1
|
How EH, Chin SM, Teo CH, Parhar IS, Soga T. Accelerated biological brain aging in major depressive disorder. Rev Neurosci 2024; 35:959-968. [PMID: 39002110 DOI: 10.1515/revneuro-2024-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/26/2024] [Indexed: 07/15/2024]
Abstract
Major depressive disorder (MDD) patients commonly encounter multiple types of functional disabilities, such as social, physical, and role functioning. MDD is related to an accreted risk of brain atrophy, aging-associated brain diseases, and mortality. Based on recently available studies, there are correlations between notable biological brain aging and MDD in adulthood. Despite several clinical and epidemiological studies that associate MDD with aging phenotypes, the underlying mechanisms in the brain remain unknown. The key areas in the study of biological brain aging in MDD are structural brain aging, impairment in functional connectivity, and the impact on cognitive function and age-related disorders. Various measurements have been used to determine the severity of brain aging, such as the brain age gap estimate (BrainAGE) or brain-predicted age difference (BrainPAD). This review summarized the current results of brain imaging data on the similarities between the manifestation of brain structural changes and the age-associated processes in MDD. This review also provided recent evidence of BrainPAD or BrainAGE scores in MDD, brain structural abnormalities, and functional connectivity, which are commonly observed between MDD and age-associated processes. It serves as a basis of current reference for future research on the potential areas of investigation for diagnostic, preventive, and potentially therapeutic purposes for brain aging in MDD.
Collapse
Affiliation(s)
- Eng Han How
- 65210 Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia , Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| | - Shar-Maine Chin
- 65210 Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia , Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| | - Chuin Hau Teo
- 65210 Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia , Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| | - Ishwar S Parhar
- Center Initiatives for Training International Researchers (CiTIR), University of Toyama, Gofuku, 930-8555 Toyama, Japan
| | - Tomoko Soga
- 65210 Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia , Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| |
Collapse
|
2
|
Ray B, Jensen D, Suresh P, Thapaliya B, Sapkota R, Farahdel B, Fu Z, Chen J, Calhoun VD, Liu J. Adolescent brain maturation associated with environmental factors: a multivariate analysis. FRONTIERS IN NEUROIMAGING 2024; 3:1390409. [PMID: 39629197 PMCID: PMC11613425 DOI: 10.3389/fnimg.2024.1390409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Human adolescence marks a crucial phase of extensive brain development, highly susceptible to environmental influences. Employing brain age estimation to assess individual brain aging, we categorized individuals (N = 7,435, aged 9-10 years old) from the Adolescent Brain and Cognitive Development (ABCD) cohort into groups exhibiting either accelerated or delayed brain maturation, where the accelerated group also displayed increased cognitive performance compared to their delayed counterparts. A 4-way multi-set canonical correlation analysis integrating three modalities of brain metrics (gray matter density, brain morphological measures, and functional network connectivity) with nine environmental factors unveiled a significant 4-way canonical correlation between linked patterns of neural features, air pollution, area crime, and population density. Correlations among the three brain modalities were notably strong (ranging from 0.65 to 0.77), linking reduced gray matter density in the middle temporal gyrus and precuneus to decreased volumes in the left medial orbitofrontal cortex paired with increased cortical thickness in the right supramarginal and bilateral occipital regions, as well as increased functional connectivity in occipital sub-regions. These specific brain characteristics were significantly more pronounced in the accelerated brain aging group compared to the delayed group. Additionally, these brain regions exhibited significant associations with air pollution, area crime, and population density, where lower air pollution and higher area crime and population density were correlated to brain variations more prominently in the accelerated brain aging group.
Collapse
Affiliation(s)
- Bhaskar Ray
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Dawn Jensen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Pranav Suresh
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Bishal Thapaliya
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Ram Sapkota
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Britny Farahdel
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
3
|
Dunlop K, Grosenick L, Downar J, Vila-Rodriguez F, Gunning FM, Daskalakis ZJ, Blumberger DM, Liston C. Dimensional and Categorical Solutions to Parsing Depression Heterogeneity in a Large Single-Site Sample. Biol Psychiatry 2024; 96:422-434. [PMID: 38280408 DOI: 10.1016/j.biopsych.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/21/2023] [Accepted: 01/13/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Recent studies have reported significant advances in modeling the biological basis of heterogeneity in major depressive disorder, but investigators have also identified important technical challenges, including scanner-related artifacts, a propensity for multivariate models to overfit, and a need for larger samples with more extensive clinical phenotyping. The goals of the current study were to evaluate dimensional and categorical solutions to parsing heterogeneity in depression that are stable and generalizable in a large, single-site sample. METHODS We used regularized canonical correlation analysis to identify data-driven brain-behavior dimensions that explain individual differences in depression symptom domains in a large, single-site dataset comprising clinical assessments and resting-state functional magnetic resonance imaging data for 328 patients with major depressive disorder and 461 healthy control participants. We examined the stability of clinical loadings and model performance in held-out data. Finally, hierarchical clustering on these dimensions was used to identify categorical depression subtypes. RESULTS The optimal regularized canonical correlation analysis model yielded 3 robust and generalizable brain-behavior dimensions that explained individual differences in depressed mood and anxiety, anhedonia, and insomnia. Hierarchical clustering identified 4 depression subtypes, each with distinct clinical symptom profiles, abnormal resting-state functional connectivity patterns, and antidepressant responsiveness to repetitive transcranial magnetic stimulation. CONCLUSIONS Our results define dimensional and categorical solutions to parsing neurobiological heterogeneity in major depressive disorder that are stable, generalizable, and capable of predicting treatment outcomes, each with distinct advantages in different contexts. They also provide additional evidence that regularized canonical correlation analysis and hierarchical clustering are effective tools for investigating associations between functional connectivity and clinical symptoms.
Collapse
Affiliation(s)
- Katharine Dunlop
- Centre for Depression and Suicide Studies, St Michael's Hospital, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Psychiatry and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Logan Grosenick
- Department of Psychiatry, Weill Cornell Medicine, New York, New York
| | - Jonathan Downar
- Department of Psychiatry and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Faith M Gunning
- Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, New York
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Daniel M Blumberger
- Department of Psychiatry and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Weill Cornell Medicine, New York, New York; Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, New York; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
4
|
Ho NCW, Bethlehem RAI, Seidlitz J, Nogovitsyn N, Metzak P, Ballester PL, Hassel S, Rotzinger S, Poppenk J, Lam RW, Taylor VH, Milev R, Bullmore ET, Alexander-Bloch AF, Frey BN, Harkness KL, Addington J, Kennedy SH, Dunlop K. Atypical Brain Aging and Its Association With Working Memory Performance in Major Depressive Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:786-799. [PMID: 38679324 DOI: 10.1016/j.bpsc.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Patients with major depressive disorder (MDD) can present with altered brain structure and deficits in cognitive function similar to those seen in aging. However, the interaction between age-related brain changes and brain development in MDD remains understudied. In a cohort of adolescents and adults with and without MDD, we assessed brain aging differences and associations through a newly developed tool that quantifies normative neurodevelopmental trajectories. METHODS A total of 304 participants with MDD and 236 control participants without depression were recruited and scanned from 3 studies under the Canadian Biomarker Integration Network for Depression. Volumetric data were used to generate brain centile scores, which were examined for 1) differences between participants with MDD and control participants; 2) differences between individuals with versus without severe childhood maltreatment; and 3) correlations with depressive symptom severity, neurocognitive assessment domains, and escitalopram treatment response. RESULTS Brain centiles were significantly lower in the MDD group than in the control group. Brain centile was also significantly correlated with working memory in the control group but not the MDD group. No significant associations were observed between depression severity or antidepressant treatment response and brain centiles. Likewise, childhood maltreatment history did not significantly affect brain centiles. CONCLUSIONS Consistent with previous work on machine learning models that predict brain age, brain centile scores differed in people diagnosed with MDD, and MDD was associated with differential relationships between centile scores and working memory. The results support the notion of atypical development and aging in MDD, with implications for neurocognitive deficits associated with aging-related cognitive function.
