1
|
Hao X, Ma M, Meng F, Liang H, Liang C, Liu X, Zhang B, Ju Y, Liu S, Ming D. Diminished attention network activity and heightened salience-default mode transitions in generalized anxiety disorder: Evidence from resting-state EEG microstate analysis. J Affect Disord 2024; 373:227-236. [PMID: 39743145 DOI: 10.1016/j.jad.2024.12.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/15/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Generalized anxiety disorder (GAD) is a common anxiety disorder characterized by excessive, uncontrollable worry and physical symptoms such as difficulty concentrating and sleep disturbances. Although functional magnetic resonance imaging (fMRI) studies have reported aberrant network-level activity related to cognition and emotion in GAD, its low temporal resolution restricts its ability to capture the rapid neural activity in mental processes. EEG microstate analysis offers millisecond-resolution for tracking the dynamic changes in brain electrical activity, thereby illuminating the neurophysiological mechanisms underlying the cognitive and emotional dysfunctions in GAD. This study collected 64-channel resting-state EEG data from 28 GAD patients and 28 healthy controls (HC), identifying five microstate classes (A-E) in both groups. Results showed that GAD patients exhibited significantly lower duration (p < 0.01), occurrence (p < 0.05), and coverage (p < 0.01) of microstate class D, potentially reflecting deficits in attention-related networks. Such alterations may contribute to the impairments in attention maintenance and cognitive control. Additionally, GAD patients displayed reduced transition probabilities in A → D, B → D, C → D, and E → D (all corrected p < 0.05), but increased in C → E (corrected p < 0.05) and E → C (corrected p < 0.01). These results highlight a significant reduction in the brain's ability to transition into microstate class D, alongside overactivity in switching between the default mode network and the salience network. Such neurophysiological changes may underlie cognitive control deficits, increased spontaneous rumination, and emotional regulation challenges observed in GAD. Together, these insights provide a new perspective for understanding the neurophysiological and pathological mechanisms underlying GAD.
Collapse
Affiliation(s)
- Xinyu Hao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Mohan Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Fanyu Meng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Hui Liang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Chunyu Liang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Xiaoya Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, People's Republic of China
| | - Bo Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, People's Republic of China
| | - Yumeng Ju
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, People's Republic of China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, People's Republic of China.
| |
Collapse
|
2
|
Zheng K, Liu Z, Miao Z, Xiong G, Yang H, Zhong M, Yi J. Impaired cognitive flexibility in major depressive disorder: Evidences from spatial-temporal ERPs analysis. J Affect Disord 2024; 365:406-416. [PMID: 39168167 DOI: 10.1016/j.jad.2024.08.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Major Depressive Disorder (MDD) may exhibit impairments in cognitive flexibility. This study investigated whether the cognitive flexibility deficits in MDD are evident across general stimuli or specific to emotional stimuli, while exploring the underlying neuropsychological mechanism. METHODS A total of 41 MDD patients and 42 healthy controls (HCs) were recruited. Event-related potentials (ERPs) were recorded when participants performed a non-emotional and an emotional task switching paradigm (N-ETSP and ETSP), both of which assessed cognitive flexibility. Microstate and source localization analysis were applied to reflect brain activity among different brain areas during task switching. RESULTS In the N-ETSP, MDD group showed larger P3 difference wave (Pd3) amplitudes and longer P2 difference wave (Pd2) latencies. In the ETSP, MDD group displayed smaller N2 difference wave (Nd2) amplitudes and larger Pd3 amplitudes. The comparison of sLORETA images of emotional switch task and emotional repeat task showed that MDD group had increased activation in the precentral gyrus in microstate2 of the P2 time window and had reduced activation in the middle occipital gyrus in microstate3 of the N2 time window. LIMITATIONS The cross-sectional design failed to capture dynamic changes in cognitive flexibility in MDD. CONCLUSIONS MDD demonstrated impaired cognitive flexibility respond to both non-emotional and emotional stimuli, with greater impairment for negative emotional stimuli. These deficits are evident in abnormal ERPs component during the early attention stage and the later task preparation stage. Furthermore, abnormal emotional switching cost in MDD appears to be related to early abnormal perceptual control in the parietal-occipital cortex.
Collapse
Affiliation(s)
- Kaili Zheng
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Medical Psychology Institution, Central South University, Changsha, Hunan, China
| | - Zhaoxia Liu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Medical Psychology Institution, Central South University, Changsha, Hunan, China
| | - Zhengmiao Miao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Medical Psychology Institution, Central South University, Changsha, Hunan, China
| | - Gangqin Xiong
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - Huihui Yang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Medical Psychology Institution, Central South University, Changsha, Hunan, China
| | - Mingtian Zhong
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Jinyao Yi
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Medical Psychology Institution, Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China.
| |
Collapse
|
3
|
Xue S, Shen X, Zhang D, Sang Z, Long Q, Song S, Wu J. Unveiling Frequency-Specific Microstate Correlates of Anxiety and Depression Symptoms. Brain Topogr 2024; 38:12. [PMID: 39499403 DOI: 10.1007/s10548-024-01082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/25/2024] [Indexed: 11/07/2024]
Abstract
Electroencephalography (EEG) microstates are canonical voltage topographies that reflect the temporal dynamics of brain networks on a millisecond time scale. Abnormalities in broadband microstate parameters have been observed in subjects with psychiatric symptoms, indicating their potential as clinical biomarkers. Considering distinct information provided by specific frequency bands of EEG, we hypothesized that microstates in decomposed frequency bands could provide a more detailed depiction of the underlying neuropathological mechanism. In this study, with a large open access resting-state dataset (n = 203), we examined the properties of frequency-specific microstates and their relationship with anxiety and depression symptoms. We conducted clustering on EEG topographies in decomposed frequency bands (delta, theta, alpha and beta), and determined the number of clusters with a meta-criterion. Microstate parameters, including global explained variance (GEV), duration, coverage, occurrence and transition probability, were calculated for eyes-open and eyes-closed states, respectively. Their ability to predict the severity of depression and anxiety symptoms were systematically identified by correlation, regression and classification analyses. Distinct microstate patterns were observed across different frequency bands. Microstate parameters in the alpha band held the best predictive power for emotional symptoms. Microstates B (GEV, coverage) and parieto-central maximum microstate E (coverage, occurrence, transitions from B to E) in the alpha band exhibited significant correlations with depression and anxiety, respectively. Microstate parameters of the alpha band achieved predictive R-square of 0.100 for anxiety scores, which is much higher than those of broadband (R-square = -0.026, p < 0.01). Similar results were found in classification of participants with high and low anxiety symptom scores (68% accuracy in alpha vs. 52% in broadband). These results suggested the value of frequency-specific microstates in predicting emotional symptoms.
Collapse
Affiliation(s)
- Siyang Xue
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China
| | - Xinke Shen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Dan Zhang
- Department of Psychology, Tsinghua University, Beijing, 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China
| | - Zhenhua Sang
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Qiting Long
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Sen Song
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China.
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China.
| | - Jian Wu
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| |
Collapse
|
4
|
Carbone GA, Lo Presti A, Farina B, Adenzato M, Ardito RB, Imperatori C. Resting-state EEG microstates predict mentalizing ability as assessed by the Reading the Mind in the Eyes test. Int J Psychophysiol 2024; 205:112440. [PMID: 39278571 DOI: 10.1016/j.ijpsycho.2024.112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Microstates analysis of electroencephalography (EEG) has gained increasing attention among researchers and clinicians as a valid tool for investigating temporal dynamics of large-scale brain networks with a millisecond time resolution. Although microstates analysis has been widely applied to elucidate the neurophysiological basis of various cognitive functions in both clinical and non-clinical samples, its application in relation to socio-affective processing has been relatively under-researched. Therefore, the main aim of the current study was to investigate the relationship between EEG microstates and mentalizing (i.e., the ability to understand the mental states of others). Eighty-two participants (thirty-six men; mean age: 24.28 ± 7.35 years; mean years of education: 15.82 ± 1.77) underwent a resting-state EEG recording and performed the Reading the Mind in the Eyes Test (RMET). The parameters of the microstates were then calculated using Cartool v. 4.09 software. Our results showed that the occurrence of microstate map C was independently and positively associated with the RMET total score and contributed to the prediction of mentalizing performance, even when controlling for potential confounding variables (i.e., age, sex, education level, tobacco and alcohol use). Since microstate C is involved in self-related processes, our findings may reflect the link between self-awareness of one's own thoughts/feelings and the enhanced ability to recognize the mental states of others at the neurophysiological level. This finding extends the functions traditionally attributed to microstate C, i.e. mind-wandering, self-related thoughts, prosociality, and emotional and interoceptive processing, to include mentalizing ability.
Collapse
Affiliation(s)
| | | | - Benedetto Farina
- Experimental and Applied Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | - Mauro Adenzato
- Department of Psychology, University of Turin, Turin, Italy
| | - Rita B Ardito
- Department of Psychology, University of Turin, Turin, Italy.
| | - Claudio Imperatori
- Experimental and Applied Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| |
Collapse
|
5
|
Yan Y, Gao M, Geng Z, Wu Y, Xiao G, Wang L, Pang X, Yang C, Zhou S, Li H, Hu P, Wu X, Wang K. Abnormal EEG microstates in Alzheimer's disease: predictors of β-amyloid deposition degree and disease classification. GeroScience 2024; 46:4779-4792. [PMID: 38727873 PMCID: PMC11336126 DOI: 10.1007/s11357-024-01181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/23/2024] [Indexed: 08/22/2024] Open
Abstract
Electroencephalography (EEG) microstates are used to study cognitive processes and brain disease-related changes. However, dysfunctional patterns of microstate dynamics in Alzheimer's disease (AD) remain uncertain. To investigate microstate changes in AD using EEG and assess their association with cognitive function and pathological changes in cerebrospinal fluid (CSF). We enrolled 56 patients with AD and 38 age- and sex-matched healthy controls (HC). All participants underwent various neuropsychological assessments and resting-state EEG recordings. Patients with AD also underwent CSF examinations to assess biomarkers related to the disease. Stepwise regression was used to analyze the relationship between changes in microstate patterns and CSF biomarkers. Receiver operating characteristics analysis was used to assess the potential of these microstate patterns as diagnostic predictors for AD. Compared with HC, patients with AD exhibited longer durations of microstates C and D, along with a decreased occurrence of microstate B. These microstate pattern changes were associated with Stroop Color Word Test and Activities of Daily Living scale scores (all P < 0.05). Mean duration, occurrences of microstate B, and mean occurrence were correlated with CSF Aβ 1-42 levels, while duration of microstate C was correlated with CSF Aβ 1-40 levels in AD (all P < 0.05). EEG microstates are used to predict AD classification with moderate accuracy. Changes in EEG microstate patterns in patients with AD correlate with cognition and disease severity, relate to Aβ deposition, and may be useful predictors for disease classification.
Collapse
Affiliation(s)
- Yibing Yan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Manman Gao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Zhi Geng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Yue Wu
- Department of Sleep Psychology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Guixian Xiao
- Department of Sleep Psychology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xuerui Pang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Chaoyi Yang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Shanshan Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, China
| | - Hongru Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China.
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Xingqi Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China.
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
6
|
Handelzalts JE, Ohayon S, Levy S, Peled Y. Risk psychosocial factors associated with postpartum depression trajectories from birth to six months. Soc Psychiatry Psychiatr Epidemiol 2024; 59:1685-1696. [PMID: 38193942 DOI: 10.1007/s00127-023-02604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/11/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE The purpose of this study was to assess the trajectory of women's depressive symptoms during the first six months postpartum, identify risk factors (sociodemographic, obstetric and personality) associated with classes, and examine associations between classes and postpartum PTSD at two months and bonding at six months. METHODS The final sample included 212 women who gave birth in the maternity wards of a large tertiary health center that were approached at 1-3 days, two months, and six months postpartum and completed a demographic questionnaire and measures of neuroticism (BFI) and postpartum depression (EPDS), postpartum PTSD (City Birth Trauma Scale) and bonding (PBQ). Obstetric data were taken from the medical files. RESULTS Cluster analysis revealed three distinctive clusters: "stable-low" (64.2%), "transient-decreasing" (25.9%), and "stable-high" (9.9%). Neuroticism, general-related PTSD symptoms, and bonding were associated with differences between all trajectories. Birth-related PTSD symptoms were associated with differences between both stable-high and transient-decreasing trajectories and the stable-low trajectory. No obstetric or demographic variables were associated with differences between trajectories. CONCLUSION We suggest that screening women for vulnerabilities such as high levels of neuroticism and offering treatment can alleviate the possible deleterious effects of high-symptom depression trajectories that may be associated with their vulnerability.
Collapse
Affiliation(s)
- Jonathan Eliahu Handelzalts
- School of Behavioral Sciences, The Academic College of Tel-Aviv Yafo, 68114, Tel-Aviv, Israel.
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| | - Shay Ohayon
- Department of Psychology, Bar-Ilan University, Ramat-Gan, Israel
| | - Sigal Levy
- School of Behavioral Sciences, The Academic College of Tel-Aviv Yafo, 68114, Tel-Aviv, Israel
| | - Yoav Peled
- Rabin Medical Center, The Helen Schneider Hospital for Women, Petach-Tikva, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
7
|
Marino M, Mantini D. Human brain imaging with high-density electroencephalography: Techniques and applications. J Physiol 2024. [PMID: 39173191 DOI: 10.1113/jp286639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
Electroencephalography (EEG) is a technique for non-invasively measuring neuronal activity in the human brain using electrodes placed on the participant's scalp. With the advancement of digital technologies, EEG analysis has evolved over time from the qualitative analysis of amplitude and frequency modulations to a comprehensive analysis of the complex spatiotemporal characteristics of the recorded signals. EEG is now considered a powerful tool for measuring neural processes in the same time frame in which they happen (i.e. the subsecond range). However, it is commonly argued that EEG suffers from low spatial resolution, which makes it difficult to localize the generators of EEG activity accurately and reliably. Today, the availability of high-density EEG (hdEEG) systems, combined with methods for incorporating information on head anatomy and sophisticated source-localization algorithms, has transformed EEG into an important neuroimaging tool. hdEEG offers researchers and clinicians a rich and varied range of applications. It can be used not only for investigating neural correlates in motor and cognitive neuroscience experiments, but also for clinical diagnosis, particularly in the detection of epilepsy and the characterization of neural impairments in a wide range of neurological disorders. Notably, the integration of hdEEG systems with other physiological recordings, such as kinematic and/or electromyography data, might be especially beneficial to better understand the neuromuscular mechanisms associated with deconditioning in ageing and neuromotor disorders, by mapping the neurokinematic and neuromuscular connectivity patterns directly in the brain.
