of Neurology, University of California, San Francisco, CA, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States; Division of Neurology, VA Northern California Health Care System, United States
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States; Division of Neurology, VA Northern California Health Care System, United States
| |
Collapse
|
13
|
Mimura K, Nagai Y, Inoue KI, Matsumoto J, Hori Y, Sato C, Kimura K, Okauchi T, Hirabayashi T, Nishijo H, Yahata N, Takada M, Suhara T, Higuchi M, Minamimoto T. Chemogenetic activation of nigrostriatal dopamine neurons in freely moving common marmosets. iScience 2021; 24:103066. [PMID: 34568790 PMCID: PMC8449082 DOI: 10.1016/j.isci.2021.103066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022] Open
Abstract
To interrogate particular neuronal pathways in nonhuman primates under natural and stress-free conditions, we applied designer receptors exclusively activated by designer drugs (DREADDs) technology to common marmosets. We injected adeno-associated virus vectors expressing the excitatory DREADD hM3Dq into the unilateral substantia nigra (SN) in four marmosets. Using multi-tracer positron emission tomography imaging, we detected DREADD expression in vivo, which was confirmed in nigrostriatal dopamine neurons by immunohistochemistry, as well as by assessed activation of the SN following agonist administration. The marmosets rotated in a contralateral direction relative to the activated side 30-90 min after consuming food containing the highly potent DREADD agonist deschloroclozapine (DCZ) but not on the following days without DCZ. These results indicate that non-invasive and reversible DREADD manipulation will extend the utility of marmosets as a primate model for linking neuronal activity and natural behavior in various contexts.
Collapse
Affiliation(s)
- Koki Mimura
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Ken-ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Jumpei Matsumoto
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama 930-8555, Japan
| | - Yukiko Hori
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Chika Sato
- Quantum Life Informatics Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
- Applied MRI Research, Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Kei Kimura
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Takashi Okauchi
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Toshiyuki Hirabayashi
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Hisao Nishijo
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama 930-8555, Japan
| | - Noriaki Yahata
- Quantum Life Informatics Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
- Applied MRI Research, Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| |
Collapse
|
14
|
Gasiorowska A, Wydrych M, Drapich P, Zadrozny M, Steczkowska M, Niewiadomski W, Niewiadomska G. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front Aging Neurosci 2021; 13:654931. [PMID: 34326765 PMCID: PMC8315271 DOI: 10.3389/fnagi.2021.654931] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
The elderly population is growing worldwide, with important health and socioeconomic implications. Clinical and experimental studies on aging have uncovered numerous changes in the brain, such as decreased neurogenesis, increased synaptic defects, greater metabolic stress, and enhanced inflammation. These changes are associated with cognitive decline and neurobehavioral deficits. Although aging is not a disease, it is a significant risk factor for functional worsening, affective impairment, disease exaggeration, dementia, and general disease susceptibility. Conversely, life events related to mental stress and trauma can also lead to accelerated age-associated disorders and dementia. Here, we review human studies and studies on mice and rats, such as those modeling human neurodegenerative diseases, that have helped elucidate (1) the dynamics and mechanisms underlying the biological and pathological aging of the main projecting systems in the brain (glutamatergic, cholinergic, and dopaminergic) and (2) the effect of defective glutamatergic, cholinergic, and dopaminergic projection on disabilities associated with aging and neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Detailed knowledge of the mechanisms of age-related diseases can be an important element in the development of effective ways of treatment. In this context, we briefly analyze which adverse changes associated with neurodegenerative diseases in the cholinergic, glutaminergic and dopaminergic systems could be targeted by therapeutic strategies developed as a result of our better understanding of these damaging mechanisms.
