1
|
Veschi V, Verona F, Di Bella S, Turdo A, Gaggianesi M, Di Franco S, Mangiapane LR, Modica C, Lo Iacono M, Bianca P, Brancato OR, D'Accardo C, Porcelli G, Lentini VL, Sperduti I, Sciacca E, Fitzgerald P, Lopez-Perez D, Martine P, Brown K, Giannini G, Appella E, Stassi G, Todaro M. C1Q + TPP1 + macrophages promote colon cancer progression through SETD8-driven p53 methylation. Mol Cancer 2025; 24:102. [PMID: 40165182 DOI: 10.1186/s12943-025-02293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND In many tumors, the tumor suppressor TP53 is not mutated, but functionally inactivated. However, mechanisms underlying p53 functional inactivation remain poorly understood. SETD8 is the sole enzyme known to mono-methylate p53 on lysine 382 (p53K382me1), resulting in the inhibition of its pro-apoptotic and growth-arresting functions. METHODS We analyzed SETD8 and p53K382me1 expression in clinical colorectal cancer (CRC) and inflammatory bowel disease (IBD) samples. Histopathological examinations, RNA sequencing, ChIP assay and preclinical in vivo CRC models, were used to assess the functional role of p53 inactivation in tumor cells and immune cell infiltration. RESULTS By integrating bulk RNAseq and scRNAseq approaches in CRC patients, SETD8-mediated p53 regulation resulted the most significantly enriched pathway. p53K382me1 expression was confined to colorectal cancer stem cells (CR-CSCs) and C1Q+ TPP1+ tumor-associated macrophages (TAMs) in CRC patient tissues, with high levels predicting decreased survival probability. TAMs promote p53 functional inactivation in CR-CSCs through IL-6 and MCP-1 secretion and increased levels of CEBPD, which directly binds SETD8 promoter thus enhancing its transcription. The direct binding of C1Q present on macrophages and C1Q receptor (C1QR) present on cancer stem cells mediates the cross-talk between the two cell compartments. As monotherapy, SETD8 genetic and pharmacological (UNC0379) inhibition affects the tumor growth and metastasis formation in CRC mouse avatars, with enhanced effects observed when combined with IL-6 receptor targeting. CONCLUSIONS These findings suggest that p53K382me1 may be an early step in tumor initiation, especially in inflammation-induced CRC, and could serve as a functional biomarker and therapeutic target in adjuvant setting for advanced CRCs.
Collapse
Grants
- Dipartimenti di Eccellenza - L. 232/2016 Ministero dell'Istruzione, dell'Università e della Ricerca
- Dipartimenti di Eccellenza - L. 232/2016 Ministero dell'Istruzione, dell'Università e della Ricerca
- PNRR - M4C2-l1.3 Project PE00000019 'HEAL ITALIA' CUP B73C22001250006 Ministero dell'Università e della Ricerca
- PNRR - M4C2-l1.3 Project PE00000019 'HEAL ITALIA' CUP B73C22001250006 Ministero dell'Università e della Ricerca
- FESR FSE PON Ricerca e Innovazione 2014-2020 DM 1062/2021 Ministero dell'Università e della Ricerca
- FESR FSE PON Ricerca e Innovazione 2014-2020 DM 1062/2021 Ministero dell'Università e della Ricerca
- PNRR - M4C2-l1.3 Project PE00000019 'HEAL ITALIA' CUP B53C22004000006 Ministero dell'Università e della Ricerca
- PNRR - M4C2-l1.3 Project PE00000019 'HEAL ITALIA' CUP B73C22001250006 Ministero dell'Università e della Ricerca
- PNRR - M4C2-l1.3 Project PE00000019 'HEAL ITALIA' CUP B73C22001250006 Ministero dell'Università e della Ricerca
- PNRR-MAD-2022-12376835 Ministero della Salute
- PNRR-MAD-2022-12376835 Ministero della Salute
- PSN2015, 6.2, CUP176J17000470001 Ministero della Salute
- Intramural Grant Center for Cancer Research, NCI, NIH
- Intramural Grant Center for Cancer Research, NCI, NIH
- Intramural Grant Center for Cancer Research, NCI, NIH
- Intramural Grant Center for Cancer Research, NCI, NIH
- Intramural Grant Center for Cancer Research, NCI, NIH
- AIRC IG (24329) Fondazione AIRC per la ricerca sul cancro ETS
- AIRC IG (21445) Fondazione AIRC per la ricerca sul cancro ETS
- AIRC IG (30306) Fondazione AIRC per la ricerca sul cancro ETS
Collapse
Affiliation(s)
- Veronica Veschi
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Palermo, 90127, Italy.
- Department of Molecular Medicine, University of Rome La Sapienza, Rome, 00161, Italy.
| | - Francesco Verona
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, 90127, Italy
| | - Sebastiano Di Bella
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Palermo, 90127, Italy
| | - Alice Turdo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, 90127, Italy
| | - Miriam Gaggianesi
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Palermo, 90127, Italy
| | - Simone Di Franco
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Palermo, 90127, Italy
| | - Laura Rosa Mangiapane
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, 90127, Italy
| | - Chiara Modica
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Palermo, 90127, Italy
| | - Melania Lo Iacono
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, 90127, Italy
| | - Paola Bianca
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, 90127, Italy
| | - Ornella Roberta Brancato
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Palermo, 90127, Italy
| | - Caterina D'Accardo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, 90127, Italy
| | - Gaetana Porcelli
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, 90127, Italy
| | | | - Isabella Sperduti
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS - Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Elisabetta Sciacca
- Centre for Experimental Medicine and Rheumatology, the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, Bartsand, London, UK
| | - Peter Fitzgerald
- Genome Analysis Unit, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Lopez-Perez
- Chemical Immunology Section, Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD, USA
| | - Pierre Martine
- Chemical Immunology Section, Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD, USA
| | - Kate Brown
- Chemical Immunology Section, Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD, USA
| | - Giuseppe Giannini
- Department of Molecular Medicine, University of Rome La Sapienza, Rome, 00161, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome La Sapienza, Rome, 00161, Italy
| | - Ettore Appella
- Chemical Immunology Section, Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD, USA
| | - Giorgio Stassi
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Palermo, 90127, Italy.
