1
|
Begagić E, Pugonja R, Bečulić H, Čeliković A, Tandir Lihić L, Kadić Vukas S, Čejvan L, Skomorac R, Selimović E, Jaganjac B, Juković-Bihorac F, Jusić A, Pojskić M. Molecular Targeted Therapies in Glioblastoma Multiforme: A Systematic Overview of Global Trends and Findings. Brain Sci 2023; 13:1602. [PMID: 38002561 PMCID: PMC10669565 DOI: 10.3390/brainsci13111602] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
This systematic review assesses current molecular targeted therapies for glioblastoma multiforme (GBM), a challenging condition with limited treatment options. Using PRISMA methodology, 166 eligible studies, involving 2526 patients (61.49% male, 38.51% female, with a male-to-female ratio of 1.59/1), were analyzed. In laboratory studies, 52.52% primarily used human glioblastoma cell cultures (HCC), and 43.17% employed animal samples (mainly mice). Clinical participants ranged from 18 to 100 years, with 60.2% using combined therapies and 39.8% monotherapies. Mechanistic categories included Protein Kinase Phosphorylation (41.6%), Cell Cycle-Related Mechanisms (18.1%), Microenvironmental Targets (19.9%), Immunological Targets (4.2%), and Other Mechanisms (16.3%). Key molecular targets included Epidermal Growth Factor Receptor (EGFR) (10.8%), Mammalian Target of Rapamycin (mTOR) (7.2%), Vascular Endothelial Growth Factor (VEGF) (6.6%), and Mitogen-Activated Protein Kinase (MEK) (5.4%). This review provides a comprehensive assessment of molecular therapies for GBM, highlighting their varied efficacy in clinical and laboratory settings, ultimately impacting overall and progression-free survival in GBM management.
Collapse
Affiliation(s)
- Emir Begagić
- Department of General Medicine, School of Medicine, Unversity of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
| | - Ragib Pugonja
- Department of Anatomy, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
- Department of General Medicine, Primary Health Care Center, Nikole Šubića Zrinjskog bb., 72260 Busovača, Bosnia and Herzegovina
| | - Hakija Bečulić
- Department of General Medicine, Primary Health Care Center, Nikole Šubića Zrinjskog bb., 72260 Busovača, Bosnia and Herzegovina
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Amila Čeliković
- Department of General Medicine, School of Medicine, Unversity of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
| | - Lejla Tandir Lihić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Samra Kadić Vukas
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Lejla Čejvan
- Department of General Medicine, School of Medicine, Unversity of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
| | - Rasim Skomorac
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
- Department of Surgery, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
| | - Edin Selimović
- Department of Surgery, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
| | - Belma Jaganjac
- Department of Histology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (B.J.)
| | - Fatima Juković-Bihorac
- Department of Histology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (B.J.)
- Department of Pathology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
- Department of Pathology, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Aldin Jusić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany
| |
Collapse
|
2
|
Yu JH, Kim JH, Soung NK, Moon EY, Koo JH. Identification of the primary ciliary proteins IFT38 and IFT144 to enhance serum-mediated YAP activation and cell proliferation. Biochem Biophys Res Commun 2023; 681:186-193. [PMID: 37783116 DOI: 10.1016/j.bbrc.2023.09.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Primary cilia are essential cellular antennae that transmit external signals into intracellular responses. These sensory organelles perform crucial tasks in triggering intracellular signaling pathways, including those initiated by G protein-coupled receptors (GPCRs). Given the involvement of GPCRs in serum-induced signaling, we investigated the contribution of ciliary proteins in mitogen perception and cell proliferation. We found that depletion of cilia via IFT88 silencing impaired cell growth and repressed YAP activation against serum and its mitogenic constituents, namely lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). To identify the key player of serum mitogen signaling, a mutant cell line library with 30 ablated individual ciliary proteins was established and screened based on YAP dephosphorylation and target gene induction. While 9 of them had altered signaling, ablation of IFT38 or IFT144 led to a particularly robust repression of YAP activation upon LPA and S1P. The deficiency of IFT38 and IFT144 attenuated cell proliferation, as corroborated in either 2-dimensional cultures or tumor spheroids. In subcutaneous skin melanoma patients, expression of IFT38 and IFT144 was associated with unfavorable outcomes in overall survival. In conclusion, our study demonstrates the involvement of ciliary proteins in mitogen signaling and identifies the regulatory roles of IFT38 and IFT144 in serum-mediated Hippo pathway signaling and cellular growth.
Collapse
Affiliation(s)
- Jae-Hyun Yu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Heon Kim
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Nak-Kyun Soung
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju 28116, Republic of Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Ja Hyun Koo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Abdelmessih R, Xu J, Hung FR, Auguste DT. Integration of an LPAR1 Antagonist into Liposomes Enhances Their Internalization and Tumor Accumulation in an Animal Model of Human Metastatic Breast Cancer. Mol Pharm 2023; 20:5500-5514. [PMID: 37844135 PMCID: PMC10631474 DOI: 10.1021/acs.molpharmaceut.3c00348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
Lysophosphatidic acid receptor 1 (LPAR1) is elevated in breast cancer. The deregulation of LPAR1, including the function and level of expression, is linked to cancer initiation, progression, and metastasis. LPAR1 antagonists, AM095 or Ki16425, may be effective therapeutic molecules, yet their limited water solubility hinders in vivo delivery. In this study, we report on the synthesis of two liposomal formulations incorporating AM095 or Ki16425, embedded within the lipid bilayer, as targeted nanocarriers for metastatic breast cancer (MBC). The data show that the Ki16425 liposomal formulation exhibited a 50% increase in internalization by MBC mouse epithelial cells (4T1) and a 100% increase in tumor accumulation in a mouse model of MBC compared with that of a blank liposomal formulation (control). At the same time, normal mouse epithelial cells (EpH-4Ev) internalized the Ki16425 liposomal formulation 25% lesser than the control formulation. Molecular dynamics simulations show that the integration of AM095 or Ki16425 modified the physical and mechanical properties of the lipid bilayer, making it more flexible in these liposomal formulations compared with liposomes without drug. The incorporation of an LPAR1 antagonist within a liposomal drug delivery system represents a viable therapeutic approach for targeting the LPA-LPAR1 axis, which may hinder the progression of MBC.
Collapse
Affiliation(s)
- Rudolf
G. Abdelmessih
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Jiaming Xu
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Francisco R. Hung
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Debra T. Auguste
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
4
|
da Silva FF, Lupinacci FCS, Elias BDS, Beserra AO, Sanematsu P, Roffe M, Kulikowski LD, Costa FD, Santos TG, Hajj GNM. Establishment and Comprehensive Molecular Characterization of an Immortalized Glioblastoma Cell Line from a Brazilian Patient. Int J Mol Sci 2023; 24:15861. [PMID: 37958846 PMCID: PMC10649167 DOI: 10.3390/ijms242115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults, with few effective treatment strategies. The research on the development of new treatments is often constrained by the limitations of preclinical models, which fail to accurately replicate the disease's essential characteristics. Herein, we describe the obtention, molecular, and functional characterization of the GBM33 cell line. This cell line belongs to the GBM class according to the World Health Organization 2021 Classification of Central Nervous System Tumors, identified by methylation profiling. GBM33 expresses the astrocytic marker GFAP, as well as markers of neuronal origin commonly expressed in GBM cells, such as βIII-tubulin and neurofilament. Functional assays demonstrated an increased growth rate when compared to the U87 commercial cell line and a similar sensitivity to temozolamide. GBM33 cells retained response to serum starvation, with reduced growth and diminished activation of the Akt signaling pathway. Unlike LN-18 and LN-229 commercial cell lines, GBM33 is able to produce primary cilia upon serum starvation. In summary, the successful establishment and comprehensive characterization of this GBM cell line provide researchers with invaluable tools for studying GBM biology, identifying novel therapeutic targets, and evaluating the efficacy of potential treatments.
Collapse
Affiliation(s)
- Fernanda F. da Silva
- International Research Center/CIPE, A.C. Camargo Cancer Center, São Paulo 01508-010, Brazil; (F.F.d.S.); (B.D.S.E.); (T.G.S.)
- National Institute of Science and Technology in Oncogenomics (INCITO), São Paulo 01509-900, Brazil
| | - Fernanda C. S. Lupinacci
- International Research Center/CIPE, A.C. Camargo Cancer Center, São Paulo 01508-010, Brazil; (F.F.d.S.); (B.D.S.E.); (T.G.S.)
- National Institute of Science and Technology in Oncogenomics (INCITO), São Paulo 01509-900, Brazil
| | - Bruno D. S. Elias
- International Research Center/CIPE, A.C. Camargo Cancer Center, São Paulo 01508-010, Brazil; (F.F.d.S.); (B.D.S.E.); (T.G.S.)
