1
|
Wehrli JM, Xia Y, Meister L, Tursunova S, Kleim B, Bach DR, Quednow BB. Forget me not: The effect of doxycycline on human declarative memory. Eur Neuropsychopharmacol 2024; 89:1-9. [PMID: 39217739 DOI: 10.1016/j.euroneuro.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Investigations into neuroprotective drugs are in high demand for the treatment of neurodegenerative diseases, such as multiple sclerosis or Alzheimer's disease, but also psychiatric disorders, such as depression, trauma, and substance use. One potential drug class being investigated are tetracyclines impacting on a variety of neuroprotective mechanisms. At the same time, tetracyclines like doxycycline have been suggested to affect human fear and spatial memory as well as reducing declarative memory retention. Based on the assumed necessity for synaptic consolidation in hippocampus-dependent learning, we hypothesised declarative memory may be similarly impaired by doxycycline as fear and spatial memory. Therefore, in this study we investigate the potential diminishing effects of doxycycline on consolidation of declarative memory in healthy humans. Additionally, to test for effect specificity we assessed motor memory, sustained attention, and processing speed. We administered a neuropsychological test battery in three independent randomized placebo-controlled double-blind trials (RCTs), in which healthy young volunteers (total N = 252) either received a single oral dose doxycycline (200 mg, n = 126) or placebo (n = 126) in a between-subject design. We found no evidence for a detrimental effect of doxycycline on declarative memory; instead, doxycycline improved declarative learning (p-value=0.022, Cohen's d=0.15) and memory consolidation (p=0.040, d=0.26). Contrarily, doxycycline slightly reduced motor learning (p=0.001, d=0.10) but subtly strengthened long-term motor memory (p=0.001, d=0.10). These results suggest that doxycycline can improve declarative learning and memory without having long term negative effects on other cognitive domains in healthy humans. Our results give hope to further investigate doxycycline in neuroprotective treatment applications.
Collapse
Affiliation(s)
- Jelena M Wehrli
- Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland.
| | - Yanfang Xia
- Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland
| | - Laura Meister
- Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland
| | - Sarrina Tursunova
- Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland
| | - Birgit Kleim
- Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland
| | - Dominik R Bach
- Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland; University of Bonn, Transdisciplinary Research Area "Life and Health", Hertz Chair for Artificial Intelligence and Neuroscience, Bonn, Germany
| | - Boris B Quednow
- Experimental Pharmacopsychology and Psychological Addiction Research, Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Joint Center of University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Melink Z, Lustberg MB, Schnell PM, Mezzanotte-Sharpe J, Orchard TS. Effect of minocycline on changes in affective behaviors, cognitive function, and inflammation in breast cancer survivors undergoing chemotherapy: a pilot randomized controlled trial. Breast Cancer Res Treat 2024; 208:605-617. [PMID: 39143391 PMCID: PMC11522141 DOI: 10.1007/s10549-024-07457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE Minocycline suppresses chemotherapy-induced neuroinflammation in preclinical models, but its effects in cancer survivors are unknown. This study evaluated the longitudinal effects of minocycline on affective behaviors, cognitive functions, and inflammation in women with breast cancer (BC) undergoing chemotherapy. METHODS This is a pilot, double-blind, randomized controlled trial of oral minocycline (100 mg BID) versus placebo for chemotherapy-induced affective disorders in women initiating chemotherapy for stage I-III BC. Participants received minocycline or placebo up to one week before chemotherapy, continuing through cycle 4 (C4). Epidemiologic Studies Depression Scale (CES-D) and State-Trait Anxiety Inventory (STAI) were assessed at baseline, each cycle of chemotherapy (C1-C4), 2-3-week post-chemotherapy (end of chemotherapy), and 6-month post-chemotherapy (6 M) as the primary outcomes. Sub-group analysis of CES-D and STAI based on the severity of symptoms was also performed. Changes in self-reported cognition and serum inflammatory markers were also evaluated. RESULTS Fifty-seven women enrolled and 55 completed the study. Except for Interleukin-8 (p ≤ 0.03), changes in inflammatory markers, cognitive function, CES-D, and STAI were not significantly different between groups from baseline to any cycle or post-chemotherapy time point (all p > 0.05), adjusting for baseline scores. Increases in serum Interleukin-8 from baseline to C4 and 6 M were ameliorated by minocycline (p < 0.05). The sub-group symptomatic for depression (CES-D > = 16 at baseline) treated with minocycline had a greater reduction in CES-D score compared to placebo from baseline to 6 M (p = 0.01). CONCLUSION Despite attenuation of IL-8, minocycline did not alter self-reported affective symptoms or cognition in this cohort of BC survivors undergoing chemotherapy. The effect of minocycline on BC survivors symptomatic for depression before chemotherapy warrants further investigation.