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, 90127, Italy
- Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone" (AOUP), Palermo, Italy
| |
Collapse
|
2
|
Culpepper T, Senthil K, Vlcek J, Hazelton A, Heavey MK, Sellers RS, Nguyen J, Arthur JC. Engineered Probiotic Saccharomyces boulardii Reduces Colitis-Associated Colorectal Cancer Burden in Mice. Dig Dis Sci 2025:10.1007/s10620-025-09008-9. [PMID: 40156662 DOI: 10.1007/s10620-025-09008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Individuals with inflammatory bowel diseases experience an elevated risk of colorectal cancer driven by chronic inflammation. Current systemic immunosuppressive therapies often cause severe side effects. Live oral biotherapeutics are an emerging treatment modality that directly target the intestines. We have engineered a probiotic Saccharomyces boulardii strain that expresses targeting ligands to bind fibronectin on inflamed mucosa and secretes anti-tumor necrosis factor nanobodies locally to reduce inflammation. We previously demonstrated that engineering S. boulardii to bind fibronectin enhanced colonization and reduced inflammation in a DSS colitis model. AIMS Here, we tested the anti-cancer potential of engineered S. boulardii using a well-established model of IBD-associated CRC, azoxymethane-treated interleukin 10-deficient (AOM/Il10-/-) mice. These mice develop inflammation and invasive tumors that model those found in inflammatory bowel disease. METHODS Mice were orally administered engineered S. boulardii at two dosing frequencies, unmodified S. boulardii, or placebo throughout the 18-week model. Colons were harvested for gross, histological, and molecular evaluation for inflammation and tumorigenesis. RESULTS Histological colon inflammation was reduced by twice weekly dosing of engineered and unmodified S. boulardii. Engineered S. boulardii reduced gross tumor number in a dose-dependent manner, with median tumor counts reduced from 7.5 to 2 per mouse (p < 0.0002 vs. placebo). Unmodified S. boulardii similarly reduced gross tumor number. Colonization studies revealed that engineered S. boulardii failed to colonize for greater time or density vs. unmodified S. boulardii. CONCLUSION Together our data indicate that engineering S. boulardii does not reduce its ability to decrease inflammation-associated tumorigenesis, and that further host-binding target optimization is required to enhance colonization and anti-cancer effects.
Collapse
Affiliation(s)
- Tyler Culpepper
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Krithika Senthil
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jessica Vlcek
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony Hazelton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mairead K Heavey
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rani S Sellers
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, School Or Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Akkız H, Şimşek H, Balcı D, Ülger Y, Onan E, Akçaer N, Delik A. Inflammation and cancer: molecular mechanisms and clinical consequences. Front Oncol 2025; 15:1564572. [PMID: 40165901 PMCID: PMC11955699 DOI: 10.3389/fonc.2025.1564572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Inflammation, a hallmark of cancer, has been associated with tumor progression, transition into malignant phenotype and efficacy of anticancer treatments in cancer. It affects all stages of cancer, from the initiation of carcinogenesis to metastasis. Chronic inflammation induces immunosup-pression, providing an environment conducive to carcinogenesis, whereas acute inflammation induces an antitumor immune response, leading to tumor suppression. Solid tumors have an inflammatory tumor microenvironment (TME) containing cancer cells, immune cells, stromal cells, and soluble molecules, which plays a key role in tumor progression and therapy response. Both cancer cells and stromal cells in the TME are highly plastic and constantly change their phenotypic and functional properties. Cancer-associated inflammation, the majority of which consists of innate immune cells, plays an important role in cancer cell plasticity, cancer progression and the development of anticancer drug resistance. Today, with the combined used of advanced technologies, such as single-cell RNA sequencing and spatial molecular imaging analysis, the pathways linking chronic inflammation to cancer have been largely elucidated. In this review article, we highlighted the molecular and cellular mechanisms involved in cancer-associated inflammation and its effects on cancer progression and treatment response. We also comprehensively review the mechanisms linking chronic inflammation to cancer in the setting of GI cancers.
Collapse
Affiliation(s)
- Hikmet Akkız
- Department of Gastroenterology, Medical Faculty, Bahçeşehir University, İstanbul, Türkiye
| | - Halis Şimşek
- Department of Gastroenterology, Medical Faculty, Hacettepe University, Ankara, Türkiye
| | - Deniz Balcı
- Department of Gastroenterology, Medical Faculty, Bahçeşehir University, İstanbul, Türkiye
| | - Yakup Ülger
- Department of Gastroenterology, Medical Faculty, Cukurova University, Adana, Türkiye
| | - Engin Onan
- Department of Nephrology, Medical Faculty, Baskent University, Adana, Türkiye
| | - Nevin Akçaer
- Department of Gastroenterology, Medical Faculty, Health Sciences University, Adana, Türkiye
| | - Anıl Delik
- Department of Gastroenterology, Medical Faculty, Cukurova University, Adana, Türkiye
- Department of Biology, Science and Literature Faculty, Cukurova University, Adana, Türkiye
| |
Collapse
|
4
|
Sheikh A, Curran MA. The influence of the microbiome on radiotherapy and DNA damage responses. Front Oncol 2025; 15:1552750. [PMID: 40165887 PMCID: PMC11955455 DOI: 10.3389/fonc.2025.1552750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers in terms of diagnosis and mortality. Radiotherapy (RT) remains a mainstay of CRC therapy. As RT relies on DNA damage to promote tumor cell death, the activity of cellular DNA damage repair pathways can modulate cancer sensitivity to therapy. The gut microbiome has been shown to influence intestinal health and is independently associated with CRC development, treatment responses and outcomes. The microbiome can also modulate responses to CRC RT through various mechanisms such as community structure, toxins and metabolites. In this review we explore the use of RT in the treatment of CRC and the molecular factors that influence treatment outcomes. We also discuss how the microbiome can promote radiosensitivity versus radioprotection to modulate RT outcomes in CRC. Understanding the molecular interaction between the microbiome and DNA repair pathways can assist with predicting responses to RT. Once described, these connections between the microbiome and RT response can also be used to identify actionable targets for therapeutic development.