- National Institute of Science and Technology in Oncogenomics (INCITO), São Paulo 01509-900, Brazil
| | - Adriano O. Beserra
- International Research Center/CIPE, A.C. Camargo Cancer Center, São Paulo 01508-010, Brazil; (F.F.d.S.); (B.D.S.E.); (T.G.S.)
- National Institute of Science and Technology in Oncogenomics (INCITO), São Paulo 01509-900, Brazil
| | - Paulo Sanematsu
- Neurosurgery Department, A.C. Camargo Cancer Center, São Paulo 01509-010, Brazil
| | - Martin Roffe
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Leslie D. Kulikowski
- Cytogenomics Laboratory, Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil;
| | - Felipe D’almeida Costa
- Department of Anatomic Pathology, A.C. Camargo Cancer Center, São Paulo 01509-010, Brazil;
| | - Tiago G. Santos
- International Research Center/CIPE, A.C. Camargo Cancer Center, São Paulo 01508-010, Brazil; (F.F.d.S.); (B.D.S.E.); (T.G.S.)
- National Institute of Science and Technology in Oncogenomics (INCITO), São Paulo 01509-900, Brazil
| | - Glaucia N. M. Hajj
- International Research Center/CIPE, A.C. Camargo Cancer Center, São Paulo 01508-010, Brazil; (F.F.d.S.); (B.D.S.E.); (T.G.S.)
- National Institute of Science and Technology in Oncogenomics (INCITO), São Paulo 01509-900, Brazil
| |
Collapse
|
5
|
Lee KH. Primary cilia: a novel research approach to overcome anticancer drug resistance. Front Mol Biosci 2023; 10:1270639. [PMID: 37900915 PMCID: PMC10602908 DOI: 10.3389/fmolb.2023.1270639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/31/2023] Open
Abstract
Primary cilia are cellular organelles that consist of a microtubule skeleton surrounded by a membrane filled with cell signaling receptors. Many studies have shown that primary cilia are cellular antennas, which serve as signaling hubs and their assembly and disassembly are dynamically regulated throughout the cell cycle, playing an important role in regulating cellular homeostasis. Aberrant control of primary cilia dynamics causes a number of genetic disorders known as ciliopathies and is closely associated with tumorigenesis. Anticancer drug resistance is a primary cause of chemotherapy failure, although there is no apparent remedy. The recent identification of a relationship between anticancer drug resistance and primary ciliary dynamics has made primary cilia an important target subcellular organelle for overcoming anticancer drug resistance. Therefore, the research on primary ciliary dynamics may provide new strategies to overcome anticancer drug resistance, which is urgently needed. This review aims to summarize research on the relevance of primary cilia and anticancer drug resistance, as well as future possibilities for research on overcoming anticancer drug resistance utilizing primary cilia dynamics.
Collapse
Affiliation(s)
- Kyung Ho Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang-eup, Republic of Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
6
|
Torres RM, Turner JA, D’Antonio M, Pelanda R, Kremer KN. Regulation of CD8 T-cell signaling, metabolism, and cytotoxic activity by extracellular lysophosphatidic acid. Immunol Rev 2023; 317:203-222. [PMID: 37096808 PMCID: PMC10523933 DOI: 10.1111/imr.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
Lysophosphatidic acid (LPA) is an endogenous bioactive lipid that is produced extracellularly and signals to cells via cognate LPA receptors, which are G-protein coupled receptors (GPCRs). Mature lymphocytes in mice and humans express three LPA receptors, LPA2 , LPA5, and LPA6 , and work from our group has determined that LPA5 signaling by T lymphocytes inhibits specific antigen-receptor signaling pathways that ultimately impair lymphocyte activation, proliferation, and function. In this review, we discuss previous and ongoing work characterizing the ability of an LPA-LPA5 axis to serve as a peripheral immunological tolerance mechanism that restrains adaptive immunity but is subverted during settings of chronic inflammation. Specifically, LPA-LPA5 signaling is found to regulate effector cytotoxic CD8 T cells by (at least) two mechanisms: (i) regulating the actin-microtubule cytoskeleton in a manner that impairs immunological synapse formation between an effector CD8 T cell and antigen-specific target cell, thus directly impairing cytotoxic activity, and (ii) shifting T-cell metabolism to depend on fatty-acid oxidation for mitochondrial respiration and reducing metabolic efficiency. The in vivo outcome of LPA5 inhibitory activity impairs CD8 T-cell killing and tumor immunity in mouse models providing impetus to consider LPA5 antagonism for the treatment of malignancies and chronic infections.
Collapse
Affiliation(s)
- Raul M. Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Jacqueline A. Turner
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Marc D’Antonio
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Roberta Pelanda
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Kimberly N. Kremer
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| |
Collapse
|
7
|
Carotenuto P, Gradilone SA, Franco B. Cilia and Cancer: From Molecular Genetics to Therapeutic Strategies. Genes (Basel) 2023; 14:1428. [PMID: 37510333 PMCID: PMC10379587 DOI: 10.3390/genes14071428] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Cilia are microtubule-based organelles that project from the cell surface with motility or sensory functions. Primary cilia work as antennae to sense and transduce extracellular signals. Cilia critically control proliferation by mediating cell-extrinsic signals and by regulating cell cycle entry. Recent studies have shown that primary cilia and their associated proteins also function in autophagy and genome stability, which are important players in oncogenesis. Abnormal functions of primary cilia may contribute to oncogenesis. Indeed, defective cilia can either promote or suppress cancers, depending on the cancer-initiating mutation, and the presence or absence of primary cilia is associated with specific cancer types. Together, these findings suggest that primary cilia play important, but distinct roles in different cancer types, opening up a completely new avenue of research to understand the biology and treatment of cancers. In this review, we discuss the roles of primary cilia in promoting or inhibiting oncogenesis based on the known or predicted functions of cilia and cilia-associated proteins in several key processes and related clinical implications.
Collapse
Affiliation(s)
- Pietro Carotenuto
- Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
| | - Sergio A. Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brunella Franco
- Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
- School of Advanced Studies, Genomic and Experimental medicine Program (Scuola Superiore Meridionale), 80138 Naples, Italy
| |
Collapse
|
8
|
Muzyka L, Goff NK, Choudhary N, Koltz MT. Systematic Review of Molecular Targeted Therapies for Adult-Type Diffuse Glioma: An Analysis of Clinical and Laboratory Studies. Int J Mol Sci 2023; 24:10456. [PMID: 37445633 DOI: 10.3390/ijms241310456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Gliomas are the most common brain tumor in adults, and molecularly targeted therapies to treat gliomas are becoming a frequent topic of investigation. The current state of molecular targeted therapy research for adult-type diffuse gliomas has yet to be characterized, particularly following the 2021 WHO guideline changes for classifying gliomas using molecular subtypes. This systematic review sought to characterize the current state of molecular target therapy research for adult-type diffuse glioma to better inform scientific progress and guide next steps in this field of study. A systematic review was conducted in accordance with PRISMA guidelines. Studies meeting inclusion criteria were queried for study design, subject (patients, human cell lines, mice, etc.), type of tumor studied, molecular target, respective molecular pathway, and details pertaining to the molecular targeted therapy-namely the modality, dose, and duration of treatment. A total of 350 studies met the inclusion criteria. A total of 52 of these were clinical studies, 190 were laboratory studies investigating existing molecular therapies, and 108 were laboratory studies investigating new molecular targets. Further, a total of 119 ongoing clinical trials are also underway, per a detailed query on clinicaltrials.gov. GBM was the predominant tumor studied in both ongoing and published clinical studies as well as in laboratory analyses. A few studies mentioned IDH-mutant astrocytomas or oligodendrogliomas. The most common molecular targets in published clinical studies and clinical trials were protein kinase pathways, followed by microenvironmental targets, immunotherapy, and cell cycle/apoptosis pathways. The most common molecular targets in laboratory studies were also protein kinase pathways; however, cell cycle/apoptosis pathways were the next most frequent target, followed by microenvironmental targets, then immunotherapy pathways, with the wnt/β-catenin pathway arising in the cohort of novel targets. In this systematic review, we examined the current evidence on molecular targeted therapy for adult-type diffuse glioma and discussed its implications for clinical practice and future research. Ultimately, published research falls broadly into three categories-clinical studies, laboratory testing of existing therapies, and laboratory identification of novel targets-and heavily centers on GBM rather than IDH-mutant astrocytoma or oligodendroglioma. Ongoing clinical trials are numerous in this area of research as well and follow a similar pattern in tumor type and targeted pathways as published clinical studies. The most common molecular targets in all study types were protein kinase pathways. Microenvironmental targets were more numerous in clinical studies, whereas cell cycle/apoptosis were more numerous in laboratory studies. Immunotherapy pathways are on the rise in all study types, and the wnt/β-catenin pathway is increasingly identified as a novel target.
