1
|
Zeng J, Qian Y, Yang J, Chen X, Fu C, Che Z, Feng Y, Yin J. Nutritional therapy bridges the critical cut-off point for the closed-loop role of type 2 diabetes and bone homeostasis: A narrative review. Heliyon 2024; 10:e28229. [PMID: 38689978 PMCID: PMC11059410 DOI: 10.1016/j.heliyon.2024.e28229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 05/02/2024] Open
Abstract
Currently, osteoporosis-related fractures become the most cutting-edge problem of diabetes-related complications. Rational diet is not only the basis of glycemic management in type 2 diabetes patients, but also the direction of diabetic bone health. This review highlights the importance of micronutrient supplementation (including calcium, magnesium, zinc, vitamin D, vitamin K, and vitamin C) for patients with T2DM, as well as describing the constructive intermediary role of gut flora between T2DM and bone through nutrients predominantly high in dietary fiber. In addition, it is recommended to combine the Mediterranean dietary pattern with other diversified management approaches to prevent OP. Therefore, this provides a theoretical basis for the potential role of islet β-cells in promoting bone health.
Collapse
Affiliation(s)
- Jia Zeng
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Ying Qian
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Jizhuo Yang
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Xinqiang Chen
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Chuanwen Fu
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Zhuohang Che
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Yuemei Feng
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Jianzhong Yin
- School of Public Health, Kunming Medical University, Kunming, 650500, China
- Baoshan College of Traditional Chinese Medicine, Baoshan, 678000, China
- Yunnan Provincial Key Laboratary of Public Health and Biosafety, Kunming, 650500, China
| |
Collapse
|
2
|
Golubic R, Hussein Ismail M, Josipovic M, Kennet J, Galderisi A, Evans ML. Sumatriptan, a serotonin 5HT 1B receptor agonist, acutely reduces insulin secretion and sensitivity and glucose effectiveness in overweight humans: A double-blinded placebo-controlled cross-over trial. Diabetes Obes Metab 2023; 25:3059-3063. [PMID: 37312648 DOI: 10.1111/dom.15176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
AIM Evidence from mouse models suggests that brain serotonergic pathways control blood glucose. We hypothesized that sumatriptan (5HT1B -receptor agonist) would alter glucose homeostasis in humans. MATERIALS AND METHODS We conducted a two-visit random-order double-blinded placebo-controlled cross-over trial in 10 overweight adults that were otherwise healthy. Participants received sumatriptan (single dose, 100 mg) or placebo before undergoing a 60-min intravenous glucose tolerance test, followed by a 120-min hyperinsulinaemic euglycaemic clamp. RESULTS Glucose excursion was greater during intravenous glucose tolerance test with sumatriptan compared with placebo [iAUC0-60 min 316 (268-333) vs. 251 (197-319) min/mmol/L p = .047]. This was probably explained by a combination of reduced circulating insulin levels [iAUC0-10 min 1626 (1103-2733) vs. 2336 (1702-3269) min/pmol/L, p = .005], reduced insulin sensitivity [M/I-value 2.11 (1.15, 4.05) vs. 3.03 (1.14, 4.90) mg/kg/min per pmol/L, p = .010] and glucose effectiveness [SG 0.17 (0.12, 0.21) vs. 0.22 (0.18, 0.65)/min, p = .027]. CONCLUSIONS 5HT1B receptors have a glucoregulatory role in humans, probably acting on insulin secretion, insulin sensitivity and glucose effectiveness.
Collapse
Affiliation(s)
- Rajna Golubic
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Diabetes Trials Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | | | - Masa Josipovic
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jane Kennet
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Alfonso Galderisi
- Pediatric Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mark L Evans
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Jing J, Guo J, Dai R, Zhu C, Zhang Z. Targeting gut microbiota and immune crosstalk: potential mechanisms of natural products in the treatment of atherosclerosis. Front Pharmacol 2023; 14:1252907. [PMID: 37719851 PMCID: PMC10504665 DOI: 10.3389/fphar.2023.1252907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory reaction that primarily affects large and medium-sized arteries. It is a major cause of cardiovascular disease and peripheral arterial occlusive disease. The pathogenesis of AS involves specific structural and functional alterations in various populations of vascular cells at different stages of the disease. The immune response is involved throughout the entire developmental stage of AS, and targeting immune cells presents a promising avenue for its treatment. Over the past 2 decades, studies have shown that gut microbiota (GM) and its metabolites, such as trimethylamine-N-oxide, have a significant impact on the progression of AS. Interestingly, it has also been reported that there are complex mechanisms of action between GM and their metabolites, immune responses, and natural products that can have an impact on AS. GM and its metabolites regulate the functional expression of immune cells and have potential impacts on AS. Natural products have a wide range of health properties, and researchers are increasingly focusing on their role in AS. Now, there is compelling evidence that natural products provide an alternative approach to improving immune function in the AS microenvironment by modulating the GM. Natural product metabolites such as resveratrol, berberine, curcumin, and quercetin may improve the intestinal microenvironment by modulating the relative abundance of GM, which in turn influences the accumulation of GM metabolites. Natural products can delay the progression of AS by regulating the metabolism of GM, inhibiting the migration of monocytes and macrophages, promoting the polarization of the M2 phenotype of macrophages, down-regulating the level of inflammatory factors, regulating the balance of Treg/Th17, and inhibiting the formation of foam cells. Based on the above, we describe recent advances in the use of natural products that target GM and immune cells crosstalk to treat AS, which may bring some insights to guide the treatment of AS.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Dai