Collapse
Affiliation(s)
- Aadil Sheikh
- Department of Medical Education, Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Michael A. Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
5
|
Sayed IM, Chakraborty A, Inouye K, Dugan L, Tocci S, Advani I, Park K, Gaboyan S, Kasaraneni N, Ma B, Hazra TK, Das S, Crotty Alexander LE. E-cigarettes increase the risk of adenoma formation in murine colorectal cancer model. Arch Toxicol 2025; 99:1223-1236. [PMID: 39786590 DOI: 10.1007/s00204-024-03932-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
E-cigarettes (E.cigs) cause inflammation and damage to human organs, including the lungs and heart. In the gut, E.cig vaping promotes inflammation and gut leakiness. Further, E.cig vaping increases tumorigenesis in oral and lung epithelial cells by inducing mutations and suppressing host DNA repair enzymes. It is well known that cigarette (cig) smoking increases the risk of colorectal cancer (CRC). To date, it is unknown whether E.cig vaping impacts CRC development. A mouse model of human familial adenomatous polyposis (CPC-APC) was utilized wherein a mutation in the adenomatous polyposis coli (APC) gene, CDX2-Cre-APCMin/+, leads to the development of colon adenomas within 11-16 weeks. Mice were exposed to air (controls), E.cig vaping, cig, or both (dual exposure). After 4 weeks of 2 h exposures per day (1 h of each for dual exposures), the colon was collected and assessed for polyp number and pathology scores by microscopy. Expression of inflammatory cytokines and cancer stem cell markers were quantified. DNA damage such as double-strand DNA breaks was evaluated by immunofluorescence, western blot, and gene-specific long amplicon qPCR. DNA repair enzyme levels (NEIL-2, NEIL-1, NTH1, and OGG1) were quantified by western blot. Proliferation markers were assessed by RT-qPCR and ELISA. CPC-APC mice exposed to E.cig, cig, and dual exposure developed a higher number of polyps compared to controls. Inflammatory proteins, DNA damage, and cancer stemness markers were higher in E-cig, cig, and dual-exposed mice as well. DNA damage was found to be associated with the suppression of DNA glycosylases, particularly with NEIL-2 and NTH1. E.cig and dual exposure both stimulated cancer cell stem markers (CD44, Lgr-5, DCLK1, and Ki67). The effect of E.cigs on polyp formation and CRC development was less than that of cigs, while dual exposure was more tumorigenic than either of the inhalants alone. E.cig vaping promotes CRC by stimulating inflammatory pathways, mediating DNA damage, and upregulating transcription of cancer stem cell markers. Critically, combining E.cig vaping with cig smoking leads to higher levels of tumorigenesis. Thus, while the chemical composition of these two inhalants, E.cigs and cigs, is highly disparate, they both drive the development of cancer and when combined, a highly common pattern of use, they can have additive or synergistic effects.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, University of California, San Diego, CA, 92093, USA.
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kaili Inouye
- Department of Pathology, University of California, San Diego, CA, 92093, USA
| | - Leanne Dugan
- Department of Pathology, University of California, San Diego, CA, 92093, USA
| | - Stefania Tocci
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Ira Advani
- Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Kenneth Park
- Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Samvel Gaboyan
- Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Nikita Kasaraneni
- Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Benjamin Ma
- Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Tapas K Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Soumita Das
- Department of Pathology, University of California, San Diego, CA, 92093, USA.
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| | - Laura E Crotty Alexander
- Department of Medicine, University of California, San Diego, CA, 92093, USA.
- Medicine Service, VA San Diego Healthcare System, San Diego, CA, 92161, USA.
| |
Collapse
|
6
|
Tang WW, Battistone B, Bauer KM, Weis AM, Barba C, Fadlullah MZH, Ghazaryan A, Tran VB, Lee SH, Agir ZB, Nelson MC, Victor ES, Thibeaux A, Hernandez C, Tantalla J, Tan AC, Rao D, Williams M, Drummond MJ, Beswick EJ, Round JL, Ekiz HA, Voth WP, O'Connell RM. A microRNA-regulated transcriptional state defines intratumoral CD8 + T cells that respond to immunotherapy. Cell Rep 2025; 44:115301. [PMID: 39951377 PMCID: PMC11924119 DOI: 10.1016/j.celrep.2025.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/24/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
The rising incidence of advanced-stage colorectal cancer (CRC) and poor survival outcomes necessitate new and effective therapies. Immune checkpoint inhibitors (ICIs), specifically anti-PD-1 therapy, show promise, yet clinical determinants of a positive response are suboptimal. Here, we identify microRNA-155 (miR-155) as necessary for CD8+ T cell-infiltrated tumors through an unbiased in vivo CRISPR-Cas9 screen identifying functional tumor antigen-specific CD8+ T cell-expressed microRNAs. T cell miR-155 is required for anti-PD-1 responses and for a vital intratumor CD8+ T cell differentiation cascade by repressing Ship-1, inhibiting Tcf-1 and stemness, and subsequently enhancing Cxcr6 expression, anti-tumor immunity, and effector functions. Based on an underlying miR-155-dependent CD8+ T cell transcriptional profile, we identify a gene signature that predicts ICI responses across 12 diverse cancers. Together, our findings support a model whereby miR-155 serves as a central regulator of CD8+ T cell-dependent cancer immunity and ICI responses that may be leveraged for future therapeutics.
Collapse
Affiliation(s)
- William W Tang
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ben Battistone
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Kaylyn M Bauer
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Allison M Weis
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Cindy Barba
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Muhammad Zaki Hidayatullah Fadlullah
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Arevik Ghazaryan
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Van B Tran
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Soh-Hyun Lee
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Z Busra Agir
- Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey
| | - Morgan C Nelson
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Emmanuel Stephen Victor
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Amber Thibeaux
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Colton Hernandez
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jacob Tantalla
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Aik C Tan
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Dinesh Rao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew Williams
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Micah J Drummond
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT 84108, USA
| | - Ellen J Beswick
- Division of Digestive Disease and Nutrition, Department of Internal Medicine, University of Kentucky, Lexington, KY 40508, USA
| | - June L Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - H Atakan Ekiz
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Warren P Voth
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryan M O'Connell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Nagaraja S, Ojeda-Miron L, Zhang R, Oreskovic E, Hu Y, Zeve D, Sharma K, Hyman RR, Zhang Q, Castillo A, Breault DT, Yilmaz ÖH, Buenrostro JD. Clonal memory of colitis accumulates and promotes tumor growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638099. [PMID: 40027722 PMCID: PMC11870415 DOI: 10.1101/2025.02.13.638099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Chronic inflammation is a well-established risk factor for cancer, but the underlying molecular mechanisms remain unclear. Using a mouse model of colitis, we demonstrate that colonic stem cells retain an epigenetic memory of inflammation following disease resolution, characterized by a cumulative gain of activator protein 1 (AP-1) transcription factor activity. Further, we develop SHARE-TRACE, a method that enables simultaneous profiling of gene expression, chromatin accessibility and clonal history in single cells, enabling high resolution tracking of epigenomic memory. This reveals that inflammatory memory is propagated cell-intrinsically and inherited through stem cell lineages, with certain clones demonstrating dramatically stronger memory than others. Finally, we show that colitis primes stem cells for amplified expression of regenerative gene programs following oncogenic mutation that accelerate tumor growth. This includes a subpopulation of tumors that have exceptionally high AP-1 activity and the additional upregulation of pro-oncogenic programs. Together, our findings provide a mechanistic link between chronic inflammation and malignancy, revealing how long-lived epigenetic alterations in regenerative tissues may contribute to disease susceptibility and suggesting potential therapeutic strategies to mitigate cancer risk in patients with chronic inflammatory conditions.