Collapse
Affiliation(s)
- Logan Muzyka
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nicolas K Goff
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nikita Choudhary
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Michael T Koltz
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| |
Collapse
|
9
|
Korbecki J, Rębacz-Maron E, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. Synthesis and Significance of Arachidonic Acid, a Substrate for Cyclooxygenases, Lipoxygenases, and Cytochrome P450 Pathways in the Tumorigenesis of Glioblastoma Multiforme, Including a Pan-Cancer Comparative Analysis. Cancers (Basel) 2023; 15:cancers15030946. [PMID: 36765904 PMCID: PMC9913267 DOI: 10.3390/cancers15030946] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive gliomas. New and more effective therapeutic approaches are being sought based on studies of the various mechanisms of GBM tumorigenesis, including the synthesis and metabolism of arachidonic acid (ARA), an omega-6 polyunsaturated fatty acid (PUFA). PubMed, GEPIA, and the transcriptomics analysis carried out by Seifert et al. were used in writing this paper. In this paper, we discuss in detail the biosynthesis of this acid in GBM tumors, with a special focus on certain enzymes: fatty acid desaturase (FADS)1, FADS2, and elongation of long-chain fatty acids family member 5 (ELOVL5). We also discuss ARA metabolism, particularly its release from cell membrane phospholipids by phospholipase A2 (cPLA2, iPLA2, and sPLA2) and its processing by cyclooxygenases (COX-1 and COX-2), lipoxygenases (5-LOX, 12-LOX, 15-LOX-1, and 15-LOX-2), and cytochrome P450. Next, we discuss the significance of lipid mediators synthesized from ARA in GBM cancer processes, including prostaglandins (PGE2, PGD2, and 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2)), thromboxane A2 (TxA2), oxo-eicosatetraenoic acids, leukotrienes (LTB4, LTC4, LTD4, and LTE4), lipoxins, and many others. These lipid mediators can increase the proliferation of GBM cancer cells, cause angiogenesis, inhibit the anti-tumor response of the immune system, and be responsible for resistance to treatment.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ewa Rębacz-Maron
- Department of Ecology and Anthropology, Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48-914-661-515
| |
Collapse
|
10
|
Deleyrolle LP, Sarkisian MR. Cilia at the Crossroads of Tumor Treating Fields and Chemotherapy. Dev Neurosci 2023; 45:139-146. [PMID: 38630257 PMCID: PMC10233696 DOI: 10.1159/000529193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/10/2023] [Indexed: 04/19/2024] Open
Abstract
Glioblastoma (GBM), the most common and lethal primary brain tumor in adults, requires multi-treatment intervention which unfortunately barely shifts the needle in overall survival. The treatment options after diagnosis and surgical resection (if possible) include irradiation, temozolomide (TMZ) chemotherapy, and now tumor treating fields (TTFields). TTFields are electric fields delivered locoregionally to the head/tumor via a wearable medical device (Optune®). Overall, the concomitant treatment of TTFields and TMZ target tumor cells but spare normal cell types in the brain. Here, we examine whether primary cilia, microtubule-based "antennas" found on both normal brain cells and GBM cells, play specific roles in sensitizing tumor cells to treatment. We discuss evidence supporting GBM cilia being exploited by tumor cells to promote their growth and treatment resistance. We review how primary cilia on normal brain and GBM cells are affected by GBM treatments as monotherapy or concomitant modalities. We also focus on latest findings indicating a differential regulation of GBM ciliogenesis by TTFields and TMZ. Future studies await arrival of intracranial TTFields models to determine if GBM cilia carry a prognostic capacity.
Collapse
Affiliation(s)
- Loic P. Deleyrolle
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, Florida, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida, USA
| | - Matthew R. Sarkisian
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida, USA
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Abstract
Among the factors that have been strongly implicated in regulating cancerous transformation, the primary monocilium (cilium) has gained increasing attention. The cilium is a small organelle extending from the plasma membrane, which provides a localized hub for concentration of transmembrane receptors. These receptors transmit signals from soluble factors (including Sonic hedgehog (SHH), platelet-derived growth factor (PDGF-AA), WNT, TGFβ, NOTCH, and others) that regulate cell growth, as well as mechanosensory cues provided by flow or extracellular matrix. Ciliation is regulated by cell cycle, with most cells that are in G0 (quiescent) or early G1 ciliation and cilia typically absent in G2/M cells. Notably, while most cells organized in solid tissues are ciliated, cancerous transformation induces significant changes in ciliation. Most cancer cells lose cilia; medulloblastomas and basal cell carcinomas, dependent on an active SHH pathway, rely on ciliary maintenance. Changes in cancer cell ciliation are driven by core oncogenic pathways (EGFR, KRAS, AURKA, PI3K), and importantly ciliation status regulates functionality of those pathways. Ciliation is both influenced by targeted cancer therapies and linked to therapeutic resistance; recent studies suggest ciliation may also influence cancer cell metabolism and stem cell identity. We review recent studies defining the relationship between cilia and cancer.
Collapse
|
12
|
Abdul Rashid K, Ibrahim K, Wong JHD, Mohd Ramli N. Lipid Alterations in Glioma: A Systematic Review. Metabolites 2022; 12:metabo12121280. [PMID: 36557318 PMCID: PMC9783089 DOI: 10.3390/metabo12121280] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Gliomas are highly lethal tumours characterised by heterogeneous molecular features, producing various metabolic phenotypes leading to therapeutic resistance. Lipid metabolism reprogramming is predominant and has contributed to the metabolic plasticity in glioma. This systematic review aims to discover lipids alteration and their biological roles in glioma and the identification of potential lipids biomarker. This systematic review was conducted using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Extensive research articles search for the last 10 years, from 2011 to 2021, were conducted using four electronic databases, including PubMed, Web of Science, CINAHL and ScienceDirect. A total of 158 research articles were included in this study. All studies reported significant lipid alteration between glioma and control groups, impacting glioma cell growth, proliferation, drug resistance, patients' survival and metastasis. Different lipids demonstrated different biological roles, either beneficial or detrimental effects on glioma. Notably, prostaglandin (PGE2), triacylglycerol (TG), phosphatidylcholine (PC), and sphingosine-1-phosphate play significant roles in glioma development. Conversely, the most prominent anti-carcinogenic lipids include docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and vitamin D3 have been reported to have detrimental effects on glioma cells. Furthermore, high lipid signals were detected at 0.9 and 1.3 ppm in high-grade glioma relative to low-grade glioma. This evidence shows that lipid metabolisms were significantly dysregulated in glioma. Concurrent with this knowledge, the discovery of specific lipid classes altered in glioma will accelerate the development of potential lipid biomarkers and enhance future glioma therapeutics.
Collapse
Affiliation(s)
- Khairunnisa Abdul Rashid
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kamariah Ibrahim
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jeannie Hsiu Ding Wong
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Norlisah Mohd Ramli
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: ; Tel.: +60-379673238
| |
Collapse
|
13
|
Nguyen A, Goetz SC. TTBK2 controls cilium stability by regulating distinct modules of centrosomal proteins. Mol Biol Cell 2022; 34:ar8. [PMID: 36322399 PMCID: PMC9816645 DOI: 10.1091/mbc.e22-08-0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine-threonine kinase tau tubulin kinase 2 (TTBK2) is a key regulator of the assembly of primary cilia, which are vital signaling organelles. TTBK2 is also implicated in the stability of the assembled cilium through mechanisms that remain to be defined. Here we use mouse embryonic fibroblasts derived from Ttbk2fl/fl, UBC-CreERT+ embryos (hereafter Ttbk2cmut) to dissect the role of TTBK2 in cilium stability. This system depletes TTBK2 levels after cilia formation, allowing us to assess the molecular changes to the assembled cilium over time. As a consequence of Ttbk2 deletion, the ciliary axoneme is destabilized and primary cilia are lost within 48-72 h following recombination. Axoneme destabilization involves an increased frequency of cilia breaks and a reduction in axonemal microtubule modifications. Cilia loss was delayed by using inhibitors that affect actin-based trafficking. At the same time, we find that TTBK2 is required to regulate the composition of the centriolar satellites and to maintain the basal body pools of intraflagellar transport proteins. Altogether, our results reveal parallel pathways by which TTBK2 maintains cilium stability.