Collapse
Affiliation(s)
- Marco Marino
- Movement Control and Neuroplasticity Research Group, KU Leuven, Belgium
- Department of General Psychology, University of Padua, Padua, Italy
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Belgium
| |
Collapse
|
8
|
Pettorruso M, Di Lorenzo G, Benatti B, d’Andrea G, Cavallotto C, Carullo R, Mancusi G, Di Marco O, Mammarella G, D’Attilio A, Barlocci E, Rosa I, Cocco A, Padula LP, Bubbico G, Perrucci MG, Guidotti R, D’Andrea A, Marzetti L, Zoratto F, Dell’Osso BM, Martinotti G. Overcoming treatment-resistant depression with machine-learning based tools: a study protocol combining EEG and clinical data to personalize glutamatergic and brain stimulation interventions (SelecTool Project). Front Psychiatry 2024; 15:1436006. [PMID: 39086731 PMCID: PMC11288917 DOI: 10.3389/fpsyt.2024.1436006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Treatment-Resistant Depression (TRD) poses a substantial health and economic challenge, persisting as a major concern despite decades of extensive research into novel treatment modalities. The considerable heterogeneity in TRD's clinical manifestations and neurobiological bases has complicated efforts toward effective interventions. Recognizing the need for precise biomarkers to guide treatment choices in TRD, herein we introduce the SelecTool Project. This initiative focuses on developing (WorkPlane 1/WP1) and conducting preliminary validation (WorkPlane 2/WP2) of a computational tool (SelecTool) that integrates clinical data, neurophysiological (EEG) and peripheral (blood sample) biomarkers through a machine-learning framework designed to optimize TRD treatment protocols. The SelecTool project aims to enhance clinical decision-making by enabling the selection of personalized interventions. It leverages multi-modal data analysis to navigate treatment choices towards two validated therapeutic options for TRD: esketamine nasal spray (ESK-NS) and accelerated repetitive Transcranial Magnetic Stimulation (arTMS). In WP1, 100 subjects with TRD will be randomized to receive either ESK-NS or arTMS, with comprehensive evaluations encompassing neurophysiological (EEG), clinical (psychometric scales), and peripheral (blood samples) assessments both at baseline (T0) and one month post-treatment initiation (T1). WP2 will utilize the data collected in WP1 to train the SelecTool algorithm, followed by its application in a second, out-of-sample cohort of 20 TRD subjects, assigning treatments based on the tool's recommendations. Ultimately, this research seeks to revolutionize the treatment of TRD by employing advanced machine learning strategies and thorough data analysis, aimed at unraveling the complex neurobiological landscape of depression. This effort is expected to provide pivotal insights that will promote the development of more effective and individually tailored treatment strategies, thus addressing a significant void in current TRD management and potentially reducing its profound societal and economic burdens.
Collapse
Affiliation(s)
- Mauro Pettorruso
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio, Chieti, Italy
- Department of Mental Health, ASL02 Lanciano-Vasto-Chieti, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology and Cognitive Neuroscience, Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Institute of Hospitalization and Care With Scientific Character (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Beatrice Benatti
- Department of Biomedical and Clinical Sciences Luigi Sacco and Aldo Ravelli Center for Neurotechnology and Brain Therapeutic, University of Milan, Milano, Italy
| | - Giacomo d’Andrea
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio, Chieti, Italy
- Department of Mental Health, ASL02 Lanciano-Vasto-Chieti, Chieti, Italy
| | - Clara Cavallotto
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio, Chieti, Italy
| | - Rosalba Carullo
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio, Chieti, Italy
| | - Gianluca Mancusi
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio, Chieti, Italy
| | - Ornella Di Marco
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio, Chieti, Italy
| | - Giovanna Mammarella
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio, Chieti, Italy
| | - Antonio D’Attilio
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio, Chieti, Italy
| | - Elisabetta Barlocci
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio, Chieti, Italy
| | - Ilenia Rosa
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio, Chieti, Italy
| | - Alessio Cocco
- Department of Mental Health, ASL02 Lanciano-Vasto-Chieti, Chieti, Italy
| | - Lorenzo Pio Padula
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio, Chieti, Italy
| | - Giovanna Bubbico
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio, Chieti, Italy
| | - Mauro Gianni Perrucci
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Roberto Guidotti
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio, Chieti, Italy
- Department of Mental Health, ASL02 Lanciano-Vasto-Chieti, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Antea D’Andrea
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio, Chieti, Italy
| | - Laura Marzetti
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Francesca Zoratto
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Bernardo Maria Dell’Osso
- Department of Biomedical and Clinical Sciences Luigi Sacco and Aldo Ravelli Center for Neurotechnology and Brain Therapeutic, University of Milan, Milano, Italy
| | - Giovanni Martinotti
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio, Chieti, Italy
- Department of Mental Health, ASL02 Lanciano-Vasto-Chieti, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
9
|
Tomescu MI, Papasteri C, Sofonea A, Berceanu AI, Carcea I. Personality Moderates Intra-Individual Variability in EEG Microstates and Spontaneous Thoughts. Brain Topogr 2024; 37:524-535. [PMID: 38038786 PMCID: PMC11199214 DOI: 10.1007/s10548-023-01019-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Variability in brain activity that persists after accounting for overt behavioral and physiological states is often considered noise and controlled as a covariate in research. However, studying intra-individual variability in brain function can provide valuable insights into the dynamic nature of the brain. To explore this, we conducted a study on 43 participants analyzing the EEG microstate dynamics and self-reported spontaneous mental activity during five-minute resting-state recordings on two separate days with a twenty days average delay between recordings. Our results showed that the associations between EEG microstates and spontaneous cognition significantly changed from one day to another. Moreover, microstate changes were associated with changes in spontaneous cognition. Specifically, inter-day changes in Verbal thoughts about Others and future Planning were positively related to bottom-up sensory network-related microstate changes and negatively associated with top-down, attention, and salience network-related microstates. In addition, we find that personality traits are related to inter-day changes in microstates and spontaneous thoughts. Specifically, extraversion, neuroticism, agreeableness, and openness to experience moderated the relationship between inter-day changes in EEG microstates and spontaneous thoughts. Our study provides valuable information on the dynamic changes in the EEG microstate-spontaneous cognition organization, which could be essential for developing interventions and treatments for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Miralena I Tomescu
- Department of Psychology, Faculty of Educational Sciences, University "Stefan cel Mare" of Suceava, Suceava, Romania.
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania.
- Department of Cognitive Sciences, Faculty of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania.
| | - Claudiu Papasteri
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania
- Department of Cognitive Sciences, Faculty of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania
| | - Alexandra Sofonea
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania
| | - Alexandru I Berceanu
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania
| | - Ioana Carcea
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers Brain Health Institute, New Jersey, NJ, USA
| |
Collapse
|
10
|
Lao J, Zeng Y, Wu Z, Lin G, Wang Q, Yang M, Zhang S, Xu D, Zhang M, Yao K, Liang S, Liu Q, Li J, Zhong X, Ning Y. Abnormalities in Electroencephalographic Microstates in Patients with Late-Life Depression. Neuropsychiatr Dis Treat 2024; 20:1201-1210. [PMID: 38860214 PMCID: PMC11164213 DOI: 10.2147/ndt.s456486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
Background Late-life depression (LLD) is characterized by disrupted brain networks. Resting-state networks in the brain are composed of both stable and transient topological structures known as microstates, which reflect the dynamics of the neural activities. However, the specific pattern of EEG microstate in LLD remains unclear. Methods Resting-state EEG were recorded for 31 patients with episodic LLD (eLLD), 20 patients with remitted LLD (rLLD) and 32 healthy controls (HCs) using a 64-channel cap. The clinical data of the patients were collected and the 17-Item Hamilton Rating Scale for Depression (HAMD) was used for symptom assessment. Duration, occurrence, time coverage and syntax of the four microstate classes (A-D) were calculated. Group differences in EEG microstates and the relationship between microstates parameters and clinical features were analyzed. Results Compared with NC and patients with rLLD, patients with eLLD showed increased duration and time coverage of microstate class D. Besides, a decrease in occurrence of microstate C and transition probability between microstate B and C was observed. In addition, the time coverage of microstate D was positively correlated with the total score of HAMD, core symptoms, and miscellaneous items. Conclusion These findings suggest that disrupted EEG microstates may be associated with the pathophysiology of LLD and may serve as potential state markers for the monitoring of the disease.
Collapse
Affiliation(s)
- Jingyi Lao
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yijie Zeng
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhangying Wu
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Gaohong Lin
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Qiang Wang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Mingfeng Yang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Si Zhang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Danyan Xu
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Min Zhang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Kexin Yao
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Shuang Liang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Qin Liu
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jiafu Li
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiaomei Zhong
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yuping Ning
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, People’s Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, People’s Republic of China
| |
Collapse
|
11
|
Nazare K, Tomescu MI. Valence-specific EEG microstate modulations during self-generated affective states. Front Psychol 2024; 15:1300416. [PMID: 38855303 PMCID: PMC11160840 DOI: 10.3389/fpsyg.2024.1300416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction This study aims to explore the temporal dynamics of brain networks involved in self-generated affective states, specifically focusing on modulating these states in both positive and negative valences. The overarching goal is to contribute to a deeper understanding of the neurodynamic patterns associated with affective regulation, potentially informing the development of biomarkers for therapeutic interventions in mood and anxiety disorders. Methods Utilizing EEG microstate analysis during self-generated affective states, we investigated the temporal dynamics of five distinct microstates across different conditions, including baseline resting state and self-generated states of positive valence (e.g., awe, contentment) and negative valence (e.g., anger, fear). Results The study revealed noteworthy modulations in microstate dynamics during affective states. Additionally, valence-specific mechanisms of spontaneous affective regulation were identified. Negative valence affective states were characterized by the heightened presence of attention-associated microstates and reduced occurrence of salience-related microstates during negative valence states. In contrast, positive valence affective states manifested a prevalence of microstates related to visual/autobiographical memory and a reduced presence of auditory/language-associated microstates compared to both baseline and negative valence states. Discussion This study contributes to the field by employing EEG microstate analysis to discern the temporal dynamics of brain networks involved in self-generated affective states. Insights from this research carry significant implications for understanding neurodynamic patterns in affective regulation. The identification of valence-specific modulations and mechanisms has potential applications in developing biomarkers for mood and anxiety disorders, offering novel avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Karina Nazare
- CINETic Center, Department of Research and Development, National University of Theatre and Film “I.L. Caragiale”, Bucharest, Romania
- Faculty of Automatic Control and Computers, POLITEHNICA University of Bucharest, Bucharest, Romania
| | - Miralena I. Tomescu
- CINETic Center, Department of Research and Development, National University of Theatre and Film “I.L. Caragiale”, Bucharest, Romania
- Department of Psychology, Faculty of Educational Sciences, University “Stefan cel Mare” of Suceava, Suceava, Romania
| |
Collapse
|
12
|
Xue R, Li X, Deng W, Liang C, Chen M, Chen J, Liang S, Wei W, Zhang Y, Yu H, Xu Y, Guo W, Li T. Shared and distinct electroencephalogram microstate abnormalities across schizophrenia, bipolar disorder, and depression. Psychol Med 2024:1-8. [PMID: 38738283 DOI: 10.1017/s0033291724001132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
BACKGROUND Microstates of an electroencephalogram (EEG) are canonical voltage topographies that remain quasi-stable for 90 ms, serving as the foundational elements of brain dynamics. Different changes in EEG microstates can be observed in psychiatric disorders like schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BD). However, the similarities and disparatenesses in whole-brain dynamics on a subsecond timescale among individuals diagnosed with SCZ, BD, and MDD are unclear. METHODS This study included 1112 participants (380 individuals diagnosed with SCZ, 330 with BD, 212 with MDD, and 190 demographically matched healthy controls [HCs]). We assembled resting-state EEG data and completed a microstate analysis of all participants using a cross-sectional design. RESULTS Our research indicates that SCZ, BD, and MDD exhibit distinct patterns of transition among the four EEG microstate states (A, B, C, and D). The analysis of transition probabilities showed a higher frequency of switching from microstates A to B and from B to A in each patient group compared to the HC group, and less frequent transitions from microstates A to C and from C to A in the SCZ and MDD groups compared to the HC group. And the probability of the microstate switching from C to D and D to C in the SCZ group significantly increased compared to those in the patient and HC groups. CONCLUSIONS Our findings provide crucial insights into the abnormalities involved in distributing neural assets and enabling proper transitions between different microstates in patients with major psychiatric disorders.