Collapse
|
8
|
Giri B, Holubar SD, Liska D, Lavryk O, Cohen BL, Valente MA, Steele SR, Duraes LC. Biologic Therapy Is Associated With Improved Oncologic Outcomes in Crohn's Disease-Associated Colorectal Cancer. Dis Colon Rectum 2025; 68:227-233. [PMID: 39847800 DOI: 10.1097/dcr.0000000000003550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
BACKGROUND Patients with Crohn's disease face an elevated risk of colorectal cancer, in part due to underlying chronic inflammation. Biologic therapy is the mainstay of medical treatment; however, the impact of treatment on colorectal cancer-related outcomes remains unclear. OBJECTIVE To investigate the association between prior exposure to biologic treatment and colorectal cancer-related outcomes in patients with underlying Crohn's disease. DESIGN Retrospective cohort study. SETTINGS High volume, tertiary colorectal surgery department. PATIENTS Adults (older than 18 years) diagnosed with Crohn's disease and colorectal cancer who underwent curative operation between 1998 and 2020. INTERVENTIONS Exposure to any biologic IBD medication before cancer diagnosis. MAIN OUTCOME MEASURES Survival and recurrence outcomes. RESULTS A total of 56 patients were included with a median age of 52.5 years (interquartile range, 18.9 years) at the time of surgery; 19 patients (33.9%) were treated with biologics before surgery; 10 (52.6%) received infliximab, 2 (10.5%) received adalimumab, and 7 (36.8%) received multiple biologics. Rectal cancer (57% vs 43.2%, p = 0.02) and well-differentiated or moderately differentiated tumors (93% vs 50%, p = 0.005) were more common in the biologic exposure group. Exposure to biologics was associated with a higher 5-year disease-free survival rate (80% vs 45%, p = 0.048), whereas the 5-year overall survival (93% vs 57%, p = 0.19) and 5-year recurrence rates (7% vs 31%, p = 0.18) were numerically but not statistically significant. LIMITATIONS Retrospective, single-center study. CONCLUSIONS In patients with Crohn's disease and colorectal adenocarcinoma who underwent curative surgery, those previously exposed to biologic therapy were more likely to have well-differentiated or moderately differentiated tumors, which were more likely to be distal to the splenic flexure. Biologic exposure was associated with significantly higher 5-year disease-free survival. These findings suggest that treatment of inflammation in patients with Crohn's disease fundamentally alters carcinogenesis pathways. See Video Abstract. LA TERAPIA BIOLGICA SE ASOCIA CON MEJORES RESULTADOS ONCOLGICOS EN EL CNCER COLORRECTAL ASOCIADO A LA ENFERMEDAD DE CROHN ANTECEDENTES:Los pacientes con enfermedad de Crohn enfrentan un riesgo elevado de cáncer colorrectal, en parte debido a la inflamación crónica subyacente. La terapia biológica es el pilar del tratamiento médico; sin embargo, el impacto del tratamiento en los resultados relacionados con el cáncer colorrectal sigue sin estar claro.OBJETIVO:Investigar la asociación entre la exposición previa al tratamiento biológico y los resultados relacionados con el cáncer colorrectal en pacientes con enfermedad de Crohn subyacente.DISEÑO:Estudio de cohorte retrospectivo.ESCENARIO:Departamento de cirugía colorrectal de alto volumen de tercer nivelPACIENTES:Adultos (>18 años) diagnosticados con enfermedad de Crohn y cáncer colorrectal que se sometieron a una operación curativa entre 1998 y 2020.INTERVENCIÓN(ES):Exposición a cualquier medicamento biológico para la EII antes del diagnóstico de cáncer.PRINCIPALES MEDIDAS DE RESULTADOS:Resultados de supervivencia y recurrenciaRESULTADOS:Se incluyeron 56 pacientes, con una mediana de edad de 52.5 años (RIC: 18.9 años) en el momento de la cirugía; 19 (33.9%) pacientes fueron tratados con agentes biológicos antes de la cirugía; 10 (52.6%) recibieron infliximab, 2 (10.5%) recibieron adalimumab y 7 (36.8%) habían recibido múltiples agentes biológicos. El cáncer rectal (57% frente a 43.2%, p = 0.02) y los tumores bien o moderadamente diferenciados (93% frente a 50%, p = 0.005) fueron más comunes en el grupo de exposición a agentes biológicos. La exposición a agentes biológicos se asoció con una mayor tasa de supervivencia libre de enfermedad a 5 años (80% frente a 45%, p = 0.048), mientras que la supervivencia general a 5 años (93% frente a 57%, p = 0.19) y las tasas de recurrencia a 5 años (7% frente a 31%, p = 0.18) fueron numéricamente, pero no estadísticamente significativas.LIMITACIONES:Estudio retrospectivo de un solo centro.CONCLUSIONES:En pacientes con enfermedad de Crohn y adenocarcinoma colorrectal que se sometieron a cirugía curativa, aquellos expuestos previamente a terapia biológica tuvieron más probabilidades de tener tumores bien/moderadamente diferenciados, y tenían más probabilidades de estar distales al ángulo esplénico, asociados con una supervivencia libre de enfermedad a 5 años significativamente mayor. Estos hallazgos sugieren que el tratamiento de la inflamación en pacientes con enfermedad de Crohn altera fundamentalmente las vías de la carcinogénesis. (Traducción-Dr. Jorge Silva Velazco).