Collapse
Affiliation(s)
- Abraham Nguyen
- Molecular Cancer Biology Program, Duke University School of Medicine, Durham, NC 27710,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710
| | - Sarah C. Goetz
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710,*Address correspondence to: Sarah C. Goetz ()
| |
Collapse
|
14
|
Design of Nanoparticles in Cancer Therapy Based on Tumor Microenvironment Properties. Pharmaceutics 2022; 14:pharmaceutics14122708. [PMID: 36559202 PMCID: PMC9785496 DOI: 10.3390/pharmaceutics14122708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, and battling cancer has always been a challenging subject in medical sciences. All over the world, scientists from different fields of study try to gain a deeper knowledge about the biology and roots of cancer and, consequently, provide better strategies to fight against it. During the past few decades, nanoparticles (NPs) have attracted much attention for the delivery of therapeutic and diagnostic agents with high efficiency and reduced side effects in cancer treatment. Targeted and stimuli-sensitive nanoparticles have been widely studied for cancer therapy in recent years, and many more studies are ongoing. This review aims to provide a broad view of different nanoparticle systems with characteristics that allow them to target diverse properties of the tumor microenvironment (TME) from nanoparticles that can be activated and release their cargo due to the specific characteristics of the TME (such as low pH, redox, and hypoxia) to nanoparticles that can target different cellular and molecular targets of the present cell and molecules in the TME.
Collapse
|
15
|
Tereshko L, Turrigiano GG, Sengupta P. Primary cilia in the postnatal brain: Subcellular compartments for organizing neuromodulatory signaling. Curr Opin Neurobiol 2022; 74:102533. [PMID: 35405626 PMCID: PMC9167775 DOI: 10.1016/j.conb.2022.102533] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 03/06/2022] [Indexed: 11/03/2022]
Abstract
Primary cilia have well characterized roles in early brain development, relaying signals critical for neurogenesis and brain formation during embryonic stages. Less understood are the contributions of cilia-mediated signaling to postnatal brain function. Several cilia-localized receptors that bind neuropeptides and neurotransmitters endogenous to the brain have been identified in adult neurons, but the functional significance of signaling through these cilia-localized receptors is largely unexplored. Ciliopathic disorders in humans often manifest with neurodevelopmental abnormalities and cognitive deficits. Intriguingly, recent research has also linked several neuropsychiatric disorders and neurodegenerative diseases to ciliary dysfunction. This review summarizes recent evidence suggesting that cilia signaling may dynamically regulate postnatal neuronal physiology and connectivity, and highlights possible links among cilia, neuronal circuitry, neuron survival, and neurological disorders.
Collapse
Affiliation(s)
- Lauren Tereshko
- Department of Biology, Brandeis University, Waltham, MA 02454, USA; Biogen, Cambridge, MA 02142, USA
| | | | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
16
|
Zhang R, Tang J, Li T, Zhou J, Pan W. INPP5E and Coordination of Signaling Networks in Cilia. Front Mol Biosci 2022; 9:885592. [PMID: 35463949 PMCID: PMC9019342 DOI: 10.3389/fmolb.2022.885592] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Primary cilia are ubiquitous mechanosensory organelles that specifically coordinate a series of cellular signal transduction pathways to control cellular physiological processes during development and in tissue homeostasis. Defects in the function or structure of primary cilia have been shown to be associated with a large range of diseases called ciliopathies. Inositol polyphosphate-5-phosphatase E (INPP5E) is an inositol polyphosphate 5-phosphatase that is localized on the ciliary membrane by anchorage via its C-terminal prenyl moiety and hydrolyzes both phosphatidylinositol-4, 5-bisphosphate (PtdIns(4,5)P2) and PtdIns(3,4,5)P3, leading to changes in the phosphoinositide metabolism, thereby resulting in a specific phosphoinositide distribution and ensuring proper localization and trafficking of proteins in primary cilia. In addition, INPP5E also works synergistically with cilia membrane-related proteins by playing key roles in the development and maintenance homeostasis of cilia. The mutation of INPP5E will cause deficiency of primary cilia signaling transduction, ciliary instability and ciliopathies. Here, we present an overview of the role of INPP5E and its coordination of signaling networks in primary cilia.
Collapse
Affiliation(s)
- Renshuai Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Jianming Tang
- Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang, China
| | - Tianliang Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Wei Pan
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
17
|
Targeting lysophosphatidic acid receptor with Ki16425 impedes T cell lymphoma progression through apoptosis induction, glycolysis inhibition, and activation of antitumor immune response. Apoptosis 2022; 27:382-400. [PMID: 35366141 DOI: 10.1007/s10495-022-01723-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 11/02/2022]
Abstract
Lysophosphatidic acid (LPA) is a small phospholipid that acts as an extracellular lipid mediator. It promotes cancer progression by altering a wide array of cellular processes, including apoptosis, survival, angiogenesis, invasion, and migration through binding with its cognate receptors. Intriguingly, our previous study showed that in vitro treatment of LPA induced survival of T lymphoma cells. Hence, the present investigation was designed to investigate the antitumor potential of Ki16425, an antagonist of LPA receptors, against T cell lymphoma. Our in vitro results showed inhibition of LPA-mediated survival and metabolic activity of T lymphoma cells by Ki16425. Further, in vivo experimental findings indicated the tumor retarding potential of Ki16425 against T cell lymphoma through apoptosis induction, glycolysis inhibition, and immunoactivation. The administration of Ki16425 triggered apoptosis by down-regulating the expression of Bcl2 and up-regulating p53, Bax, cleaved caspase-3, and Cyt c expression. Further, Ki16425 suppressed glycolytic activity with concomitantly decreased expression of GLUT3 and MCT1. Moreover, we also noticed an elevated level of NO and iNOS in tumor cells after Ki16425 administration which might also be responsible for apoptosis induction and suppressed glycolysis. Additionally, we observed an increased population of total leukocytes, lymphocytes, and monocytes along with increased thymocytes count and IL-2 and IFN-γ levels. Besides, we observed amelioration of tumor-induced kidney and liver damages by Ki16425. Taken together, this is the first study that demonstrates that LPA receptors could be potential future therapeutic targets for designing promising therapeutic strategies against T cell lymphoma.
Collapse
|
18
|
Guo P, Tai Y, Wang M, Sun H, Zhang L, Wei W, Xiang YK, Wang Q. Gα 12 and Gα 13: Versatility in Physiology and Pathology. Front Cell Dev Biol 2022; 10:809425. [PMID: 35237598 PMCID: PMC8883321 DOI: 10.3389/fcell.2022.809425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs), as the largest family of receptors in the human body, are involved in the pathological mechanisms of many diseases. Heterotrimeric G proteins represent the main molecular switch and receive cell surface signals from activated GPCRs. Growing evidence suggests that Gα12 subfamily (Gα12/13)-mediated signaling plays a crucial role in cellular function and various pathological processes. The current research on the physiological and pathological function of Gα12/13 is constantly expanding, Changes in the expression levels of Gα12/13 have been found in a wide range of human diseases. However, the mechanistic research on Gα12/13 is scattered. This review briefly describes the structural sequences of the Gα12/13 isoforms and introduces the coupling of GPCRs and non-GPCRs to Gα12/13. The effects of Gα12/13 on RhoA and other signaling pathways and their roles in cell proliferation, migration, and immune cell function, are discussed. Finally, we focus on the pathological impacts of Gα12/13 in cancer, inflammation, metabolic diseases, fibrotic diseases, and circulatory disorders are brought to focus.
Collapse
Affiliation(s)
- Paipai Guo
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Tai
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Manman Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Hanfei Sun
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, Davis, CA, United States.,VA Northern California Health Care System, Mather, CA, United States
| | - Qingtong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Rocha C, Prinos P. Post-transcriptional and Post-translational Modifications of Primary Cilia: How to Fine Tune Your Neuronal Antenna. Front Cell Neurosci 2022; 16:809917. [PMID: 35295905 PMCID: PMC8918543 DOI: 10.3389/fncel.2022.809917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022] Open
Abstract
Primary cilia direct cellular signaling events during brain development and neuronal differentiation. The primary cilium is a dynamic organelle formed in a multistep process termed ciliogenesis that is tightly coordinated with the cell cycle. Genetic alterations, such as ciliary gene mutations, and epigenetic alterations, such as post-translational modifications and RNA processing of cilia related factors, give rise to human neuronal disorders and brain tumors such as glioblastoma and medulloblastoma. This review discusses the important role of genetics/epigenetics, as well as RNA processing and post-translational modifications in primary cilia function during brain development and cancer formation. We summarize mouse and human studies of ciliogenesis and primary cilia activity in the brain, and detail how cilia maintain neuronal progenitor populations and coordinate neuronal differentiation during development, as well as how cilia control different signaling pathways such as WNT, Sonic Hedgehog (SHH) and PDGF that are critical for neurogenesis. Moreover, we describe how post-translational modifications alter cilia formation and activity during development and carcinogenesis, and the impact of missplicing of ciliary genes leading to ciliopathies and cell cycle alterations. Finally, cilia genetic and epigenetic studies bring to light cellular and molecular mechanisms that underlie neurodevelopmental disorders and brain tumors.