Collapse
Affiliation(s)
- Rui Xue
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Xiaojing Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Chengqian Liang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mingxia Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianning Chen
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Sugai Liang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Wei Wei
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yamin Zhang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Hua Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yan Xu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Wanjun Guo
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Cao Q, Wang Y, Ji Y, He Z, Lei X. Resting-State EEG Reveals Abnormal Microstate Characteristics of Depression with Insomnia. Brain Topogr 2024; 37:388-396. [PMID: 36892651 DOI: 10.1007/s10548-023-00949-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/16/2023] [Indexed: 03/10/2023]
Abstract
Previous research revealed various aspects of resting-state EEG for depression and insomnia. However, the EEG characteristics of depressed subjects with insomnia are rarely studied, especially EEG microstates that capture the dynamic activities of the large-scale brain network. To fill these research gaps, the present study collected resting-state EEG data from 32 subclinical depression subjects with insomnia (SDI), 31 subclinical depression subjects without insomnia (SD), and 32 healthy controls (HCs). Four topographic maps were generated from clean EEG data after clustering and rearrangement. Temporal characteristics were obtained for statistical analysis, including cross-group variance analysis (ANOVA) and intra-group correlation analysis. In our study, the global clustering of all individuals in the EEG microstate analysis revealed the four previously discovered categories of microstates (A, B, C, and D). The occurrence of microstate B was lower in SDI than in SD and HC subjects. The correlation analysis showed that the total Pittsburgh Sleep Quality Index (PSQI) score negatively correlated with the occurrence of microstate C in SDI (r = - 0.415, p < 0.05). Conversely, there was a positive correlation between Self-rating Depression Scale (SDS) scores and the duration of microstate C in SD (r = 0.359, p < 0.05). These results indicate that microstates reflect altered large-scale brain network dynamics in subclinical populations. Abnormalities in the visual network corresponding to microstate B are an electrophysiological characteristic of subclinical individuals with symptoms of depressive insomnia. Further investigation is needed for microstate changes related to high arousal and emotional problems in people suffering from depression and insomnia.
Collapse
Affiliation(s)
- Qike Cao
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Yulin Wang
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Yufang Ji
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Zhihui He
- The Ninth People's Hospital of Chongqing, Chongqing, 400700, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China.
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
14
|
Jia H, Wu X, Zhang X, Guo M, Yang C, Wang E. Resting-state EEG Microstate Features Can Quantitatively Predict Autistic Traits in Typically Developing Individuals. Brain Topogr 2024; 37:410-419. [PMID: 37833486 DOI: 10.1007/s10548-023-01010-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Autism spectrum disorder (ASD) is not a discrete disorder and that symptoms of ASD (i.e., so-called "autistic traits") are found to varying degrees in the general population. Typically developing individuals with sub-clinical yet high-level autistic traits have similar abnormities both in behavioral performances and cortical activation patterns to individuals diagnosed with ASD. Thus it's crucial to develop objective and efficient tools that could be used in the assessment of autistic traits. Here, we proposed a novel machine learning-based assessment of the autistic traits using EEG microstate features derived from a brief resting-state EEG recording. The results showed that: (1) through the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm and correlation analysis, the mean duration of microstate class D, the occurrence rate of microstate class A, the time coverage of microstate class D and the transition rate from microstate class B to D were selected to be crucial microstate features which could be used in autistic traits prediction; (2) in the support vector regression (SVR) model, which was constructed to predict the participants' autistic trait scores using these four microstate features, the out-of-sample predicted autistic trait scores showed a significant and good match with the self-reported scores. These results suggest that the resting-state EEG microstate analysis technique can be used to predict autistic trait to some extent.
Collapse
Affiliation(s)
- Huibin Jia
- Institute of Psychology and Behavior, Henan University, Kaifeng, 475004, China
- School of Psychology, Henan University, Kaifeng, 475004, China
| | - Xiangci Wu
- Institute of Psychology and Behavior, Henan University, Kaifeng, 475004, China
- School of Psychology, Henan University, Kaifeng, 475004, China
| | - Xiaolin Zhang
- Institute of Psychology and Behavior, Henan University, Kaifeng, 475004, China
- School of Psychology, Henan University, Kaifeng, 475004, China
| | - Meiling Guo
- Institute of Psychology and Behavior, Henan University, Kaifeng, 475004, China
- School of Psychology, Henan University, Kaifeng, 475004, China
| | - Chunying Yang
- School of Special Education, Zhengzhou Normal University, Zhengzhou, 450000, China.
| | - Enguo Wang
- Institute of Psychology and Behavior, Henan University, Kaifeng, 475004, China.
- School of Psychology, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
15
|
Chivu A, Pascal SA, Damborská A, Tomescu MI. EEG Microstates in Mood and Anxiety Disorders: A Meta-analysis. Brain Topogr 2024; 37:357-368. [PMID: 37615799 PMCID: PMC11026263 DOI: 10.1007/s10548-023-00999-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/06/2023] [Indexed: 08/25/2023]
Abstract
To reduce the psycho-social burden increasing attention has focused on brain abnormalities in the most prevalent and highly co-occurring neuropsychiatric disorders, such as mood and anxiety. However, high inter-study variability in these patients results in inconsistent and contradictory alterations in the fast temporal dynamics of large-scale networks as measured by EEG microstates. Thus, in this meta-analysis, we aim to investigate the consistency of these changes to better understand possible common neuro-dynamical mechanisms of these disorders.In the systematic search, twelve studies investigating EEG microstate changes in participants with mood and anxiety disorders and individuals with subclinical depression were included in this meta-analysis, adding up to 787 participants.The results suggest that EEG microstates consistently discriminate mood and anxiety impairments from the general population in patients and subclinical states. Specifically, we found a small significant effect size for B microstates in patients compared to healthy controls, with larger effect sizes for increased B presence in unmedicated patients with comorbidity. In a subgroup meta-analysis of ten mood disorder studies, microstate D showed a significant effect size for decreased presence. When investigating only the two anxiety disorder studies, we found a significantly small effect size for the increased microstate A and a medium effect size for decreased microstate E (one study). However, more studies are needed to elucidate whether these findings are diagnostic-specific markers.Results are discussed in relation to the functional meaning of microstates and possible contribution to an explanatory mechanism of overlapping symptomatology of mood and anxiety disorders.
Collapse
Affiliation(s)
- Alina Chivu
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania
- Faculty of Psychology and Educational Sciences, Department of Applied Psychology and Psychotherapy, University of Bucharest, Bucharest, Romania
| | - Simona A Pascal
- Faculty of Psychology and Educational Sciences, Department of Applied Psychology and Psychotherapy, University of Bucharest, Bucharest, Romania
| | - Alena Damborská
- Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Multimodal and Functional Neuroimaging Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Miralena I Tomescu
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania.
- Faculty of Educational Sciences, Department of Psychology, University "Stefan cel Mare" of Suceava, Suceava, Romania.
- Faculty of Psychology and Educational Sciences, Department of Cognitive Sciences, University of Bucharest, Bucharest, Romania.
| |
Collapse
|
16
|
Toplutaş E, Aydın F, Hanoğlu L. EEG Microstate Analysis in Patients with Disorders of Consciousness and Its Clinical Significance. Brain Topogr 2024; 37:377-387. [PMID: 36735192 DOI: 10.1007/s10548-023-00939-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023]
Abstract
Disorders of Consciousness are divided into two major categories such as vegetative and minimally conscious states. Objective measures that allow correct identification of patients with vegetative and minimally conscious state are needed. EEG microstate analysis is a promising approach that we believe has the potential to be effective in examining the resting state activities of the brain in different stages of consciousness by allowing the proper identification of vegetative and minimally conscious patients. As a result, we try to identify clinical evaluation scales and microstate characteristics with resting state EEGs from individuals with disorders of consciousness. Our prospective observational study included 28 individuals with a disorder of consciousness. Control group included 18 healthy subjects with proper EEG data. We made clinical evaluations using patient behavior scales. We also analyzed the EEGs using microstate analysis. In our study, microstate D coverage differed substantially between vegetative and minimally conscious state patients. Also, there was a strong connection between microstate D characteristics and clinical scale scores. Consequently, we have demonstrated that the most accurate parameter for representing consciousness level is microstate D. Microstate analysis appears to be a strong option for future use in the diagnosis, follow-up, and treatment response of patients with Disorders of Consciousness.
Collapse
Affiliation(s)
- Eren Toplutaş
- Department of Neurology, Istanbul Eyupsultan Public Hospital, Istanbul, Turkey.
- Program of Neuroscience Ph.D., Graduate School of Health Sciences,, Istanbul Medipol University, Istanbul, Turkey.
| | - Fatma Aydın
- Program of Neuroscience Ph.D., Graduate School of Health Sciences,, Istanbul Medipol University, Istanbul, Turkey
| | - Lütfü Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Neuroimaging and Neuromodulation Lab, Clinical Electrophysiology, REMER, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
17
|
Michel CM, Brechet L, Schiller B, Koenig T. Current State of EEG/ERP Microstate Research. Brain Topogr 2024; 37:169-180. [PMID: 38349451 PMCID: PMC10884048 DOI: 10.1007/s10548-024-01037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
The analysis of EEG microstates for investigating rapid whole-brain network dynamics during rest and tasks has become a standard practice in the EEG research community, leading to a substantial increase in publications across various affective, cognitive, social and clinical neuroscience domains. Recognizing the growing significance of this analytical method, the authors aim to provide the microstate research community with a comprehensive discussion on methodological standards, unresolved questions, and the functional relevance of EEG microstates. In August 2022, a conference was hosted in Bern, Switzerland, which brought together many researchers from 19 countries. During the conference, researchers gave scientific presentations and engaged in roundtable discussions aiming at establishing steps toward standardizing EEG microstate analysis methods. Encouraged by the conference's success, a special issue was launched in Brain Topography to compile the current state-of-the-art in EEG microstate research, encompassing methodological advancements, experimental findings, and clinical applications. The call for submissions for the special issue garnered 48 contributions from researchers worldwide, spanning reviews, meta-analyses, tutorials, and experimental studies. Following a rigorous peer-review process, 33 papers were accepted whose findings we will comprehensively discuss in this Editorial.
Collapse
Affiliation(s)
- Christoph M Michel
- Functional Brain Mapping Lab, Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland.
- Center for Biomedical Imaging (CIBM), Lausanne, Geneva, Switzerland.
| | - Lucie Brechet
- Department of Readaptation and Geriatrics, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Bastian Schiller
- Laboratory for Biological Psychology, Clinical Psychology, and Psychotherapy, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Zeng Y, Lao J, Wu Z, Lin G, Wang Q, Yang M, Zhang S, Xu D, Zhang M, Liang S, Liu Q, Yao K, Li J, Ning Y, Zhong X. Altered resting-state brain oscillation and the associated cognitive impairments in late-life depression with different depressive severity: An EEG power spectrum and functional connectivity study. J Affect Disord 2024; 348:124-134. [PMID: 37918574 DOI: 10.1016/j.jad.2023.10.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVE Cognitive impairments are prevalent in late-life depression (LLD). However, it remains unclear whether there are concurrent brain oscillation alterations in resting condition across varying level of depression severity. This cross-sectional study aims to investigate the characteristics of altered resting-state oscillations, including power spectrum and functional connectivity, and their association with the cognitive impairments in LLD with different depression severity. METHODS A total of 65 patients with LLD and 40 elder participants without depression were recruited. Global cognition and subtle cognitive domains were evaluated. A five-minute resting-state electroencephalography (EEG) was conducted under eyes-closed conditions. Measurements included the ln-transformed absolute power for power spectrum analysis and the weighted phase lag index (wPLI) for functional connectivity analysis. RESULTS Attentional and executive dysfunction were exhibited in Moderate-Severe LLD group. Enhanced posterior upper gamma power was observed in both LLD groups. Additionally, enhanced parietal and fronto-parietal/occipital theta connectivity were observed in Moderate-Severe LLD group, which were associated with the attentional impairment. LIMITATIONS Limitations include a small sample size, concomitant medication use, and a relatively higher proportion of females. CONCLUSIONS Current study observed aberrant brain activity patterns in LLD across different levels of depression severity, which were linked to cognitive impairments. The altered posterior brain oscillations may be trait marker of LLD. Moreover, cognitive impairments and associated connectivity alterations were exhibited in moderate-severe group, which may be a state-like marker of moderate-to severe LLD. The study deepens understanding of cognitive impairments with the associated oscillation changes, carrying implications for neuromodulation targets in LLD.
Collapse
Affiliation(s)
- Yijie Zeng
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingyi Lao
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhangying Wu
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gaohong Lin
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiang Wang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingfeng Yang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Si Zhang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Danyan Xu
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Zhang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuang Liang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qin Liu
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kexin Yao
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiafu Li
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou.
| | - Xiaomei Zhong
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou.
| |
Collapse
|
19
|
Tarailis P, Koenig T, Michel CM, Griškova-Bulanova I. The Functional Aspects of Resting EEG Microstates: A Systematic Review. Brain Topogr 2024; 37:181-217. [PMID: 37162601 DOI: 10.1007/s10548-023-00958-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
A growing body of clinical and cognitive neuroscience studies have adapted a broadband EEG microstate approach to evaluate the electrical activity of large-scale cortical networks. However, the functional aspects of these microstates have not yet been systematically reviewed. Here, we present an overview of the existing literature and systematize the results to provide hints on the functional role of electrical brain microstates. Studies that evaluated and manipulated the temporal properties of resting-state microstates and utilized questionnaires, task-initiated thoughts, specific tasks before or between EEG session(s), pharmacological interventions, neuromodulation approaches, or localized sources of the extracted microstates were selected. Fifty studies that met the inclusion criteria were included. A new microstate labeling system has been proposed for a comprehensible comparison between the studies, where four classical microstates are referred to as A-D, and the others are labeled by the frequency of their appearance. Microstate A was associated with both auditory and visual processing and links to subjects' arousal/arousability. Microstate B showed associations with visual processing related to self, self-visualization, and autobiographical memory. Microstate C was related to processing personally significant information, self-reflection, and self-referential internal mentation rather than autonomic information processing. In contrast, microstate E was related to processing interoceptive and emotional information and to the salience network. Microstate D was associated with executive functioning. Microstate F is suggested to be a part of the Default Mode Network and plays a role in personally significant information processing, mental simulations, and theory of mind. Microstate G is potentially linked to the somatosensory network.