Collapse
Affiliation(s)
- Anna Gasiorowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Wydrych
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Drapich
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Zadrozny
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Steczkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
15
|
Yang Z, Wu G, Liu M, Sun X, Xu Q, Zhang C, Lei H. Dysfunction of Orbitofrontal GABAergic Interneurons Leads to Impaired Reversal Learning in a Mouse Model of Obsessive-Compulsive Disorder. Curr Biol 2021; 31:381-393.e4. [DOI: 10.1016/j.cub.2020.10.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/02/2020] [Accepted: 10/15/2020] [Indexed: 11/24/2022]
|
16
|
Ahn S, Nesbit MO, Zou H, Vacca G, Axerio-Cilies P, Van Sung T, Phillips AG. Neural bases for attenuation of morphine withdrawal by Heantos-4: role of l-tetrahydropalmatine. Sci Rep 2020; 10:21275. [PMID: 33277581 PMCID: PMC7718916 DOI: 10.1038/s41598-020-78083-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022] Open
Abstract
Severe withdrawal symptoms triggered by cessation of long-term opioid use deter many individuals from seeking treatment. Opioid substitution and α2-adrenergic agonists are the current standard of pharmacotherapy for opioid use disorder in western medicine; however, each is associated with significant complications. Heantos-4 is a non-opioid botanical formulation used to facilitate opioid detoxification in Vietnam. While ongoing clinical use continues to validate its safety and effectiveness, a mechanism of action accounting for these promising effects remains to be specified. Here, we assess the effects of Heantos-4 in a rat model of morphine-dependence and present evidence that alleviation of naloxone-precipitated somatic withdrawal signs is related to an upregulation of mesolimbic dopamine activity and a consequent reversal of a hypodopaminergic state in the nucleus accumbens, a brain region implicated in opioid withdrawal. A central dopaminergic mechanism is further supported by the identification of l-tetrahydropalmatine as a key active ingredient in Heantos-4, which crosses the blood–brain barrier and shows a therapeutic efficacy comparable to its parent formulation in attenuating withdrawal signs. The anti-hypodopaminergic effects of l-tetrahydropalmatine may be related to antagonism of the dopamine autoreceptor, thus constituting a plausible mechanism contributing to the effectiveness of Heantos-4 in facilitating opioid detoxification.
Collapse
Affiliation(s)
- Soyon Ahn
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Maya O Nesbit
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Haiyan Zou
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Giada Vacca
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Peter Axerio-Cilies
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Tran Van Sung
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Anthony G Phillips
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada.
| |
Collapse
|
17
|
Chen PS, Jamil A, Liu LC, Wei SY, Tseng HH, Nitsche MA, Kuo MF. Nonlinear Effects of Dopamine D1 Receptor Activation on Visuomotor Coordination Task Performance. Cereb Cortex 2020; 30:5346-5355. [DOI: 10.1093/cercor/bhaa116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract
Dopamine plays an important role in the modulation of neuroplasticity, which serves as the physiological basis of cognition. The physiological effects of dopamine depend on receptor subtypes, and the D1 receptor is critically involved in learning and memory formation. Evidence from both animal and human studies shows a dose-dependent impact of D1 activity on performance. However, the direct association between physiology and behavior in humans remains unclear. In this study, four groups of healthy participants were recruited, and each group received placebo or medication inducing a low, medium, or high amount of D1 activation via the combination of levodopa and a D2 antagonist. After medication, fMRI was conducted during a visuomotor learning task. The behavioral results revealed an inverted U-shaped effect of D1 activation on task performance, where medium-dose D1 activation led to superior learning effects, as compared to placebo as well as low- and high-dose groups. A respective dose-dependent D1 modulation was also observed for cortical activity revealed by fMRI. Further analysis demonstrated a positive correlation between task performance and cortical activation at the left primary motor cortex. Our results indicate a nonlinear curve of D1 modulation on motor learning in humans and the respective physiological correlates in corresponding brain areas.