Collapse
Affiliation(s)
- Natalie C W Ho
- Keenan Research Centre for Biomedical Research, Unity Health Toronto, Toronto, Ontario, Canada; Centre for Depression & Suicide Studies, Unity Health Toronto, Toronto, Ontario, Canada; Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania; Lifespan Brain Institute, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Institute of Translational Medicine & Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Nikita Nogovitsyn
- Centre for Depression & Suicide Studies, Unity Health Toronto, Toronto, Ontario, Canada
| | - Paul Metzak
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Pedro L Ballester
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stefanie Hassel
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Susan Rotzinger
- Keenan Research Centre for Biomedical Research, Unity Health Toronto, Toronto, Ontario, Canada; Centre for Depression & Suicide Studies, Unity Health Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Mood Disorders Treatment and Research Centre, St Joseph's Healthcare, Hamilton, Ontario, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Jordan Poppenk
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Psychology, Queen's University, Kingston, Ontario, Canada; School of Computing, Queen's University, Kingston, Ontario, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Valerie H Taylor
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Roumen Milev
- Department of Psychology, Queen's University, Kingston, Ontario, Canada; Department of Psychiatry, Queen's University, Kingston, Ontario, Canada; Providence Care Hospital, Kingston, Ontario, Canada
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania; Lifespan Brain Institute, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Institute of Translational Medicine & Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Benicio N Frey
- Mood Disorders Treatment and Research Centre, St Joseph's Healthcare, Hamilton, Ontario, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Kate L Harkness
- Department of Psychology, Queen's University, Kingston, Ontario, Canada; Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Sidney H Kennedy
- Keenan Research Centre for Biomedical Research, Unity Health Toronto, Toronto, Ontario, Canada; Centre for Depression & Suicide Studies, Unity Health Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Katharine Dunlop
- Keenan Research Centre for Biomedical Research, Unity Health Toronto, Toronto, Ontario, Canada; Centre for Depression & Suicide Studies, Unity Health Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Xia Y, Wang X, Sheng J, Hua L, Dai Z, Sun H, Han Y, Yao Z, Lu Q. Response inhibition related neural oscillatory patterns show reliable early identification of bipolar from unipolar depression in a Go/No-Go task. J Affect Disord 2024; 351:414-424. [PMID: 38272369 DOI: 10.1016/j.jad.2024.01.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/30/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Response inhibition is a key neurocognitive factor contributing to impulsivity in mood disorders. Here, we explored the common and differential alterations of neural circuits associated with response inhibition in bipolar disorder (BD) and unipolar disorder (UD) and whether the oscillatory signatures can be used as early biomarkers in BD. METHODS 39 patients with BD, 36 patients with UD, 29 patients initially diagnosed with UD who later underwent diagnostic conversion to BD, and 36 healthy controls performed a Go/No-Go task during MEG scanning. We carried out time-frequency and connectivity analysis on MEG data. Further, we performed machine learning using oscillatory features as input to identify bipolar from unipolar depression at the early clinical stage. RESULTS Compared to healthy controls, patients had reduced rIFG-to-pre-SMA connectivity and delayed activity of rIFG. Among patients, lower beta power and higher peak frequency were observed in BD patients than in UD patients. These changes enabled accurate classification between BD and UD with an accuracy of approximately 80 %. CONCLUSIONS The inefficiency of the prefrontal control network is a shared mechanism in mood disorders, while the abnormal activity of rIFG is more specific to BD. Neuronal responses during response inhibition could serve as a diagnostic biomarker for BD in early stage.
Collapse
Affiliation(s)
- Yi Xia
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaoqin Wang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Junling Sheng
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lingling Hua
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Hao Sun
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Yinglin Han
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|
6
|
Abulseoud OA, Caparelli EC, Krell‐Roesch J, Geda YE, Ross TJ, Yang Y. Sex-difference in the association between social drinking, structural brain aging and cognitive function in older individuals free of cognitive impairment. Front Psychiatry 2024; 15:1235171. [PMID: 38651011 PMCID: PMC11033502 DOI: 10.3389/fpsyt.2024.1235171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Background We investigated a potential sex difference in the relationship between alcohol consumption, brain age gap and cognitive function in older adults without cognitive impairment from the population-based Mayo Clinic Study of Aging. Methods Self-reported alcohol consumption was collected using the food-frequency questionnaire. A battery of cognitive testing assessed performance in four different domains: attention, memory, language, and visuospatial. Brain magnetic resonance imaging (MRI) was conducted using 3-T scanners (Signa; GE Healthcare). Brain age was estimated using the Brain-Age Regression Analysis and Computational Utility Software (BARACUS). We calculated the brain age gap as the difference between predicted brain age and chronological age. Results The sample consisted of 269 participants [55% men (n=148) and 45% women (n=121) with a mean age of 79.2 ± 4.6 and 79.5 ± 4.7 years respectively]. Women had significantly better performance compared to men in memory, (1.12 ± 0.87 vs 0.57 ± 0.89, P<0.0001) language (0.66 ± 0.8 vs 0.33 ± 0.72, P=0.0006) and attention (0.79 ± 0.87 vs 0.39 ± 0.83, P=0.0002) z-scores. Men scored higher in visuospatial skills (0.71 ± 0.91 vs 0.44 ± 0.90, P=0.016). Compared to participants who reported zero alcohol drinking (n=121), those who reported alcohol consumption over the year prior to study enrollment (n=148) scored significantly higher in all four cognitive domains [memory: F3,268 = 5.257, P=0.002, Language: F3,258 = 12.047, P<0.001, Attention: F3,260 = 22.036, P<0.001, and Visuospatial: F3,261 = 9.326, P<0.001] after correcting for age and years of education. In addition, we found a significant positive correlation between alcohol consumption and the brain age gap (P=0.03). Post hoc regression analysis for each sex with language z-score revealed a significant negative correlation between brain age gap and language z-scores in women only (P=0.008). Conclusion Among older adults who report alcohol drinking, there is a positive association between higher average daily alcohol consumption and accelerated brain aging despite the fact that drinkers had better cognitive performance compared to zero drinkers. In women only, accelerated brain aging is associated with worse performance in language cognitive domain. Older adult women seem to be vulnerable to the negative effects of alcohol on brain structure and on certain cognitive functions.
Collapse
Affiliation(s)
- Osama A. Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, AZ, United States
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, United States
| | - Elisabeth C. Caparelli
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Janina Krell‐Roesch
- Department of Quantitative Health Sciences, Mayo Clinic Rochester, Rochester, MN, United States
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Yonas E. Geda
- Department of Neurology, and the Franke Barrow Global Neuroscience Education Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Thomas J. Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
7
|
Seitz-Holland J, Haas SS, Penzel N, Reichenberg A, Pasternak O. BrainAGE, brain health, and mental disorders: A systematic review. Neurosci Biobehav Rev 2024; 159:105581. [PMID: 38354871 PMCID: PMC11119273 DOI: 10.1016/j.neubiorev.2024.105581] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
The imaging-based method of brainAGE aims to characterize an individual's vulnerability to age-related brain changes. The present study systematically reviewed brainAGE findings in neuropsychiatric conditions and discussed the potential of brainAGE as a marker for biological age. A systematic PubMed search (from inception to March 6th, 2023) identified 273 articles. The 30 included studies compared brainAGE between neuropsychiatric and healthy groups (n≥50). We presented results qualitatively and adapted a bias risk assessment questionnaire. The imaging modalities, design, and input features varied considerably between studies. While the studies found higher brainAGE in neuropsychiatric conditions (11 mild cognitive impairment/ dementia, 11 schizophrenia spectrum/ other psychotic and bipolar disorder, six depression/ anxiety, two multiple groups), the associations with clinical characteristics were mixed. While brainAGE is sensitive to group differences, limitations include the lack of diverse training samples, multi-modal studies, and external validation. Only a few studies obtained longitudinal data, and all have used algorithms built solely to predict chronological age. These limitations impede the validity of brainAGE as a biological age marker.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nora Penzel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Phyo AZZ, Fransquet PD, Wrigglesworth J, Woods RL, Espinoza SE, Ryan J. Sex differences in biological aging and the association with clinical measures in older adults. GeroScience 2024; 46:1775-1788. [PMID: 37747619 PMCID: PMC10828143 DOI: 10.1007/s11357-023-00941-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023] Open
Abstract
Females live longer than males, and there are sex disparities in physical health and disease incidence. However, sex differences in biological aging have not been consistently reported and may differ depending on the measure used. This study aimed to determine the correlations between epigenetic age acceleration (AA), and other markers of biological aging, separately in males and females. We additionally explored the extent to which these AA measures differed according to socioeconomic characteristics, clinical markers, and diseases. Epigenetic clocks (HorvathAge, HannumAge, PhenoAge, GrimAge, GrimAge2, and DunedinPACE) were estimated in blood from 560 relatively healthy Australians aged ≥ 70 years (females, 50.7%) enrolled in the ASPREE study. A system-wide deficit accumulation frailty index (FI) composed of 67 health-related measures was generated. Brain age and subsequently brain-predicted age difference (brain-PAD) were estimated from neuroimaging. Females had significantly reduced AA than males, but higher FI, and there was no difference in brain-PAD. FI had the strongest correlation with DunedinPACE (range r: 0.21 to 0.24 in both sexes). Brain-PAD was not correlated with any biological aging measures. Significant correlations between AA and sociodemographic characteristics and health markers were more commonly found in females (e.g., for DunedinPACE and systolic blood pressure r = 0.2, p < 0.001) than in males. GrimAA and Grim2AA were significantly associated with obesity and depression in females, while in males, hypertension, diabetes, and chronic kidney disease were associated with these clocks, as well as DunedinPACE. Our findings highlight the importance of considering sex differences when investigating the link between biological age and clinical measures.