Collapse
Affiliation(s)
- Bhuwan Giri
- Department of Colorectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Ohio
| | - Stefan D Holubar
- Department of Colorectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Ohio
| | - David Liska
- Department of Colorectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Ohio
| | - Olga Lavryk
- Department of Colorectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Ohio
| | - Benjamin L Cohen
- Department of Gastroenterology, Hepatology, and Human Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Ohio
| | - Michael A Valente
- Department of Colorectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Ohio
| | - Scott R Steele
- Department of Colorectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Ohio
| | - Leonardo C Duraes
- Department of Colorectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Ohio
| |
Collapse
|
9
|
Wang P, Zhu H, Jiang S, Liu X, Gao B, Bai W, Xie W, Shao G. Association of systemic inflammatory response index with all-cause and malignant neoplasm mortality in patients with gastrointestinal disease. Transl Cancer Res 2025; 14:272-285. [PMID: 39974397 PMCID: PMC11833371 DOI: 10.21037/tcr-24-1491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/04/2024] [Indexed: 02/21/2025]
Abstract
Background Apart from being a primary cause of morbidity and mortality globally, gastrointestinal (GI) disorders also contribute significantly to the cost of healthcare. In patients with GI diseases, the systemic inflammatory response index (SIRI) is not often used as a marker of systemic immune inflammation to assess mortality-associated risk from malignant neoplasms or all causes. Therefore, the objective of this study was to elaborate on the link between SIRI and all causes and malignant neoplasm mortality in patients with GI disorders. Methods Retrospective analysis was performed using National Health and Nutrition Examination Survey (NHANES) data from 1999 to 2018. Restricted cubic spline (RCS) plots and multivariate Cox proportional hazards regression were used to examine the relationship between SIRI and GI patient mortality from malignant neoplasms and all causes. Data on survival were shown using Kaplan-Meier (KM) survival curves, and these correlations were further explored by subgroup and interaction analyses. Receiver operating characteristic (ROC) curves were generated to evaluate the specificity and sensitivity of SIRI in predicting mortality among patients with GI diseases. Results This study included 4,137 GI patients who were followed comprehensively over 20 years, during which 165 malignant neoplasm mortality and 713 all-cause mortalities were recorded. A nonlinear association between all-cause mortality and SIRI was observed, whereas in GI patients, a linear relationship was identified between SIRI and cancer-related death. The hazard ratio (HR) was 1 at a SIRI level of 1.114, indicating the low-to-high mortality risk change. Participants in the highest quartile (Q4) in the fully adjusted model (model 3) showed a significantly greater likelihood of death from both malignant neoplasms and all-cause relative to those in the lowest quartile (Q1). The mortality HR for malignant neoplasms was 1.74 [95% confidence interval (CI): 1.08-2.82], whereas the HR for all-cause mortality was 2.50 (95% CI: 1.95-3.20). Furthermore, subgroup analysis revealed that higher SIRI was linked with a higher malignant neoplasm mortality risk among male, low-income, smoking, and drinking GI patients. Comparing SIRI to the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index (SII), the ROC curve analysis showed that SIRI had better diagnostic effectiveness. Interaction study verified that SIRI is an independent variable that significantly increases the probability of death from both all-cause and malignant neoplasms. Conclusions The nonlinear positive correlation between the SIRI and the mortality from malignant neoplasms and all-cause in GI patients is highlighted by this study. Elevated SIRI levels were significantly linked to a higher mortality rate from GI disorders, including malignant neoplasms and all-cause. Thus, in GI patients, SIRI can be used as a prognostic marker for mortality and long-term health outcomes prediction.
Collapse
Affiliation(s)
- Peng Wang
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
| | - Hongwei Zhu
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
| | - Shuyuan Jiang
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
| | - Xiaolei Liu
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
| | - Bing Gao
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
| | - Wanfu Bai
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Wei Xie
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
| | - Guo Shao
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
- Center for Translational Medicine and Department of Laboratory Medicine, The Third People’s Hospital of Longgang District, Shenzhen, China
| |
Collapse
|
10
|
León-Vega II, Oregon R, Schnoor M, Vadillo E. From Ulcerative Colitis to Metastatic Colorectal Cancer: The Neutrophil Contribution. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00036-7. [PMID: 39889826 DOI: 10.1016/j.ajpath.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Ulcerative colitis (UC) is an inflammatory colon and rectum disease affecting approximately 5 million people worldwide. There is no cure available for UC, and approximately 8% of patients with UC develop colorectal cancer (CRC) by gradual acquisition of mutations driving the formation of adenomas and their progression to adenocarcinomas and metastatic disease. CRC constitutes 10% of total cancer cases worldwide and 9% of cancer deaths. Both UC and CRC have an increasing incidence worldwide. Although the epithelium has been well studied in UC and CRC, the contributions of neutrophils are less clear. They are rapidly recruited in excessive amounts from peripheral blood to the colon during UC, and their overactivation in the proinflammatory UC tissue environment contributes to tissue damage. In CRC, the role of neutrophils is controversial, but emerging evidence suggests that their role depends on the evolution and context of the disease. The role of neutrophils in the transition from UC to CRC is even less clear. However, recent studies propose neutrophils as therapeutic targets for better clinical management of both diseases. This review summarizes the current knowledge on the roles of neutrophils in UC and CRC.
Collapse
Affiliation(s)
| | - Reyna Oregon
- Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine, Cinvestav-IPN, Mexico City, Mexico.
| | - Eduardo Vadillo
- Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Mexico City, Mexico.
| |
Collapse
|
11
|
D’Ambrosio R, Cavallo S, Brunetti R, Pellicanò R, Vaccaro E, Borriello G, Paradiso R, Serpe FP, Lambiase S, Bruzzese F, Palma G, Rea D, Barbieri A, D’Amore M, Dimatteo M, degli Uberti B, Paciello O, Baldi L. The Use of Antimicrobials in Animal Husbandry as a Potential Factor for the Increased Incidence of Colorectal Cancer: Food Safety and Kinetics in a Murine Model. Animals (Basel) 2025; 15:315. [PMID: 39943084 PMCID: PMC11815752 DOI: 10.3390/ani15030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The aim of this research was to investigate the effects of the prolonged use of the broad-spectrum antimicrobial widely used in animal husbandry. By means of a mouse model, a translational study was carried out on immunocompetent mice (with a complete immune system). This study highlighted the effect of antimicrobial residues taken in with food on the growth time of cancer and on alterations to the gut microbiota. This project considered the fight against antimicrobial resistance from a One Health perspectivethrough collaboration between human medicine and veterinary medicine. Regarding food safety, antimicrobial residues in products of animal origin are rarely detected; they therefore constitute a negligible factor in determining colorectal cancer.