Collapse
Affiliation(s)
- Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Asif Jamil
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund 44139, Germany
| | - Lin-Cho Liu
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund 44139, Germany
| | - Shyh-Yuh Wei
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund 44139, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Ruhr University Bochum, Bochum 44789, Germany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund 44139, Germany
| |
Collapse
|
18
|
Sala-Bayo J, Fiddian L, Nilsson SRO, Hervig ME, McKenzie C, Mareschi A, Boulos M, Zhukovsky P, Nicholson J, Dalley JW, Alsiö J, Robbins TW. Dorsal and ventral striatal dopamine D1 and D2 receptors differentially modulate distinct phases of serial visual reversal learning. Neuropsychopharmacology 2020; 45:736-744. [PMID: 31940660 PMCID: PMC7075980 DOI: 10.1038/s41386-020-0612-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/22/2019] [Accepted: 12/16/2019] [Indexed: 11/08/2022]
Abstract
Impaired cognitive flexibility in visual reversal-learning tasks has been observed in a wide range of neurological and neuropsychiatric disorders. Although both human and animal studies have implicated striatal D2-like and D1-like receptors (D2R; D1R) in this form of flexibility, less is known about the contribution they make within distinct sub-regions of the striatum and the different phases of visual reversal learning. The present study investigated the involvement of D2R and D1R during the early (perseverative) phase of reversal learning as well as in the intermediate and late stages (new learning) after microinfusions of D2R and D1R antagonists into the nucleus accumbens core and shell (NAcC; NAcS), the anterior and posterior dorsomedial striatum (DMS) and the dorsolateral striatum (DLS) on a touchscreen visual serial reversal-learning task. Reversal learning was improved after dopamine receptor blockade in the nucleus accumbens; the D1R antagonist, SCH23390, in the NAcS and the D2R antagonist, raclopride, in the NAcC selectively reduced early, perseverative errors. In contrast, reversal learning was impaired by D2R antagonism, but not D1R antagonism, in the dorsal striatum: raclopride increased errors in the intermediate phase after DMS infusions, and increased errors across phases after DLS infusions. These findings indicate that D1R and D2R modulate different stages of reversal learning through effects localised to different sub-regions of the striatum. Thus, deficits in behavioral flexibility observed in disorders linked to dopamine perturbations may be attributable to specific D1R and D2R dysfunction in distinct striatal sub-regions.
Collapse
Affiliation(s)
- Júlia Sala-Bayo
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK
| | - Leanne Fiddian
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK
| | - Simon R O Nilsson
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK
| | - Mona E Hervig
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK
| | - Colin McKenzie
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK
| | - Alexis Mareschi
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK
| | - Maria Boulos
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK
| | - Peter Zhukovsky
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK
| | - Janet Nicholson
- Boehringer Ingelheim Pharma GmbH & Co. KG, Div. Research Germany, Biberach an der Riß, Germany
| | - Jeffrey W Dalley
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Johan Alsiö
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK
| | - Trevor W Robbins
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK.
| |
Collapse
|
19
|
Furman DJ, White RL, Naskolnakorn J, Ye J, Kayser A, D'Esposito M. Effects of Dopaminergic Drugs on Cognitive Control Processes Vary by Genotype. J Cogn Neurosci 2020; 32:804-821. [PMID: 31905090 DOI: 10.1162/jocn_a_01518] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dopamine (DA) has been implicated in modulating multiple cognitive control processes, including the robust maintenance of task sets and memoranda in the face of distractors (cognitive stability) and, conversely, the ability to switch task sets or update the contents of working memory when it is advantageous to do so (cognitive flexibility). In humans, the limited specificity of available pharmacological probes has posed a challenge for understanding the mechanisms by which DA, acting on multiple receptor families across the PFC and striatum, differentially influences these cognitive processes. Using a within-subject, placebo-controlled design, we contrasted the impact of two mechanistically distinct DA drugs, tolcapone (an inhibitor of catechol-O-methyltransferase [COMT], a catecholamine inactivator) and bromocriptine (a DA agonist with preferential affinity for the D2 receptor), on the maintenance and switching of task rules. Given previous work demonstrating that drug effects on behavior are dependent on baseline DA tone, participants were stratified according to genetic polymorphisms associated with cortical (COMT Val158Met) and striatal (Taq1A) DA system function. Our results were partially consistent with an inverted-U-shaped relationship between tolcapone and robust rule maintenance (interaction with COMT genotype) and between bromocriptine and cued rule switching (interaction with Taq1A genotype). However, when task instructions were ambiguous, a third relationship emerged to explain drug effects on spontaneous task switching (interaction of COMT genotype and bromocriptine). Together, this pattern of results suggests that the effects of DA drugs vary not only as a function of the DA system component upon which they act but also on subtle differences in task demands and context.