Collapse
Affiliation(s)
- Cecilia Rocha
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
- *Correspondence: Cecilia Rocha,
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Panagiotis Prinos,
| |
Collapse
|
20
|
Li M, Zhang J, Zhou H, Xiang R. Primary Cilia-Related Pathways Moderate the Development and Therapy Resistance of Glioblastoma. Front Oncol 2021; 11:718995. [PMID: 34513696 PMCID: PMC8426355 DOI: 10.3389/fonc.2021.718995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
As microtubule-based structures, primary cilia are typically present on the cells during the G0 or G1-S/G2 phase of the cell cycle and are closely related to the development of the central nervous system. The presence or absence of this special organelle may regulate the central nervous system tumorigenesis (e.g., glioblastoma) and several degenerative diseases. Additionally, the development of primary cilia can be regulated by several pathways. Conversely, primary cilia are able to regulate a few signaling transduction pathways. Therefore, development of the central nervous system tumors in conjunction with abnormal cilia can be regulated by up- or downregulation of the pathways related to cilia and ciliogenesis. Here, we review some pathways related to ciliogenesis and tumorigenesis, aiming to provide a potential target for developing new therapies at genetic and molecular levels.
Collapse
Affiliation(s)
- Minghao Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiaxun Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Haonan Zhou
- School of Life Sciences, Central South University, Changsha, China
| | - Rong Xiang
- School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| |
Collapse
|
21
|
Goranci-Buzhala G, Mariappan A, Ricci-Vitiani L, Josipovic N, Pacioni S, Gottardo M, Ptok J, Schaal H, Callaini G, Rajalingam K, Dynlacht B, Hadian K, Papantonis A, Pallini R, Gopalakrishnan J. Cilium induction triggers differentiation of glioma stem cells. Cell Rep 2021; 36:109656. [PMID: 34496239 DOI: 10.1016/j.celrep.2021.109656] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/17/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) possesses glioma stem cells (GSCs) that promote self-renewal, tumor propagation, and relapse. Understanding the mechanisms of GSCs self-renewal can offer targeted therapeutic interventions. However, insufficient knowledge of GSCs' fundamental biology is a significant bottleneck hindering these efforts. Here, we show that patient-derived GSCs recruit elevated levels of proteins that ensure the temporal cilium disassembly, leading to suppressed ciliogenesis. Depleting the cilia disassembly complex components is sufficient to induce ciliogenesis in a subset of GSCs via relocating platelet-derived growth factor receptor-alpha (PDGFR-α) to a newly induced cilium. Importantly, restoring ciliogenesis enabled GSCs to switch from self-renewal to differentiation. Finally, using an organoid-based glioma invasion assay and brain xenografts in mice, we establish that ciliogenesis-induced differentiation can prevent the infiltration of GSCs into the brain. Our findings illustrate a role for cilium as a molecular switch in determining GSCs' fate and suggest cilium induction as an attractive strategy to intervene in GSCs proliferation.
Collapse
Affiliation(s)
- Gladiola Goranci-Buzhala
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Aruljothi Mariappan
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Natasa Josipovic
- Institute of Pathology, University Medicine Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, and Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Simone Pacioni
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Marco Gottardo
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Johannes Ptok
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Giuliano Callaini
- Department of Life Sciences University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Brian Dynlacht
- Department of Pathology and NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Kamyar Hadian
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medicine Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, and Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Roberto Pallini
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
22
|
Xiao D, Su X, Gao H, Li X, Qu Y. The Roles of Lpar1 in Central Nervous System Disorders and Diseases. Front Neurosci 2021; 15:710473. [PMID: 34385905 PMCID: PMC8353257 DOI: 10.3389/fnins.2021.710473] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022] Open
Abstract
Lysophosphatidic acid receptor 1 (Lpar1), which is found in almost all human tissues but is most abundant in the brain, can couple to G protein-coupled receptors (GPCRs) and participate in regulating cell proliferation, migration, survival, and apoptosis. Endothelial differentiation gene-2 receptor (Edg2), the protein encoded by the Lpar1 gene, is present on various cell types in the central nervous system (CNS), such as neural stem cells (NSCs), oligodendrocytes, neurons, astrocytes, and microglia. Lpar1 deletion causes neurodevelopmental disorders and CNS diseases, such as brain cancer, neuropsychiatric disorders, demyelination diseases, and neuropathic pain. Here, we summarize the possible roles and mechanisms of Lpar1/Edg2 in CNS disorders and diseases and propose that Lpar1/Edg2 might be a potential therapeutic target for CNS disorders and diseases.
Collapse
Affiliation(s)
- Dongqiong Xiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Emergency, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaojuan Su
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hu Gao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Emergency, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xihong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Emergency, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi Qu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Lysophosphatidic Acid Receptor Antagonists and Cancer: The Current Trends, Clinical Implications, and Trials. Cells 2021; 10:cells10071629. [PMID: 34209775 PMCID: PMC8306951 DOI: 10.3390/cells10071629] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid mediator primarily derived from membrane phospholipids. LPA initiates cellular effects upon binding to a family of G protein-coupled receptors, termed LPA receptors (LPAR1 to LPAR6). LPA signaling drives cell migration and proliferation, cytokine production, thrombosis, fibrosis, angiogenesis, and lymphangiogenesis. Since the expression and function of LPA receptors are critical for cellular effects, selective antagonists may represent a potential treatment for a broad range of illnesses, such as cardiovascular diseases, idiopathic pulmonary fibrosis, voiding dysfunctions, and various types of cancers. More new LPA receptor antagonists have shown their therapeutic potentials, although most are still in the preclinical trial stage. This review provided integrative information and summarized preclinical findings and recent clinical trials of different LPA receptor antagonists in cancer progression and resistance. Targeting LPA receptors can have potential applications in clinical patients with various diseases, including cancer.
Collapse
|
24
|
Linder B, Klein C, Hoffmann ME, Bonn F, Dikic I, Kögel D. BAG3 is a negative regulator of ciliogenesis in glioblastoma and triple-negative breast cancer cells. J Cell Biochem 2021; 123:77-90. [PMID: 34180073 DOI: 10.1002/jcb.30073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022]
Abstract
By regulating several hallmarks of cancer, BAG3 exerts oncogenic functions in a wide variety of malignant diseases including glioblastoma (GBM) and triple-negative breast cancer (TNBC). Here we performed global proteomic/phosphoproteomic analyses of CRISPR/Cas9-mediated isogenic BAG3 knockouts of the two GBM lines U343 and U251 in comparison to parental controls. Depletion of BAG3 evoked major effects on proteins involved in ciliogenesis/ciliary function and the activity of the related kinases aurora-kinase A and CDK1. Cilia formation was significantly enhanced in BAG3 KO cells, a finding that could be confirmed in BAG3-deficient versus -proficient BT-549 TNBC cells, thus identifying a completely novel function of BAG3 as a negative regulator of ciliogenesis. Furthermore, we demonstrate that enhanced ciliogenesis and reduced expression of SNAI1 and ZEB1, two key transcription factors regulating epithelial to mesenchymal transition (EMT) are correlated to decreased cell migration, both in the GBM and TNBC BAG3 knockout cells. Our data obtained in two different tumor entities identify suppression of EMT and ciliogenesis as putative synergizing mechanisms of BAG3-driven tumor aggressiveness in therapy-resistant cancers.
Collapse
Affiliation(s)
- Benedikt Linder
- Department of Neurosurgery, Experimental Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Caterina Klein
- Department of Neurosurgery, Experimental Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany.,Faculty of Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Marina E Hoffmann
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Florian Bonn
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
| | - Donat Kögel
- Department of Neurosurgery, Experimental Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt am Main, Germany.,German Cancer Research Center DKFZ, Heidelberg, Germany
| |
Collapse
|
25
|
Yanardag S, Pugacheva EN. Primary Cilium Is Involved in Stem Cell Differentiation and Renewal through the Regulation of Multiple Signaling Pathways. Cells 2021; 10:1428. [PMID: 34201019 PMCID: PMC8226522 DOI: 10.3390/cells10061428] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Signaling networks guide stem cells during their lineage specification and terminal differentiation. Primary cilium, an antenna-like protrusion, directly or indirectly plays a significant role in this guidance. All stem cells characterized so far have primary cilia. They serve as entry- or check-points for various signaling events by controlling the signal transduction and stability. Thus, defects in the primary cilia formation or dynamics cause developmental and health problems, including but not limited to obesity, cardiovascular and renal anomalies, hearing and vision loss, and even cancers. In this review, we focus on the recent findings of how primary cilium controls various signaling pathways during stem cell differentiation and identify potential gaps in the field for future research.