Collapse
Affiliation(s)
- Aung Zaw Zaw Phyo
- Biological Neuropsychiatry & Dementia Unit, School of Public Health and Preventive Medicine, Monash University, 553, St. Kilda Road, Melbourne, VIC, 3004, Australia.
| | - Peter D Fransquet
- Biological Neuropsychiatry & Dementia Unit, School of Public Health and Preventive Medicine, Monash University, 553, St. Kilda Road, Melbourne, VIC, 3004, Australia
- School of Psychology, Deakin University, Burwood, Melbourne, VIC, 3125, Australia
| | - Jo Wrigglesworth
- Biological Neuropsychiatry & Dementia Unit, School of Public Health and Preventive Medicine, Monash University, 553, St. Kilda Road, Melbourne, VIC, 3004, Australia
| | - Robyn L Woods
- ASPREE Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Sara E Espinoza
- Center for Translational Geroscience, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joanne Ryan
- Biological Neuropsychiatry & Dementia Unit, School of Public Health and Preventive Medicine, Monash University, 553, St. Kilda Road, Melbourne, VIC, 3004, Australia
| |
Collapse
|
9
|
Lin Y, Liu S, Sun Y, Chen C, Yang S, Pei G, Lin M, Yu J, Liu X, Wang H, Long J, Yan Q, Liang J, Yao J, Yi F, Meng L, Tan Y, Chen N, Yang Y, Ai Q. CCR5 and inflammatory storm. Ageing Res Rev 2024; 96:102286. [PMID: 38561044 DOI: 10.1016/j.arr.2024.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Chemokines and their corresponding receptors play crucial roles in orchestrating inflammatory and immune responses, particularly in the context of pathological conditions disrupting the internal environment. Among these receptors, CCR5 has garnered considerable attention due to its significant involvement in the inflammatory cascade, serving as a pivotal mediator of neuroinflammation and other inflammatory pathways associated with various diseases. However, a notable gap persists in comprehending the intricate mechanisms governing the interplay between CCR5 and its ligands across diverse and intricate inflammatory pathologies. Further exploration is warranted, especially concerning the inflammatory cascade instigated by immune cell infiltration and the precise binding sites within signaling pathways. This study aims to illuminate the regulatory axes modulating signaling pathways in inflammatory cells by providing a comprehensive overview of the pathogenic processes associated with CCR5 and its ligands across various disorders. The primary focus lies on investigating the pathomechanisms associated with CCR5 in disorders related to neuroinflammation, alongside the potential impact of aging on these processes and therapeutic interventions. The discourse culminates in addressing current challenges and envisaging potential future applications, advocating for innovative research endeavors to advance our comprehension of this realm.
Collapse
Affiliation(s)
- Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Gang Pei
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingbo Yu
- Technology Innovation Center/National Key Laboratory Breeding Base of Chinese Medicine Powders and Innovative Drugs, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huiqin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Lei Meng
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
10
|
Lima Santos JP, Kontos AP, Holland CL, Suss SJ, Stiffler RS, Bitzer HB, Colorito AT, Shaffer M, Skeba A, Iyengar S, Manelis A, Brent D, Shirtcliff EA, Ladouceur CD, Phillips ML, Collins MW, Versace A. The Role of Puberty and Sex on Brain Structure in Adolescents With Anxiety Following Concussion. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:285-297. [PMID: 36517369 DOI: 10.1016/j.bpsc.2022.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Adolescence represents a window of vulnerability for developing psychological symptoms following concussion, especially in girls. Concussion-related lesions in emotion regulation circuits may help explain these symptoms. However, the contribution of sex and pubertal maturation remains unclear. Using the neurite density index (NDI) in emotion regulation tracts (left/right cingulum bundle [CB], forceps minor [FMIN], and left/right uncinate fasciculus), we sought to elucidate these relationships. METHODS No adolescent had a history of anxiety and/or depression. The Screen for Child Anxiety Related Emotional Disorders and Children's Depression Rating Scale were used at scan to assess anxiety and depressive symptoms in 55 concussed adolescents (41.8% girls) and 50 control adolescents with no current/history of concussion (44% girls). We evaluated if a mediation-moderation model including the NDI (mediation) and sex or pubertal status (moderation) could help explain this relationship. RESULTS Relative to control adolescents, concussed adolescents showed higher anxiety (p = .003) and lower NDI, with those at more advanced pubertal maturation showing greater abnormalities in 4 clusters: the left CB frontal (p = .002), right CB frontal (p = .011), FMIN left-sided (p = .003), and FMIN right-sided (p = .003). Across all concussed adolescents, lower NDI in the left CB frontal and FMIN left-sided clusters partially mediated the association between concussion and anxiety, with the CB being specific to female adolescents. These effects did not explain depressive symptoms. CONCLUSIONS Our findings indicate that lower NDI in the CB and FMIN may help explain anxiety following concussion and that adolescents at more advanced (vs less advanced) status of pubertal maturation may be more vulnerable to concussion-related injuries, especially in girls.