Collapse
Affiliation(s)
- Rosa D’Ambrosio
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Stefania Cavallo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Roberta Brunetti
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Roberta Pellicanò
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Emanuela Vaccaro
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Napoli, Italy; (E.V.); (O.P.)
| | - Giorgia Borriello
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Rubina Paradiso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Francesco Paolo Serpe
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Sara Lambiase
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Francesca Bruzzese
- Experimental Animal Unit, Istituto Nazionale Tumori-IRCCS-Fondazione “G. Pascale”, 80131 Naples, Italy; (F.B.); (G.P.)
| | - Giuseppe Palma
- Experimental Animal Unit, Istituto Nazionale Tumori-IRCCS-Fondazione “G. Pascale”, 80131 Naples, Italy; (F.B.); (G.P.)
| | - Domenica Rea
- Laboratory Medicine Unit, Istituto Nazionale Tumori- IRCCS- Fondazione “G. Pascale”, 80131 Naples, Italy;
| | - Antonio Barbieri
- ASL Salerno UOC Laboratorio d’Analisi, Vallo della Lucania, 84078 Salerno, Italy
| | - Marianna D’Amore
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Maria Dimatteo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Barbara degli Uberti
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Napoli, Italy; (E.V.); (O.P.)
| | - Loredana Baldi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| |
Collapse
|
12
|
Zhang X, Li B, Lan T, Chiari C, Ye X, Wang K, Chen J. The role of interleukin-17 in inflammation-related cancers. Front Immunol 2025; 15:1479505. [PMID: 39906741 PMCID: PMC11790576 DOI: 10.3389/fimmu.2024.1479505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025] Open
Abstract
Emerging evidence indicates a correlation between inflammation and the development and progression of cancer. Among the various inflammatory signals, interleukin-17 (IL-17) family cytokines serve as a critical link between inflammation and cancer. IL-17 is a highly versatile pro-inflammatory cytokine that plays a pivotal role in host defense, tissue repair, the pathogenesis of inflammatory diseases, and cancer progression. During the early stages of tumorigenesis, IL-17 signaling directly promotes the proliferation of tumor cells. Conversely, IL-17 has been shown to exhibit antitumor immunity in several models of grafted subcutaneous tumors. Additionally, dynamic changes in the microbiome can influence the secretion of IL-17, thereby affecting tumor development. The specific role of IL-17 is contingent upon its functional classification, spatiotemporal characteristics, and the stage of tumor development. In this review, we introduce the fundamental biology of IL-17 and the expression profile of its receptors in cancer, while also reviewing and discussing recent advancements regarding the pleiotropic effects and mechanisms of IL-17 in inflammation-related cancers. Furthermore, we supplement our discussion with insights into the mechanisms by which IL-17 impacts cancer progression through interactions with the microbiota, and we explore the implications of IL-17 in cancer therapy. This comprehensive analysis aims to enhance our understanding of IL-17 and its potential role in cancer treatment.
Collapse
Affiliation(s)
- Xingru Zhang
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Bangjie Li
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Tian Lan
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Conner Chiari
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Xiaoyang Ye
- College of Engineering, Northeastern University, Seattle, WA, United States
| | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Ju Chen
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| |
Collapse
|
13
|
Fousekis FS, Mpakogiannis K, Filis P, Skamnelos A, Christodoulou DK, Mauri D, Katsanos KH. Exploring Chemoprevention in Colorectal Cancer for Patients with Inflammatory Bowel Disease: Mechanisms of Action and Clinical Aspects. Cancers (Basel) 2025; 17:229. [PMID: 39858011 PMCID: PMC11764170 DOI: 10.3390/cancers17020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Inflammatory bowel diseases (IBDs) have been associated with a higher risk of colorectal cancer (CRC) development and chronic colonic inflammation seems to have a critical role in the pathogenesis of CRC in patients suffering from IBD. In respect to that, surveillance colonoscopy at regular intervals is recommended in patients with colitis. Objective: This review aims to explore the chemopreventive potential of a range of agents, including mesalazine, thiopurines, anti-TNF agents, statins, ursodeoxycholic acid, aspirin, folic acid, and nutraceuticals. Results: These agents target inflammation, oxidative stress, and oncogenic pathways, thereby offering the potential to reduce the risk of CRC in patients with IBD. Anti-TNF agents, such as infliximab and adalimumab, not only reduce colonic inflammation, but also play a protective role against CRC by lessening the carcinogenic effects associated with prolonged inflammatory processes. Furthermore, mesalazine and thiopurines have demonstrated established efficacy, while newer biologics, including interleukin inhibitors, show promising advancements. Although nutraceuticals and dietary interventions require further clinical validation, they offer additional possibilities for non-pharmacological prevention. Conclusion: Despite progress, knowledge gaps persist regarding the long-term safety, optimal dosing, and combined use of these agents. A significant reduction in the incidence of CRC in patients with IBD could be achieved by advancing chemoprevention and personalizing strategies.