Collapse
Affiliation(s)
| | - Robert L White
- University of California, Berkeley.,Washington University School of Medicine
| | | | - Jean Ye
- University of California, Berkeley
| | | | | |
Collapse
|
20
|
Abstract
Molecular and functional imaging techniques have been used and combined with pharmacological probes to evaluate the role of dopamine in impulsivity. Overall, strong evidence links striatal dopaminergic function with impulsivity, measured by self-reports and laboratory tests of cognitive control and reward-based decision-making. The combination of molecular imaging using positron emission tomography (PET) with functional magnetic resonance imaging (fMRI) specifically implicates striatal D2-type dopamine receptors (i.e., D2 and D3) and corticostriatal connectivity in cognitive control. Low levels of striatal and midbrain D2-type receptor availability correlate with self-reported impulsivity, whereas striatal D2-type receptor availability shows positive correlation with motor response inhibition and cognitive flexibility. Impulsive choice on reward-based decision-making tasks also is related to deficits in striatal D2-type dopamine receptor availability, and there is evidence for an inverted U-shaped function in this relationship, reflecting an optimum of striatal dopaminergic activity. Findings from studies of clinical populations that present striatal dopamine D2-type receptor deficits as well as healthy control research participants identify D2-type receptors as therapeutic targets to improve cognitive control.
Collapse
Affiliation(s)
- Edythe D London
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Department of Molecular and Medical Pharmacology, and the Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Serotonin 5-HT 1A, 5-HT 2A and dopamine D 2 receptors strongly influence prefronto-hippocampal neural networks in alert mice: Contribution to the actions of risperidone. Neuropharmacology 2019; 158:107743. [PMID: 31430459 DOI: 10.1016/j.neuropharm.2019.107743] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/22/2019] [Accepted: 08/13/2019] [Indexed: 12/26/2022]
Abstract
Atypical antipsychotic drugs (APDs) used to treat positive and negative symptoms in schizophrenia block serotonin receptors 5-HT2AR and dopamine receptors D2R and stimulate 5-HT1AR directly or indirectly. However, the exact cellular mechanisms mediating their therapeutic actions remain unresolved. We recorded neural activity in the prefrontal cortex (PFC) and hippocampus (HPC) of freely-moving mice before and after acute administration of 5-HT1AR, 5-HT2AR and D2R selective agonists and antagonists and atypical APD risperidone. We then investigated the contribution of the three receptors to the actions of risperidone on brain activity via statistical modeling and pharmacological reversal (risperidone + 5-HT1AR antagonist WAY-100635, risperidone + 5-HT2A/2CR agonist DOI, risperidone + D2R agonist quinpirole). Risperidone, 5-HT1AR agonism with 8-OH-DPAT, 5-HT2AR antagonism with M100907, and D2R antagonism with haloperidol reduced locomotor activity of mice that correlated with a suppression of neural spiking, power of theta and gamma oscillations in PFC and HPC, and reduction of PFC-HPC theta phase synchronization. By contrast, activation of 5-HT2AR with DOI enhanced high-gamma oscillations in PFC and PFC-HPC high gamma functional connectivity, likely related to its hallucinogenic effects. Together, power changes, regression modeling and pharmacological reversals suggest an important role of 5-HT1AR agonism and 5-HT2AR antagonism in risperidone-induced alterations of delta, beta and gamma oscillations, while D2R antagonism may contribute to risperidone-mediated changes in delta oscillations. This study provides novel insight into the neural mechanisms for widely prescribed psychiatric medication targeting the serotonin and dopamine systems in two regions involved in the pathophysiology of schizophrenia.