Collapse
Affiliation(s)
- João Paulo Lima Santos
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony P Kontos
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program, University of Pittsburgh, Pennsylvania
| | - Cynthia L Holland
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program, University of Pittsburgh, Pennsylvania
| | - Stephen J Suss
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program, University of Pittsburgh, Pennsylvania
| | - Richelle S Stiffler
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hannah B Bitzer
- Department of Psychology, Florida International University, Miami, Florida
| | - Adam T Colorito
- Department of Psychology, Florida International University, Miami, Florida
| | - Madelyn Shaffer
- Department of Psychology, Florida International University, Miami, Florida
| | - Alexander Skeba
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Satish Iyengar
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anna Manelis
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David Brent
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychiatry, UPMC Western Psychiatric Hospital, Pittsburgh, Pennsylvania
| | - Elizabeth A Shirtcliff
- Center for Translational Neuroscience and Department of Psychology, University of Oregon, Eugene, Oregon
| | - Cecile D Ladouceur
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mary L Phillips
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael W Collins
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program, University of Pittsburgh, Pennsylvania
| | - Amelia Versace
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Radiology, Magnetic Resonance Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
11
|
Shao J, Qin J, Wang H, Sun Y, Zhang W, Wang X, Wang T, Xue L, Yao Z, Lu Q. Capturing the Individual Deviations From Normative Models of Brain Structure for Depression Diagnosis and Treatment. Biol Psychiatry 2024; 95:403-413. [PMID: 37579934 DOI: 10.1016/j.biopsych.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND The high heterogeneity of depression prevents us from obtaining reproducible and definite anatomical maps of brain structural changes associated with the disorder, which limits the individualized diagnosis and treatment of patients. In this study, we investigated the clinical issues related to depression according to individual deviations from normative ranges of gray matter volume. METHODS We enrolled 1092 participants, including 187 patients with depression and 905 healthy control participants. Structural magnetic resonance imaging data of healthy control participants from the Human Connectome Project (n = 510) and REST-meta-MDD Project (n = 229) were used to establish a normative model across the life span in adults 18 to 65 years old for each brain region. Deviations from the normative range for 187 patients and 166 healthy control participants recruited from two local hospitals were captured as normative probability maps, which were used to identify the disease risk and treatment-related latent factors. RESULTS In contrast to case-control results, our normative modeling approach revealed highly individualized patterns of anatomic abnormalities in depressed patients (less than 11% extreme deviation overlapping for any regions). Based on our classification framework, models trained with individual normative probability maps (area under the receiver operating characteristic curve range, 0.7146-0.7836) showed better performance than models trained with original gray matter volume values (area under the receiver operating characteristic curve range, 0.6800-0.7036), which was verified in an independent external test set. Furthermore, different latent brain structural factors in relation to antidepressant treatment were revealed by a Bayesian model based on normative probability maps, suggesting distinct treatment response and inclination. CONCLUSIONS Capturing personalized deviations from a normative range could help in understanding the heterogeneous neurobiology of depression and thus guide clinical diagnosis and treatment of depression.
Collapse
Affiliation(s)
- Junneng Shao
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Jiaolong Qin
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Huan Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Yurong Sun
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Wei Zhang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Xinyi Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Ting Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Li Xue
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China.
| |
Collapse
|
12
|
Diniz BS, Seitz-Holland J, Sehgal R, Kasamoto J, Higgins-Chen AT, Lenze E. Geroscience-Centric Perspective for Geriatric Psychiatry: Integrating Aging Biology With Geriatric Mental Health Research. Am J Geriatr Psychiatry 2024; 32:1-16. [PMID: 37845116 PMCID: PMC10841054 DOI: 10.1016/j.jagp.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023]
Abstract
The geroscience hypothesis asserts that physiological aging is caused by a small number of biological pathways. Despite the explosion of geroscience research over the past couple of decades, the research on how serious mental illnesses (SMI) affects the biological aging processes is still in its infancy. In this review, we aim to provide a critical appraisal of the emerging literature focusing on how we measure biological aging systematically, and in the brain and how SMIs affect biological aging measures in older adults. We will also review recent developments in the field of cellular senescence and potential targets for interventions for SMIs in older adults, based on the geroscience hypothesis.
Collapse
Affiliation(s)
- Breno S Diniz
- UConn Center on Aging & Department of Psychiatry (BSD), School of Medicine, University of Connecticut Health Center, Farmington, CT.
| | - Johanna Seitz-Holland
- Department of Psychiatry (JSH), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry (JSH), Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Raghav Sehgal
- Program in Computational Biology and Bioinformatics (RS, JK), Yale University, New Haven, CT
| | - Jessica Kasamoto
- Program in Computational Biology and Bioinformatics (RS, JK), Yale University, New Haven, CT
| | - Albert T Higgins-Chen
- Department of Psychiatry (ATHC), Yale University School of Medicine, New Haven, CT; Department of Pathology (ATHC), Yale University School of Medicine, New Haven, CT
| | - Eric Lenze
- Department of Psychiatry (EL), School of Medicine, Washington University at St. Louis, St. Louis, MO
| |
Collapse
|
13
|
Cohen JW, Ramphal B, DeSerisy M, Zhao Y, Pagliaccio D, Colcombe S, Milham MP, Margolis AE. Relative brain age is associated with socioeconomic status and anxiety/depression problems in youth. Dev Psychol 2024; 60:199-209. [PMID: 37747510 PMCID: PMC10993304 DOI: 10.1037/dev0001593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Brain age, a measure of biological aging in the brain, has been linked to psychiatric illness, principally in adult populations. Components of socioeconomic status (SES) associate with differences in brain structure and psychiatric risk across the lifespan. This study aimed to investigate the influence of SES on brain aging in childhood and adolescence, a period of rapid neurodevelopment and peak onset for many psychiatric disorders. We reanalyzed data from the Healthy Brain Network to examine the influence of SES components (occupational prestige, public assistance enrollment, parent education, and household income-to-needs ratio [INR]) on relative brain age (RBA). Analyses included 470 youth (5-17 years; 61.3% men), self-identifying as White (55%), African American (15%), Hispanic (9%), or multiracial (17.2%). Household income was 3.95 ± 2.33 (mean ± SD) times the federal poverty threshold. RBA quantified differences between chronological age and brain age using covariation patterns of morphological features and total volumes. We also examined associations between RBA and psychiatric symptoms (Child Behavior Checklist [CBCL]). Models covaried for sex, scan location, and parent psychiatric diagnoses. In a linear regression, lower RBA is associated with lower parent occupational prestige (p = .01), lower public assistance enrollment (p = .03), and more parent psychiatric diagnoses (p = .01), but not parent education or INR. Lower parent occupational prestige (p = .02) and lower RBA (p = .04) are associated with higher CBCL anxious/depressed scores. Our findings underscore the importance of including SES components in developmental brain research. Delayed brain aging may represent a potential biological pathway from SES to psychiatric risk. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Jacob W. Cohen
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University
| | - Bruce Ramphal
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University
- T.H. Chan School of Public Health, Harvard Medical School
| | - Mariah DeSerisy
- Department of Epidemiology, Mailman School of Public Health, Columbia University
| | - Yihong Zhao
- Columbia University School of Nursing
- Center for Biological Imaging and Neuromodulation, Nathan S. Kline Institute, Orangeburg, New York, United States
| | - David Pagliaccio
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University
| | - Stan Colcombe
- Center for Biological Imaging and Neuromodulation, Nathan S. Kline Institute, Orangeburg, New York, United States
| | - Michael P. Milham
- Child Mind Institute, New York, New York, United States
- Nathan S. Kline Institute, Orangeburg, New York, United States
| | - Amy E. Margolis
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University
| |
Collapse
|
14
|
Jönemo J, Eklund A. Brain Age Prediction Using 2D Projections Based on Higher-Order Statistical Moments and Eigenslices from 3D Magnetic Resonance Imaging Volumes. J Imaging 2023; 9:271. [PMID: 38132689 PMCID: PMC10743800 DOI: 10.3390/jimaging9120271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Brain age prediction from 3D MRI volumes using deep learning has recently become a popular research topic, as brain age has been shown to be an important biomarker. Training deep networks can be very computationally demanding for large datasets like the U.K. Biobank (currently 29,035 subjects). In our previous work, it was demonstrated that using a few 2D projections (mean and standard deviation along three axes) instead of each full 3D volume leads to much faster training at the cost of a reduction in prediction accuracy. Here, we investigated if another set of 2D projections, based on higher-order statistical central moments and eigenslices, leads to a higher accuracy. Our results show that higher-order moments do not lead to a higher accuracy, but that eigenslices provide a small improvement. We also show that an ensemble of such models provides further improvement.