Collapse
Affiliation(s)
- Povilas Tarailis
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | | |
Collapse
|
20
|
Kleinert T, Koenig T, Nash K, Wascher E. On the Reliability of the EEG Microstate Approach. Brain Topogr 2024; 37:271-286. [PMID: 37410275 PMCID: PMC10884204 DOI: 10.1007/s10548-023-00982-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
EEG microstates represent functional brain networks observable in resting EEG recordings that remain stable for 40-120ms before rapidly switching into another network. It is assumed that microstate characteristics (i.e., durations, occurrences, percentage coverage, and transitions) may serve as neural markers of mental and neurological disorders and psychosocial traits. However, robust data on their retest-reliability are needed to provide the basis for this assumption. Furthermore, researchers currently use different methodological approaches that need to be compared regarding their consistency and suitability to produce reliable results. Based on an extensive dataset largely representative of western societies (2 days with two resting EEG measures each; day one: n = 583; day two: n = 542) we found good to excellent short-term retest-reliability of microstate durations, occurrences, and coverages (average ICCs = 0.874-0.920). There was good overall long-term retest-reliability of these microstate characteristics (average ICCs = 0.671-0.852), even when the interval between measures was longer than half a year, supporting the longstanding notion that microstate durations, occurrences, and coverages represent stable neural traits. Findings were robust across different EEG systems (64 vs. 30 electrodes), recording lengths (3 vs. 2 min), and cognitive states (before vs. after experiment). However, we found poor retest-reliability of transitions. There was good to excellent consistency of microstate characteristics across clustering procedures (except for transitions), and both procedures produced reliable results. Grand-mean fitting yielded more reliable results compared to individual fitting. Overall, these findings provide robust evidence for the reliability of the microstate approach.
Collapse
Affiliation(s)
- Tobias Kleinert
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139, Dortmund, Germany.
- Department of Biological Psychology, Clinical Psychology, and Psychotherapy, University of Freiburg, Stefan-Meier Str. 8, 79104, Freiburg, Germany.
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, 3000, Bern, Switzerland
| | - Kyle Nash
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Edmund Wascher
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139, Dortmund, Germany
| |
Collapse
|
21
|
Zanesco AP. Normative Temporal Dynamics of Resting EEG Microstates. Brain Topogr 2024; 37:243-264. [PMID: 37702825 DOI: 10.1007/s10548-023-01004-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
The large-scale electrophysiological events known as electroencephalographic microstates provide an important window into the intrinsic activity of whole-brain neuronal networks. The spontaneous activity of coordinated brain networks, including the ongoing temporal dynamics expressed by microstates, are thought to reflect individuals' neurocognitive functioning, and predict development, disease progression, and psychological differences among varied populations. A comprehensive understanding of human brain function therefore requires characterizing typical and atypical patterns in the temporal dynamics of microstates. But population-level estimates of normative microstate temporal dynamics are still unknown. To address this gap, I conducted a systematic search of the literature and accompanying meta-analysis of the average dynamics of microstates obtained from studies investigating spontaneous brain activity in individuals during periods of eyes-closed and eyes-open rest. Meta-analyses provided estimates of the average temporal dynamics of microstates across 93 studies totaling 6583 unique individual participants drawn from diverse populations. Results quantified the expected range of plausible estimates of average microstate dynamics across study samples, as well as characterized heterogeneity resulting from sampling variability and systematic differences in development, clinical diagnoses, or other study methodological factors. Specifically, microstate dynamics significantly differed for samples with specific developmental differences or clinical diagnoses, relative to healthy, typically developing samples. This research supports the notion that microstates and their dynamics reflect functionally relevant properties of large-scale brain networks, encoding typical and atypical neurocognitive functioning.
Collapse
Affiliation(s)
- Anthony P Zanesco
- Department of Psychology, University of Miami, Coral Gables, FL, USA.
| |
Collapse
|
22
|
Murphy M, Wang J, Jiang C, Wang LA, Kozhemiako N, Wang Y, Pan JQ, Purcell SM. A Potential Source of Bias in Group-Level EEG Microstate Analysis. Brain Topogr 2024; 37:232-242. [PMID: 37548801 PMCID: PMC11144056 DOI: 10.1007/s10548-023-00992-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/15/2023] [Indexed: 08/08/2023]
Abstract
Microstate analysis is a promising technique for analyzing high-density electroencephalographic data, but there are multiple questions about methodological best practices. Between and within individuals, microstates can differ both in terms of characteristic topographies and temporal dynamics, which leads to analytic challenges as the measurement of microstate dynamics is dependent on assumptions about their topographies. Here we focus on the analysis of group differences, using simulations seeded on real data from healthy control subjects to compare approaches that derive separate sets of maps within subgroups versus a single set of maps applied uniformly to the entire dataset. In the absence of true group differences in either microstate maps or temporal metrics, we found that using separate subgroup maps resulted in substantially inflated type I error rates. On the other hand, when groups truly differed in their microstate maps, analyses based on a single set of maps confounded topographic effects with differences in other derived metrics. We propose an approach to alleviate both classes of bias, based on a paired analysis of all subgroup maps. We illustrate the qualitative and quantitative impact of these issues in real data by comparing waking versus non-rapid eye movement sleep microstates. Overall, our results suggest that even subtle chance differences in microstate topography can have profound effects on derived microstate metrics and that future studies using microstate analysis should take steps to mitigate this large source of error.
Collapse
Affiliation(s)
- Michael Murphy
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, USA
| | - Jun Wang
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Chenguang Jiang
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Lei A Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, USA
| | - Nataliia Kozhemiako
- Department of Psychiatry, Brigham & Women's Hospital, Harvard Medical School, Boston, USA
| | - Yining Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, USA
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, USA
| | - Shaun M Purcell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, USA.
- Department of Psychiatry, Brigham & Women's Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
23
|
An X, Lian J, Xu L, Peng Z, Chen S, Cheng MY, Shao Y. Changes in electroencephalography microstates are associated with reduced levels of vigilance after sleep deprivation. Brain Res 2024; 1825:148729. [PMID: 38128810 DOI: 10.1016/j.brainres.2023.148729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Total sleep deprivation (TSD) negatively affects cognitive functions, especially vigilance attention, but studies on vigilance changes in terms of electroencephalography (EEG) microstates after TSD are limited. This study investigates the impact of TSD on vigilance attention, EEG microstates and its relationship. Thirty healthy adult males completed a psychomotor vigilance task (PVT) before, 24 h after, and 36 h after TSD while their EEG was recorded during rest. Microstate analysis revealed significant changes in the occurrence and contribution of microstate class B after TSD. Moreover, changes in the probability of transitioning between microstate classes A and D were observed, correlating with decreased vigilance. Specifically, a positive correlation was found between transitioning from class B to class C and vigilance, while a trend of negative correlation was observed between transitioning between classes A and D and vigilance. These findings indicate abnormal activity in the salience network and dorsal attention network following sleep deprivation. TSD impairs vigilance attention, as demonstrated by the effects on EEG microstate class B and the transitions between classes A and D. The study suggests its potential as an early warning indicator for predicting vigilance attention after sleep deprivation.
Collapse
Affiliation(s)
- Xin An
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Jie Lian
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Lin Xu
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Ziyi Peng
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Shufang Chen
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Ming-Yang Cheng
- School of Psychology, Beijing Sport University, Beijing 100084, China.
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
24
|
Thirioux B, Langbour N, Bokam P, Wassouf I, Guillard-Bouhet N, Wangermez C, Leblanc PM, Doolub D, Harika-Germaneau G, Jaafari N. EEG microstate co-specificity in schizophrenia and obsessive-compulsive disorder. Eur Arch Psychiatry Clin Neurosci 2024; 274:207-225. [PMID: 37421444 DOI: 10.1007/s00406-023-01642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
The past 20 years of research on EEG microstates has yielded the hypothesis that the imbalance pattern in the temporal dynamics of microstates C (increased) and D (decreased) is specific to schizophrenia. A similar microstate imbalance has been recently found in obsessive-compulsive disorder (OCD). The aim of the present high-density EEG study was to examine whether this pathological microstate pattern is co-specific to schizophrenia and OCD. We compared microstate temporal dynamics using Bayesian analyses, transition probabilities analyses and the Topographic Electrophysiological State Source-Imaging method for source reconstruction in 24 OCD patients and 28 schizophrenia patients, respectively, free of comorbid psychotic and OCD symptoms, and 27 healthy controls. OCD and schizophrenia patients exhibited the same increased contribution of microstate C, decreased duration and contribution of microstate D and greater D → C transition probabilities, compared with controls. A Bayes factor of 4.424 for the contribution of microstate C, 4.600 and 3.824, respectively, for the duration and contribution of microstate D demonstrated that there was no difference in microstate patterns between the two disorders. Source reconstruction further showed undistinguishable dysregulations between the Salience Network (SN), associated with microstate C, and the Executive Control Network (ECN), associated with microstate D, and between the ECN and cognitive cortico-striato-thalamo-cortical (CSTC) loop in the two disorders. The ECN/CSTC loop dysconnectivity was slightly worsened in schizophrenia. Our findings provide substantial evidence for a common aetiological pathway in schizophrenia and OCD, i.e. microstate co-specificity, and same anomalies in salience and external attention processing, leading to co-expression of symptoms.
Collapse
Affiliation(s)
- Bérangère Thirioux
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France.
- Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, CNRS 7295, 86021, Poitiers, France.
| | - Nicolas Langbour
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
- Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, CNRS 7295, 86021, Poitiers, France
| | - Prasanth Bokam
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
| | - Issa Wassouf
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
- Centre Hospitalier Nord Deux-Sèvres, Parthenay, France
| | - Nathalie Guillard-Bouhet
- Centre de Réhabilitation et d'Activités Thérapeutiques Intersectorial de la Vienne, Centre Hospitalier Henri Laborit, 86021, Poitiers, France
- Centre Médico-Psychologique, Centre Hospitalier Henri Laborit, 86021, Poitiers, France
| | - Carole Wangermez
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
- Centre de Réhabilitation et d'Activités Thérapeutiques Intersectorial de la Vienne, Centre Hospitalier Henri Laborit, 86021, Poitiers, France
| | - Pierre-Marie Leblanc
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
| | - Damien Doolub
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
- Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, CNRS 7295, 86021, Poitiers, France
| | - Ghina Harika-Germaneau
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
- Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, CNRS 7295, 86021, Poitiers, France
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86021, Poitiers, France
| | - Nematollah Jaafari
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
- Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, CNRS 7295, 86021, Poitiers, France
- Centre Médico-Psychologique, Centre Hospitalier Henri Laborit, 86021, Poitiers, France
| |
Collapse
|
25
|
Li Z, Qu Z, Yin B, Yin L, Li X. Functional connectivity key feature analysis of cognitive impairment patients based on microstate brain network. Cereb Cortex 2024; 34:bhae043. [PMID: 38383723 DOI: 10.1093/cercor/bhae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Mild cognitive impairment (MCI) is the initial phase of Alzheimer's disease (AD). The cognitive decline is linked to abnormal connectivity between different regions of the brain. Most brain network studies fail to consider the changes in brain patterns and do not reflect the dynamic pathological characteristics of patients. Therefore, this paper proposes a method for constructing brain networks based on microstate sequences. It also analyzes the microstate temporal parameters and introduces a new feature, the brain homeostasis coefficient (Bhc), to quantify the stability of patient brain connections. The results showed that microstate class B parameters were higher in the MCI than in the HC group. Additionally, the Bhc values in most channels of the MCI and AD groups were lower than those of the HC group, with the most significant differences observed in the right frontal lobe. These differences were statistically significant (P < 0.05). The findings indicate that connectivity in the right frontal lobe may be most severely disrupted in patients with cognitive impairment. Furthermore, the Montreal Cognitive Assessment score showed a strong positive correlation with Bhc. This suggests that Bhc could be a novel biomarker for evaluating cognitive function in patients with cognitive impairment.
Collapse
Affiliation(s)
- Zipeng Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
- Measurement Technology and Instrumentation Key Lab of Hebei Province, Qinhuangdao, Hebei 066004, P. R. China
| | - Zhongjie Qu
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
- Measurement Technology and Instrumentation Key Lab of Hebei Province, Qinhuangdao, Hebei 066004, P. R. China
| | - Bowen Yin
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P. R. China
| | - Liyong Yin
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P. R. China
| | - Xin Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
- Measurement Technology and Instrumentation Key Lab of Hebei Province, Qinhuangdao, Hebei 066004, P. R. China
| |
Collapse
|
26
|
Peng RJ, Fan Y, Li J, Zhu F, Tian Q, Zhang XB. Abnormalities of electroencephalography microstates in patients with depression and their association with cognitive function. World J Psychiatry 2024; 14:128-140. [PMID: 38327889 PMCID: PMC10845229 DOI: 10.5498/wjp.v14.i1.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND A growing number of recent studies have explored underlying activity in the brain by measuring electroencephalography (EEG) in people with depression. However, the consistency of findings on EEG microstates in patients with depression is poor, and few studies have reported the relationship between EEG microstates, cognitive scales, and depression severity scales. AIM To investigate the EEG microstate characteristics of patients with depression and their association with cognitive functions. METHODS A total of 24 patients diagnosed with depression and 32 healthy controls were included in this study using the Structured Clinical Interview for Disease for The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. We collected information relating to demographic and clinical characteristics, as well as data from the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS; Chinese version) and EEG. RESULTS Compared with the controls, the duration, occurrence, and contribution of microstate C were significantly higher [depression (DEP): Duration 84.58 ± 24.35, occurrence 3.72 ± 0.56, contribution 30.39 ± 8.59; CON: Duration 72.77 ± 10.23, occurrence 3.41 ± 0.36, contribution 24.46 ± 4.66; Duration F = 6.02, P = 0.049; Occurrence F = 6.19, P = 0.049; Contribution F = 10.82, P = 0.011] while the duration, occurrence, and contribution of microstate D were significantly lower (DEP: Duration 70.00 ± 15.92, occurrence 3.18 ± 0.71, contribution 22.48 ± 8.12; CON: Duration 85.46 ± 10.23, occurrence 3.54 ± 0.41, contribution 28.25 ± 5.85; Duration F = 19.18, P < 0.001; Occurrence F = 5.79, P = 0.050; Contribution F = 9.41, P = 0.013) in patients with depression. A positive correlation was observed between the visuospatial/constructional scores of the RBANS scale and the transition probability of microstate class C to B (r = 0.405, P = 0.049). CONCLUSION EEG microstate, especially C and D, is a possible biomarker in depression. Patients with depression had a more frequent transition from microstate C to B, which may relate to more negative rumination and visual processing.