Collapse
|
22
|
Kanen JW, Ersche KD, Fineberg NA, Robbins TW, Cardinal RN. Computational modelling reveals contrasting effects on reinforcement learning and cognitive flexibility in stimulant use disorder and obsessive-compulsive disorder: remediating effects of dopaminergic D2/3 receptor agents. Psychopharmacology (Berl) 2019; 236:2337-2358. [PMID: 31324936 PMCID: PMC6820481 DOI: 10.1007/s00213-019-05325-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/02/2019] [Indexed: 02/02/2023]
Abstract
RATIONALE Disorders of compulsivity such as stimulant use disorder (SUD) and obsessive-compulsive disorder (OCD) are characterised by deficits in behavioural flexibility, some of which have been captured using probabilistic reversal learning (PRL) paradigms. OBJECTIVES This study used computational modelling to characterise the reinforcement learning processes underlying patterns of PRL behaviour observed in SUD and OCD and to show how the dopamine D2/3 receptor agonist pramipexole and the D2/3 antagonist amisulpride affected these responses. METHODS We applied a hierarchical Bayesian method to PRL data across three groups: individuals with SUD, OCD, and healthy controls. Participants completed three sessions where they received placebo, pramipexole, and amisulpride, in a double-blind placebo-controlled, randomised design. We compared seven models using a bridge sampling estimate of the marginal likelihood. RESULTS Stimulus-bound perseveration, a measure of the degree to which participants responded to the same stimulus as before irrespective of outcome, was significantly increased in SUD, but decreased in OCD, compared to controls (on placebo). Individuals with SUD also exhibited reduced reward-driven learning, whilst both the SUD and OCD groups showed increased learning from punishment (nonreward). Pramipexole and amisulpride had similar effects on the control and OCD groups; both increased punishment-driven learning. These D2/3-modulating drugs affected the SUD group differently, remediating reward-driven learning and reducing aspects of perseverative behaviour, amongst other effects. CONCLUSIONS We provide a parsimonious computational account of how perseverative tendencies and reward- and punishment-driven learning differentially contribute to PRL in SUD and OCD. D2/3 agents modulated these processes and remediated deficits in SUD in particular, which may inform therapeutic effects.
Collapse
Affiliation(s)
- Jonathan W Kanen
- Department of Psychology, University of Cambridge, Cambridge, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | - Karen D Ersche
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Naomi A Fineberg
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Hertfordshire Partnership University NHS Foundation Trust, Welwyn Garden City, Hertfordshire, UK
- Department of Postgraduate Medicine, College Lane Hatfield, University of Hertfordshire, Hertfordshire, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Rudolf N Cardinal
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
23
|
Zhou J, Wu B, Lin X, Dai Y, Li T, Zheng W, Guo W, Vakal S, Chen X, Chen JF. Accumbal Adenosine A 2A Receptors Enhance Cognitive Flexibility by Facilitating Strategy Shifting. Front Cell Neurosci 2019; 13:130. [PMID: 31031594 PMCID: PMC6470273 DOI: 10.3389/fncel.2019.00130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
The deficits of cognitive flexibility (including attentional set-shifting and reversal learning) concomitant with dysfunction of the striatum are observed in several neuropsychiatric disorders. Rodent and human studies have identified the striatum [particularly the dorsomedial striatum (DMS) and nucleus accumbens (NAc)] as the critical locus for control of cognitive flexibility, but the effective neuromodulator and pharmacological control of cognitive flexibility remains to be determined. The adenosine A2A receptors (A2ARs) are highly enriched in the striatopallidal neurons where they integrate dopamine and glutamate signals to modulate several cognitive behaviors, but their contribution to cognitive flexibility control is unclear. In this study, by coupling an automated operant cognitive flexibility task with striatal subregional knockdown (KD) of the A2AR via the Cre-loxP strategy, we demonstrated that NAc A2AR KD improved cognitive flexibility with enhanced attentional set-shifting and reversal learning by decreasing regressive and perseverative errors, respectively. This facilitation was not attributed to mnemonic process or motor activity as NAc A2AR KD did not affect the visual discrimination, lever-pressing acquisition, and locomotor activity, but was associated with increased attention and motivation as evident by the progressive ratio test (PRT). In contrast to NAc A2ARs, DMS A2ARs KD neither affected visual discrimination nor improved set-shifting nor reversal learning, but promoted the effort-related motivation. Thus, NAc and DMS A2ARs exert dissociable controls of cognitive flexibility with NAc A2ARs KD selectively enhancing cognitive flexibility by facilitating strategy shifting with increased motivation/attention.