Collapse
Affiliation(s)
- Fotios S. Fousekis
- Department of Gastroenterology, University Hospital of Ioannina, 455 00 Ioannina, Greece; (K.M.); (A.S.); (D.K.C.); (K.H.K.)
| | - Konstantinos Mpakogiannis
- Department of Gastroenterology, University Hospital of Ioannina, 455 00 Ioannina, Greece; (K.M.); (A.S.); (D.K.C.); (K.H.K.)
| | - Panagiotis Filis
- Department of Medical Oncology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 455 00 Ioannina, Greece (D.M.)
| | - Alexandros Skamnelos
- Department of Gastroenterology, University Hospital of Ioannina, 455 00 Ioannina, Greece; (K.M.); (A.S.); (D.K.C.); (K.H.K.)
| | - Dimitrios K. Christodoulou
- Department of Gastroenterology, University Hospital of Ioannina, 455 00 Ioannina, Greece; (K.M.); (A.S.); (D.K.C.); (K.H.K.)
| | - Davide Mauri
- Department of Medical Oncology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 455 00 Ioannina, Greece (D.M.)
| | - Konstantinos H. Katsanos
- Department of Gastroenterology, University Hospital of Ioannina, 455 00 Ioannina, Greece; (K.M.); (A.S.); (D.K.C.); (K.H.K.)
| |
Collapse
|
14
|
Matos P, Jordan P. Alternative Splicing at the Crossroad of Inflammatory Bowel Diseases and Colitis-Associated Colon Cancer. Cancers (Basel) 2025; 17:219. [PMID: 39858001 PMCID: PMC11764256 DOI: 10.3390/cancers17020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The risk of developing colorectal cancer (CRC) is increased in ulcerative colitis patients compared to the general population. This increased risk results from the state of chronic inflammation, a well-known tumour-promoting condition. This review explores the pathologic and molecular characteristics of colitis-associated colon cancer (CAC), emphasizing the distinct features from sporadic CRC. We focus on the key signalling pathways involved in the transition to CAC, highlighting the emerging role of alternative splicing in these processes, namely on how inflammation-induced alternative splicing can significantly contribute to the increased CRC risk observed among UC patients. This review calls for more transcriptomic studies to elucidate the molecular mechanisms through which inflammation-induced alternative splicing drives CAC pathogenesis. A better understanding of these splicing events is crucial as they may reveal novel biomarkers for disease progression and have the potential to target changes in alternative splicing as a therapeutic strategy.
Collapse
Affiliation(s)
- Paulo Matos
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
15
|
Giammona A, Galuzzi BG, Imperia E, Gervasoni C, Remedia S, Restaneo L, Nespoli M, De Gara L, Tani F, Cicala M, Guarino MPL, Porro D, Cerasa A, Lo Dico A, Altomare A, Bertoli G. Chronic Gastrointestinal Disorders and miRNA-Associated Disease: An Up-to-Date. Int J Mol Sci 2025; 26:413. [PMID: 39796266 PMCID: PMC11720538 DOI: 10.3390/ijms26010413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic gastrointestinal disorders such as inflammatory bowel diseases (IBDs) and irritable bowel syndrome (IBS) impose significant health burdens globally. IBDs, encompassing Crohn's disease and ulcerative colitis, are multifactorial disorders characterized by chronic inflammation of the gastrointestinal tract. On the other hand, IBS is one of the principal gastrointestinal tract functional disorders and is characterized by abdominal pain and altered bowel habits. Although the precise etiopathogenesis of these disorders remains unclear, mounting evidence suggests that non-coding RNA molecules play crucial roles in regulating gene expression associated with inflammation, apoptosis, oxidative stress, and tissue permeability, thus influencing disease progression. miRNAs have emerged as possible reliable biomarkers, as they can be analyzed in the biological fluids of patients at a low cost. This review explores the roles of miRNAs in IBDs and IBS, focusing on their involvement in the control of disease hallmarks. By an extensive literature review and employing bioinformatics tools, we identified the miRNAs frequently studied concerning these diseases. Ultimately, specific miRNAs could be proposed as diagnostic biomarkers for IBDs and IBS. Their ability to be secreted into biofluids makes them promising candidates for non-invasive diagnostic tools. Therefore, understanding molecular mechanisms through the ways in which they regulate gastrointestinal inflammation and immune responses could provide new insights into the pathogenesis of IBDs and IBS and open avenues for miRNA-based therapeutic interventions.
Collapse
Affiliation(s)
- Alessandro Giammona
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Bruno Giovanni Galuzzi
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Elena Imperia
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.R.); (L.D.G.); (A.A.)
| | - Clarissa Gervasoni
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Sofia Remedia
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Dipartimento di Scienze della Terra e del Mare (DISTEM), Università di Palermo, Via Archirafi, 22, 90123 Palermo, Italy
| | - Laura Restaneo
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.R.); (L.D.G.); (A.A.)
| | - Martina Nespoli
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Laura De Gara
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.R.); (L.D.G.); (A.A.)
| | - Flaminia Tani
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Michele Cicala
- Research Unit of Gastroenterology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.C.); (M.P.L.G.)
- Unit of Gastroenterology, Fondazione Policlinico Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Michele Pier Luca Guarino
- Research Unit of Gastroenterology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.C.); (M.P.L.G.)
- Unit of Gastroenterology, Fondazione Policlinico Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Danilo Porro
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano Bicocca, 20126 Milan, Italy
| | - Antonio Cerasa
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Alessia Lo Dico
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Annamaria Altomare
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.R.); (L.D.G.); (A.A.)
- Research Unit of Gastroenterology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.C.); (M.P.L.G.)
| | - Gloria Bertoli
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
16
|
Yin W, Ao Y, Jia Q, Zhang C, Yuan L, Liu S, Xiao W, Luo G, Shi X, Xin C, Chen M, Lü M, Yu Z. Integrated singlecell and bulk RNA-seq analysis identifies a prognostic signature related to inflammation in colorectal cancer. Sci Rep 2025; 15:874. [PMID: 39757274 PMCID: PMC11701073 DOI: 10.1038/s41598-024-84998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025] Open
Abstract
Inflammation can influence the development of CRC as well as immunotherapy and plays a key role in CRC. Therefore, this study aimed to investigate the potential of inflammation-related genes in CRC risk prediction. Inflammation gene models were constructed and validated by combining transcriptomic and single-cell data from TCGA and GEO databases, and the expression of inflammation-related genes was verified by RT-qPCR. We identified two molecular subtypes and three genetic subtypes, two risk subgroups according to median risk values, constructed a prognostic model including thirteen genes (TIMP1, GDF15, UCN, KRT4, POU4F1, NXPH1, SIX2, NPC1L1, KLK12, IGFL1, FOXD1, ASPG, and CYP4F8), and validated the performance of each aspect of the model in an external database. Patients in the high-risk group had worse survival with reduced immune cell infiltration and a greater tumor mutational load. The risk score correlated strongly with the immune checkpoints PD1, PDL1, PDL2, and CTLA4, and it is possible that high-risk patients are more sensitive to treatment involving immune checkpoints. In the single-cell data, GDF15 was most significantly expressed in cancer cell populations. Therefore, we further validated their expression in cells and tissues using qPCR. In summary, we developed a prognostic marker associated with inflammatory genes to provide new directions for subsequent studies and to help clinicians assess the prognosis of CRC patients as well as to develop personalized treatment strategies.