Collapse
Affiliation(s)
- Rui-Jie Peng
- Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Yu Fan
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Jin Li
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Feng Zhu
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Qing Tian
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Xiao-Bin Zhang
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| |
Collapse
|
27
|
Yang Z, Xia L, Fu Y, Zheng Y, Zhao M, Feng Z, Shi C. Altered EEG Microstates Dynamics in Individuals with Subthreshold Depression When Generating Negative Future Events. Brain Topogr 2024; 37:52-62. [PMID: 37812293 DOI: 10.1007/s10548-023-01011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
Negative bias in prospection may play a crucial role in driving and maintaining depression. Recent research suggests abnormal activation and functional connectivity in regions of the default mode network (DMN) during future event generation in depressed individuals. However, the neural dynamics during prospection in these individuals remain unknown. To capture network dynamics at high temporal resolution, we employed electroencephalogram (EEG) microstate analysis. We examined microstate properties during both positive and negative prospection in 35 individuals with subthreshold depression (SD) and 35 controls. We identified similar sets of four canonical microstates (A-D) across groups and conditions. Source analysis indicated that each microstate map partially overlapped with a subsystem of the DMN (A: verbal; B: visual-spatial; C: self-referential; and D: modulation). Notably, alterations in EEG microstates were primarily observed in negative prospection of individuals with SD. Specifically, when generating negative future events, the coverage, occurrence, and duration of microstate A increased, while the coverage and duration of microstates B and D decreased in the SD group compared to controls. Furthermore, we observed altered transitions, particularly involving microstate C, during negative prospection in the SD group. These altered dynamics suggest dysconnectivity between subsystems of the DMN during negative prospection in individuals with SD. In conclusion, we provide novel insights into the neural mechanisms of negative bias in depression. These alterations could serve as specific markers for depression and potential targets for future interventions.
Collapse
Affiliation(s)
- Zhuoya Yang
- Department of Basic Psychology, School of Medical Psychology, Army Medical University, Chongqing, 400038, China
- School of Medical Psychology, Army Medical University, 30 Gaotanyan Street, Chongqing, 400038, China
| | - Lei Xia
- Experimental Research Center for Medical and Psychological Science, School of Medical Psychology, Army Medical University, Chongqing, 400038, China
- School of Medical Psychology, Army Medical University, 30 Gaotanyan Street, Chongqing, 400038, China
| | - Yixiao Fu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yingcan Zheng
- Department of Developmental Psychology for Armyman, School of Medical Psychology, Army Medical University, Chongqing, 400038, China
- School of Medical Psychology, Army Medical University, 30 Gaotanyan Street, Chongqing, 400038, China
| | - Mengxue Zhao
- Department of Military Psychology, School of Medical Psychology, Army Medical University, Chongqing, 400038, China
- School of Medical Psychology, Army Medical University, 30 Gaotanyan Street, Chongqing, 400038, China
| | - Zhengzhi Feng
- School of Medical Psychology, Army Medical University, 30 Gaotanyan Street, Chongqing, 400038, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, 30 Gaotanyan Street, Chongqing, 400038, China.
| |
Collapse
|
28
|
Zhao Z, Ran X, Lv S, Wang J, Qiu M, Wang C, Xu Y, Guo X, Gao Z, Mu J, Yu Y. Causal link between prefrontal cortex and EEG microstates: evidence from patients with prefrontal lesion. Front Neurosci 2023; 17:1306120. [PMID: 38161794 PMCID: PMC10757643 DOI: 10.3389/fnins.2023.1306120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction At present, elucidating the cortical origin of EEG microstates is a research hotspot in the field of EEG. Previous studies have suggested that the prefrontal cortex is closely related to EEG microstate C and D, but whether there is a causal link between the prefrontal cortex and microstate C or D remains unclear. Methods In this study, pretrial EEG data were collected from ten patients with prefrontal lesions (mainly located in inferior and middle frontal gyrus) and fourteen matched healthy controls, and EEG microstate analysis was applied. Results Our results showed that four classical EEG microstate topographies were obtained in both groups, but microstate C topography in patient group was obviously abnormal. Compared to healthy controls, the average coverage and occurrence of microstate C significantly reduced. In addition, the transition probability from microstate A to C and from microstate B to C in patient group was significantly lower than those of healthy controls. Discussion The above results demonstrated that the damage of prefrontal cortex especially inferior and middle frontal gyrus could lead to abnormalities in the spatial distribution and temporal dynamics of microstate C not D, showing that there is a causal link between the inferior and middle frontal gyrus and the microstate C. The significance of our findings lies in providing new evidence for elucidating the cortical origin of microstate C.
Collapse
Affiliation(s)
- Zongya Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, China
- The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Xiangying Ran
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, China
| | - Shiyang Lv
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, China
| | - Junming Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, China
| | - Mengyue Qiu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, China
| | - Chang Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, China
| | - Yongtao Xu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, China
| | - Xiao Guo
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, China
| | - Zhixian Gao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, China
| | - Junlin Mu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yi Yu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, China
| |
Collapse
|
29
|
Wen Y, Li H, Huang Y, Qiao D, Ren T, Lei L, Li G, Yang C, Xu Y, Han M, Liu Z. Dynamic network characteristics of adolescents with major depressive disorder: Attention network mediates the association between anhedonia and attentional deficit. Hum Brain Mapp 2023; 44:5749-5769. [PMID: 37683097 PMCID: PMC10619388 DOI: 10.1002/hbm.26474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Attention deficit is a critical symptom that impairs social functioning in adolescents with major depressive disorder (MDD). In this study, we aimed to explore the dynamic neural network activity associated with attention deficits and its relationship with clinical outcomes in adolescents with MDD. We included 188 adolescents with MDD and 94 healthy controls. By combining psychophysics, resting-state electroencephalography (EEG), and functional magnetic resonance imaging (fMRI) techniques, we aimed to identify dynamic network features through the investigation of EEG microstate characteristics and related temporal network features in adolescents with MDD. At baseline, microstate analysis revealed that the occurrence of Microstate C in the patient group was lower than that in healthy controls, whereas the duration and coverage of Microstate D increased in the MDD group. Mediation analysis revealed that the probability of transition from Microstate C to D mediated anhedonia and attention deficits in the MDD group. fMRI results showed that the temporal variability of the dorsal attention network (DAN) was significantly weaker in patients with MDD than in healthy controls. Importantly, the temporal variability of DAN mediated the relationship between anhedonia and attention deficits in the patient group. After acute-stage treatment, the response prediction group (RP) showed improvement in Microstates C and D compared to the nonresponse prediction group (NRP). For resting-state fMRI data, the temporal variability of DAN was significantly higher in the RP group than in the NRP group. Overall, this study enriches our understanding of the neural mechanisms underlying attention deficits in patients with MDD and provides novel clinical biomarkers.
Collapse
Affiliation(s)
- Yujiao Wen
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Hong Li
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Yangxi Huang
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Dan Qiao
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Tian Ren
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Lei Lei
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Gaizhi Li
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Chunxia Yang
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Yifan Xu
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Min Han
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Zhifen Liu
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
30
|
Hu J, Zhou D, Zhao L, Ma L, Peng X, He X, Chen R, Chen W, Jiang Z, Kuang L, Wang W. Associations between abnormal electroencephalogram microstates and childhood emotional abuse in adolescent depression. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1678-1685. [PMID: 38432858 PMCID: PMC10929957 DOI: 10.11817/j.issn.1672-7347.2023.230220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 03/05/2024]
Abstract
OBJECTIVES Childhood traumatic experiences greatly influenced the brain network activities of patients with depression, and there is an urgent need to explore the temporal dynamics for these changes. This study aims to investigate the abnormalities of resting-state electroencephalogram (EEG) microstates in eye-open state of depressed adolescents and to explore the correlations between their EEG microstates and the childhood traumatic experience. METHODS Using resting-state EEG microstate analysis, we explored the temporal dynamics of brain activity in patients with adolescent depression. This study selected 66 adolescents with depression as a patient group, and 27 healthy adolescents as a healthy control group. A modified k-means clustering algorithm was used to classify the 64-channel resting-state EEG data into different microstates. Independent sample t-tests were used to compare the microstate parameters between the 2 groups and further assciations between these parameters and childhood traumatic experience in patients were explored via using Spearman correlation. RESULTS In this study, significant differences were observed in the occurrence and transition probabilities of EEG microstates between the healthy control and the patient group. Notably, there was a statistically significant difference (P<0.05) in the occurrence of microstate A across 2 groups, exhibiting a negative correlation with the emotional abuse component within the childhood trauma scores (Spearman's rho=-0.31, P=0.013). Furthermore, patient-specific, non-random transitions from microstate B to A (Spearman's rho=-0.30, P=0.015) and C to A (Spearman's rho=-0.31, P=0.013) were inversely associated with the scores of emotional abuse factors from childhood trauma in the patient group, showing statistically significant differences when comparing to the healthy controls (P<0.05). Upon stratification into quartiles based on the emotional abuse factor scores, the occurrence of microstate A, as well as the transition rates from microstates B to A and C to A, retained statistical significance following adjustment for multiple comparisons (all P<0.05). CONCLUSIONS The abnormal temporal dynamics in brain networks of adolescents with depression are linked to childhood emotional abuse. Those who have suffered severe emotional abuse may show greater impairments in the brain's visual and central executive networks. EEG microstate analysis could be a potential tool for detecting adolescent depression with severe childhood trauma.
Collapse
Affiliation(s)
- Jinhui Hu
- Mental Health Center, University-Town Hospital, Chongqing Medical University, Chongqing 401331.
| | - Dongdong Zhou
- Mental Health Center, University-Town Hospital, Chongqing Medical University, Chongqing 401331
| | - Lin Zhao
- Department of Psychiatry, First Affiliated Hospital, Chongqing Medical University, Chongqing 400042, China
| | - Lingli Ma
- Department of Psychiatry, First Affiliated Hospital, Chongqing Medical University, Chongqing 400042, China
| | - Xinyu Peng
- Department of Psychiatry, First Affiliated Hospital, Chongqing Medical University, Chongqing 400042, China
| | - Xiaoqing He
- Mental Health Center, University-Town Hospital, Chongqing Medical University, Chongqing 401331
| | - Ran Chen
- Mental Health Center, University-Town Hospital, Chongqing Medical University, Chongqing 401331
| | - Wanjun Chen
- Mental Health Center, University-Town Hospital, Chongqing Medical University, Chongqing 401331
| | - Zhenghao Jiang
- Mental Health Center, University-Town Hospital, Chongqing Medical University, Chongqing 401331
| | - Li Kuang
- Mental Health Center, University-Town Hospital, Chongqing Medical University, Chongqing 401331
- Department of Psychiatry, First Affiliated Hospital, Chongqing Medical University, Chongqing 400042, China
| | - Wo Wang
- Mental Health Center, University-Town Hospital, Chongqing Medical University, Chongqing 401331.
| |
Collapse
|
31
|
Yang R, Zhao Y, Tan Z, Lai J, Chen J, Zhang X, Sun J, Chen L, Lu K, Cao L, Liu X. Differentiation between bipolar disorder and major depressive disorder in adolescents: from clinical to biological biomarkers. Front Hum Neurosci 2023; 17:1192544. [PMID: 37780961 PMCID: PMC10540438 DOI: 10.3389/fnhum.2023.1192544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Background Mood disorders are very common among adolescents and include mainly bipolar disorder (BD) and major depressive disorder (MDD), with overlapping depressive symptoms that pose a significant challenge to realizing a rapid and accurate differential diagnosis in clinical practice. Misdiagnosis of BD as MDD can lead to inappropriate treatment and detrimental outcomes, including a poorer ultimate clinical and functional prognosis and even an increased risk of suicide. Therefore, it is of great significance for clinical management to identify clinical symptoms or features and biological markers that can accurately distinguish BD from MDD. With the aid of bibliometric analysis, we explore, visualize, and conclude the important directions of differential diagnostic studies of BD and MDD in adolescents. Materials and methods A literature search was performed for studies on differential diagnostic studies of BD and MDD among adolescents in the Web of Science Core Collection database. All studies considered for this article were published between 2004 and 2023. Bibliometric analysis and visualization were performed using the VOSviewer and CiteSpace software. Results In total, 148 publications were retrieved. The number of publications on differential diagnostic studies of BD and MDD among adolescents has been generally increasing since 2012, with the United States being an emerging hub with a growing influence in the field. Boris Birmaher is the top author in terms of the number of publications, and the Journal of Affective Disorders is the most published journal in the field. Co-occurrence analysis of keywords showed that clinical characteristics, genetic factors, and neuroimaging are current research hotspots. Ultimately, we comprehensively sorted out the current state of research in this area and proposed possible research directions in future. Conclusion This is the first-ever study of bibliometric and visual analyses of differential diagnostic studies of BD and MDD in adolescents to reveal the current research status and important directions in the field. Our research and analysis results might provide some practical sources for academic scholars and clinical practice.