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaojun Zhu
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaohui Zhang
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Barber TM, Kabisch S, Pfeiffer AFH, Weickert MO. Metabolic-Associated Fatty Liver Disease and Insulin Resistance: A Review of Complex Interlinks. Metabolites 2023; 13:757. [PMID: 37367914 PMCID: PMC10304744 DOI: 10.3390/metabo13060757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) has now surpassed alcohol excess as the most common cause of chronic liver disease globally, affecting one in four people. Given its prevalence, MAFLD is an important cause of cirrhosis, even though only a small proportion of patients with MAFLD ultimately progress to cirrhosis. MAFLD suffers as a clinical entity due to its insidious and often asymptomatic onset, lack of an accurate and reliable non-invasive diagnostic test, and lack of a bespoke therapy that has been designed and approved for use specifically in MAFLD. MAFLD sits at a crossroads between the gut and the periphery. The development of MAFLD (including activation of the inflammatory cascade) is influenced by gut-related factors that include the gut microbiota and intactness of the gut mucosal wall. The gut microbiota may interact directly with the liver parenchyma (through translocation via the portal vein), or indirectly through the release of metabolic metabolites that include secondary bile acids, trimethylamine, and short-chain fatty acids (such as propionate and acetate). In turn, the liver mediates the metabolic status of peripheral tissues (including insulin sensitivity) through a complex interplay of hepatokines, liver-secreted metabolites, and liver-derived micro RNAs. As such, the liver plays a key central role in influencing overall metabolic status. In this concise review, we provide an overview of the complex mechanisms whereby MAFLD influences the development of insulin resistance within the periphery, and gut-related factors impact on the development of MAFLD. We also discuss lifestyle strategies for optimising metabolic liver health.
Collapse
Affiliation(s)
- Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Stefan Kabisch
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße, 85764 Neuherberg, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße, 85764 Neuherberg, Germany
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
5
|
Metabolic-Associated Fatty Liver Disease and the Gut Microbiota. Endocrinol Metab Clin North Am 2023. [PMID: 37495339 DOI: 10.1016/j.ecl.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
As an important sequela of the burgeoning global obesity problem, metabolic-associated fatty liver disease (MAFLD) has gained increasing prominence recently. The gut-liver axis (GLA) provides a direct conduit to the liver for the gut microbiota and their metabolic by-products (including secondary bile acids, ethanol, and trimethylamine). These GLA-related factors, including the host inflammatory response and integrity of the gut mucosal wall, likely contribute to the pathogenesis of MAFLD. Accordingly, these GLA-related factors are targets for possible preventive and treatment strategies for MAFLD, and include probiotics, prebiotics, bile acids, short-chain fatty acids, fecal microbiota transplantation, carbon nanoparticles, and bacteriophages.
Collapse
|
6
|
Heianza Y, Wang X, Rood J, Clish CB, Bray GA, Sacks FM, Qi L. Changes in circulating bile acid subtypes in response to weight-loss diets are associated with improvements in glycemic status and insulin resistance: The POUNDS Lost trial. Metabolism 2022; 136:155312. [PMID: 36122763 DOI: 10.1016/j.metabol.2022.155312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Various primary and secondary bile acids (BAs) may play pivotal roles in glucose/insulin metabolism. We investigated whether changes in specific BA subtypes were associated with long-term changes in glucose and insulin sensitivity. METHODS This study included 515 adults with overweight or obesity who participated in a 2-year intervention study of weight-loss diets with different macronutrient intakes. Circulating primary and secondary unconjugated BAs and their taurine-/glycine-conjugates were measured at baseline and 6 months after the interventions. We analyzed associations of changes in BA subtypes with two-year changes in fasting glucose, insulin, and insulin resistance (HOMA-IR). RESULTS Greater decreases in primary and secondary BA subtypes induced by the interventions were significantly associated with greater reductions of fasting insulin and HOMA-IR at 6 months, showing various effects across the BA subtypes. The reductions of specific BA subtypes (chenodeoxycholate [CDCA], taurocholate [TCA], taurochenodeoxycholate [TCDCA], and taurodeoxycholate [TDCA]) were significantly related to improved glucose levels at 6 months. The initial (6-month) decreases in primary and secondary BA subtypes (glycochenodeoxycholate [GCDCA], TCDCA, and glycoursodeoxycholate [GUDCA]) were also significantly associated with long-term improvements in glucose and insulin metabolism over 2 years. We found significant interactions between dietary fat intake and changes in the BA subtypes for changes in glucose metabolism (Pinteraction < 0.05). CONCLUSIONS Weight-loss diet-induced changes in distinct subtypes of circulating BAs were associated with improved glucose metabolism and insulin sensitivity in adults with overweight or obesity. Dietary fat intake may modify the associations of changes in BA metabolism with glucose metabolism.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America.
| | - Xuan Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America
| | - Jennifer Rood
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States of America
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States of America
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America.