Collapse
Affiliation(s)
- Zihan Melink
- Department of Human Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Maryam B Lustberg
- Yale School of Medicine, Center for Breast Cancer, New Haven, CT, 06511, USA
| | - Patrick M Schnell
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Jessica Mezzanotte-Sharpe
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Tonya S Orchard
- Department of Human Sciences, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Gholami M, Ghelichkhani Z, Aghakhani R, Klionsky DJ, Motaghinejad O, Motaghinejad M, Koohi MK, Hassan J. Minocycline Acts as a Neuroprotective Agent Against Tramadol-Induced Neurodegeneration: Behavioral and Molecular Evidence. Int J Prev Med 2024; 15:47. [PMID: 39539580 PMCID: PMC11559692 DOI: 10.4103/ijpvm.ijpvm_10_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/04/2024] [Indexed: 11/16/2024] Open
Abstract
Background Previous evidence indicates that tramadol (TRA) can lead to neurodegenerative events and minocycline (MIN) has neuroprotective properties. Aim of the Study The current research evaluated the neuroprotective effects of MIN for TRA-promoted neurodegeneration. Methods Sixty adult male rats were placed into the following groups: 1 (received 0.7 ml/rat of normal saline, IP), 2 (received 50 mg/kg of TRA, i.p.), 3, 4, 5 (administered TRA as 50 mg/kg simultaneously with MIN at 20, 40, and 60 mg/kg, IP, respectively), and 6 (received MIN alone as 60 mg/kg, IP). The treatment procedure was 21 days. An open field test (OFT) was used to measure motor activity and anxiety-related behavior. Furthermore, oxidative stress; hippocampal inflammation; apoptotic parameters as well as activity of mitochondrial complexes I, II, III, and IV; ATP levels; and mitochondrial membrane potential (MMP) were evaluated. In addition, histomorphological alteration was assessed in two regions of the hippocampus: Cornu Ammonis (CA1) and dentate gyrus (DG). Results MIN treatment could inhibit TRA-induced anxiety and motor activity disturbances (P < 0.05). In addition, MIN could attenuate reactive oxygen species (ROS), H2O2, oxidized glutathione (GSSG), and malondialdehyde (MDA) level (P < 0.05), while there was increased reduced glutathione (GSH), total antioxidant capacity (TAC), ATP, MMP, and BCL2 levels (P < 0.05) and also elevation of SOD, GPX, GSR (P < 0.05), and mitochondrial complexes I, II, III, and IV activity (P < 0.05) in TRA-treated rats. In consistence with these findings, MIN could reduce TNF/TNF-α, IL1B/IL1-β, BAX, and CASP3 levels (P < 0.05) in TRA-treated rats. MIN also restored the quantitative (P < 0.05) and qualitative histomorphological sequels of TRA in both CA1 and DG areas of the hippocampus. Conclusions MIN probably has repositioning capability for inhibition of TRA-induced neurodegeneration via modulation of inflammation, oxidative stress, apoptosis, and mitochondrial disorders.
Collapse
Affiliation(s)
- Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Aghakhani
- Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | | | - Ozra Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Kazem Koohi
- Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalal Hassan
- Division of Toxicology, Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Hatch K, Lischka F, Wang M, Xu X, Stimpson CD, Barvir T, Cramer NP, Perl DP, Yu G, Browne CA, Dickstein DL, Galdzicki Z. The role of microglia in neuronal and cognitive function during high altitude acclimatization. Sci Rep 2024; 14:18981. [PMID: 39152179 PMCID: PMC11329659 DOI: 10.1038/s41598-024-69694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Due to their interactions with the neurovasculature, microglia are implicated in maladaptive responses to hypobaric hypoxia at high altitude (HA). To explore these interactions at HA, pharmacological depletion of microglia with the colony-stimulating factor-1 receptor inhibitor, PLX5622, was employed in male C57BL/6J mice maintained at HA or sea level (SL) for 3-weeks, followed by assessment of ex-vivo hippocampal long-term potentiation (LTP), fear memory recall and microglial dynamics/physiology. Our findings revealed that microglia depletion decreased LTP and reduced glucose levels by 25% at SL but did not affect fear memory recall. At HA, the absence of microglia did not significantly alter HA associated deficits in fear memory or HA mediated decreases in peripheral glucose levels. In regard to microglial dynamics in the cortex, HA enhanced microglial surveillance activity, ablation of microglia resulted in increased chemotactic responses and decreased microglia tip proliferation during ball formation. In contrast, vessel ablation increased cortical microglia tip path tortuosity. In the hippocampus, changes in microglial dynamics were only observed in response to vessel ablation following HA. As the hippocampus is critical for learning and memory, poor hippocampal microglial context-dependent adaptation may be responsible for some of the enduring neurological deficits associated with HA.