Collapse
Affiliation(s)
- Jianhong Zhou
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Optometry & Vision Science, Wenzhou, China
| | - Beibei Wu
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Optometry & Vision Science, Wenzhou, China
| | - Xiangxiang Lin
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Optometry & Vision Science, Wenzhou, China
| | - Yuwei Dai
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Optometry & Vision Science, Wenzhou, China
| | - Tingting Li
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Optometry & Vision Science, Wenzhou, China
| | - Wu Zheng
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Optometry & Vision Science, Wenzhou, China
| | - Wei Guo
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Optometry & Vision Science, Wenzhou, China
| | - Sergii Vakal
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xingjun Chen
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Optometry & Vision Science, Wenzhou, China
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Optometry & Vision Science, Wenzhou, China
| |
Collapse
|
24
|
Computational psychopharmacology: a translational and pragmatic approach. Psychopharmacology (Berl) 2019; 236:2295-2305. [PMID: 31273400 PMCID: PMC6695356 DOI: 10.1007/s00213-019-05302-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/05/2019] [Indexed: 11/26/2022]
Abstract
RATIONALE Psychopharmacology needs novel quantitative measures and theoretical approaches based on computational modelling that can be used to help translate behavioural findings from experimental animals to humans, including patients with neuropsychiatric disorders. OBJECTIVES This brief review exemplifies this approach when applied to recent published studies of the effects of manipulating central dopaminergic and serotoninergic systems in rodents and marmoset monkeys, and possible comparisons with healthy human volunteers receiving systemic agents or patients with depression and schizophrenia. METHODS Behavioural effects of central depletions of dopamine or serotonin in monkeys in probabilistic learning paradigms are characterised further by computational modelling methods and related to rodent and human data. RESULTS Several examples are provided of the power of computational modelling to derive new measures and reappraise conventional explanations of regional neurotransmitter depletion and other drug effects, whilst enhancing construct validation in patient groups. Specifically, effects are shown on such parameters as 'stimulus stickiness' and 'side stickiness', which occur over and above effects on standard parameters of reinforcement learning, reminiscent of some early innovations in data analysis in psychopharmacology. CONCLUSIONS Computational modelling provides a useful methodology for further detailed analysis of behavioural mechanisms that are affected by pharmacological manipulations across species and will aid the translation of experimental findings to understand the therapeutic effects of medications in neuropsychiatric disorders, as well as facilitating future drug discovery.
Collapse
|
25
|
Alsiö J, Phillips BU, Sala-Bayo J, Nilsson SRO, Calafat-Pla TC, Rizwand A, Plumbridge JM, López-Cruz L, Dalley JW, Cardinal RN, Mar AC, Robbins TW. Dopamine D2-like receptor stimulation blocks negative feedback in visual and spatial reversal learning in the rat: behavioural and computational evidence. Psychopharmacology (Berl) 2019; 236:2307-2323. [PMID: 31218428 PMCID: PMC6695374 DOI: 10.1007/s00213-019-05296-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/02/2019] [Indexed: 02/02/2023]
Abstract
RATIONALE Dopamine D2-like receptors (D2R) are important drug targets in schizophrenia and Parkinson's disease, but D2R ligands also cause cognitive inflexibility such as poor reversal learning. The specific role of D2R in reversal learning remains unclear. OBJECTIVES We tested the hypotheses that D2R agonism impairs reversal learning by blocking negative feedback and that antagonism of D1-like receptors (D1R) impairs learning from positive feedback. METHODS Male Lister Hooded rats were trained on a novel visual reversal learning task. Performance on "probe trials", during which the correct or incorrect stimulus was presented with a third, probabilistically rewarded (50% of trials) and therefore intermediate stimulus, revealed individual learning curves for the processes of positive and negative feedback. The effects of D2R and D1R agonists and antagonists were evaluated. A separate cohort was tested on a spatial probabilistic reversal learning (PRL) task after D2R agonism. Computational reinforcement learning modelling was applied to choice data from the PRL task to evaluate the contribution of latent factors. RESULTS D2R agonism with quinpirole dose-dependently impaired both visual reversal and PRL. Analysis of the probe trials on the visual task revealed a complete blockade of learning from negative feedback at the 0.25 mg/kg dose, while learning from positive feedback was intact. Estimated parameters from the model that best described the PRL choice data revealed a steep and selective decrease in learning rate from losses. D1R antagonism had a transient effect on the positive probe trials. CONCLUSIONS D2R stimulation impairs reversal learning by blocking the impact of negative feedback.