| |
Collapse
|
7
|
Cheng X, Jiang J, Li C, Xue C, Kong B, Chang Y, Tang Q. The compound enzymatic hydrolysate of Neoporphyra haitanensis improved hyperglycemia and regulated the gut microbiome in high-fat diet-fed mice. Food Funct 2022; 13:6777-6791. [PMID: 35667104 DOI: 10.1039/d2fo00055e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We previously found that the combination of protease and a novel β-porphyranase Por16A_Wf may contribute to the deep-processing of laver. The purpose of the present study is to assess the hypoglycemic effect of the compound enzymatic hydrolysate (CEH) of Neoporphyra haitanensis. Thus, biochemical indexes related to diet-induced hyperglycemia were mainly detected using hematoxylin and eosin (H&E) staining, fluorescence quantitative PCR, and ultrahigh performance liquid chromatography-mass spectrometry (UPLC-MS). Then 16s rRNA gene sequencing was performed to analyze the effects of CEH on the gut microbiome in high-fat diet (HFD)-fed mice. The results suggested that CEH reduced the blood glucose level and alleviated insulin resistance. Possibly because CEH repressed intestinal α-glucosidase activity, inhibiting key enzymes (G6Pase and PEPCK) related to hepatic gluconeogenesis, and increased the expression of the enzyme (GLUT4) involved in peripheral glucose uptake. As potential indicators of hyperglycemia, total bile acids in the feces were reversed to the control levels after CEH intervention. Particularly, CEH decreased the content of tauro-α-muricholic acid (TαMCA) and ω-muricholic acid (ωMCA). Furthermore, CEH promoted the proliferation of beneficial bacteria (e.g. Parabacteroides), which may play a role in glycemic control. CEH also regulated the KEGG pathways associated with glycometabolism, such as "fructose and mannose metabolism". In summary, CEH supplementation has favorable effects on improving glucose metabolism and regulating the gut microbiome in HFD-fed mice. CEH has potential to be applied in the development of functional foods.
Collapse
Affiliation(s)
- Xiaojie Cheng
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Jiali Jiang
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Chunjun Li
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Biao Kong
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
8
|
Heianza Y, Zhou T, He H, Rood J, Clish CB, Bray GA, Sacks FM, Qi L. Changes in bile acid subtypes and long-term successful weight-loss in response to weight-loss diets: The POUNDS lost trial. Liver Int 2022; 42:363-373. [PMID: 34748263 DOI: 10.1111/liv.15098] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Primary bile acids (BAs) are synthesized in the liver and secondary BAs result from intestinal microbial activity. Different subtypes of BAs may be involved in regulating adiposity and energy homeostasis. We examined how changes in circulating BA subtypes induced by weight-loss diets were associated with improvements in adiposity, regional fat deposition and energy metabolism among overweight and obese adults. METHODS The study included 551 subjects who participated in a 2-year weight-loss diet intervention trial. Circulating 14 BA subtypes (primary and secondary unconjugated BAs and their taurine-/glycine-conjugates) were measured at baseline and 6 months. Associations of changes in BAs with changes in weight, waist circumference, resting energy expenditure (REE), body fat composition and fat distribution were evaluated. RESULTS Greater decreases in primary BAs (cholate and chenodeoxycholate) and secondary BAs (deoxycholate and lithocholate) and their conjugates (except for glycolithocholate) were associated with more decreases in weight and waist circumference at 6 months (P-after-false-discovery-rate-correction [PFDR ] < .05). We found that changes in glycocholate and glycoursodeoxycholate were consistently associated with reductions of general and central adiposity, REE, whole-body fat and visceral adipose tissue (PFDR < .05). Further, the initial (6-month) changes in BA subtypes were differently predictive of successful weight loss over 2 years. CONCLUSIONS The decreases in primary and secondary BA subtypes after eating low-calorie weight-loss diets were significantly associated with improving adiposity, fat accumulation and energy metabolism, suggesting that specific BA subtypes would be predictive of long-term successful weight loss and individuals' response to the treatment of weight-loss diets.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Tao Zhou
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Hua He
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Jennifer Rood
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Kiriyama Y, Nochi H. Physiological Role of Bile Acids Modified by the Gut Microbiome. Microorganisms 2021; 10:68. [PMID: 35056517 PMCID: PMC8777643 DOI: 10.3390/microorganisms10010068] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BAs) are produced from cholesterol in the liver and are termed primary BAs. Primary BAs are conjugated with glycine and taurine in the liver and then released into the intestine via the gallbladder. After the deconjugation of glycine or taurine by the gut microbiome, primary BAs are converted into secondary BAs by the gut microbiome through modifications such as dehydroxylation, oxidation, and epimerization. Most BAs in the intestine are reabsorbed and transported to the liver, where both primary and secondary BAs are conjugated with glycine or taurine and rereleased into the intestine. Thus, unconjugated primary Bas, as well as conjugated and unconjugated secondary BAs, have been modified by the gut microbiome. Some of the BAs reabsorbed from the intestine spill into the systemic circulation, where they bind to a variety of nuclear and cell-surface receptors in tissues, whereas some of the BAs are not reabsorbed and bind to receptors in the terminal ileum. BAs play crucial roles in the physiological regulation of various tissues. Furthermore, various factors, such as diet, age, and antibiotics influence BA composition. Here, we review recent findings regarding the physiological roles of BAs modified by the gut microbiome in the metabolic, immune, and nervous systems.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan;