Collapse
Affiliation(s)
- Kathleen Hatch
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Fritz Lischka
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Mengfan Wang
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA
| | - Xiufen Xu
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Cheryl D Stimpson
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Tara Barvir
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Nathan P Cramer
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Daniel P Perl
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Guoqiang Yu
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA
| | - Caroline A Browne
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Dara L Dickstein
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Zygmunt Galdzicki
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
5
|
Hasler G, Inta D. Emerging Perspectives on Neuroprotection. PSYCHOTHERAPY AND PSYCHOSOMATICS 2024; 93:285-291. [PMID: 39154647 DOI: 10.1159/000540032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024]
Abstract
Neuroprotection aims to safeguard neurons from damage caused by various factors like stress, potentially leading to the rescue, recovery, or regeneration of the nervous system and its functions [J Clin Neurosci. 2002;9(1):4-8]. Conversely, neuroplasticity refers to the brain's ability to adapt and change throughout life, involving structural and functional alterations in cells and synaptic transmission [Neural Plast. 2014;2014:541870]. Neuroprotection is a broad and multidisciplinary field encompassing various approaches and strategies aimed at preserving and promoting neuronal health. It is a critical area of research in neuroscience and neurology, with the potential to lead to new therapies for a wide range of neurological disorders and conditions. Neuroprotection can take various forms and may involve pharmacological agents, lifestyle modifications, or behavioral interventions. Accordingly, also the perspective and the meaning of neuroprotection differs due to different angles of interpretation. The primary interpretation is from the pharmacological point of view since the most consistent data come from this field. In addition, we will discuss also alternative, yet less considered, perspectives on neuroprotection, focusing on specific neuroprotective targets, interactions with surrounding microglia, different levels of neuroprotective effects, the reversive/adaptative dimension, and its use as anticipatory/prophylactic intervention.
Collapse
Affiliation(s)
- Gregor Hasler
- Molecular Psychiatry Lab, Faculty of Science and Medicine, University of Fribourg, Villars-sur-Glâne, Switzerland
- Freiburg Mental Health Network, Villars-sur-Glâne, Switzerland
- Lake Lucerne Institute, Vitznau, Switzerland
| | - Dragos Inta
- Translational Psychiatry, Department of Community Health, University of Fribourg, Fribourg, Switzerland
- Food Research and Innovation Center (FRIC), University of Fribourg, Fribourg, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Rezaei A, Moqadami A, Khalaj-Kondori M. Minocycline as a prospective therapeutic agent for cancer and non-cancer diseases: a scoping review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2835-2848. [PMID: 37991540 DOI: 10.1007/s00210-023-02839-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023]
Abstract
Minocycline is an FDA-approved secondary-generation tetracycline antibiotic. It is a synthetic antibiotic having many biological effects, such as antioxidant, anti-inflammatory, anti-cancer, and neuroprotective functions. This study discusses the pharmacological mechanisms of preventive and therapeutic effects of minocycline. Specifically, it provides a comprehensive overview of the molecular pathways by which minocycline acts on the different cancers, including ovarian, breast, glioma, colorectal, liver, pancreatic, lung, prostate, melanoma, head and neck, leukemia, and non-cancer diseases such as Alzheimer's disease, Parkinson, schizophrenia, multiple sclerosis, Huntington, polycystic ovary syndrome, and coronavirus disease 19. Minocycline may be a potential medication for these disorders due to its strong blood-brain barrier penetrance. It is also widely accepted as a specific medication, has a well-known side-effect characteristic, is reasonably priced, making it appropriate for continuous use in managing diseases, and has been demonstrated as an oral approach because it is effectively absorbed and accomplished almost all of the body's parts.