Collapse
Affiliation(s)
- Johan Alsiö
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | - Benjamin U Phillips
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Júlia Sala-Bayo
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Simon R O Nilsson
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Neuroscience Institute, New York University Medical Center, New York, NY, USA
- Department of Neuroscience and Physiology, School of Medicine, New York University, New York, NY, USA
| | - Teresa C Calafat-Pla
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Arazo Rizwand
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Jessica M Plumbridge
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Laura López-Cruz
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Jeffrey W Dalley
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Rudolf N Cardinal
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire & Peterborough NHS Foundation Trust, Box 190 (Liaison Psychiatry), Cambridge Biomedical Campus, Cambridge, UK
| | - Adam C Mar
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Neuroscience Institute, New York University Medical Center, New York, NY, USA
- Department of Neuroscience and Physiology, School of Medicine, New York University, New York, NY, USA
| | - Trevor W Robbins
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Murray GK, Knolle F, Ersche KD, Craig KJ, Abbott S, Shabbir SS, Fineberg NA, Suckling J, Sahakian BJ, Bullmore ET, Robbins TW. Dopaminergic drug treatment remediates exaggerated cingulate prediction error responses in obsessive-compulsive disorder. Psychopharmacology (Berl) 2019; 236:2325-2336. [PMID: 31201476 PMCID: PMC6695357 DOI: 10.1007/s00213-019-05292-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/30/2019] [Indexed: 02/02/2023]
Abstract
RATIONALE Patients with obsessive-compulsive disorder (OCD) have been found to show exaggerated error responses and prediction error learning signals in a variety of EEG and fMRI tasks, with data converging on the anterior cingulate cortex as a key locus of dysfunction. Considerable evidence has linked prediction error processing to dopaminergic function. OBJECTIVE In this study, we investigate potential dopaminergic dysfunction during reward processing in the context of OCD. METHODS We studied OCD patients (n = 18) and controls (n = 18) whilst they learned probabilistic associations between abstract stimuli and monetary rewards in the fMRI scanner involving administration (on separate visits) of a dopamine receptor agonist, pramipexole 0.5 mg; a dopamine receptor antagonist, amisulpride 400 mg; and placebo. We fitted a Q-learning computational model to fMRI prediction error responses; group differences were examined in anterior cingulate and nucleus accumbens regions of interest. RESULTS There were no significant group, drug, or interaction effects in the number of correct choices; computational modeling suggested a marginally significant difference in learning rates between groups (p = 0.089, partial ƞ2 = 0.1). In the imaging results, there was a significant interaction of group by drug (p = 0.013, partial ƞ2 = 0.13). OCD patients showed abnormally strong cingulate signaling of prediction errors during omission of an expected reward, with unexpected reduction by both pramipexole and amisulpride (p = 0.014, partial ƞ2 = 0.26, 1-β error probability = 0.94). Exaggerated cingulate prediction error signaling to omitted reward in placebo was related to trait subjective difficulty in self-regulating behavior in OCD. CONCLUSIONS Our data support cingulate dysfunction during reward processing in OCD, and bidirectional remediation by dopaminergic modulation, suggesting that exaggerated cingulate error signals in OCD may be of dopaminergic origin. The results help to illuminate the mechanisms through which dopamine receptor antagonists achieve therapeutic benefit in OCD. Further research is needed to disentangle the different functions of dopamine receptor agonists and antagonists during bidirectional modulation of cingulate activation.
Collapse
Affiliation(s)
- Graham K. Murray
- Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge, CB2 8AH UK ,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 1TN UK ,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, CB21 5EF UK
| | - Franziska Knolle
- Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge, CB2 8AH, UK. .,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 1TN, UK.
| | - Karen D. Ersche
- Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge, CB2 8AH UK ,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 1TN UK
| | - Kevin J. Craig
- Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge, CB2 8AH UK ,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 1TN UK
| | - Sanja Abbott
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 1TN UK ,Department of Psychology, University of Cambridge, Cambridge, CB2 1TN UK ,European Bioinformatics Institute, Cambridge, CB10 1SD UK
| | - Shaila S. Shabbir
- GlaxoSmithKline, Immuno-Inflammation Therapeutic Area Unit, Stevenage, UK
| | - Naomi A. Fineberg
- Department of Psychiatry, Queen Elizabeth II Hospital, Welwyn Garden City, UK
| | - John Suckling
- Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge, CB2 8AH UK ,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 1TN UK
| | - Barbara J. Sahakian
- Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge, CB2 8AH UK ,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 1TN UK
| | - Edward T. Bullmore
- Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge, CB2 8AH UK ,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 1TN UK ,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, CB21 5EF UK
| | - Trevor W. Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 1TN UK ,Department of Psychology, University of Cambridge, Cambridge, CB2 1TN UK
| |
Collapse
|