- Laboratory of Neuroendocrinology, Institute of Neuroscience, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan;
| |
Collapse
|
10
|
Kabisch S, Honsek C, Kemper M, Gerbracht C, Arafat AM, Birkenfeld AL, Dambeck U, Osterhoff MA, Weickert MO, Pfeiffer AFH. Dose-dependent effects of insoluble fibre on glucose metabolism: a stratified post hoc analysis of the Optimal Fibre Trial (OptiFiT). Acta Diabetol 2021; 58:1649-1658. [PMID: 34254189 PMCID: PMC8542533 DOI: 10.1007/s00592-021-01772-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022]
Abstract
AIMS As the first long-term RCT on insoluble cereal fibre, the optimal fibre trial demonstrated glycometabolic benefits, confirming cohort studies. The combined study intervention of lifestyle recommendations and supplementation with insoluble oat hulls fibre allows to clarify, which amount of fibre is required for a beneficial effect. METHODS One hundred and eighty participants with impaired glucose tolerance underwent the one-year PREDIAS lifestyle programme and received a blinded, randomized fibre or placebo supplement for two years. We conducted a regression analyses and cut-off-based tertile comparisons in subjects with full data on dietary compliance (food records and accounted supplement; n = 120) after one year, investigating effects on fasting blood parameters, oral glucose tolerance test and anthropometry. RESULTS We found a nonlinear inverse relation between fibre intake and change in postprandial 2-h glucose levels, showing a metabolic benefit beyond 14 g and a plateau beyond 25 g of total insoluble fibre per day. 2-h glucose levels improved significantly stronger in both upper tertiles (-0.9 [-1.6;-0.2] mmol/l, p = 0.047, and -0.6 [-1.6;0.3] mmol/l, p = 0.010) compared to the lowest tertile (0.1 [-1.2;1.1] mmol/l), also when adjusted for changes in bodyweight. Subjects with the highest fibre intake showed superior effects on fasting and postprandial insulin resistance, hepatic insulin clearance, leucocyte count and fatty liver index. CONCLUSIONS Extending the knowledge on the benefits of insoluble oat hulls fibre, our post hoc analysis demonstrates a dose effect for glycaemia and associated metabolic markers. Further research is needed in order to replicate our findings in larger trials.
Collapse
Affiliation(s)
- Stefan Kabisch
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203, Berlin, Germany.
- Deutsches Zentrum Für Diabetesforschung E.V., Geschäftsstelle Am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Caroline Honsek
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Margrit Kemper
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203, Berlin, Germany
- Deutsches Zentrum Für Diabetesforschung E.V., Geschäftsstelle Am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Christiana Gerbracht
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- Human Study Center, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Ayman M Arafat
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Andreas L Birkenfeld
- Deutsches Zentrum Für Diabetesforschung E.V., Geschäftsstelle Am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, Eberhard-Karls University Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the, University of Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Ulrike Dambeck
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Martin A Osterhoff
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Martin O Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, The ARDEN NET Centre, ENETS CoE, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
- Centre of Applied Biological & Exercise Sciences (ABES), Faculty of Health & Life Sciences, Coventry University, Coventry, CV1 5FB, UK
- Translational & Experimental Medicine, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Andreas F H Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203, Berlin, Germany
- Deutsches Zentrum Für Diabetesforschung E.V., Geschäftsstelle Am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| |
Collapse
|
11
|
Kabisch S, Honsek C, Kemper M, Gerbracht C, Meyer NMT, Arafat AM, Birkenfeld AL, Machann J, Dambeck U, Osterhoff MA, Weickert MO, Pfeiffer AFH. Effects of Insoluble Cereal Fibre on Body Fat Distribution in the Optimal Fibre Trial. Mol Nutr Food Res 2021; 65:e2000991. [PMID: 33909947 DOI: 10.1002/mnfr.202000991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/31/2021] [Indexed: 01/07/2023]
Abstract
SCOPE The Optimal Fibre Trial (OptiFiT) investigates metabolic effects of insoluble cereal fibre in subjects with impaired glucose tolerance (IGT), showing moderate glycemic and anti-inflammatory benefits, especially in subjects with an obesity-related phenotype. An OptiFiT sub-group is analysed for effects on body fat distribution. METHODS AND RESULTS 180 participants with IGT receive a blinded, randomized supplementation with insoluble cereal fibre or placebo for 2 years. Once a year, all subjects undergo fasting blood sampling, oral glucose tolerance test, and anthropometric measurements. A subgroup (n=47) also received magnetic resonance imaging and spectroscopy for quantification of adipose tissue distribution and liver fat content. We compared MR, metabolic and inflammatory outcomes between fibre and placebo group metabolism and inflammation. Visceral and non-visceral fat, fasting glucose, HbA1c, fasting insulin, insulin resistance, and uric acid decrease only in the fibre group, mirroring effects of the entire cohort. However, after adjustment for weight loss, there are no significant between-group differences. There is a statistical trend for fibre-driven liver fat reduction in subjects with confirmed non-alcoholic fatty liver disease (NAFLD; n = 19). CONCLUSIONS Data and evidence on beneficial effects of insoluble cereal fibre on visceral and hepatic fatstorage is limited, but warrants further research. Targeted trials are required.