Collapse
Affiliation(s)
- Abedeh Rezaei
- Department of Animal Biology¸ Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Amin Moqadami
- Department of Animal Biology¸ Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology¸ Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
7
|
Xia Y, Wehrli J, Abivardi A, Hostiuc M, Kleim B, Bach DR. Attenuating human fear memory retention with minocycline: a randomized placebo-controlled trial. Transl Psychiatry 2024; 14:28. [PMID: 38233395 PMCID: PMC10794420 DOI: 10.1038/s41398-024-02732-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Pavlovian fear conditioning is widely used as a pre-clinical model to investigate methods for prevention and treatment of anxiety and stress-related disorders. In this model, fear memory consolidation is thought to require synaptic remodeling, which is induced by signaling cascades involving matrix metalloproteinase 9 (MMP-9). Here we investigated the effect of the tetracycline antibiotic minocycline, an inhibitor of MMP-9, on fear memory retention. We conducted a pre-registered, randomized, double-blind, placebo-controlled trial in N = 105 healthy humans (N = 70 female), using a configural fear conditioning paradigm. We administered a single dose of minocycline before configural fear memory acquisition and assessed fear memory retention seven days later in a recall test. To index memory retention, we pre-registered fear-potentially startle (FPS) as our primary outcome, and pupil dilation as the secondary outcome. As control indices of memory acquisition, we analyzed skin conductance responses (SCR) and pupil dilation. We observed attenuated retention of configural fear memory in individuals treated with minocycline compared to placebo, as measured by our primary outcome. In contrast, minocycline did not affect fear memory acquisition or declarative contingency memory. Our findings provide in-vivo evidence for the inhibition of fear memory consolidation by minocycline. This could motivate further research into primary prevention, and given the short uptake time of minocycline, potentially also secondary prevention of PTSD after trauma.
Collapse
Affiliation(s)
- Yanfang Xia
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Transdisciplinary Research Area Life and Health, Hertz Chair for Artificial Intelligence and Neuroscience, University of Bonn, Bonn, Germany.
| | - Jelena Wehrli
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Aslan Abivardi
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Madalina Hostiuc
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Birgit Kleim
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Dominik R Bach
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Transdisciplinary Research Area Life and Health, Hertz Chair for Artificial Intelligence and Neuroscience, University of Bonn, Bonn, Germany.
- Wellcome Centre for Human Neuroimaging & Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.
| |
Collapse
|
8
|
Vecchiarelli HA, Lopes LT, Paolicelli RC, Stevens B, Wake H, Tremblay MÈ. Synapse Regulation. ADVANCES IN NEUROBIOLOGY 2024; 37:179-208. [PMID: 39207693 DOI: 10.1007/978-3-031-55529-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are the resident immune cells of the brain. As such, they rapidly detect changes in normal brain homeostasis and accurately respond by fine-tuning in a tightly regulated manner their morphology, gene expression, and functional behavior. Depending on the nature of these changes, microglia can thicken and retract their processes, proliferate and migrate, release numerous signaling factors and compounds influencing neuronal physiology (e.g., cytokines and trophic factors), in addition to secreting proteases able to transform the extracellular matrix, and phagocytosing various types of cellular debris, etc. Because microglia also transform rapidly (on a time scale of minutes) during experimental procedures, studying these very special cells requires methods that are specifically non-invasive. The development of such methods has provided unprecedented insights into the roles of microglia during normal physiological conditions. In particular, transcranial two-photon in vivo imaging revealed that presumably "resting" microglia continuously survey the brain parenchyma with their highly motile processes, in addition to modulating their structural and functional interactions with neuronal circuits along the changes in neuronal activity and behavioral experience occurring throughout the lifespan. In this chapter, we will describe how surveillant microglia interact with synaptic elements and modulate the number, maturation, function, and plasticity of synapses in the healthy developing, mature, and aging brain, with consequences on neuronal activity, learning and memory, and the behavioral outcome.