Collapse
Affiliation(s)
- Johan Jönemo
- Division of Medical Informatics, Department of Biomedical Engineering, Linköping University, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 83 Linköping, Sweden
| | - Anders Eklund
- Division of Medical Informatics, Department of Biomedical Engineering, Linköping University, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 83 Linköping, Sweden
- Division of Statistics and Machine Learning, Department of Computer and Information Science, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
15
|
Xu H, Dou Z, Luo Y, Yang L, Xiao X, Zhao G, Lin W, Xia Z, Zhang Q, Zeng F, Yu S. Neuroimaging profiles of the negative affective network predict anxiety severity in patients with chronic insomnia disorder: A machine learning study. J Affect Disord 2023; 340:542-550. [PMID: 37562562 DOI: 10.1016/j.jad.2023.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/05/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Sleep is instrumental in safeguarding emotional well-being. While the susceptibility to both insomnia and anxiety has been demonstrated to involve intricate brain systems, the neuroimaging profile of chronic insomnia disorder with comorbid anxiety symptoms (CID-A) remains unexplored. Employing machine learning methodologies, this study aims to elucidate the distinct neural substrates underlying CID-A and to investigate whether these cerebral markers can prognosticate anxiety symptoms in patients with insomnia. METHODS Functional magnetic resonance imaging (fMRI) data were procured from a relatively large cohort (dataset 1) comprised of 47 CID-A patients, 49 CID patients without anxiety (CID-NA), and 48 good sleeper controls (GSC). Aberrant cerebral functional alterations were assessed through functional connectivity strength (FCS) and resting-state functional connectivity (rsFC). Subsequently, Support Vector Regression (SVR) models were constructed to predict anxiety symptoms in CID patients based on neuroimaging features, which were validated utilizing an external cohort (dataset 2). RESULTS In comparison to CID-NA and GSC subjects, CID-A patients exhibited heightened FCS in the right dorsomedial prefrontal cortex (DMPFC), a central hub within the negative affective network. Moreover, the SVR models revealed that DMPFC-related rsFC/FCS features could be employed to predict anxiety symptoms in two independent cohorts of CID patients. LIMITATION Modifications in brain functionality might vary across insomnia subtypes. CONCLUSION The present findings suggest a potential negative affective network model for the neuropathophysiology of CID accompanied by anxiety. Importantly, the negative affective network pattern may serve as a predictor for anxiety symptoms in CID patients.
Collapse
Affiliation(s)
- Hao Xu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Center of Interventional Medicine, Affiliated Hospital of North Sichuan Medical College, Department of Interventional Radiology, School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Zeyang Dou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yucai Luo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Yang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiangwen Xiao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangli Zhao
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenting Lin
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihao Xia
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Zhang
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China.
| | - Fang Zeng
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyi Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
16
|
Szymkowicz SM, Gerlach AR, Homiack D, Taylor WD. Biological factors influencing depression in later life: role of aging processes and treatment implications. Transl Psychiatry 2023; 13:160. [PMID: 37160884 PMCID: PMC10169845 DOI: 10.1038/s41398-023-02464-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Late-life depression occurring in older adults is common, recurrent, and malignant. It is characterized by affective symptoms, but also cognitive decline, medical comorbidity, and physical disability. This behavioral and cognitive presentation results from altered function of discrete functional brain networks and circuits. A wide range of factors across the lifespan contributes to fragility and vulnerability of those networks to dysfunction. In many cases, these factors occur earlier in life and contribute to adolescent or earlier adulthood depressive episodes, where the onset was related to adverse childhood events, maladaptive personality traits, reproductive events, or other factors. Other individuals exhibit a later-life onset characterized by medical comorbidity, pro-inflammatory processes, cerebrovascular disease, or developing neurodegenerative processes. These later-life processes may not only lead to vulnerability to the affective symptoms, but also contribute to the comorbid cognitive and physical symptoms. Importantly, repeated depressive episodes themselves may accelerate the aging process by shifting allostatic processes to dysfunctional states and increasing allostatic load through the hypothalamic-pituitary-adrenal axis and inflammatory processes. Over time, this may accelerate the path of biological aging, leading to greater brain atrophy, cognitive decline, and the development of physical decline and frailty. It is unclear whether successful treatment of depression and avoidance of recurrent episodes would shift biological aging processes back towards a more normative trajectory. However, current antidepressant treatments exhibit good efficacy for older adults, including pharmacotherapy, neuromodulation, and psychotherapy, with recent work in these areas providing new guidance on optimal treatment approaches. Moreover, there is a host of nonpharmacological treatment approaches being examined that take advantage of resiliency factors and decrease vulnerability to depression. Thus, while late-life depression is a recurrent yet highly heterogeneous disorder, better phenotypic characterization provides opportunities to better utilize a range of nonspecific and targeted interventions that can promote recovery, resilience, and maintenance of remission.
Collapse
Affiliation(s)
- Sarah M Szymkowicz
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew R Gerlach
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Damek Homiack
- Department of Psychiatry, University of Illinois-Chicago, Chicago, IL, USA
| | - Warren D Taylor
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN, USA.
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, USA.
| |
Collapse
|
17
|
Levakov G, Kaplan A, Yaskolka Meir A, Rinott E, Tsaban G, Zelicha H, Blüher M, Ceglarek U, Stumvoll M, Shelef I, Avidan G, Shai I. The effect of weight loss following 18 months of lifestyle intervention on brain age assessed with resting-state functional connectivity. eLife 2023; 12:e83604. [PMID: 37022140 PMCID: PMC10174688 DOI: 10.7554/elife.83604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Background Obesity negatively impacts multiple bodily systems, including the central nervous system. Retrospective studies that estimated chronological age from neuroimaging have found accelerated brain aging in obesity, but it is unclear how this estimation would be affected by weight loss following a lifestyle intervention. Methods In a sub-study of 102 participants of the Dietary Intervention Randomized Controlled Trial Polyphenols Unprocessed Study (DIRECT-PLUS) trial, we tested the effect of weight loss following 18 months of lifestyle intervention on predicted brain age based on magnetic resonance imaging (MRI)-assessed resting-state functional connectivity (RSFC). We further examined how dynamics in multiple health factors, including anthropometric measurements, blood biomarkers, and fat deposition, can account for changes in brain age. Results To establish our method, we first demonstrated that our model could successfully predict chronological age from RSFC in three cohorts (n=291;358;102). We then found that among the DIRECT-PLUS participants, 1% of body weight loss resulted in an 8.9 months' attenuation of brain age. Attenuation of brain age was significantly associated with improved liver biomarkers, decreased liver fat, and visceral and deep subcutaneous adipose tissues after 18 months of intervention. Finally, we showed that lower consumption of processed food, sweets and beverages were associated with attenuated brain age. Conclusions Successful weight loss following lifestyle intervention might have a beneficial effect on the trajectory of brain aging. Funding The German Research Foundation (DFG), German Research Foundation - project number 209933838 - SFB 1052; B11, Israel Ministry of Health grant 87472511 (to I Shai); Israel Ministry of Science and Technology grant 3-13604 (to I Shai); and the California Walnuts Commission 09933838 SFB 105 (to I Shai).
Collapse
Affiliation(s)
- Gidon Levakov
- Department of Brain and Cognitive Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Alon Kaplan
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
- Department of Internal Medicine D, Chaim Sheba Medical CenterRamat-GanIsrael
| | - Anat Yaskolka Meir
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Ehud Rinott
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Gal Tsaban
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Hila Zelicha
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | | | - Uta Ceglarek
- Department of Medicine, University of LeipzigLeipzigGermany
| | | | - Ilan Shelef
- Department of Diagnostic Imaging, Soroka Medical CenterBeer ShevaIsrael
| | - Galia Avidan
- Department of Psychology, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Iris Shai
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
- Department of Medicine, University of LeipzigLeipzigGermany
- Department of Nutrition, Harvard T.H. Chan School of Public HealthBostonUnited States
| |
Collapse
|
18
|
Jha MK, Chin Fatt C, Minhajuddin A, Mayes TL, Trivedi MH. Accelerated Brain Aging in Adults With Major Depressive Disorder Predicts Poorer Outcome With Sertraline: Findings From the EMBARC Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:462-470. [PMID: 36179972 PMCID: PMC10177666 DOI: 10.1016/j.bpsc.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) may be associated with accelerated brain aging (higher brain age than chronological age). This report evaluated whether brain age is a clinically useful biomarker by checking its test-retest reliability using magnetic resonance imaging scans acquired 1 week apart and by evaluating the association of accelerated brain aging with symptom severity and antidepressant treatment outcomes. METHODS Brain age was estimated in participants of the EMBARC (Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care) study using T1-weighted structural magnetic resonance imaging (MDD n = 290; female n = 192; healthy control participants n = 39; female n = 24). Intraclass correlation coefficient was used for baseline-to-week-1 test-retest reliability. Association of baseline Δ brain age (brain age minus chronological age) with Hamilton Depression Rating Scale-17 and Concise Health Risk Tracking Self-Report domains (impulsivity, suicide propensity [measures: pessimism, helplessness, perceived lack of social support, and despair], and suicidal thoughts) were assessed at baseline (linear regression) and during 8-week-long treatment with either sertraline or placebo (repeated-measures mixed models). RESULTS Mean ± SD baseline chronological age, brain age, and Δ brain age were 37.1 ± 13.3, 40.6 ± 13.1, and 3.1 ± 6.1 years in MDD and 37.1 ± 14.7, 38.4 ± 12.9, and 0.6 ± 5.5 years in healthy control groups, respectively. Test-retest reliability was high (intraclass correlation coefficient = 0.98-1.00). Higher baseline Δ brain age in the MDD group was associated with higher baseline impulsivity and suicide propensity and predicted smaller baseline-to-week-8 reductions in Hamilton Depression Rating Scale-17, impulsivity, and suicide propensity with sertraline but not with placebo. CONCLUSIONS Brain age is a reliable and potentially clinically useful biomarker that can prognosticate antidepressant treatment outcomes.