Collapse
Affiliation(s)
- Stefan Kabisch
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Caroline Honsek
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany
| | - Margrit Kemper
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Christiana Gerbracht
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany
| | - Nina Marie Tosca Meyer
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Ayman M Arafat
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Andreas L Birkenfeld
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, Eberhard-Karls University Tübingen, Otfried-Müller-Str. 10, Tübingen, 72076, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Otfried-Müller-Str. 10, Tübingen, 72076, Germany
| | - Jürgen Machann
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, Eberhard-Karls University Tübingen, Otfried-Müller-Str. 10, Tübingen, 72076, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Otfried-Müller-Str. 10, Tübingen, 72076, Germany.,Department of Radiology, Section on Experimental Radiology, University of Tübingen, Otfried-Müller-Str. 51, Tübingen, 72076, Germany
| | - Ulrike Dambeck
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany
| | - Martin A Osterhoff
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Martin O Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, The ARDEN NET Centre, ENETS CoE, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK.,Centre of Applied Biological & Exercise Sciences (ABES), Faculty of Health & Life Sciences, Coventry University, Coventry, CV1 5FB, UK.,Translational & Experimental Medicine, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Andreas F H Pfeiffer
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, Berlin, 12203, Germany
| |
Collapse
|
12
|
Muscogiuri G, Barrea L, Caprio M, Ceriani F, Chavez AO, El Ghoch M, Frias-Toral E, Mehta RJ, Mendez V, Paschou SA, Pazderska A, Savastano S, Colao A. Nutritional guidelines for the management of insulin resistance. Crit Rev Food Sci Nutr 2021; 62:6947-6960. [PMID: 33797999 DOI: 10.1080/10408398.2021.1908223] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Obesity and its related co-morbidities, namely type 2 diabetes (T2D), pose a significant global public health problem. Insulin resistance (IR) in muscle and liver is the core pathophysiologic defect that underlies obesity preceding and predicting the onset of T2D in susceptible humans. There is a broad population with IR that has no indication for prescription of medications, who still need medical consultation and specific advice in this respect. This prevalent need can be achieved by appropriate diet, exercise, and other behavioral therapies for lifestyle interventions. Despite a well-recognized role of IR in the progression to metabolic diseases, no specific nutritional recommendations exist to manage this condition, to the best of our knowledge. An international panel of experts reviewed and critically appraised the updated literature published about this topic. This review primarily examines the evidence for areas of consensus and ongoing uncertainty or controversy about diet and exercise approaches for IR. The aim of this article is to present the most common IR states, namely obesity and Polycystic Ovary Syndrome (PCOS), and provide nutritional advice to manage IR, hyperinsulinemia, and reactive hypoglycemia. These nutritional guidelines could prevent progression or worsening of IR with resultant beta-cell failure and, as a result, T2D.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy.,Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", Federico II University, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
| | - Luigi Barrea
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy.,Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Napoli, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy.,Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Florencia Ceriani
- Nutrition School, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Alberto O Chavez
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Marwan El Ghoch
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | | | - Verna Mendez
- Department of Internal Medicine, Hospital General de Zona 49, Mexican Institute of Social Security, Los Mochis, Sinaloa, México
| | - Stavroula A Paschou
- Division of Endocrinology, Diabetes and Metabolism, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Agnieszka Pazderska
- Endocrinology Unit, St James's Hospital, Dublin, Ireland.,Clinical Senior Lecturer, Trinity College Dublin, Dublin, Ireland
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy.,Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", Federico II University, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
| |
Collapse
|
13
|
Barber TM, Valsamakis G, Mastorakos G, Hanson P, Kyrou I, Randeva HS, Weickert MO. Dietary Influences on the Microbiota-Gut-Brain Axis. Int J Mol Sci 2021; 22:ijms22073502. [PMID: 33800707 PMCID: PMC8038019 DOI: 10.3390/ijms22073502] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Over unimaginable expanses of evolutionary time, our gut microbiota have co-evolved with us, creating a symbiotic relationship in which each is utterly dependent upon the other. Far from confined to the recesses of the alimentary tract, our gut microbiota engage in complex and bi-directional communication with their host, which have far-reaching implications for overall health, wellbeing and normal physiological functioning. Amongst such communication streams, the microbiota–gut–brain axis predominates. Numerous complex mechanisms involve direct effects of the microbiota, or indirect effects through the release and absorption of the metabolic by-products of the gut microbiota. Proposed mechanisms implicate mitochondrial function, the hypothalamus–pituitary–adrenal axis, and autonomic, neuro-humeral, entero-endocrine and immunomodulatory pathways. Furthermore, dietary composition influences the relative abundance of gut microbiota species. Recent human-based data reveal that dietary effects on the gut microbiota can occur rapidly, and that our gut microbiota reflect our diet at any given time, although much inter-individual variation pertains. Although most studies on the effects of dietary macronutrients on the gut microbiota report on associations with relative changes in the abundance of particular species of bacteria, in broad terms, our modern-day animal-based Westernized diets are relatively high in fats and proteins and impoverished in fibres. This creates a perfect storm within the gut in which dysbiosis promotes localized inflammation, enhanced gut wall permeability, increased production of lipopolysaccharides, chronic endotoxemia and a resultant low-grade systemic inflammatory milieu, a harbinger of metabolic dysfunction and many modern-day chronic illnesses. Research should further focus on the colony effects of the gut microbiota on health and wellbeing, and dysbiotic effects on pathogenic pathways. Finally, we should revise our view of the gut microbiota from that of a seething mass of microbes to one of organ-status, on which our health and wellbeing utterly depends. Future guidelines on lifestyle strategies for wellbeing should integrate advice on the optimal establishment and maintenance of a healthy gut microbiota through dietary and other means. Although we are what we eat, perhaps more importantly, we are what our gut microbiota thrive on and they thrive on what we eat.
Collapse
Affiliation(s)
- Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (G.V.); (P.H.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
| | - Georgios Valsamakis
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (G.V.); (P.H.); (I.K.); (H.S.R.)