Collapse
Affiliation(s)
| | | | - Rosa C Paolicelli
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
| | - Beth Stevens
- Department of Neurology, Harvard Medical School, Center for Life Science, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
| | - Hiroaki Wake
- Division of Brain Circuits, National Institute for Basic Biology, Myodaiji-cho, Okazaki, Japan
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
9
|
Myers SJ, Agapova V, Patel SV, Hayes SH, Sposato LA, Allman BL, Whitehead SN. Acute minocycline treatment inhibits microglia activation, reduces infarct volume, and has domain-specific effects on post-ischemic stroke cognition in rats. Behav Brain Res 2023; 455:114680. [PMID: 37742808 DOI: 10.1016/j.bbr.2023.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Ischemic stroke affects millions of individuals worldwide and a high prevalence of survivors experience cognitive deficits. At present, the underlying mechanisms that drive post-stroke cognitive decline are not well understood. Microglia play a critical role in the post-stroke inflammatory response, but experimental studies show that an accumulation of chronically activated microglia can be harmful and associates with cognitive impairment. This study assessed the effect of acute post-stroke minocycline treatment on chronic microglia and astrocyte expression within the infarct and remote white matter regions, as well as its effect on various domains of cognitive function post-stroke. Nine-month-old male rats received an injection of endothelin-1 into the right dorsal striatum to induce transient focal ischemia, and then were treated with minocycline or saline for 4 days post-stroke. Rats were tested using a series of lever-pressing tasks and the Morris water maze to assess striatal-based learning, cognitive flexibility, and spatial learning and reference memory. We found that minocycline-treated rats had smaller stroke-induced infarcts and less microglia activation in the infarct area and remote white matter regions compared to saline-treated rats at 28 days post-stroke. The behavioural testing results differed according to the cognitive domain; whereas minocycline-treated rats trended towards improved striatal-based learning in a lever-pressing task, but cognitive flexibility was unaffected during the subsequent set-shifting task. Furthermore, minocycline treatment unexpectedly impaired spatial learning, yet it did not alter reference memory. Collectively, we show that post-stroke minocycline treatment can reduce chronic microglia activation even in remote brain regions, with domain-specific effects on cognitive function.
Collapse
Affiliation(s)
- S J Myers
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - V Agapova
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - S V Patel
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - S H Hayes
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - L A Sposato
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - B L Allman
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - S N Whitehead
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
10
|
Poggini S, Banqueri M, Ciano Albanese N, Golia MT, Ibáñez FG, Limatola C, Furhmann M, Lalowski M, Tremblay ME, Maggi L, Kaminska B, Branchi I. Minocycline treatment improves cognitive and functional plasticity in a preclinical mouse model of major depressive disorder. Behav Brain Res 2023; 441:114295. [PMID: 36641083 DOI: 10.1016/j.bbr.2023.114295] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Major depressive disorder (MDD) is a chronic, recurring, and potentially life-threatening illness, which affects over 300 million people worldwide. MDD affects not only the emotional and social domains but also cognition. However, the currently available treatments targeting cognitive deficits in MDD are limited. Minocycline, an antibiotic with anti-inflammatory properties recently identified as a potential antidepressant, has been shown to attenuate learning and memory deficits in animal models of cognitive impairment. Here, we explored whether minocycline recovers the deficits in cognition in a mouse model of depression. C57BL6/J adult male mice were exposed to two weeks of chronic unpredictable mild stress to induce a depressive-like phenotype. Immediately afterward, mice received either vehicle or minocycline for three weeks in standard housing conditions. We measured anhedonia as a depressive-like response, and place learning to assess cognitive abilities. We also recorded long-term potentiation (LTP) as an index of hippocampal functional plasticity and ran immunohistochemical assays to assess microglial proportion and morphology. After one week of treatment, cognitive performance in the place learning test was significantly improved by minocycline, as treated mice displayed a higher number of correct responses when learning novel spatial configurations. Accordingly, minocycline-treated mice displayed higher LTP compared to controls. However, after three weeks of treatment, no difference between treated and control animals was found for behavior, neural plasticity, and microglial properties, suggesting that minocycline has a fast but short effect on cognition, without lasting effects on microglia. These findings together support the usefulness of minocycline as a potential treatment for cognitive impairment associated with MDD.
Collapse
Affiliation(s)
- Silvia Poggini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Maria Banqueri
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Naomi Ciano Albanese
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; PhD program in Behavioral Neurosciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Maria Teresa Golia
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Fernando González Ibáñez
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Centre de recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | | | - Maciej Lalowski
- Helsinki Institute for Life Science (HiLIFE) and Faculty of Medicine, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki FI-00014, Finland
| | - Marie-Eve Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Centre de recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Laura Maggi
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| |
Collapse
|
11
|
Kater MSJ, Huffels CFM, Oshima T, Renckens NS, Middeldorp J, Boddeke EWGM, Smit AB, Eggen BJL, Hol EM, Verheijen MHG. Prevention of microgliosis halts early memory loss in a mouse model of Alzheimer's disease. Brain Behav Immun 2023; 107:225-241. [PMID: 36270437 DOI: 10.1016/j.bbi.2022.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline, the neuropathological formation of amyloid-beta (Aβ) plaques and neurofibrillary tangles. The best cellular correlates of the early cognitive deficits in AD patients are synapse loss and gliosis. In particular, it is unclear whether the activation of microglia (microgliosis) has a neuroprotective or pathological role early in AD. Here we report that microgliosis is an early mediator of synaptic dysfunction and cognitive impairment in APP/PS1 mice, a mouse model of increased amyloidosis. We found that the appearance of microgliosis, synaptic dysfunction and behavioral impairment coincided with increased soluble Aβ42 levels, and occurred well before the presence of Aβ plaques. Inhibition of microglial activity by treatment with minocycline (MC) reduced gliosis, synaptic deficits and cognitive impairments at early pathological stages and was most effective when provided preventive, i.e., before the onset of microgliosis. Interestingly, soluble Aβ levels or Aβ plaques deposition were not affected by preventive MC treatment at an early pathological stage (4 months) whereas these were reduced upon treatment at a later stage (6 months). In conclusion, this study demonstrates the importance of early-stage prevention of microgliosis on the development of cognitive impairment in APP/PS1 mice, which might be clinically relevant in preventing memory loss and delaying AD pathogenesis.