Collapse
Affiliation(s)
- Manish K Jha
- Center for Depression Research and Clinical Care, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Psychiatry, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Cherise Chin Fatt
- Center for Depression Research and Clinical Care, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Psychiatry, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Abu Minhajuddin
- Center for Depression Research and Clinical Care, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Psychiatry, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Taryn L Mayes
- Center for Depression Research and Clinical Care, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Psychiatry, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Madhukar H Trivedi
- Center for Depression Research and Clinical Care, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Psychiatry, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
19
|
Ho NC, Dunlop K. Establishing the Clinical Potential of Brain Aging in Depression: Implications for Suicidality and Antidepressant Response. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:347-348. [PMID: 37028903 DOI: 10.1016/j.bpsc.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 04/08/2023]
|
20
|
Abram SV, Roach BJ, Hua JPY, Han LKM, Mathalon DH, Ford JM, Fryer SL. Advanced brain age correlates with greater rumination and less mindfulness in schizophrenia. Neuroimage Clin 2022; 37:103301. [PMID: 36586360 PMCID: PMC9830317 DOI: 10.1016/j.nicl.2022.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Individual variation in brain aging trajectories is linked with several physical and mental health outcomes. Greater stress levels, worry, and rumination correspond with advanced brain age, while other individual characteristics, like mindfulness, may be protective of brain health. Multiple lines of evidence point to advanced brain aging in schizophrenia (i.e., neural age estimate > chronological age). Whether psychological dimensions such as mindfulness, rumination, and perceived stress contribute to brain aging in schizophrenia is unknown. METHODS We estimated brain age from high-resolution anatomical scans in 54 healthy controls (HC) and 52 individuals with schizophrenia (SZ) and computed the brain predicted age difference (BrainAGE-diff), i.e., the delta between estimated brain age and chronological age. Emotional well-being summary scores were empirically derived to reflect individual differences in trait mindfulness, rumination, and perceived stress. Core analyses evaluated relationships between BrainAGE-diff and emotional well-being, testing for slopes differences across groups. RESULTS HC showed higher emotional well-being (greater mindfulness and less rumination/stress), relative to SZ. We observed a significant group difference in the relationship between BrainAge-diff and emotional well-being, explained by BrainAGE-diff negatively correlating with emotional well-being scores in SZ, and not in HC. That is, SZ with younger appearing brains (predicted age < chronological age) had emotional summary scores that were more like HC, a relationship that endured after accounting for several demographic and clinical variables. CONCLUSIONS These data reveal clinically relevant aspects of brain age heterogeneity among SZ and point to case-control differences in the relationship between advanced brain aging and emotional well-being.
Collapse
Affiliation(s)
- Samantha V Abram
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco Veterans Affairs Medical Center, and the University of California, San Francisco, CA, United States; Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA, United States; Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Brian J Roach
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA, United States
| | - Jessica P Y Hua
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco Veterans Affairs Medical Center, and the University of California, San Francisco, CA, United States; Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA, United States; Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Laura K M Han
- Orygen, Parkville, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Daniel H Mathalon
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA, United States; Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Judith M Ford
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA, United States; Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Susanna L Fryer
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA, United States; Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
21
|
Khayretdinova M, Shovkun A, Degtyarev V, Kiryasov A, Pshonkovskaya P, Zakharov I. Predicting age from resting-state scalp EEG signals with deep convolutional neural networks on TD-brain dataset. Front Aging Neurosci 2022; 14:1019869. [PMID: 36561135 PMCID: PMC9764861 DOI: 10.3389/fnagi.2022.1019869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Brain age prediction has been shown to be clinically relevant, with errors in its prediction associated with various psychiatric and neurological conditions. While the prediction from structural and functional magnetic resonance imaging data has been feasible with high accuracy, whether the same results can be achieved with electroencephalography is unclear. Methods The current study aimed to create a new deep learning solution for brain age prediction using raw resting-state scalp EEG. To this end, we utilized the TD-BRAIN dataset, including 1,274 subjects (both healthy controls and individuals with various psychiatric disorders, with a total of 1,335 recording sessions). To achieve the best age prediction, we used data augmentation techniques to increase the diversity of the training set and developed a deep convolutional neural network model. Results The model's training was done with 10-fold cross-subject cross-validation, with the EEG recordings of the subjects used for training not considered to test the model. In training, using the relative rather than the absolute loss function led to a better mean absolute error of 5.96 years in cross-validation. We found that the best performance could be achieved when both eyes-open and eyes-closed states are used simultaneously. The frontocentral electrodes played the most important role in age prediction. Discussion The architecture and training method of the proposed deep convolutional neural networks (DCNN) improve state-of-the-art metrics in the age prediction task using raw resting-state EEG data by 13%. Given that brain age prediction might be a potential biomarker of numerous brain diseases, inexpensive and precise EEG-based estimation of brain age will be in demand for clinical practice.
Collapse
|
22
|
Han LK, Dinga R, Leenings R, Hahn T, Cole JH, Aftanas LI, Amod AR, Besteher B, Colle R, Corruble E, Couvy-Duchesne B, Danilenko KV, Fuentes-Claramonte P, Gonul AS, Gotlib IH, Goya-Maldonado R, Groenewold NA, Hamilton P, Ichikawa N, Ipser JC, Itai E, Koopowitz SM, Li M, Okada G, Okamoto Y, Churikova OS, Osipov EA, Penninx BW, Pomarol-Clotet E, Rodríguez-Cano E, Sacchet MD, Shinzato H, Sim K, Stein DJ, Uyar-Demir A, Veltman DJ, Schmaal L. A large-scale ENIGMA multisite replication study of brain age in depression. NEUROIMAGE: REPORTS 2022. [DOI: 10.1016/j.ynirp.2022.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
23
|
Sone D, Beheshti I. Neuroimaging-Based Brain Age Estimation: A Promising Personalized Biomarker in Neuropsychiatry. J Pers Med 2022; 12:jpm12111850. [PMID: 36579560 PMCID: PMC9695293 DOI: 10.3390/jpm12111850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/10/2022] Open
Abstract
It is now possible to estimate an individual's brain age via brain scans and machine-learning models. This validated technique has opened up new avenues for addressing clinical questions in neurology, and, in this review, we summarize the many clinical applications of brain-age estimation in neuropsychiatry and general populations. We first provide an introduction to typical neuroimaging modalities, feature extraction methods, and machine-learning models that have been used to develop a brain-age estimation framework. We then focus on the significant findings of the brain-age estimation technique in the field of neuropsychiatry as well as the usefulness of the technique for addressing clinical questions in neuropsychiatry. These applications may contribute to more timely and targeted neuropsychiatric therapies. Last, we discuss the practical problems and challenges described in the literature and suggest some future research directions.