Collapse
Affiliation(s)
- Ruilan Yang
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanmeng Zhao
- Southern Medical University, Guangzhou, Guangdong, China
| | - Zewen Tan
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Juan Lai
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| | - Jianshan Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaofei Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaqi Sun
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lei Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kangrong Lu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Liping Cao
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuemei Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Zhou DD, Peng XY, Zhao L, Ma LL, Hu JH, Jiang ZH, He XQ, Wang W, Chen R, Kuang L. Neurophysiological biomarkers for depression classification: Utilizing microstate k-mers and a bag-of-words model. J Psychiatr Res 2023; 165:197-204. [PMID: 37517240 DOI: 10.1016/j.jpsychires.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/30/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023]
Abstract
Microstates are analogous to characters in a language, and short fragments consisting of several microstates (k-mers) are analogous to words. We aimed to investigate whether microstate k-mers could be used as neurophysiological biomarkers to differentiate between depressed patients and normal controls. We utilized a bag-of-words model to process microstate sequences, using k-mers with a k range of 1-10 as terms, and the term frequency (TF) with or without inverse-document-frequency (IDF) as features. We performed nested cross-validation on Dataset 1 (27 patients and 26 controls) and Dataset 2 (34 patients and 30 controls) separately and then trained on one dataset and tested on the other. The best area under the curve (AUC) of 81.5% was achieved for the model with L1 regularization using the TF of 4-mers as features in Dataset 1, and the best AUC of 88.9% was achieved for the model with L1 regularization using the TF of 9-mers as features in Dataset 2. When Dataset 1 was used as the training set, the best AUC of predicting Dataset 2 was 74.1% for the model with L2 regularization using the TF-IDF of 9-mers as features, while the best AUC of predicting Dataset 1 was 70.2% for the model with L1 regularization using the TF of 8-mers as features. Our study provided novel insights into the potential of microstate k-mers as neurophysiological biomarkers for individual-level classification of depression. These may facilitate further exploration of microstate sequences using natural language processing techniques.
Collapse
Affiliation(s)
- Dong-Dong Zhou
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Xin-Yu Peng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Zhao
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Li Ma
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin-Hui Hu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng-Hao Jiang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Qing He
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Ran Chen
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China.
| | - Li Kuang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
33
|
Hu JH, Zhou DD, Ma LL, Zhao L, He XQ, Peng XY, Chen R, Chen WJ, Jiang ZH, Ran LY, Liu XY, Tao WQ, Yuan K, Wang W. A resting-state electroencephalographic microstates study in depressed adolescents with non-suicidal self-injury. J Psychiatr Res 2023; 165:264-272. [PMID: 37541092 DOI: 10.1016/j.jpsychires.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 07/15/2023] [Accepted: 07/15/2023] [Indexed: 08/06/2023]
Abstract
Neuroimaging studies have revealed abnormal brain activities in depressed teenagers who engage in non-suicidal self-injury (NSSI). We used resting-state electroencephalography (EEG) microstate analysis, which indicates the brief overlap of brain network activation for exploring the characteristics of large-scale cortical activities in depressed adolescents engaged with NSSI to clarify the underlying temporal mechanism. A modified k-means cluster algorithm was used to segment 64-channel resting-state EEG data into microstates. Data from 27 healthy adolescents, 37 adolescents with major depressive disorder (MDD), and 53 adolescents with both MDD and NSSI were examined in this study. The resting-state microstate parameters were compared among groups using the one-way ANOVA and Spearman correlation. Then the associations between significantly different microstate parameters and the depressive severity and self-harming data in the patient groups were further analyzed. The MDD group had higher contribution (p < 0.01), occurrence (p < 0.01) of microstate A, and higher microstate E→A transition (p < 0.05) than the HC and the NSSI group. The MDD group showed a distinctly longer duration (p < 0.05) of microstate A and microstate A→C transition than the HC. The transition probability from B to C was increased in the NSSI group compared to the HC. In the MDD group, the HAMD correlated with the duration of microstate A (Spearman's rho = 0.34, p = 0.044), as the PHQ-9 correlated with its occurrence (Spearman's rho = 0.37, p = 0.028). This research revealed that whereas depressive adolescents with NSSI and MDD displayed similar patterns with healthy controls in EEG microstate, the MDD group did not. Additionally, the non-random transition from microstate E→A may protect against recent self-harm in adolescents with MDD.
Collapse
Affiliation(s)
- Jin-Hui Hu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Dong-Dong Zhou
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Lin-Li Ma
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Zhao
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Qing He
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Xin-Yu Peng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ran Chen
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Wan-Jun Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng-Hao Jiang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Liu-Yi Ran
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Xin-Yi Liu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Wan-Qing Tao
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Yuan
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
34
|
Iftimovici A, Marchi A, Férat V, Pruvost-Robieux E, Guinard E, Morin V, Elandaloussi Y, D’Halluin A, Krebs MO, Chaumette B, Gavaret M. Electroencephalography microstates imbalance across the spectrum of early psychosis, autism, and mood disorders. Eur Psychiatry 2023; 66:e41. [PMID: 37246142 PMCID: PMC10305759 DOI: 10.1192/j.eurpsy.2023.2414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Electroencephalography (EEG) microstates translate resting-state temporal dynamics of neuronal networks throughout the brain and could constitute possible markers of psychiatric disorders. We tested the hypothesis of an increased imbalance between a predominant self-referential mode (microstate C) and a decreased attentional mode (microstate D) in psychosis, mood, and autism spectrum disorders. METHODS We retrospectively included 135 subjects from an early psychosis outpatient unit, with available eyes-closed resting-state 19 electrodes EEG. Individual-level then group-level modified K-means clustering in controls provided four microstate maps that were then backfitted to all groups. Differences between microstate parameters (occurrence, coverage, and mean duration) were computed between controls and each group, and between disease groups. RESULTS Microstate class D parameters were systematically decreased in disease groups compared with controls, with an effect size increasing along the psychosis spectrum, but also in autism. There was no difference in class C. C/D ratios of mean duration were increased only in SCZ compared with controls. CONCLUSIONS The decrease in microstate class D may be a marker of stage of psychosis, but it is not specific to it and may rather reflect a shared dimension along the schizophrenia-autism spectrum. C/D microstate imbalance may be more specific to schizophrenia.
Collapse
Affiliation(s)
- Anton Iftimovici
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, Institutde psychiatrie, CNRS GDR 3557, France
- NeuroSpin, Atomic Energy Commission, Gif-sur Yvette, France
- Pôle PEPIT, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Angela Marchi
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | - Victor Férat
- Functional Brain Mapping Laboratory, University of Geneva, Geneva, Switzerland
| | - Estelle Pruvost-Robieux
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, Institutde psychiatrie, CNRS GDR 3557, France
- Neurophysiology and Epileptology department, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Eléonore Guinard
- Neurophysiology and Epileptology department, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Valentine Morin
- Pôle PEPIT, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | | | - Arnaud D’Halluin
- Pôle PEPIT, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Marie-Odile Krebs
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, Institutde psychiatrie, CNRS GDR 3557, France
- Pôle PEPIT, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Boris Chaumette
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, Institutde psychiatrie, CNRS GDR 3557, France
- Pôle PEPIT, GHU Paris Psychiatrie et Neurosciences, Paris, France
- Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Martine Gavaret
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, Institutde psychiatrie, CNRS GDR 3557, France
- Neurophysiology and Epileptology department, GHU Paris Psychiatrie et Neurosciences, Paris, France
| |
Collapse
|
35
|
Lassi M, Fabbiani C, Mazzeo S, Burali R, Vergani AA, Giacomucci G, Moschini V, Morinelli C, Emiliani F, Scarpino M, Bagnoli S, Ingannato A, Nacmias B, Padiglioni S, Micera S, Sorbi S, Grippo A, Bessi V, Mazzoni A. Degradation of EEG microstates patterns in subjective cognitive decline and mild cognitive impairment: Early biomarkers along the Alzheimer's Disease continuum? Neuroimage Clin 2023; 38:103407. [PMID: 37094437 PMCID: PMC10149415 DOI: 10.1016/j.nicl.2023.103407] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023]
Abstract
Alzheimer's disease (AD) pathological changes may begin up to decades earlier than the appearance of the first symptoms of cognitive decline. Subjective cognitive decline (SCD) could be the first pre-clinical sign of possible AD, which might be followed by mild cognitive impairment (MCI), the initial stage of clinical cognitive decline. However, the neural correlates of these prodromic stages are not completely clear yet. Recent studies suggest that EEG analysis tools characterizing the cortical activity as a whole, such as microstates and cortical regions connectivity, might support a characterization of SCD and MCI conditions. Here we test this approach by performing a broad set of analyses to identify the prominent EEG markers differentiating SCD (n = 57), MCI (n = 46) and healthy control subjects (HC, n = 19). We found that the salient differences were in the temporal structure of the microstates patterns, with MCI being associated with less complex sequences due to the altered transition probability, frequency and duration of canonic microstate C. Spectral content of EEG, network connectivity, and spatial arrangement of microstates were instead largely similar in the three groups. Interestingly, comparing properties of EEG microstates in different cerebrospinal fluid (CSF) biomarkers profiles, we found that canonic microstate C displayed significant differences in topography in AD-like profile. These results show that the progression of dementia might be associated with a degradation of the cortical organization captured by microstates analysis, and that this leads to altered transitions between cortical states. Overall, our approach paves the way for the use of non-invasive EEG recordings in the identification of possible biomarkers of progression to AD from its prodromal states.
Collapse
Affiliation(s)
- Michael Lassi
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pisa, Italy
| | - Carlo Fabbiani
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - Salvatore Mazzeo
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Rachele Burali
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - Alberto Arturo Vergani
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pisa, Italy
| | - Giulia Giacomucci
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Valentina Moschini
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Carmen Morinelli
- Dipartimento Neuromuscolo-scheletrico e degli organi di senso, Careggi University Hospital, 50134 Florence, Italy
| | - Filippo Emiliani
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Maenia Scarpino
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Assunta Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Benedetta Nacmias
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Sonia Padiglioni
- Regional Referral Centre for Relational Criticalities - Tuscany Region, 50139 Florence, Italy
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pisa, Italy; Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sandro Sorbi
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Antonello Grippo
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pisa, Italy.
| |
Collapse
|
36
|
McFadyen J, Dolan RJ. Spatiotemporal Precision of Neuroimaging in Psychiatry. Biol Psychiatry 2023; 93:671-680. [PMID: 36376110 DOI: 10.1016/j.biopsych.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 12/23/2022]
Abstract
Aberrant patterns of cognition, perception, and behavior seen in psychiatric disorders are thought to be driven by a complex interplay of neural processes that evolve at a rapid temporal scale. Understanding these dynamic processes in vivo in humans has been hampered by a trade-off between spatial and temporal resolutions inherent to current neuroimaging technology. A recent trend in psychiatric research has been the use of high temporal resolution imaging, particularly magnetoencephalography, often in conjunction with sophisticated machine learning decoding techniques. Developments here promise novel insights into the spatiotemporal dynamics of cognitive phenomena, including domains relevant to psychiatric illnesses such as reward and avoidance learning, memory, and planning. This review considers recent advances afforded by exploiting this increased spatiotemporal precision, with specific reference to applications that seek to drive a mechanistic understanding of psychopathology and the realization of preclinical translation.
Collapse
Affiliation(s)
- Jessica McFadyen
- UCL Max Planck Centre for Computational Psychiatry and Ageing Research and Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Raymond J Dolan
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
37
|
Thirioux B, Langbour N, Bokam P, Renaudin L, Wassouf I, Harika-Germaneau G, Jaafari N. Microstates imbalance is associated with a functional dysregulation of the resting-state networks in obsessive-compulsive disorder: a high-density electrical neuroimaging study using the TESS method. Cereb Cortex 2023; 33:2593-2611. [PMID: 35739579 DOI: 10.1093/cercor/bhac229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/14/2022] Open
Abstract
The dysfunctional patterns of microstates dynamics in obsessive-compulsive disorder (OCD) remain uncertain. Using high-density electrical neuroimaging (EEG) at rest, we explored microstates deterioration in OCD and whether abnormal microstates patterns are associated with a dysregulation of the resting-state networks interplay. We used EEG microstates analyses, TESS method for sources reconstruction, and General Linear Models to test for the effect of disease severity on neural responses. OCD patients exhibited an increased contribution and decreased duration of microstates C and D, respectively. Activity was decreased in the Salience Network (SN), associated with microstate C, but increased in the Default Mode Network (DMN) and Executive Control Network (ECN), respectively, associated with microstates E and D. The hyperactivity of the right angular gyrus in the ECN correlated with the symptoms severity. The imbalance between microstates C and D invalidates the hypothesis that this electrophysiological pattern is specific to psychosis. Demonstrating that the SN-ECN dysregulation manifests as abnormalities in microstates C and D, we confirm that the SN deterioration in OCD is accompanied by a failure of the DMN to deactivate and aberrant compensatory activation mechanisms in the ECN. These abnormalities explain typical OCD clinical features but also detachment from reality, shared with psychosis.