Collapse
Affiliation(s)
- Mandy S J Kater
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christiaan F M Huffels
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Takuya Oshima
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Niek S Renckens
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands; Department of Neurobiology & Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Erik W G M Boddeke
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Center for Healthy Ageing, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Aghajani Shahrivar A, Khakpourian Z, Majdi F, Sobhani S, Coleman-Fuller N, Gholami M, Motaghinejad M. Hypothesized neuroprotective effect of minocycline against COVID-19-induced stroke and neurological dysfunction: possible role of matrix metalloprotease signaling pathway. Biologia (Bratisl) 2022; 77:3027-3035. [PMID: 35966933 PMCID: PMC9360701 DOI: 10.1007/s11756-022-01162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (COVID-19) is a respiratory disease that causes dysfunction in respiration. Since late 2019, this virus has infected and killed millions of people around the world and imposed many medical and therapeutic problems in the form of a pandemic. According to recent data, COVID-19 disease can increase the risk of stroke, which can be deadly or cause many neurological disorders after the disease. During the last two years, many efforts have been made to introduce new therapies for management of COVID-19-related complications, including stroke. To achieve this goal, several conventional drugs have been investigated for their possible therapeutic roles. Minocycline, a broad-spectrum, long-acting antibiotic with anti-inflammatory and antioxidant properties, is one such conventional drug that should be considered for treating COVID-19-related stroke, as indirect evidence indicates that it exerts neuroprotective effects, can modulate stroke occurrence, and can play an effective and strategic role in management of the molecular signals caused by stroke and its destructive consequences. The matrix metalloprotease (MMP) signaling pathway is one of the main signaling pathways involved in the occurrence and exacerbation of stroke; however, its role in COVID-19-induced stroke and the possible role of minocycline in the management of this signaling pathway in patients with COVID-19 is unclear and requires further investigation. Based on this concept, we hypothesize that minocycline might act via MMP signaling as a neuroprotective agent against COVID-19-induced neurological dysfunction, particularly stroke.
Collapse
Affiliation(s)
- Ali Aghajani Shahrivar
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Khakpourian
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Majdi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sarvenaz Sobhani
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natalie Coleman-Fuller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108 USA
| | - Mina Gholami
- College of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Different behavioral and learning effects between using boundary and landmark cues during spatial navigation. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-03335-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Motaghinejad M, Motevalian M. Neuroprotective Properties of Minocycline Against Methylphenidate-Induced Neurodegeneration: Possible Role of CREB/BDNF and Akt/GSK3 Signaling Pathways in Rat Hippocampus. Neurotox Res 2022; 40:689-713. [PMID: 35446003 DOI: 10.1007/s12640-021-00454-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
Neurodegeneration is a side effect of methylphenidate (MPH), and minocycline possesses neuroprotective properties. This study aimed to investigate the neuroprotective effects of minocycline against methylphenidate-induced neurodegeneration mediated by signaling pathways of CREB/BDNF and Akt/GSK3. Seven groups of seventy male rats were randomly distributed in seven groups (n = 10). Group 1 received 0.7 ml/rat of normal saline (i.p.), and group 2 was treated with MPH (10 mg/kg, i.p.). Groups 3, 4, 5, and 6 were simultaneously administered MPH (10 mg/kg) and minocycline (10, 20, 30, and 40 mg/kg, i.p.) for 21 days. Minocycline alone (40 mg/kg, i.p.) was administrated to group 7. Open field test (OFT) (on day 22), forced swim test (FST) (on day 24), and elevated plus maze (on day 26) were conducted to analyze the mood-related behaviors; hippocampal oxidative stress, inflammatory, and apoptotic parameters, as well as the levels of protein kinase B (Akt-1), glycogen synthase kinase 3 (GSK3), cAMP response element-binding protein (CREB), and brain-derived neurotrophic factor (BDNF), were also assessed. Furthermore, localization of total CREB, Akt, and GSK3 in the DG and CA1 areas of the hippocampus were measured using immunohistochemistry (IHC). Histological changes in the mentioned areas were also evaluated. Minocycline treatment inhibited MPH-induced mood disorders and decreased lipid peroxidation, oxidized form of glutathione (GSSG), interleukin 1 beta (IL-1β), alpha tumor necrosis factor (TNF-α), Bax, and GSK3 levels. In the contrary, it increased the levels of reduced form of glutathione (GSH), Bcl-2, CREB, BDNF, and Akt-1 and superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in the experimental animals' hippocampus. IHC data showed that minocycline also improved the localization and expression of CREB and Akt positive cells and decreased the GSK3 positive cells in the DG and CA1 regions of the hippocampus of MPH-treated rats. Minocycline also inhibited MPH-induced changes of hippocampal cells' density and shape in both DG and CA1 areas of the hippocampus. According to obtained data, it can be concluded that minocycline probably via activation of the P-CREB/BDNF or Akt/GSK3 signaling pathway can confer its neuroprotective effects against MPH-induced neurodegeneration.