Collapse
Affiliation(s)
- Sila Yanardag
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Elena N. Pugacheva
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
26
|
Valdés-Rives SA, Arcos-Montoya D, de la Fuente-Granada M, Zamora-Sánchez CJ, Arias-Romero LE, Villamar-Cruz O, Camacho-Arroyo I, Pérez-Tapia SM, González-Arenas A. LPA 1 Receptor Promotes Progesterone Receptor Phosphorylation through PKCα in Human Glioblastoma Cells. Cells 2021; 10:807. [PMID: 33916643 PMCID: PMC8066126 DOI: 10.3390/cells10040807] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022] Open
Abstract
Lysophosphatidic acid (LPA) induces a wide range of cellular processes and its signaling is increased in several cancers including glioblastoma (GBM), a high-grade astrocytoma, which is the most common malignant brain tumor. LPA1 receptor is expressed in GBM cells and its signaling pathways activate protein kinases C (PKCs). A downstream target of PKC, involved in GBM progression, is the intracellular progesterone receptor (PR), which can be phosphorylated by this enzyme, increasing its transcriptional activity. Interestingly, in GBM cells, PKCα isotype translocates to the nucleus after LPA stimulation, resulting in an increase in PR phosphorylation. In this study, we determined that LPA1 receptor activation induces protein-protein interaction between PKCα and PR in human GBM cells; this interaction increased PR phosphorylation in serine400. Moreover, LPA treatment augmented VEGF transcription, a known PR target. This effect was blocked by the PR selective modulator RU486; also, the activation of LPA1/PR signaling promoted migration of GBM cells. Interestingly, using TCGA data base, we found that mRNA expression of LPAR1 increases according to tumor malignancy and correlates with a lower survival in grade III astrocytomas. These results suggest that LPA1/PR pathway regulates GBM progression.
Collapse
Affiliation(s)
- Silvia Anahi Valdés-Rives
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, Mexico; (S.A.V.-R.); (D.A.-M.); (M.d.l.F.-G.)
| | - Denisse Arcos-Montoya
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, Mexico; (S.A.V.-R.); (D.A.-M.); (M.d.l.F.-G.)
| | - Marisol de la Fuente-Granada
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, Mexico; (S.A.V.-R.); (D.A.-M.); (M.d.l.F.-G.)
| | - Carmen J. Zamora-Sánchez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, Mexico; (C.J.Z.-S.); (I.C.-A.)
| | - Luis Enrique Arias-Romero
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, 54090 Estado de México, Mexico; (O.V.-C.); (L.E.A.-R.)
| | - Olga Villamar-Cruz
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, 54090 Estado de México, Mexico; (O.V.-C.); (L.E.A.-R.)
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, Mexico; (C.J.Z.-S.); (I.C.-A.)
| | - Sonia M. Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11350 Ciudad de México, Mexico;
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, Mexico; (S.A.V.-R.); (D.A.-M.); (M.d.l.F.-G.)
| |
Collapse
|
27
|
Loss of primary cilia promotes mitochondria-dependent apoptosis in thyroid cancer. Sci Rep 2021; 11:4181. [PMID: 33602982 PMCID: PMC7893175 DOI: 10.1038/s41598-021-83418-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
The primary cilium is well-preserved in human differentiated thyroid cancers such as papillary and follicular carcinoma. Specific thyroid cancers such as Hürthle cell carcinoma, oncocytic variant of papillary thyroid carcinoma (PTC), and PTC with Hashimoto’s thyroiditis show reduced biogenesis of primary cilia; these cancers are often associated the abnormalities in mitochondrial function. Here, we examined the association between primary cilia and the mitochondria-dependent apoptosis pathway. Tg-Cre;Ift88flox/flox mice (in which thyroid follicles lacked primary cilia) showed irregularly dilated follicles and increased apoptosis of thyrocytes. Defective ciliogenesis caused by deleting the IFT88 and KIF3A genes from thyroid cancer cell lines increased VDAC1 oligomerization following VDAC1 overexpression, thereby facilitating upregulation of mitochondria-dependent apoptosis. Furthermore, VDAC1 localized with the basal bodies of primary cilia in thyroid cancer cells. These results demonstrate that loss-of-function of primary cilia results in apoptogenic stimuli, which are responsible for mitochondrial-dependent apoptotic cell death in differentiated thyroid cancers. Therefore, regulating primary ciliogenesis might be a therapeutic approach to targeting differentiated thyroid cancers.
Collapse
|
28
|
Gallego L, Ceña V. Nanoparticle-mediated therapeutic compounds delivery to glioblastoma. Expert Opin Drug Deliv 2020; 17:1541-1554. [DOI: 10.1080/17425247.2020.1810015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- L. Gallego
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Albacete, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
| | - V. Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Albacete, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
29
|
Halder P, Khatun S, Majumder S. Freeing the brake: Proliferation needs primary cilium to disassemble. J Biosci 2020. [DOI: 10.1007/s12038-020-00090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Amaral RF, Geraldo LHM, Einicker-Lamas M, E Spohr TCLDS, Mendes F, Lima FRS. Microglial lysophosphatidic acid promotes glioblastoma proliferation and migration via LPA 1 receptor. J Neurochem 2020; 156:499-512. [PMID: 32438456 DOI: 10.1111/jnc.15097] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022]
Abstract
Glioblastomas (GBMs) are highly aggressive primary brain tumors characterized by cellular heterogeneity, insensitivity to chemotherapy and poor patient survival. Lysophosphatidic acid (LPA) is a lysophospholipid that acts as a bioactive signaling molecule and plays important roles in diverse biological events during development and disease, including several cancer types. Microglial cells, the resident macrophages of the central nervous system, express high levels of Autotaxin (ATX,Enpp2), an enzyme that synthetizes LPA. Our study aimed to investigate the role of LPA on tumor growth and invasion in the context of microglia-GBM interaction. First, through bioinformatics studies, patient data analysis demonstrated that more aggressive GBM expressed higher levels of ENPP2, which was also associated with worse patient prognosis with proneural GBM. Using GBM-microglia co-culture system we then demonstrated that GBM secreted factors were able to increase LPA1 and ATX in microglia, which could be further enhanced by hypoxia. On the other hand, interaction with microglial cells also increased ATX expression in GBM. Furthermore, microglial-induced GBM proliferation and migration could be inhibited by pharmacological inhibition of LPA1 , suggesting that microglial-derived LPA could support tumor growth and invasion. Finally, increased LPA1 expression was observed in GBM comparing with other gliomas and could be also associated with worse patient survival. These results show for the first time a microglia-GBM interaction through the LPA pathway with relevant implications for tumor progression. A better understanding of this interaction can lead to the development of new therapeutic strategies setting LPA as a potential target for GBM treatment.
Collapse
Affiliation(s)
- Rackele F Amaral
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz H M Geraldo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tania C L de S E Spohr
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Fabio Mendes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia R S Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Sterpka A, Yang J, Strobel M, Zhou Y, Pauplis C, Chen X. Diverged morphology changes of astrocytic and neuronal primary cilia under reactive insults. Mol Brain 2020; 13:28. [PMID: 32122360 PMCID: PMC7053156 DOI: 10.1186/s13041-020-00571-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/24/2020] [Indexed: 12/13/2022] Open
Abstract
Primary cilia are centriole-derived sensory organelles that are present in most mammalian cells, including astrocytes and neurons. Evidence is emerging that astrocyte and neuronal primary cilia demonstrate a dichotomy in the mature mouse brain. However, it is unknown how astrocytic and neuronal primary cilia change their morphology and ciliary proteins when exposed to reactive insults including epilepsy and traumatic brain injury. We used a double transgenic mouse strain (Arl13b-mCherry; Centrin2-GFP), in which we found spontaneous seizures, and a cortical injury model to examine the morphological changes of astrocytic and neuronal primary cilia under reactive conditions. Transgenic overexpression of Arl13b drastically increases the length of astrocytic and neuronal primary cilia in the hippocampus, as well as the cilia lengths of cultured astrocytes and neurons. Spontaneous seizures shorten Arl13b-positive astrocytic cilia and AC3-positive neuronal cilia in the hippocampus. In a cortical injury model, Arl13b is not detectable in primary cilia, but Arl13b protein relocates to the cell body and has robust expression in the proximity of injured tissues. In contrast, the number of AC3-positive cilia near injured tissues remains unchanged, but their lengths become shorter. These results on astrocytic cilia implicate Arl13b in regulating astrocyte proliferation and tissue regeneration, while the shortening of AC3-positive cilia suggests adaptive changes of neuronal primary cilia under excitotoxicity.