Collapse
Affiliation(s)
- Bérangère Thirioux
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France
- CNRS 7295, Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, 86021 Poitiers, France
| | - Nicolas Langbour
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France
- CNRS 7295, Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, 86021 Poitiers, France
| | - Prasanth Bokam
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France
| | - Léa Renaudin
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France
| | - Issa Wassouf
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France
- CNRS 7295, Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, 86021 Poitiers, France
| | - Ghina Harika-Germaneau
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France
- CNRS 7295, Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, 86021 Poitiers, France
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86021 Poitiers, France
| | - Nematollah Jaafari
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France
- CNRS 7295, Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, 86021 Poitiers, France
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86021 Poitiers, France
| |
Collapse
|
38
|
Brown KL, Gartstein MA. Microstate analysis in infancy. Infant Behav Dev 2023; 70:101785. [PMID: 36423552 DOI: 10.1016/j.infbeh.2022.101785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/22/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Microstate analysis is an emerging method for investigating global brain connections using electroencephalography (EEG). Microstates have been colloquially referred to as the "atom of thought," meaning that from these underlying networks comes coordinated neural processing and cognition. The present study examined microstates at 6-, 8-, and 10-months of age. It was hypothesized that infants would demonstrate distinct microstates comparable to those identified in adults that also parallel resting-state networks using fMRI. An additional exploratory aim was to examine the relationship between microstates and temperament, assessed via parent reports, to further demonstrate microstate analysis as a viable tool for examining the relationship between neural networks, cognitive processes as well as emotional expression embodied in temperament attributes. METHODS The microstates analysis was performed with infant EEG data when the infant was either 6- (n = 12), 8- (n = 16), or 10-months (n = 6) old. The resting-state task involved watching a 1-minute video segment of Baby Einstein while listening to the accompanying music. Parents completed the IBQ-R to assess infant temperament. RESULTS Four microstate topographies were extracted. Microstate 1 had an isolated posterior activation; Microstate 2 had a symmetric occipital to prefrontal orientation; Microstate 3 had a left occipital to right frontal orientation; and Microstate 4 had a right occipital to left frontal orientation. At 10-months old, Microstate 3, thought to reflect auditory/language processing, became activated more often, for longer periods of time, covering significantly more time across the task and was more likely to be transitioned into. This finding is interpreted as consistent with language acquisition and phonological processing that emerges around 10-months. Microstate topographies and parameters were also correlated with differing temperament broadband and narrowband scales on the IBQ-R. CONCLUSION Three microstates emerged that appear comparable to underlying networks identified in adult and infant microstate literature and fMRI studies. Each of the temperament domains was related to specific microstates and their parameters. These networks also correspond with auditory and visual processing as well as the default mode network found in prior research and can lead to new investigations examining differences across stimulus presentations to further explain how infants begin to recognize, respond to, and engage with the world around them.
Collapse
Affiliation(s)
- Kara L Brown
- Department of Psychology, Washington State University, USA.
| | | |
Collapse
|
39
|
Gordillo D, Ramos da Cruz J, Moreno D, Garobbio S, Herzog MH. Do we really measure what we think we are measuring? iScience 2023; 26:106017. [PMID: 36844457 PMCID: PMC9947309 DOI: 10.1016/j.isci.2023.106017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/18/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Tests used in the empirical sciences are often (implicitly) assumed to be representative of a given research question in the sense that similar tests should lead to similar results. Here, we show that this assumption is not always valid. We illustrate our argument with the example of resting-state electroencephalogram (EEG). We used multiple analysis methods, contrary to typical EEG studies where one analysis method is used. We found, first, that many EEG features correlated significantly with cognitive tasks. However, these EEG features correlated weakly with each other. Similarly, in a second analysis, we found that many EEG features were significantly different in older compared to younger participants. When we compared these EEG features pairwise, we did not find strong correlations. In addition, EEG features predicted cognitive tasks poorly as shown by cross-validated regression analysis. We discuss several explanations of these results.
Collapse
Affiliation(s)
- Dario Gordillo
- Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Corresponding author
| | - Janir Ramos da Cruz
- Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute for Systems and Robotics – Lisboa (LARSyS), Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Wyss Center for Bio and Neuroengineering, CH-1202 Geneva, Switzerland
| | - Dana Moreno
- Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Simona Garobbio
- Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Michael H. Herzog
- Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
40
|
Event-related microstate dynamics represents working memory performance. Neuroimage 2022; 263:119669. [PMID: 36206941 DOI: 10.1016/j.neuroimage.2022.119669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022] Open
Abstract
In recent years, EEG microstate analysis has attracted much attention as a tool for characterizing the spatial and temporal dynamics of large-scale electrophysiological activities in the human brain. Canonical 4 states (classes A, B, C, and D) have been widely reported, and they have been pointed out for their relationships with cognitive functions and several psychiatric disorders such as schizophrenia, in particular, through their static parameters such as average duration, occurrence, coverage, and transition probability. However, the relationships between event-related microstate changes and their related cognitive functions, as is often analyzed in event-related potentials under time-locked frameworks, is still not well understood. Furthermore, not enough attention has been paid to the relationship between microstate dynamics and static characteristics. To clarify the relationships between the static microstate parameters and dynamic microstate changes, and between the dynamics and working memory (WM) function, we first examined the temporal profiles of the microstates during the N-back task. We found significant event-related microstate dynamics that differed predominantly with WM loads, which were not clearly observed in the static parameters. Furthermore, in the 2-back condition, patterns of state transitions from class A to C in the high- and low-performance groups showed prominent differences at 50-300 ms after stimulus onset. We also confirmed that the transition patterns of the specific time periods were able to predict the performance level (low or high) in the 2-back condition at a significant level, where a specific transition between microstates, namely from class A to C with specific polarity, contributed to the prediction robustly. Taken together, our findings indicate that event-related microstate dynamics at 50-300 ms after onset may be essential for WM function. This suggests that event-related microstate dynamics can reflect more highly-refined brain functions.
Collapse
|
41
|
The pro-inflammatory factors contribute to the EEG microstate abnormalities in patients with major depressive disorder. Brain Behav Immun Health 2022; 26:100523. [PMID: 36267834 PMCID: PMC9576533 DOI: 10.1016/j.bbih.2022.100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 11/22/2022] Open
Abstract
Pro-inflammatory factors may be associated with abnormalities in functional brain networks, which may be a mechanism in the pathogenesis of major depressive disorder (MDD). Electroencephalogram (EEG) microstates reflect the functioning of brain networks. However, the relationship between pro-inflammatory factors and the microstate abnormalities in patients with MDD is poorly understood. 24 MDD patients and 24 age-and sex-matched healthy controls (HC) were recruited. Montgomery-Asberg Depression Rating Scale(MADRS) were assessed. Serum (interleukin- 2(IL- 2), tumor necrosis factor-α (TNF-α) and hs-C-reactive protein (CRP)and EEG data were collected. K-means clustering was performed to characterize different microstates. For each microstate, duration, occurrence and coverage were estimated. Four microstates (e.g. A, B, C, D) were characterized, MDD group showed lower duration, occurrence and coverage of microstate B and microstate D, while higher duration of microstate A and microstate C and levels of IL-2, TNF-α, hs-CRP than HC group. The duration, occurrence and coverage of microstate D were negatively correlated with levels of pro-inflammatory factors (IL-2, TNF- α and hs- CRP) (all P < 0.05). Serum pro-inflammatory induced the abnormalities of microstate D. Together, these findings add to the understanding of the pathophysiology of MDD and point to pro-inflammatory factors contribute to EEG microstate abnormalities in patients with MDD.
Collapse
|
42
|
Ricci L, Croce P, Pulitano P, Boscarino M, Zappasodi F, Narducci F, Lanzone J, Sancetta B, Mecarelli O, Di Lazzaro V, Tombini M, Assenza G. Levetiracetam Modulates EEG Microstates in Temporal Lobe Epilepsy. Brain Topogr 2022; 35:680-691. [PMID: 36098891 DOI: 10.1007/s10548-022-00911-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
To determine the effects of Levetiracetam (LEV) therapy using EEG microstates analysis in a population of newly diagnosed Temporal Lobe Epilepsy (TLE) patients. We hypothesized that the impact of LEV therapy on the electrical activity of the brain can be globally explored using EEG microstates. Twenty-seven patients with TLE were examined. We performed resting-state microstate EEG analysis and compared microstate metrics between the EEG performed at baseline (EEGpre) and after 3 months of LEV therapy (EEGpost). The microstates A, B, C and D emerged as the most stable. LEV induced a reduction of microstate B and D mean duration and occurrence per second (p < 0.01). Additionally, LEV treatment increased the directional predominance of microstate A to C and microstate B to D (p = 0.01). LEV treatment induces a modulation of resting-state EEG microstates in newly diagnosed TLE patients. Microstates analysis has the potential to identify a neurophysiological indicator of LEV therapeutic activity. This study of EEG microstates in people with epilepsy opens an interesting path to identify potential LEV activity biomarkers that may involve increased neuronal inhibition of the epileptic network.
Collapse
Affiliation(s)
- Lorenzo Ricci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Pierpaolo Croce
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| | - Patrizia Pulitano
- Department of Human Neurosciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Marilisa Boscarino
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Filippo Zappasodi
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Flavia Narducci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Jacopo Lanzone
- Neurorehabilitation Department, IRCCS Salvatore Maugeri Foundation, Institute of Milan, Milan, Italy
| | - Biagio Sancetta
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Oriano Mecarelli
- Department of Human Neurosciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Mario Tombini
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Giovanni Assenza
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy
| |
Collapse
|
43
|
Hou L, Chen L, Zhou R. Premenstrual syndrome is associated with an altered spontaneous electroencephalographic delta/beta power ratio across the menstrual cycle. Int J Psychophysiol 2022; 181:64-72. [PMID: 36029920 DOI: 10.1016/j.ijpsycho.2022.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/16/2022] [Accepted: 08/21/2022] [Indexed: 11/25/2022]
Abstract
Premenstrual syndrome is associated with altered spontaneous brain activity in the late luteal phase, but the fluctuation patterns of brain activity throughout the menstrual cycle have not been revealed. Furthermore, it is also unknown whether the altered spontaneous brain activity during the whole menstrual cycle is further associated with their habitual use of maladaptive emotion regulation strategies. Based on the two reasons, electroencephalogram data and cognitive emotion regulation questionnaire from 32 women with high premenstrual symptoms (HPMS) and 33 women with low premenstrual symptoms (LPMS) were measured in the late luteal and follicular phases. Delta power, theta power, beta power, and the slow/fast wave ratios (SW/FW, including theta/beta power ratio [TBR] and delta/beta power ratio [DBR]) were calculated using both fixed frequency bands and individually adjusted frequency bands (based on the individual alpha peak frequency). The results showed that for the frontal and central DBR, as assessed both with fixed and individualized frequency bands, there was no difference between the two phases of the LPMS group, whereas there was a difference between the two phases of the HPMS group with a higher DBR in the late luteal phase than in the follicular phase. Further correlation results revealed that for women with HPMS in the late luteal phase, the frontal and central DBR values, as assessed both with fixed and individualized frequency bands, were positively correlated with self-blame and rumination. Consequently, HPMS was characterized by a fluctuation across the menstrual cycle in the DBR, which was further associated with maladaptive emotion regulation.
Collapse
Affiliation(s)
- Lulu Hou
- Department of Psychology, Shanghai Normal University, Shanghai 200234, China; Department of Psychology, Nanjing University, Nanjing 210096, China
| | - Lirong Chen
- Department of Psychology, Nanjing University, Nanjing 210096, China; Department of Psychology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Renlai Zhou
- Department of Psychology, Nanjing University, Nanjing 210096, China; State Key Laboratory of Media Convergence Production Technology and Systems, Beijing 100803, China.
| |
Collapse
|
44
|
Zhao Z, Niu Y, Zhao X, Zhu Y, Shao Z, Wu X, Wang C, Gao X, Wang C, Xu Y, Zhao J, Gao Z, Ding J, Yu Y. EEG microstate in first-episode drug-naive adolescents with depression. J Neural Eng 2022; 19. [PMID: 35952647 DOI: 10.1088/1741-2552/ac88f6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND A growing number of studies have revealed significant abnormalities in EEG microstate in patients with depression, but these findings may be affected by medication. Therefore, how the EEG microstates abnormally change in patients with depression in the early stage and without the influence of medication has not been investigated so far. METHODS Resting-state EEG data and Hamilton Depression Rating Scale (HDRS) were collected from 34 first-episode drug-naïve adolescent with depression and 34 matched healthy controls. EEG microstate analysis was applied and nonlinear characteristics of EEG microstate sequences were studied by sample entropy and Lempel-Ziv complexity (LZC). The microstate temporal parameters and complexity were tried to train a SVM for classification of patients with depression. RESULTS Four typical EEG microstate topographies were obtained in both groups, but microstate C topography was significantly abnormal in depression patients. The duration of microstate B, C, D and the occurrence and coverage of microstate B significantly increased, the occurrence and coverage of microstate A, C reduced significantly in depression group. Sample entropy and LZC in the depression group were abnormally increased and were negatively correlated with HDRS. When the combination of EEG microstate temporal parameters and complexity of microstate sequence was used to classify patients with depression from healthy controls, a classification accuracy of 90.9% was obtained. CONCLUSION Abnormal EEG microstate has appeared in early depression, reflecting an underlying abnormality in configuring neural resources and transitions between distinct brain network states. EEG microstate can be used as a neurophysiological biomarker for early auxiliary diagnosis of depression.