Collapse
Affiliation(s)
- Majid Motaghinejad
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Shahid Hemmat High way, Iran Univ. Med. Sci., P.O. Box 14496-14525, Tehran, Iran.
| | - Manijeh Motevalian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Shahid Hemmat High way, Iran Univ. Med. Sci., P.O. Box 14496-14525, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran, Iran University of Medical Sciences, Shahid Hemmat High way, Iran Univ. Med. Sci., P.O. Box 14496-14525, Tehran, Iran.
| |
Collapse
|
15
|
Escobar YNH, O’Piela D, Wold LE, Mackos AR. Influence of the Microbiota-Gut-Brain Axis on Cognition in Alzheimer’s Disease. J Alzheimers Dis 2022; 87:17-31. [PMID: 35253750 PMCID: PMC10394502 DOI: 10.3233/jad-215290] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The gut microbiota is made up of trillions of microbial cells including bacteria, viruses, fungi, and other microbial bodies and is greatly involved in the maintenance of proper health of the host body. In particular, the gut microbiota has been shown to not only be involved in brain development but also in the modulation of behavior, neuropsychiatric disorders, and neurodegenerative diseases including Alzheimer’s disease. The precise mechanism by which the gut microbiota can affect the development of Alzheimer’s disease is unknown, but the gut microbiota is thought to communicate with the brain directly via the vagus nerve or indirectly through signaling molecules such as cytokines, neuroendocrine hormones, bacterial components, neuroactive molecules, or microbial metabolites such as short-chain fatty acids. In particular, interventions such as probiotic supplementation, fecal microbiota transfer, and supplementation with microbial metabolites have been used not only to study the effects that the gut microbiota has on behavior and cognitive function, but also as potential therapeutics for Alzheimer’s disease. A few of these interventions, such as probiotics, are promising candidates for the improvement of cognition in Alzheimer ’s disease and are the focus of this review.
Collapse
Affiliation(s)
- Yael-Natalie H. Escobar
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Devin O’Piela
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Loren E. Wold
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Amy R. Mackos
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
16
|
Markulin I, Matasin M, Turk VE, Salković-Petrisic M. Challenges of repurposing tetracyclines for the treatment of Alzheimer's and Parkinson's disease. J Neural Transm (Vienna) 2022; 129:773-804. [PMID: 34982206 DOI: 10.1007/s00702-021-02457-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
The novel antibiotic-exploiting strategy in the treatment of Alzheimer's (AD) and Parkinson's (PD) disease has emerged as a potential breakthrough in the field. The research in animal AD/PD models provided evidence on the antiamyloidogenic, anti-inflammatory, antioxidant and antiapoptotic activity of tetracyclines, associated with cognitive improvement. The neuroprotective effects of minocycline and doxycycline in animals initiated investigation of their clinical efficacy in AD and PD patients which led to inconclusive results and additionally to insufficient safety data on a long-standing doxycycline and minocycline therapy in these patient populations. The safety issues should be considered in two levels; in AD/PD patients (particularly antibiotic-induced alteration of gut microbiota and its consequences), and as a world-wide threat of development of bacterial resistance to these antibiotics posed by a fact that AD and PD are widespread incurable diseases which require daily administered long-lasting antibiotic therapy. Recently proposed subantimicrobial doxycycline doses should be thoroughly explored for their effectiveness and long-term safety especially in AD/PD populations. Keeping in mind the antibacterial activity-related far-reaching undesirable effects both for the patients and globally, further work on repurposing these drugs for a long-standing therapy of AD/PD should consider the chemically modified tetracycline compounds tailored to lack antimicrobial but retain (or introduce) other activities effective against the AD/PD pathology. This strategy might reduce the risk of long-term therapy-related adverse effects (particularly gut-related ones) and development of bacterial resistance toward the tetracycline antibiotic agents but the therapeutic potential and desirable safety profile of such compounds in AD/PD patients need to be confirmed.