Collapse
Affiliation(s)
- Daichi Sone
- Department of Psychiatry, Jikei University School of Medicine, Tokyo 105-8461, Japan
- Correspondence: ; Tel.: +81-03-3433
| | - Iman Beheshti
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
24
|
Accelerated functional brain aging in major depressive disorder: evidence from a large scale fMRI analysis of Chinese participants. Transl Psychiatry 2022; 12:397. [PMID: 36130921 PMCID: PMC9492670 DOI: 10.1038/s41398-022-02162-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/12/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most common mental health conditions that has been intensively investigated for its association with brain atrophy and mortality. Recent studies suggest that the deviation between the predicted and the chronological age can be a marker of accelerated brain aging to characterize MDD. However, current conclusions are usually drawn based on structural MRI information collected from Caucasian participants. The universality of this biomarker needs to be further validated by subjects with different ethnic/racial backgrounds and by different types of data. Here we make use of the REST-meta-MDD, a large scale resting-state fMRI dataset collected from multiple cohort participants in China. We develop a stacking machine learning model based on 1101 healthy controls, which estimates a subject's chronological age from fMRI with promising accuracy. The trained model is then applied to 1276 MDD patients from 24 sites. We observe that MDD patients exhibit a +4.43 years (p < 0.0001, Cohen's d = 0.31, 95% CI: 2.23-3.88) higher brain-predicted age difference (brain-PAD) compared to controls. In the MDD subgroup, we observe a statistically significant +2.09 years (p < 0.05, Cohen's d = 0.134525) brain-PAD in antidepressant users compared to medication-free patients. The statistical relationship observed is further checked by three different machine learning algorithms. The positive brain-PAD observed in participants in China confirms the presence of accelerated brain aging in MDD patients. The utilization of functional brain connectivity for age estimation verifies existing findings from a new dimension.
Collapse
|
25
|
Zhang F, Gou J. Machine learning assessment of risk factors for depression in later adulthood. THE LANCET REGIONAL HEALTH. EUROPE 2022; 18:100399. [PMID: 35586270 PMCID: PMC9109181 DOI: 10.1016/j.lanepe.2022.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Fengqing Zhang
- Department of Psychological and Brain Sciences, Drexel University, 3201 Chestnut Street, Philadelphia PA 19104, USA
| | - Jiangtao Gou
- Department of Mathematics and Statistics, Villanova University, 800 E. Lancaster Ave. Villanova, PA 19085, USA
| |
Collapse
|
26
|
Kozic DB, Thurnher MM, Boban J, Sundgren PC. Editorial: Accelerated Brain Aging: Different Diseases—Different Imaging Patterns. Front Neurol 2022; 13:889538. [PMID: 35463122 PMCID: PMC9021844 DOI: 10.3389/fneur.2022.889538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Dusko B. Kozic
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
- *Correspondence: Dusko B. Kozic
| | - Majda M. Thurnher
- Department for Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Jasmina Boban
- Department of Radiology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Pia C. Sundgren
- Department of Medical Imaging and Physiology, Skane University Hospital, Lund, Sweden
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Tang S, Wu Z, Cao H, Chen X, Wu G, Tan W, Liu D, Yang J, Long Y, Liu Z. Age-Related Decrease in Default-Mode Network Functional Connectivity Is Accelerated in Patients With Major Depressive Disorder. Front Aging Neurosci 2022; 13:809853. [PMID: 35082661 PMCID: PMC8785895 DOI: 10.3389/fnagi.2021.809853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Major depressive disorder (MDD) is a common psychiatric disorder which is associated with an accelerated biological aging. However, little is known whether such process would be reflected by a more rapid aging of the brain function. In this study, we tested the hypothesis that MDD would be characterized by accelerated aging of the brain's default-mode network (DMN) functions. Resting-state functional magnetic resonance imaging data of 971 MDD patients and 902 healthy controls (HCs) was analyzed, which was drawn from a publicly accessible, multicenter dataset in China. Strength of functional connectivity (FC) and temporal variability of dynamic functional connectivity (dFC) within the DMN were calculated. Age-related effects on FC/dFC were estimated by linear regression models with age, diagnosis, and diagnosis-by-age interaction as variables of interest, controlling for sex, education, site, and head motion effects. The regression models revealed (1) a significant main effect of age in the predictions of both FC strength and dFC variability; and (2) a significant main effect of diagnosis and a significant diagnosis-by-age interaction in the prediction of FC strength, which was driven by stronger negative correlation between age and FC strength in MDD patients. Our results suggest that (1) both healthy participants and MDD patients experience decrease in DMN FC strength and increase in DMN dFC variability along age; and (2) age-related decrease in DMN FC strength may occur at a faster rate in MDD patients than in HCs. However, further longitudinal studies are still needed to understand the causation between MDD and accelerated aging of brain.
Collapse
Affiliation(s)
- Shixiong Tang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
| | - Zhipeng Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hengyi Cao
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, United States
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, United States
| | - Xudong Chen
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guowei Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenjian Tan
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dayi Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Yang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yicheng Long
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhening Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
Ballester PL, Romano MT, de Azevedo Cardoso T, Hassel S, Strother SC, Kennedy SH, Frey BN. Brain age in mood and psychotic disorders: a systematic review and meta-analysis. Acta Psychiatr Scand 2022; 145:42-55. [PMID: 34510423 DOI: 10.1111/acps.13371] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To evaluate whether accelerated brain aging occurs in individuals with mood or psychotic disorders. METHODS A systematic review following PRISMA guidelines was conducted. A meta-analysis was then performed to assess neuroimaging-derived brain age gap in three independent groups: (1) schizophrenia and first-episode psychosis, (2) major depressive disorder, and (3) bipolar disorder. RESULTS A total of 18 papers were included. The random-effects model meta-analysis showed a significantly increased neuroimaging-derived brain age gap relative to age-matched controls for the three major psychiatric disorders, with schizophrenia (3.08; 95%CI [2.32; 3.85]; p < 0.01) presenting the largest effect, followed by bipolar disorder (1.93; [0.53; 3.34]; p < 0.01) and major depressive disorder (1.12; [0.41; 1.83]; p < 0.01). The brain age gap was larger in older compared to younger individuals. CONCLUSION Individuals with mood and psychotic disorders may undergo a process of accelerated brain aging reflected in patterns captured by neuroimaging data. The brain age gap tends to be more pronounced in older individuals, indicating a possible cumulative biological effect of illness burden.
Collapse
Affiliation(s)
- Pedro L Ballester
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Maria T Romano
- Integrated Science Undergraduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Taiane de Azevedo Cardoso
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Stefanie Hassel
- Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephen C Strother
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Sidney H Kennedy
- Centre for Depression and Suicide Studies, and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.,Mood Disorders Treatment and Research Centre, and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| |
Collapse
|
29
|
Ballester PL, Suh JS, Nogovitsyn N, Hassel S, Strother SC, Arnott SR, Minuzzi L, Sassi RB, Lam RW, Milev R, Müller DJ, Taylor VH, Kennedy SH, Frey BN. Accelerated brain aging in major depressive disorder and antidepressant treatment response: A CAN-BIND report. NEUROIMAGE-CLINICAL 2021; 32:102864. [PMID: 34710675 PMCID: PMC8556529 DOI: 10.1016/j.nicl.2021.102864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Previous studies suggest that major depressive disorder (MDD) may be associated with volumetric indications of accelerated brain aging. This study investigated neuroanatomical signs of accelerated aging in MDD and evaluated whether a brain age gap is associated with antidepressant response. METHODS Individuals in a major depressive episode received escitalopram treatment (10-20 mg/d) for 8 weeks. Depression severity was assessed at baseline and at weeks 8 and 16 using the Montgomery-Asberg Depression Rating Scale (MADRS). Response to treatment was characterized by a significant reduction in the MADRS (≥50%). Nonresponders received adjunctive aripiprazole treatment (2-10 mg/d) for a further 8 weeks. The brain-predicted age difference (brain-PAD) at baseline was determined using machine learning methods trained on 3377 healthy individuals from seven publicly available datasets. The model used features from all brain regions extracted from structural magnetic resonance imaging data. RESULTS Brain-PAD was significantly higher in older MDD participants compared to younger MDD participants [t(147.35) = -2.35, p < 0.03]. BMI was significantly associated with brain-PAD in the MDD group [r(155) = 0.19, p < 0.03]. Response to treatment was not significantly associated with brain-PAD. CONCLUSION We found an elevated brain age gap in older individuals with MDD. Brain-PAD was not associated with overall treatment response to escitalopram monotherapy or escitalopram plus adjunctive aripiprazole.