Collapse
Affiliation(s)
- Zongya Zhao
- Xinxiang Medical University, College of Medical Engineering, Xinxiang, Henan, 453003, CHINA
| | - Yanxiang Niu
- Xinxiang Medical University, college of medical engineering, Xinxiang, Henan, 453600, CHINA
| | - Xiaofeng Zhao
- First Affiliated Hospital of Zhengzhou University, Department of Psychiatry, Zhengzhou, 450000, CHINA
| | - Yu Zhu
- Xinxiang Medical University, college of medical engineering, Xinxiang, Henan, 453600, CHINA
| | - Zhenpeng Shao
- Xinxiang Medical University, college of medical engineering, Xinxiang, Henan, 453600, CHINA
| | - Xingyang Wu
- Xinxiang Medical University, college of medical engineering, Xinxiang, 453003, CHINA
| | - Chong Wang
- Xinxiang Medical University, college of medical engineering, Xinxiang, Henan, 453600, CHINA
| | - Xudong Gao
- Xinxiang Medical University, college of medical engineering, Xinxiang, Henan, 453600, CHINA
| | - Chang Wang
- Xinxiang Medical University, college of medical engineering, Xinxiang, Henan, 453600, CHINA
| | - Yongtao Xu
- Xinxiang Medical University, college of medical engineering, Xinxiang, 453003, CHINA
| | - Junqiang Zhao
- Xinxiang Medical University, college of medical engineering, Xinxiang, 453003, CHINA
| | - Zhixian Gao
- Xinxiang Medical University, college of medical engineering, Xinxiang, 453003, CHINA
| | - Junqing Ding
- First Affiliated Hospital of Zhengzhou University Zhengzhou, Department of Neurology, Zhengzhou, 450000, CHINA
| | - Yi Yu
- Xinxiang Medical University, college of Biomedical Engineering, Xinxiang, 453003, CHINA
| |
Collapse
|
45
|
Linton SR, Murphy M, Schroder HS, Breiger M, Iturra-Mena AM, Kangas BD, Bergman J, Carlezon WA, Risbrough VB, Barnes SA, Der-Avakian A, Pizzagalli DA. Effects of modafinil on electroencephalographic microstates in healthy adults. Psychopharmacology (Berl) 2022; 239:2573-2584. [PMID: 35471613 PMCID: PMC9296596 DOI: 10.1007/s00213-022-06149-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/15/2022] [Indexed: 01/09/2023]
Abstract
RATIONALE Modafinil has been proposed as a potentially effective clinical treatment for neuropsychiatric disorders characterized by cognitive control deficits. However, the precise effects of modafinil, particularly on brain network functions, are not completely understood. OBJECTIVES To address this gap, we examined the effects of modafinil on resting-state brain activity in 30 healthy adults using microstate analysis. Electroencephalographic (EEG) microstates are discrete voltage topographies generated from resting-state network activity. METHODS Using a placebo-controlled, within-subjects design, we examined changes to microstate parameters following placebo (0 mg), low (100 mg), and high (200 mg) modafinil doses. We also examined the functional significance of these microstates via associations between microstate parameters and event-related potential indexes of conflict monitoring and automatic error processing (N2 and error-related negativity) and behavioral responses (accuracy and RT) from a subsequent flanker interference task. RESULTS Five microstates emerged following each treatment condition, including four canonical microstates (A-D). Modafinil increased microstate C proportion and occurrence regardless of dose, relative to placebo. Modafinil also decreased microstate A proportion and microstate B proportion and occurrence relative to placebo. These modafinil-related changes in microstate parameters were not associated with similar changes in flanker ERPs or behavior. Finally, modafinil made transitions between microstates A and B less likely and transitions from A and B to C more likely. CONCLUSIONS Previous fMRI work has correlated microstates A and B with auditory and visual networks and microstate C with a salience network. Thus, our results suggest modafinil may deactivate large-scale sensory networks in favor of a higher order functional network during resting-state in healthy adults.
Collapse
Affiliation(s)
- Samantha R Linton
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Michael Murphy
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Hans S Schroder
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Ann M Iturra-Mena
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Brian D Kangas
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Jack Bergman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - William A Carlezon
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Samuel A Barnes
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Andre Der-Avakian
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
46
|
EEG microstate temporal Dynamics Predict depressive symptoms in College Students. Brain Topogr 2022; 35:481-494. [PMID: 35790705 DOI: 10.1007/s10548-022-00905-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/19/2022] [Indexed: 11/02/2022]
Abstract
Previous studies on resting-state electroencephalographic responses in patients with depressive disorders have identified electroencephalogram (EEG) parameters as potential biomarkers for the early detection and diagnosis of depressive disorders. However, these studies did not investigate the relationship between resting-state EEG microstates and the early detection of depressive symptoms in preclinical individuals. To explore the possible association between resting-state EEG microstate temporal dynamics and depressive symptoms among college students, EEG microstate analysis was performed on eyes-closed resting-state EEG data for approximately 5 min from 34 undergraduates with high intensity of depressive symptoms and 34 age- and sex-matched controls with low intensity of depressive symptoms. Five microstate classes (A-E) were identified to best explain the datasets of both groups. Compared to controls, the mean duration, occurrence, and coverage of microstate class B increased significantly, whereas the occurrence and coverage of microstate classes D and E decreased significantly in individuals with high intensity of depressive symptoms. Additionally, the presence of microstate class B was positively correlated with participants' Beck Depression Inventory-II (BDI-II) scores, and the presence of microstate classes D and E were negatively correlated with their BDI-II scores. Further, individuals with high intensity of depressive symptoms had higher transition probabilities of A→B, B→A, B→C, B→D, and C→B, with lower transition probabilities of A→D, A→E, D→A, D→E, E→A, E→C, and E→D than controls. These results highlight resting-state EEG microstate temporal dynamics as potential biomarkers for the early detection and timely treatment of depression in college students.
Collapse
|
47
|
Lei L, Liu Z, Zhang Y, Guo M, Liu P, Hu X, Yang C, Zhang A, Sun N, Wang Y, Zhang K. EEG microstates as markers of major depressive disorder and predictors of response to SSRIs therapy. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110514. [PMID: 35085607 DOI: 10.1016/j.pnpbp.2022.110514] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is associated with abnormal neural activities and brain connectivity. EEG microstate is a voltage topology map that reflects transient activations of the brain network. A limited number of studies on EEG microstate in MDD have focused on differences between patients and healthy controls. However, EEG microstate changes in MDD patients before and after drug treatment have not been evaluated. We assessed EEG microstate characteristics and evaluated changes in brain network dynamics in MDD patients before and after drug treatment. Moreover, we evaluated the neuro-electrophysiological mechanisms of antidepressant therapies. METHODS 64-channel resting EEG was obtained from 101 patients with first-episode untreated depression (0 week) and 45 healthy controls (HC) from January to December 2020. MDD patients were treated with selective serotonin reuptake inhibitors (SSRI). EEG data for 51 MDD patients who had completed an 8-week follow-up was collected. After pre-processing, EEG data from different groups were subjected to microstate analysis, and the atomize and agglomerate hierarchical clustering (AAHC) was into 4 microstates. Next, EEG signals from each patient were fitted using templates of 4 microstates. Finally, microstate indices were collected and analyzed. RESULTS Global clustering generated 4 microstates (A, B, C, D) in all subjects, which explained 65-84% of the global variance. Compared to HC, the duration of microstate D reduced while those of microstates A and B increased in MDD patients. After the 8-week treatment period, the duration and coverage of microstate D increased, the frequency of microstate A and transition probability of microstate D to A reduced, while transition probability of microstate B to D and D to B increased in MDD patients. There were no differences in microstate features between HC and MDD at 8 weeks. In patients with first-episode untreated depression, lower average durations of microstate D, relatively higher frequencies of microstate C and lower transition probabilities of microstate D to B correlated with better effects after 8 weeks. The higher occurrence and proportion of microstate C at 8 weeks was positively correlated with the HAMD score and reduction rate. The same observation was reached for the transition probability of microstate A to C. However, the transition probability of microstate D to B showed a negative correlation with the HAMD score at 8 weeks. CONCLUSION Microstate D is a potential electrophysiological trait of MDD and can predict treatment outcomes of SSRIs. Therefore, EEG microstate analysis may not only be an objective method for evaluating treatment outcomes of depression, but is also a potential new approach for exploring the neuro-electrophysiological mechanisms of antidepressant therapy. Public title: Multidimensional diagnosis, individualized treatment and management techniques based on clinic-pathological characteristics of depressive disorder; Registration number: ChiCTR1900026600; Date of registration: 2019-10-15; URL: http://www.chictr.org.cn/index.aspx.
Collapse
Affiliation(s)
- Lei Lei
- Department of Psychiatry, First Hospital of Shanxi Medical University, taiyuan, Shanxi 030000, China; First clinical medical college, Shanxi Medical University, Taiyuan, Shanxi 030000, China
| | - Zhifen Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, taiyuan, Shanxi 030000, China; First clinical medical college, Shanxi Medical University, Taiyuan, Shanxi 030000, China
| | - Yu Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, taiyuan, Shanxi 030000, China; First clinical medical college, Shanxi Medical University, Taiyuan, Shanxi 030000, China
| | - Meng Guo
- Department of Psychiatry, First Hospital of Shanxi Medical University, taiyuan, Shanxi 030000, China; First clinical medical college, Shanxi Medical University, Taiyuan, Shanxi 030000, China
| | - Penghong Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, taiyuan, Shanxi 030000, China; First clinical medical college, Shanxi Medical University, Taiyuan, Shanxi 030000, China
| | - Xiaodong Hu
- Department of Psychiatry, First Hospital of Shanxi Medical University, taiyuan, Shanxi 030000, China; First clinical medical college, Shanxi Medical University, Taiyuan, Shanxi 030000, China
| | - Chunxia Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, taiyuan, Shanxi 030000, China; First clinical medical college, Shanxi Medical University, Taiyuan, Shanxi 030000, China
| | - Aixia Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, taiyuan, Shanxi 030000, China; First clinical medical college, Shanxi Medical University, Taiyuan, Shanxi 030000, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, taiyuan, Shanxi 030000, China; First clinical medical college, Shanxi Medical University, Taiyuan, Shanxi 030000, China
| | - Yanfang Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, taiyuan, Shanxi 030000, China; First clinical medical college, Shanxi Medical University, Taiyuan, Shanxi 030000, China.
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, taiyuan, Shanxi 030000, China; First clinical medical college, Shanxi Medical University, Taiyuan, Shanxi 030000, China.
| |
Collapse
|
48
|
Cautionary Observations Concerning the Introduction of Psychophysiological Biomarkers into Neuropsychiatric Practice. PSYCHIATRY INTERNATIONAL 2022. [DOI: 10.3390/psychiatryint3020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The combination of statistical learning technologies with large databases of psychophysiological data has appropriately generated enthusiastic interest in future clinical applicability. It is argued here that this enthusiasm should be tempered with the understanding that significant obstacles must be overcome before the systematic introduction of psychophysiological measures into neuropsychiatric practice becomes possible. The objective of this study is to identify challenges to this effort. The nonspecificity of psychophysiological measures complicates their use in diagnosis. Low test-retest reliability complicates use in longitudinal assessment, and quantitative psychophysiological measures can normalize in response to placebo intervention. Ten cautionary observations are introduced and, in some instances, possible directions for remediation are suggested.
Collapse
|
49
|
Bréchet L, Michel CM. EEG Microstates in Altered States of Consciousness. Front Psychol 2022; 13:856697. [PMID: 35572333 PMCID: PMC9094618 DOI: 10.3389/fpsyg.2022.856697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Conscious experiences unify distinct phenomenological experiences that seem to be continuously evolving. Yet, empirical evidence shows that conscious mental activity is discontinuous and can be parsed into a series of states of thoughts that manifest as discrete spatiotemporal patterns of global neuronal activity lasting for fractions of seconds. EEG measures the brain’s electrical activity with high temporal resolution on the scale of milliseconds and, therefore, might be used to investigate the fast spatiotemporal structure of conscious mental states. Such analyses revealed that the global scalp electric fields during spontaneous mental activity are parceled into blocks of stable topographies that last around 60–120 ms, the so-called EEG microstates. These brain states may be representing the basic building blocks of consciousness, the “atoms of thought.” Altered states of consciousness, such as sleep, anesthesia, meditation, or psychiatric diseases, influence the spatiotemporal dynamics of microstates. In this brief perspective, we suggest that it is possible to examine the underlying characteristics of self-consciousness using this EEG microstates approach. Specifically, we will summarize recent results on EEG microstate alterations in mind-wandering, meditation, sleep and anesthesia, and discuss the functional significance of microstates in altered states of consciousness.
Collapse
Affiliation(s)
- Lucie Bréchet
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland.,Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| |
Collapse
|
50
|
Li Y, Chen G, Lv J, Hou L, Dong Z, Wang R, Su M, Yu S. Abnormalities in resting-state EEG microstates are a vulnerability marker of migraine. J Headache Pain 2022; 23:45. [PMID: 35382739 PMCID: PMC8981824 DOI: 10.1186/s10194-022-01414-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/15/2022] [Indexed: 12/31/2022] Open
Abstract
Background Resting-state EEG microstates are thought to reflect brief activations of several interacting components of resting-state brain networks. Surprisingly, we still know little about the role of these microstates in migraine. In the present study, we attempted to address this issue by examining EEG microstates in patients with migraine without aura (MwoA) during the interictal period and comparing them with those of a group of healthy controls (HC). Methods Resting-state EEG was recorded in 61 MwoA patients (50 females) and 66 HC (50 females). Microstate parameters were compared between the two groups. We computed four widely identified canonical microstate classes A-D. Results Microstate classes B and D displayed higher time coverage and occurrence in the MwoA patient group than in the HC group, while microstate class C exhibited significantly lower time coverage and occurrence in the MwoA patient group. Meanwhile, the mean duration of microstate class C was significantly shorter in the MwoA patient group than in the HC group. Moreover, among the MwoA patient group, the duration of microstate class C correlated negatively with clinical measures of headache-related disability as assessed by the six-item Headache Impact Test (HIT-6). Finally, microstate syntax analysis showed significant differences in transition probabilities between the two groups, primarily involving microstate classes B, C, and D. Conclusions By exploring EEG microstate characteristics at baseline we were able to explore the neurobiological mechanisms underlying altered cortical excitability and aberrant sensory, affective, and cognitive processing, thus deepening our understanding of migraine pathophysiology.
Collapse
|