- Endocrine Unit, 2nd Department of Obstetrics and Gynaecology and Pathology Department, Aretaieion University Hospital, Athens Medical School, 11528 Athens, Greece;
| | - George Mastorakos
- Endocrine Unit, 2nd Department of Obstetrics and Gynaecology and Pathology Department, Aretaieion University Hospital, Athens Medical School, 11528 Athens, Greece;
| | - Petra Hanson
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (G.V.); (P.H.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (G.V.); (P.H.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (G.V.); (P.H.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (G.V.); (P.H.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Correspondence:
| |
Collapse
|
14
|
Barber TM, Kyrou I, Randeva HS, Weickert MO. Mechanisms of Insulin Resistance at the Crossroad of Obesity with Associated Metabolic Abnormalities and Cognitive Dysfunction. Int J Mol Sci 2021; 22:ijms22020546. [PMID: 33430419 PMCID: PMC7827338 DOI: 10.3390/ijms22020546] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity mediates most of its direct medical sequelae through the development of insulin resistance (IR). The cellular effects of insulin occur through two main postreceptor pathways that are the phosphatidylinositol 3-kinase (PI3-K) and the mitogen-activated protein kinase (MAP-K) pathways. Obesity-related IR implicates the PI3-K pathway that confers the metabolic effects of insulin. Numerous and complex pathogenic pathways link obesity with the development of IR, including chronic inflammation, mitochondrial dysfunction (with the associated production of reactive oxygen species and endoplasmic reticulum stress), gut microbiota dysbiosis and adipose extracellular matrix remodelling. IR itself plays a key role in the development of metabolic dysfunction, including hypertension, dyslipidaemia and dysglycaemia. Furthermore, IR promotes weight gain related to secondary hyperinsulinaemia, with a resulting vicious cycle of worsening IR and its metabolic sequelae. Ultimately, IR underlies obesity-related conditions such as type 2 diabetes mellitus (T2D) and polycystic ovary syndrome (PCOS). IR also underlies many obesity-related malignancies, through the effects of compensatory hyperinsulinaemia on the relatively intact MAP-K insulin pathway, which controls cellular growth processes and mitoses. Furthermore, the emergent data over recent decades support an important role of obesity- and T2D-related central IR in the development of cognitive dysfunction, including effects on hippocampal synaptic plasticity. Importantly, IR is largely reversible through the optimisation of lifestyle factors that include regular engagement in physical activity with the avoidance of sedentariness, improved diet including increased fibre intake and sleep sufficiency. IR lies at the key crossroad between obesity and both metabolic and cognitive dysfunction. Given the importance of IR in the pathogenesis of many 21st century chronic diseases and its eminent reversibility, it is important that we all embrace and facilitate optimised lifestyles to improve the future health and wellbeing of the populace.
Collapse
Affiliation(s)
- Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Correspondence:
| |
Collapse
|
15
|
The Health Benefits of Dietary Fibre. Nutrients 2020; 12:nu12103209. [PMID: 33096647 PMCID: PMC7589116 DOI: 10.3390/nu12103209] [Citation(s) in RCA: 299] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Dietary fibre consists of non-digestible forms of carbohydrate, usually as polysaccharides that originate from plant-based foods. Over recent decades, our diet within Westernised societies has changed radically from that of our hominid ancestors, with implications for our co-evolved gut microbiota. This includes increased ingestion of ultra-processed foods that are typically impoverished of dietary fibre, and associated reduction in the intake of fibre-replete plant-based foods. Over recent decades, there has been a transformation in our understanding of the health benefits of dietary fibre. Objective: To explore the current medical literature on the health benefits of dietary fibre, with a focus on overall metabolic health. Data Sources: We performed a narrative review, based on relevant articles written in English from a PubMed search, using the terms ‘dietary fibre and metabolic health’. Results: In the Western world, our diets are impoverished of fibre. Dietary fibre intake associates with overall metabolic health (through key pathways that include insulin sensitivity) and a variety of other pathologies that include cardiovascular disease, colonic health, gut motility and risk for colorectal carcinoma. Dietary fibre intake also correlates with mortality. The gut microflora functions as an important mediator of the beneficial effects of dietary fibre, including the regulation of appetite, metabolic processes and chronic inflammatory pathways. Conclusions: Multiple factors contribute to our fibre-impoverished modern diet. Given the plethora of scientific evidence that corroborate the multiple and varied health benefits of dietary fibre, and the risks associated with a diet that lacks fibre, the optimization of fibre within our diets represents an important public health strategy to improve both metabolic and overall health. If implemented successfully, this strategy would likely result in substantial future health benefits for the population.