Collapse
Affiliation(s)
- Pedro L Ballester
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Jee Su Suh
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Nikita Nogovitsyn
- Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Stefanie Hassel
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Stephen C Strother
- Rotman Research Institute, Baycrest, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, ON, Canada
| | | | - Luciano Minuzzi
- Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Roberto B Sassi
- Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Roumen Milev
- Departments of Psychiatry and Psychology, Queen's University, and Providence Care, Kingston, ON, Canada
| | - Daniel J Müller
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Valerie H Taylor
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sidney H Kennedy
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Mental Health, University Health Network, Toronto, ON, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada; Centre for Depression and Suicide Studies, and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Benicio N Frey
- Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.
| | | |
Collapse
|
30
|
Gunning FM, Oberlin LE, Schier M, Victoria LW. Brain-based mechanisms of late-life depression: Implications for novel interventions. Semin Cell Dev Biol 2021; 116:169-179. [PMID: 33992530 PMCID: PMC8548387 DOI: 10.1016/j.semcdb.2021.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022]
Abstract
Late-life depression (LLD) is a particularly debilitating illness. Older adults suffering from depression commonly experience poor outcomes in response to antidepressant treatments, medical comorbidities, and declines in daily functioning. This review aims to further our understanding of the brain network dysfunctions underlying LLD that contribute to disrupted cognitive and affective processes and corresponding clinical manifestations. We provide an overview of a network model of LLD that integrates the salience network, the default mode network (DMN) and the executive control network (ECN). We discuss the brain-based structural and functional mechanisms of LLD with an emphasis on their link to clinical subtypes that often fail to respond to available treatments. Understanding the brain networks that underlie these disrupted processes can inform the development of targeted interventions for LLD. We propose behavioral, cognitive, or computational approaches to identifying novel, personalized interventions that may more effectively target the key cognitive and affective symptoms of LLD.
Collapse
Affiliation(s)
- Faith M Gunning
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Lauren E Oberlin
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Maddy Schier
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lindsay W Victoria
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
31
|
Richard-Devantoy S, Badillo-Amberg I, Greenway KT, Tomasso MD, Turecki G, Bertrand JA. Low MoCA performances correlate with suicidal ideation in late-life depression. Psychiatry Res 2021; 301:113957. [PMID: 33962353 DOI: 10.1016/j.psychres.2021.113957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/16/2021] [Indexed: 11/28/2022]
Abstract
Late-life depression remains an underdiagnosed clinical entity, mainly because the presence of cognitive impairment in the elderly leads clinicians to suspect dementia rather than depression. Our objective was to analyze the cognitive abilities of elderly depressed patients using the Montreal Cognitive Assessment (MoCA) in relation to the presence or absence of suicidal ideation. The MoCA, Beck Scale of Suicidal Ideation, Hamilton Anxiety Scale, and Hamilton Depression Scale were administered to 72 patients with a recent history of late life depression: 43 with suicidal ideation and 29 non-suicidal controls. The results show that suicidal patients demonstrated significantly worse performance on the MoCA total score and the delayed recall subtest in comparison to non-suicidal controls. In addition, after adjusting for age and depression, poorer performance on the MoCA total score correlated to the presence of suicidal ideation. We found that the MoCA total score is able to predict the presence of suicidal ideation in depressed elderly patients in a fair-to-good manner. As late-life depression is already established as a potential prodrome of dementia, longitudinal follow-up may determine whether depressed individuals with suicidal ideation are at higher risk of converting to dementia.
Collapse
Affiliation(s)
- Stéphane Richard-Devantoy
- McGill University & Douglas Mental Health Research Institute, McGill Group for Suicide Studies, Montréal, Québec, Canada; CISSS des Laurentides, Department of Psychiatry, Saint-Jérôme, Canada.
| | - Icoquih Badillo-Amberg
- McGill University & Douglas Mental Health Research Institute, McGill Group for Suicide Studies, Montréal, Québec, Canada
| | - Kyle T Greenway
- McGill University & Douglas Mental Health Research Institute, McGill Group for Suicide Studies, Montréal, Québec, Canada
| | - Maria Di Tomasso
- CISSS des Laurentides, Department of Psychiatry, Saint-Jérôme, Canada
| | - Gustavo Turecki
- McGill University & Douglas Mental Health Research Institute, McGill Group for Suicide Studies, Montréal, Québec, Canada
| | - J A Bertrand
- CISSS des Laurentides, Department of Psychiatry, Saint-Jérôme, Canada; Douglas Research Center, Douglas Mental Health Research Institute, Montréal, Québec, Canada; Institut universitaire de gériatrie de Montréal, Montréal, Québec, Canada
| |
Collapse
|
32
|
Takahashi J, Hirano Y, Miura K, Morita K, Fujimoto M, Yamamori H, Yasuda Y, Kudo N, Shishido E, Okazaki K, Shiino T, Nakao T, Kasai K, Hashimoto R, Onitsuka T. Eye Movement Abnormalities in Major Depressive Disorder. Front Psychiatry 2021; 12:673443. [PMID: 34447321 PMCID: PMC8382962 DOI: 10.3389/fpsyt.2021.673443] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Despite their high lifetime prevalence, major depressive disorder (MDD) is often difficult to diagnose, and there is a need for useful biomarkers for the diagnosis of MDD. Eye movements are considered a non-invasive potential biomarker for the diagnosis of psychiatric disorders such as schizophrenia. However, eye movement deficits in MDD remain unclear. Thus, we evaluated detailed eye movement measurements to validate its usefulness as a biomarker in MDD. Methods: Eye movements were recorded from 37 patients with MDD and 400 healthy controls (HCs) using the same system at five University hospitals. We administered free-viewing, fixation stability, and smooth pursuit tests, and obtained 35 eye movement measurements. We performed analyses of covariance with group as an independent variable and age as a covariate. In 4 out of 35 measurements with significant group-by-age interactions, we evaluated aging effects. Discriminant analysis and receiver operating characteristic (ROC) analysis were conducted. Results: In the free-viewing test, scanpath length was significantly shorter in MDD (p = 4.2 × 10-3). In the smooth pursuit test, duration of saccades was significantly shorter and peak saccade velocity was significantly lower in MDD (p = 3.7 × 10-3, p = 3.9 × 10-3, respectively). In the fixation stability test, there were no significant group differences. There were significant group differences in the older cohort, but not in the younger cohort, for the number of fixations, duration of fixation, number of saccades, and fixation density in the free-viewing test. A discriminant analysis using scanpath length in the free-viewing test and peak saccade velocity in the smooth pursuit showed MDD could be distinguished from HCs with 72.1% accuracy. In the ROC analysis, the area under the curve was 0.76 (standard error = 0.05, p = 1.2 × 10-7, 95% confidence interval = 0.67-0.85). Conclusion: These results suggest that detailed eye movement tests can assist in differentiating MDD from HCs, especially in older subjects.
Collapse
Affiliation(s)
- Junichi Takahashi
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kentaro Morita
- Department of Rehabilitation, The University of Tokyo Hospital, Tokyo, Japan.,Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michiko Fujimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hidenaga Yamamori
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan.,Japan Community Health Care Organization Osaka Hospital, Osaka, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan.,Life Grow Brilliant Mental Clinic, Osaka, Japan
| | - Noriko Kudo
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan.,Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Emiko Shishido
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kosuke Okazaki
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Tomoko Shiino
- Division of Developmental Emotional Intelligence, Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|