Collapse
Affiliation(s)
- Ashley Sterpka
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA
| | - Juan Yang
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA
| | - Matthew Strobel
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA
| | - Yuxin Zhou
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA
| | - Connor Pauplis
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA
| | - Xuanmao Chen
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA.
| |
Collapse
|
32
|
Nair RR, Piktel D, Hathaway QA, Rellick SL, Thomas P, Saralkar P, Martin KH, Geldenhuys WJ, Hollander JM, Gibson LF. Pyrvinium Pamoate Use in a B cell Acute Lymphoblastic Leukemia Model of the Bone Tumor Microenvironment. Pharm Res 2020; 37:43. [PMID: 31989336 PMCID: PMC7021357 DOI: 10.1007/s11095-020-2767-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/21/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE Pyrvinium pamoate (PP) is an anthelmintic drug that has been found to have anti-cancer activity in several cancer types. In the present study, we evaluated PP for potential anti-leukemic activity in B cell acute lymphoblastic leukemia (ALL) cell lines, in an effort to evaluate the repurposing potential of this drug in leukemia. METHODS ALL cells were treated with PP at various concentrations to determine its effect on cell proliferation. Metabolic function was tested by evaluating Extracellular Acidification Rate (ECAR) and Oxygen Consumption Rate (OCR). Lastly, 3D spheroids were grown, and PP was reformulated into nanoparticles to evaluate distribution effectiveness. RESULTS PP was found to inhibit ALL proliferation, with varied selectivity to different ALL cell subtypes. We also found that PP's cell death activity was specific for leukemic cells, as primary normal immune cells were resistant to PP-mediated cell death. Metabolic studies indicated that PP, in part, inhibits mitochondrial oxidative phosphorylation. To increase the targeting of PP to a hypoxic bone tumor microenvironment (BTME) niche, we successfully encapsulated PP in a nanoparticle drug delivery system and demonstrated that it retained its anti-leukemic activity in a hemosphere assay. CONCLUSION We have demonstrated that PP is a novel therapeutic lead compound that counteracts the respiratory reprogramming found in refractory ALL cells and can be effectively formulated into a nanoparticle delivery system to target the BTME.
Collapse
Affiliation(s)
- Rajesh R Nair
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Debbie Piktel
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9104, Morgantown, West Virginia, 26506, USA
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Stephanie L Rellick
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Patrick Thomas
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9104, Morgantown, West Virginia, 26506, USA
| | - Pushkar Saralkar
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia, USA
| | - Karen H Martin
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9104, Morgantown, West Virginia, 26506, USA
| | - Werner J Geldenhuys
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, USA
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia, USA
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Laura F Gibson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA.
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9104, Morgantown, West Virginia, 26506, USA.
| |
Collapse
|
33
|
Álvarez-Satta M, Moreno-Cugnon L, Matheu A. Primary cilium and brain aging: role in neural stem cells, neurodegenerative diseases and glioblastoma. Ageing Res Rev 2019; 52:53-63. [PMID: 31004829 DOI: 10.1016/j.arr.2019.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/14/2019] [Accepted: 04/15/2019] [Indexed: 01/28/2023]
Abstract
Brain aging is characterized by a progressive loss of tissue integrity and function as a consequence of impaired homeostasis and regeneration capacities. The primary cilium is a highly conserved organelle that projects from the cell surface in a single copy in virtually all mammalian cell types including neural stem/progenitors cells and neurons. Increasing evidence in the last decade points out that primary cilium could be a relevant mediator of neural stem cell activity, neurogenesis, neuronal maturation and maintenance, and brain tumorigenesis. In this review, we summarize the current knowledge about primary cilia roles in these processes. There is currently sufficient background to propose that defective primary cilia contribute to age-related cognitive decline and brain tumor development due to their critical roles in cell cycle control and signaling transduction. This might have potential applications on therapy against age-associated brain diseases.
Collapse
|
34
|
Park SM, Jang HJ, Lee JH. Roles of Primary Cilia in the Developing Brain. Front Cell Neurosci 2019; 13:218. [PMID: 31139054 PMCID: PMC6527876 DOI: 10.3389/fncel.2019.00218] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/30/2019] [Indexed: 01/07/2023] Open
Abstract
Essential to development, primary cilia are microtubule-based cellular organelles that protrude from the surface of cells. Acting as cellular antenna, primary cilia play central roles in transducing or regulating several signaling pathways, including Sonic hedgehog (Shh) and Wnt signaling. Defects in primary cilia contribute to a group of syndromic disorders known as “ciliopathies” and can adversely affect development of the brain and other essential organs, including the kidneys, eyes, and liver. The molecular mechanisms of how defective primary cilia contribute to neurological defects, however, remain poorly understood. In this mini review, we summarize recent advances in understanding of the interactions between primary cilia and signaling pathways essential to cellular homeostasis and brain development.
Collapse
Affiliation(s)
- Sang Min Park
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hee Jin Jang
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jeong Ho Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
35
|
Shafi A, Nguyen T, Peyvandipour A, Nguyen H, Draghici S. A Multi-Cohort and Multi-Omics Meta-Analysis Framework to Identify Network-Based Gene Signatures. Front Genet 2019; 10:159. [PMID: 30941158 PMCID: PMC6434849 DOI: 10.3389/fgene.2019.00159] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/14/2019] [Indexed: 12/20/2022] Open
Abstract
Although massive amounts of condition-specific molecular profiles are being accumulated in public repositories every day, meaningful interpretation of these data remains a major challenge. In an effort to identify the biomarkers that describe the key biological phenomena for a given condition, several approaches have been developed over the past few years. However, the majority of these approaches either (i) do not consider the known intermolecular interactions, or (ii) do not integrate molecular data of multiple types (e.g., genomics, transcriptomics, proteomics, epigenomics, etc.), and thus potentially fail to capture the true biological changes responsible for complex diseases (e.g., cancer). In addition, these approaches often ignore the heterogeneity and study bias present in independent molecular cohorts. In this manuscript, we propose a novel multi-cohort and multi-omics meta-analysis framework that overcomes all three limitations mentioned above in order to identify robust molecular subnetworks that capture the key dynamic nature of a given biological condition. Our framework integrates multiple independent gene expression studies, unmatched DNA methylation studies, and protein-protein interactions to identify methylation-driven subnetworks. We demonstrate the proposed framework by constructing subnetworks related to two complex diseases: glioblastoma and low-grade gliomas. We validate the identified subnetworks by showing their ability to predict patients' clinical outcome on multiple independent validation cohorts.
Collapse
Affiliation(s)
- Adib Shafi
- Department of Computer Science, Wayne State University, Detroit, MI, United States
| | - Tin Nguyen
- Department of Computer Science and Engineering, University of Nevada, Reno, NV, United States
| | - Azam Peyvandipour
- Department of Computer Science, Wayne State University, Detroit, MI, United States
| | - Hung Nguyen
- Department of Computer Science and Engineering, University of Nevada, Reno, NV, United States
| | - Sorin Draghici
- Department of Computer Science, Wayne State University, Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
36
|
Loskutov Y, Pugacheva EN. Targeting primary cilia - associated signaling in glioblastoma: guided approach for drug development. Oncoscience 2019; 6:289-290. [PMID: 30800715 PMCID: PMC6382257 DOI: 10.18632/oncoscience.475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 11/29/2022] Open
Affiliation(s)
- Yuriy Loskutov
- Department of Biochemistry and West Virginia University Cancer Institute, School of Medicine, Morgantown, WV, 26506, USA
| | - Elena N Pugacheva
- Department of Biochemistry and West Virginia University Cancer Institute, School of Medicine, Morgantown, WV, 26506, USA
| |
Collapse
|
37
|
Sarkisian MR, Semple-Rowland SL. Emerging Roles of Primary Cilia in Glioma. Front Cell Neurosci 2019; 13:55. [PMID: 30842728 PMCID: PMC6391589 DOI: 10.3389/fncel.2019.00055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Primary cilia are microtubule-based organelles that are typically present on cells during the G0 or G1-S/G2 phases of the cell cycle. Recent studies of glioblastoma (GBM) biopsies, a brain tumor that is notorious for its aggressive growth and resistance to treatment, show that many cells in the tumor lack cilia. At this point, it remains unclear whether primary cilia promote or suppress glioma tumorigenesis. In this review, we will discuss the different roles that have been proposed for primary cilia in glioma and how cilia may contribute to the resistance of these tumors to current therapies.