Collapse
|
16
|
Barber TM, Bhatti AA, Elder PJD, Ball SP, Calvez R, Ramsden DB, Cuthbertson DJ, Pfeiffer AF, Burnett D, Weickert MO. AMY1 Gene Copy Number Correlates With Glucose Absorption and Visceral Fat Volume, but Not with Insulin Resistance. J Clin Endocrinol Metab 2020; 105:5875080. [PMID: 32697825 DOI: 10.1210/clinem/dgaa473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/17/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND The human amylase gene (AMY1) has a broad copy number (CN) variation that may associate with body mass index. METHODS Deoxyribonucleic acid was extracted from urine (n = 74) and serum (n = 6) samples (Protein, Fiber and Metabolic Syndrome [ProFiMet] cohort), and buccal (n = 17) samples (Oral Starch Challenge [OSC] cohort), and assessed for AMY1 CN by droplet digital polymerase chain reaction. The association of AMY1 CN with comprehensive markers of metabolic status (ProFiMet cohort) were analyzed with Pearson's correlation coefficient (CC). For the healthy, euglycemic OSC cohort, glycemic response to OSC was analyzed with independent sample t-tests (subgroups: high AMY1 CN 9-12, n = 10; low AMY1 CN 4-6, n = 7). RESULTS There were significant inverse correlations of AMY1 CN with total visceral fat volume (CC -0.33; P = 0.004) and positive correlations of AMY1 CN with oral glucose insulin sensitivity score (derived from an oral glucose tolerance test, CC 0.26; P = 0.02), serum HDL-cholesterol (CC 0.325; P = 0.003), and serum adiponectin (CC 0.249; P = 0.026). Linear regression multivariate analysis (adiponectin as dependent variable), showed independent association of adiponectin with AMY1 CN (Beta = 0.29; P = 0.03). There were no significant associations between AMY1 CN and clamp-derived M-value, homeostasis model assessment of insulin resistance (IR), hepatic endogenous glucose production, fecal floral signature, or macronutrient dietary preference. Delta (mean) change in blood glucose concentration (fasting to 30-minutes post-OSC) was significantly greater in the high versus low AMY1 CN subgroups (mean 1.7 mmol/l [SEM 0.6] vs 0.9 mmol/l [SEM 0.9], respectively; P = 0.016). CONCLUSIONS High AMY1 CN associates with a favorable metabolic profile (lower visceral fat volume, higher serum adiponectin, enhanced glucose absorption following oral glucose, and OSC), but not with whole-body or hepatic IR.
Collapse
Affiliation(s)
- Thomas M Barber
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Coventry, UK
| | - Ahsan A Bhatti
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Coventry, UK
| | - Patrick J D Elder
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Coventry, UK
| | - Sarah P Ball
- Micropathology Ltd., University of Warwick Science Park, Coventry, UK
| | - Ronan Calvez
- Micropathology Ltd., University of Warwick Science Park, Coventry, UK
| | - David B Ramsden
- Institute of Metabolism and Systems Research, Medical School, University of Birmingham, Birmingham, UK
| | - Dan J Cuthbertson
- Department of Obesity and Endocrinology; Clinical Sciences Centre, University Hospital Aintree, Liverpool, UK
| | - Andreas F Pfeiffer
- German Institute of Human Nutrition, Department of Clinical Nutrition, Potsdam-Rehbruecke, Germany
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité-University-Medicine Berlin, Berlin, Germany
| | - David Burnett
- Micropathology Ltd., University of Warwick Science Park, Coventry, UK
| | - Martin O Weickert
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Coventry, UK
- German Institute of Human Nutrition, Department of Clinical Nutrition, Potsdam-Rehbruecke, Germany
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité-University-Medicine Berlin, Berlin, Germany
- Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry, UK
| |
Collapse
|
17
|
Naumann S, Haller D, Eisner P, Schweiggert-Weisz U. Mechanisms of Interactions between Bile Acids and Plant Compounds-A Review. Int J Mol Sci 2020; 21:E6495. [PMID: 32899482 PMCID: PMC7555273 DOI: 10.3390/ijms21186495] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Plant compounds are described to interact with bile acids during small intestinal digestion. This review will summarise mechanisms of interaction between bile acids and plant compounds, challenges in in vivo and in vitro analyses, and possible consequences on health. The main mechanisms of interaction assume that increased viscosity during digestion results in reduced micellar mobility of bile acids, or that bile acids and plant compounds are associated or complexed at the molecular level. Increasing viscosity during digestion due to specific dietary fibres is considered a central reason for bile acid retention. Furthermore, hydrophobic interactions are proposed to contribute to bile acid retention in the small intestine. Although frequently hypothesised, no mechanism of permanent binding of bile acids by dietary fibres or indigestible protein fractions has yet been demonstrated. Otherwise, various polyphenolic structures were recently associated with reduced micellar solubility and modification of steroid and bile acid excretion but underlying molecular mechanisms of interaction are not yet fully understood. Therefore, future research activities need to consider the complex composition and cell-wall structures as influenced by processing when investigating bile acid interactions. Furthermore, influences of bile acid interactions on gut microbiota need to be addressed to clarify their role in bile acid metabolism.
Collapse
Affiliation(s)
- Susanne Naumann
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; (D.H.); (P.E.)
- Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany;
| | - Dirk Haller
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; (D.H.); (P.E.)
- Chair of Nutrition and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Peter Eisner
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; (D.H.); (P.E.)
- Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany;
- Steinbeis-Hochschule, Faculty of Technology and Engineering, George-Bähr-Straße 20, 01069 Dresden, Germany
| | - Ute Schweiggert-Weisz
- Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany;
| |
Collapse
|
18
|
Oduro-Donkor D, Turner MC, Farnaud S, Renshaw D, Kyrou I, Hanson P, Hattersley J, Weickert MO, Menon V, Randeva HS, Barber TM. Modification of fecal microbiota as a mediator of effective weight loss and metabolic benefits following bariatric surgery. Expert Rev Endocrinol Metab 2020; 15:363-373. [PMID: 32840125 DOI: 10.1080/17446651.2020.1801412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Bariatric surgery (primarily Laparoscopic Sleeve Gastrectomy [LSG] and Roux-en-Y Gastric Bypass [RYGB]) is an efficacious and durable therapeutic option for weight loss in obesity. The mechanisms that mediate weight loss following bariatric surgery remain incompletely understood. AREAS COVERED Pubmed search of published data on fecal microbiota, metabolic health, LSG, and RYGB. The fecal microbiome plays a key role in the establishment and maintenance of metabolic wellbeing, and may also contribute (through fecal dysbiosis) to metabolic dysfunction. LSG and RYGB both result in characteristic, procedure-specific changes to the fecal microbiota that may mediate at least some of the resultant weight-loss and metabolically beneficial effects, when applied to the management of obesity. EXPERT OPINION The human fecal microbiome, containing around 100 trillion microbes, evolved over millions of years and interacts symbiotically with its human host. Rodent-based studies have provided insights into the complexities of the gut-microbiome-brain axis. This includes the important role of the gut microbiome in the mediation of normal immunological development, inflammatory pathways, metabolic functioning, hypothalamic appetite regulation, and the absorption of essential nutrients as by-products of bacterial metabolism. Fecal transformation is likely to provide an important therapeutic target for future prevention and management of obesity and metabolic dysfunction.
Collapse
Affiliation(s)
- Dominic Oduro-Donkor
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick , Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire , Coventry, UK
| | - Mark C Turner
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University , Coventry, UK
| | - Sebastien Farnaud
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University , Coventry, UK
| | - Derek Renshaw
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University , Coventry, UK
| | - Ioannis Kyrou
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick , Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire , Coventry, UK
- Aston Medical Research Institute, Aston Medical School, Aston University , Birmingham, UK
| | - Petra Hanson
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick , Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire , Coventry, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire , Coventry, UK
| | - John Hattersley
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire , Coventry, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire , Coventry, UK
| | - Martin O Weickert
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick , Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire , Coventry, UK
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University , Coventry, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire , Coventry, UK
| | - Vinod Menon
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick , Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire , Coventry, UK
| | - Harpal S Randeva
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick , Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire , Coventry, UK
- Aston Medical Research Institute, Aston Medical School, Aston University , Birmingham, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire , Coventry, UK
| | - Thomas M Barber
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick , Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire , Coventry, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire , Coventry, UK
| |
Collapse
|
19
|
Nutrition and Gastrointestinal Microbiota, Microbial-Derived Secondary Bile Acids, and Cardiovascular Disease. Curr Atheroscler Rep 2020; 22:47. [PMID: 32681421 DOI: 10.1007/s11883-020-00863-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The goal is to review the connection between gut microbiota and cardiovascular disease, with specific emphasis on bile acids, and the influence of diet in modulating this relationship. RECENT FINDINGS Bile acids exert a much broader range of biological functions than initially recognized, including regulation of cardiovascular function through direct and indirect mechanisms. There is a bi-directional relationship between gut microbiota modulation of bile acid-signaling properties, and their effects on gut microbiota composition. Evidence, primarily from rodent models and limited human trials, suggest that dietary modulation of the gut microbiome significantly impacts bile acid metabolism and subsequently host physiological response(s). Available evidence suggests that the link between diet, gut microbiota, and CVD risk is potentially mediated via bile acid effects on diverse metabolic pathways. However, further studies are needed to confirm/expand and translate these findings in a clinical setting.
Collapse
|
20
|
Effect of diet composition on insulin sensitivity in humans. Clin Nutr ESPEN 2019; 33:29-38. [PMID: 31451269 DOI: 10.1016/j.clnesp.2019.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 12/27/2022]
Abstract
Diet composition has a marked impact on the risk of developing type 2 diabetes and cardiovascular disease. Prospective studies show that dietary patterns with elevated amount of animal products and low quantity of vegetable food items raise the risk of these diseases. In healthy subjects, animal protein intake intensifies insulin resistance whereas plant-based foods enhance insulin sensitivity. Similar effects have been documented in patients with diabetes. Accordingly, pre-pregnancy intake of meat (processed and unprocessed) has been strongly associated with a higher risk of gestational diabetes whereas greater pre-pregnancy vegetable protein consumption is associated with a lower risk of gestational diabetes. Population groups that modify their traditional dietary habit increasing the amount of animal products while reducing plant-based foods experience a remarkable rise in the frequency of type 2 diabetes. The association of animal protein intake with insulin resistance is independent of body mass index. In obese individuals that consume high animal protein diets, insulin sensitivity does not improve following weight loss. Diets aimed to lose weight that encourage restriction of carbohydrates and elevated consumption of animal protein intensify insulin resistance increasing the risk of developing type 2 diabetes and cardiovascular disease. The effect of dietary components on insulin sensitivity may contribute to explain the striking impact of eating habits on the risk of type 2 diabetes and cardiovascular disease. Insulin resistance predisposes to type 2 diabetes in healthy subjects and deteriorates metabolic control in patients with diabetes. In nondiabetic and diabetic individuals, insulin resistance is a major cardiovascular risk factor.
Collapse
|
21
|
Affiliation(s)
- Martin O Weickert
- a The ARDEN NET Centre, European Neuroendocrine Tumour Society (ENETS) Centre of Excellence (CoE) , University Hospitals Coventry and Warwickshire NHS Trust , Coventry , UK
- b Clinical Sciences Research Laboratories, Division of Translational Medicine, Warwick Medical School , University of Warwick, University Hospital , Coventry , UK
- c Centre for Applied Biological & Exercise Sciences , Coventry University , Coventry , UK
| |
Collapse
|