Collapse
Affiliation(s)
- Iva Markulin
- Community Health Centre Zagreb-Centre, Zagreb, Croatia
| | | | - Viktorija Erdeljic Turk
- Division of Clinical Pharmacology, Department of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Melita Salković-Petrisic
- Department of Pharmacology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia.
| |
Collapse
|
17
|
Piber D. The role of sleep disturbance and inflammation for spatial memory. Brain Behav Immun Health 2021; 17:100333. [PMID: 34589818 PMCID: PMC8474561 DOI: 10.1016/j.bbih.2021.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022] Open
Abstract
Spatial memory is a brain function involved in multiple behaviors such as planning a route or recalling an object's location. The formation of spatial memory relies on the homeostasis of various biological systems, including healthy sleep and a well-functioning immune system. While sleep is thought to promote the stabilization and storage of spatial memories, considerable evidence shows that the immune system modulates neuronal processes underlying spatial memory such as hippocampal neuroplasticity, long-term potentiation, and neurogenesis. Conversely, when sleep is disturbed and/or states of heightened immune activation occur, hippocampal regulatory pathways are altered, which - on a behavioral level - may result in spatial memory impairments. In this Brief Review, I summarize how sleep and the immune system contribute to spatial memory processes. In addition, I present emerging evidence suggesting that sleep disturbance and inflammation might jointly impair spatial memory. Finally, potentials of integrated strategies that target sleep disturbance and inflammation to possibly mitigate risk for spatial memory impairment are discussed.
Collapse
Affiliation(s)
- Dominique Piber
- Department of Psychiatry, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, USA
| |
Collapse
|
18
|
Chen XD, Zhao J, Yang X, Zhou BW, Yan Z, Liu WF, Li C, Liu KX. Gut-Derived Exosomes Mediate Memory Impairment After Intestinal Ischemia/Reperfusion via Activating Microglia. Mol Neurobiol 2021; 58:4828-4841. [PMID: 34189701 DOI: 10.1007/s12035-021-02444-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/05/2021] [Indexed: 12/30/2022]
Abstract
Intestinal ischemia/reperfusion is a grave condition with high morbidity and mortality in perioperative and critical care settings and causes multiple organ injuries beyond the intestine, including brain injury. Exosomes act as intercellular communication carriers by the transmission of their cargo to recipient cells. Here, we investigate whether exosomes derived from the intestine contribute to brain injury after intestinal ischemia/reperfusion via interacting with microglia in the brain. Intestinal ischemia/reperfusion was established in male C57/BL mice by clamping the superior mesenteric artery for 30 min followed by reperfusion. The sham surgery including laparotomy and isolation of the superior mesenteric artery without occlusion was performed as control. Male C57 mouse was intracerebral ventricular injected with intestinal exosomes from mice of intestinal ischemia/reperfusion or sham surgery. Primary microglia were cocultured with intestinal exosomes; HT-22 cells were treated with intestinal exosomes or microglia conditioned media. Intestinal ischemia/reperfusion-induced microglial activation, neuronal loss, synaptic stability decline, and cognitive deficit. Intracerebral ventricular injection of intestinal exosomes from intestinal ischemia/reperfusion mice causes microglial activation, neuronal loss, synaptic stability decline, and cognitive impairment. Microglia can incorporate intestinal exosomes both in vivo and in vitro. Microglia activated by intestinal exosomes increases neuron apoptotic rate and decreases synaptic stability. This study indicates that intestinal exosomes mediate memory impairment after intestinal ischemia/reperfusion via activating microglia. Inhibiting exosome secretion or suppressing microglial activation can be a therapeutic target to prevent memorial impairment after intestinal ischemia/reperfusion.
Collapse
Affiliation(s)
- Xiao-Dong Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo-Wei Zhou
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhengzheng Yan
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei-Feng Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cai Li
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|