Collapse
Affiliation(s)
- Matthew R Sarkisian
- Department of Neuroscience, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States.,Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Susan L Semple-Rowland
- Department of Neuroscience, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
38
|
Hoang-Minh LB, Dutra-Clarke M, Breunig JJ, Sarkisian MR. Glioma cell proliferation is enhanced in the presence of tumor-derived cilia vesicles. Cilia 2018; 7:6. [PMID: 30410731 PMCID: PMC6219037 DOI: 10.1186/s13630-018-0060-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/24/2018] [Indexed: 11/10/2022] Open
Abstract
Background The mechanisms by which primary cilia affect glioma pathogenesis are unclear. Depending on the glioma cell line, primary cilia can promote or inhibit tumor development. Here, we used piggyBac-mediated transgenesis to generate patient-derived glioblastoma (GBM) cell lines that stably express Arl13b:GFP in their cilia. This allowed us to visualize and analyze the behavior of cilia and ciliated cells during live GBM cell proliferation. Results Time-lapse imaging of Arl13b:GFP+ cilia revealed their dynamic behaviors, including distal tip excision into the extracellular milieu. Recent studies of non-cancerous cells indicate that this process occurs during the G0 phase, prior to cilia resorption and cell cycle re-entry, and requires ciliary recruitment of F-actin and actin regulators. Similarly, we observed ciliary buds associated with Ki67- cells as well as scattered F-actin+ cilia, suggesting that quiescent GBM cells may also utilize an actin network-based mechanism for ciliary tip excision. Notably, we found that the proliferation of ciliated GBM cells was promoted by exposing them to conditioned media obtained from ciliated cell cultures when compared to conditioned media collected from cilia-defective cell cultures (depleted in either KIF3A or IFT88 using CRISPR/Cas9). These results suggest that GBM cilia may release mitogenic vesicles carrying factors that promote tumor cell proliferation. Although Arl13b is implicated in tumor growth, our data suggest that Arl13b released from GBM cilia does not mediate tumor cell proliferation. Conclusion Collectively, our results indicate that ciliary vesicles may represent a novel mode of intercellular communication within tumors that contributes to GBM pathogenesis. The mitogenic capacity of GBM ciliary vesicles and the molecular mediators of this phenomenon requires further investigation.
Collapse
Affiliation(s)
- Lan B Hoang-Minh
- 1Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610 USA.,2Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610 USA
| | - Marina Dutra-Clarke
- 3Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA.,4Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA.,5Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Joshua J Breunig
- 3Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA.,4Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA.,5Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Matthew R Sarkisian
- 1Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610 USA.,2Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610 USA
| |
Collapse
|
39
|
Sterpka A, Chen X. Neuronal and astrocytic primary cilia in the mature brain. Pharmacol Res 2018; 137:114-121. [PMID: 30291873 PMCID: PMC6410375 DOI: 10.1016/j.phrs.2018.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
Primary cilia are tiny microtubule-based signaling devices that regulate a variety of physiological functions, including metabolism and cell division. Defects in primary cilia lead to a myriad of diseases in humans such as obesity and cancers. In the mature brain, both neurons and astrocytes contain a single primary cilium. Although neuronal primary cilia are not directly involved in synaptic communication, their pathophysiological impacts on obesity and mental disorders are well recognized. In contrast, research on astrocytic primary cilia lags far behind. Currently, little is known about their functions and molecular pathways in the mature brain. Unlike neurons, postnatal astrocytes retain the capacity of cell division and can become reactive and proliferate in response to various brain insults such as epilepsy, ischemia, traumatic brain injury, and neurodegenerative β-amyloid plaques. Since primary cilia derive from the mother centrioles, astrocyte proliferation must occur in coordination with the dismantling and ciliogenesis of astrocyte cilia. In this regard, the functions, signal pathways, and structural dynamics of neuronal and astrocytic primary cilia are fundamentally different. Here we discuss and compare the current understanding of neuronal and astrocytic primary cilia.
Collapse
Affiliation(s)
- Ashley Sterpka
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States
| | - Xuanmao Chen
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States.
| |
Collapse
|
40
|
Eguether T, Hahne M. Mixed signals from the cell's antennae: primary cilia in cancer. EMBO Rep 2018; 19:embr.201846589. [PMID: 30348893 DOI: 10.15252/embr.201846589] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/08/2018] [Accepted: 09/24/2018] [Indexed: 02/03/2023] Open
Abstract
Primary cilia (PC) are antenna-like organelles that protrude from most mammalian cells. They are essential for the regulation of several signaling pathways such as Hedgehog and WNT It is therefore not surprising that a dysfunction of PC is frequently associated with pathologies. Originally, PC were found to be involved in a variety of diseases commonly referred to as ciliopathies including cystic kidney diseases. Evidence is accumulating that PC play also an important role in cancer formation and regulation, which is the focus of this review.
Collapse
Affiliation(s)
- Thibaut Eguether
- École Normale Supérieure, CNRS, INSERM, APHP, Laboratoire des Biomolécules (LBM), Sorbonne Université, PSL Research University, Paris, France
| | - Michael Hahne
- IGMM, CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
41
|
Álvarez-Satta M, Matheu A. Primary cilium and glioblastoma. Ther Adv Med Oncol 2018; 10:1758835918801169. [PMID: 30302130 PMCID: PMC6170955 DOI: 10.1177/1758835918801169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/20/2018] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma (GBM) represents the most common, malignant and lethal primary brain tumour in adults. The primary cilium is a highly conserved and dynamic organelle that protrudes from the apical surface of virtually every type of mammalian cell. There is increasing evidence that abnormal cilia are involved in cancer progression, since primary cilia regulate cell cycle and signalling transduction. In this review, we summarize the role of primary cilium specifically with regard to GBM, where there is evidence postulating it as a critical mediator of GBM tumorigenesis and progression. This opens the way to the application of cilia-targeted therapies (‘ciliotherapy’) as a new approach in the fight against this devastating tumour.
Collapse
Affiliation(s)
- María Álvarez-Satta
- Cellular Oncology group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Ander Matheu
- Cellular Oncology group, Biodonostia Health Research Institute, Paseo Dr. Beguiristain s/n, CP 20014 San Sebastian, Spain CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain IKERBASQUE, Basque Foundation, Bilbao, Spain
| |
Collapse
|
42
|
Abstract
The primary cilium is an antenna-like organelle assembled on most types of quiescent and differentiated mammalian cells. This immotile structure is essential for interpreting extracellular signals that regulate growth, development and homeostasis. As such, ciliary defects produce a spectrum of human diseases, termed ciliopathies, and deregulation of this important organelle also plays key roles during tumor formation and progression. Recent studies have begun to clarify the key mechanisms that regulate ciliary assembly and disassembly in both normal and tumor cells, highlighting new possibilities for therapeutic intervention. Here, we review these exciting new findings, discussing the molecular factors involved in cilium formation and removal, the intrinsic and extrinsic control of cilium assembly and disassembly, and the relevance of these processes to mammalian cell growth and disease.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
43
|
Du E, Lu C, Sheng F, Li C, Li H, Ding N, Chen Y, Zhang T, Yang K, Xu Y. Analysis of potential genes associated with primary cilia in bladder cancer. Cancer Manag Res 2018; 10:3047-3056. [PMID: 30214299 PMCID: PMC6124455 DOI: 10.2147/cmar.s175419] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Dysfunction of primary cilia (PC), which could influence cell cycle and modulate cilia-related signaling transduction, has been reported in several cancers. However, there is no evidence of their function in bladder cancer (BLCA). This study was performed to investigate the presence of PC in BLCA and to explore the potential molecular mechanisms underlying the PC in BLCA. Patients and methods The presence of PC was assessed in BLCA and adjacent non-cancerous tissues. The gene expression dataset GSE52519 was employed to obtain differentially expressed genes (DEGs) associated with PC. The mRNA expression of the DEGs were confirmed by Gene Expression Profiling Interactive Analysis. The DEGs properties and pathways were analyzed by Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Genomatix software was used to predict putative transcription factor binding sites (TFBS) in the promoter region of DEGs, and the transcription factors were achieved according to the shared TFBS, which were supported by the ChIP-Sequence data. Results PC were found to be reduced in BLCA tissue samples in this study. Seven DEGs were observed to be associated with PC, and gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that these DEGs exhibited the properties and functions of PC, and that the Hedgehog signaling pathway probably participated in the pathogenesis and progression of BLCA. The mRNA expression of the seven DEGs in 404 BLCA and 28 normal tissue samples were analyzed, and five DEGs including CENPF, STIL, AURKA, STK39 and OSR1 were identified. Five TFBS including CREB, E2FF, EBOX, ETSF and HOXF in the promoter region of five DEGs were calculated and the transcription factors were obtained according to the shared TFBS. Conclusion PC were found to be reduced in BLCA, and the potential molecular mechanisms of PC in BLCA helped to provide novel diagnosis and therapeutic targets for BLCA.
Collapse
Affiliation(s)
- E Du
- Central Laboratory, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China, ;
| | - Chao Lu
- Central Laboratory, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China, ;
| | - Fei Sheng
- Central Laboratory, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China, ;
| | - Changying Li
- Central Laboratory, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China, ;
| | - Hong Li
- The Institute of Molecular Cardiology, Medical school, University of Louisville, Louisville, KY, USA
| | - Na Ding
- Central Laboratory, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China, ;
| | - Yue Chen
- Central Laboratory, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China, ;
| | - Ting Zhang
- Central Laboratory, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China, ;
| | - Kuo Yang
- Central Laboratory, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China, ;
| | - Yong Xu
- Central Laboratory, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China, ;
| |
Collapse
|