Collapse
Affiliation(s)
- Wen Yin
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Yanting Ao
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Qian Jia
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Chao Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Liping Yuan
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Sha Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Wanmeng Xiao
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Gang Luo
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Xiaomin Shi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Chen Xin
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Maolin Chen
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Muhan Lü
- The Affiliated Hospital of Southwest Medical University, Luzhou City, China.
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou City, China.
| | - Zehui Yu
- Laboratory Animal Center, Southwest Medical University, Luzhou City, China.
| |
Collapse
|
17
|
Farombi EO, Ajayi BO, Ajeigbe OF, Maruf OR, Anyebe DA, Opafunso IT, Adedara IA. Mechanistic exploration of 6-shogaol's preventive effects on azoxymethane and dextran sulfate sodium -induced colorectal cancer: involvement of cell proliferation, apoptosis, carcinoembryonic antigen, wingless-related integration site signaling, and oxido-inflammation. Toxicol Mech Methods 2025; 35:1-10. [PMID: 39034841 DOI: 10.1080/15376516.2024.2381798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/04/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Colorectal cancer (CRC) poses a significant global health burden, being the third most prevalent cancer and the second most significant contributor to cancer-related deaths worldwide. Preventive strategies are crucial to combat this rising incidence. 6-shogaol, derived from ginger, has shown promise in preventing and treating various cancers. This study investigated the preventive effects of 6-shogaol on azoxymethane (AOM) and dextran sulfate sodium (DSS)-induced CRC in mice. Forty male BALB/c mice were randomly divided into control, 6-shogaol, AOM + DSS, and 6-shogaol + AOM + DSS. Mice in the control group received corn oil for 16 weeks, while those in the 6-Shogaol group were administered 20 mg/kg of 6-shogaol for 16 weeks. The AOM + DSS group received a single intraperitoneal dose (ip) of 10 mg/kg of AOM, followed by three cycles of 2.5% DSS in drinking water. The 6-shogaol + AOM + DSS group received both 6-shogaol for 16 weeks and a single ip of 10 mg/kg of AOM, followed by three cycles of 2.5% DSS in drinking water. The AOM + DSS-treated mice exhibited reduced food consumption, colon weight, and colon length, along with increased tumor formation. Co-administration of 6-shogaol effectively reversed these changes, inhibiting CRC development. Histopathological analysis revealed protective effects of 6-shogaol against colonic insults and modulation of inflammatory responses. 6-shogaol significantly reduced Carcinoembryonic antigen and Kiel 67 levels, indicating inhibition of tumor cell proliferation. Mechanistically, 6-shogaol promoted apoptosis by upregulating protein 53 and caspase-3 expression, and it effectively restored the balance of the Wingless-related integration site signaling pathway by regulating β-catenin and adenomatous polyposis coli levels. Moreover, 6-shogaol demonstrated anti-inflammatory effects, reducing myeloperoxidase, Tumor necrosis factor alpha, and cyclooxygenase-2 levels in AOM/DSS-treated mice. Additionally, 6-shogaol restored redox homeostasis by reducing lipid peroxidation and nitrosative stress and enhancing antioxidant enzyme activities. The findings suggest that 6-shogaol inhibits cell proliferation, induces apoptosis, regulates Wnt signaling, suppresses inflammation, and restores redox homeostasis, providing comprehensive insights into its potential therapeutic benefits for CRC.
Collapse
Affiliation(s)
- Ebenezer Olatunde Farombi
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Biochemistry, College of Natural and Applied Sciences, Chrisland University, Abeokuta, Nigeria
| | - Babajide Oluwaseun Ajayi
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Oncopreventives and Systems Oncology Research Laboratory, Biochemistry Unit, Department of Chemical Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Olufunke Florence Ajeigbe
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Opeyemi Rabiat Maruf
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Daniel Abu Anyebe
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ifeoluwa Tobi Opafunso
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac Adegboyega Adedara
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
18
|
Chakraborty A, Midde A, Chakraborty P, Adhikary S, Kumar S, Arri N, Chandra Das N, Sen Gupta PS, Banerjee A, Mukherjee S. Revisiting Luteolin Against the Mediators of Human Metastatic Colorectal Carcinoma: A Biomolecular Approach. J Cell Biochem 2025; 126:e30654. [PMID: 39300917 DOI: 10.1002/jcb.30654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Metastatic colorectal carcinoma (mCRC) is one of the prevalent subtypes of human cancers and is caused by the alterations of various lifestyle and diet-associated factors. β-catenin, GSK-3β, PI3K-α, AKT1, and NF-κB p50 are known to be the critical regulators of tumorigenesis and immunopathogenesis of mCRC. Unfortunately, current drugs have limited efficacy, side effects and can lead to chemoresistance. Therefore, searching for a nontoxic, efficacious anti-mCRC agent is crucial and of utmost interest. The present study demonstrates the identification of a productive and nontoxic anti-mCRC agent through a five-targets (β-catenin, GSK-3β, PI3K-α, AKT1, and p50)-based and three-tier (binding affinity, pharmacokinetics, and pharmacophore) screening strategy involving a series of 30 phytocompounds having a background of anti-inflammatory/anti-mCRC efficacy alongside 5-fluorouracil (FU), a reference drug. Luteolin (a phyto-flavonoid) was eventually rendered as the most potent and safe phytocompound. This inference was verified through three rounds of validation. Firstly, luteolin was found to be effective against the different mCRC cell lines (HCT-15, HCT-116, DLD-1, and HT-29) without hampering the viability of non-tumorigenic ones (RWPE-1). Secondly, luteolin was found to curtail the clonogenicity of CRC cells, and finally, it also disrupted the formation of colospheroids, a characteristic of metastasis. While studying the mechanistic insights, luteolin was found to inhibit β-catenin activity (a key regulator of mCRC) through direct physical interactions, promoting its degradation by activating GSK3-β and ceasing its activation by inactivating AKT1 and PI3K-α. Luteolin also inhibited p50 activity, which could be useful in mitigating mCRC-associated proinflammatory milieu. In conclusion, our study provides evidence on the efficacy of luteolin against the critical key regulators of immunopathogenesis of mCRC and recommends further studies in animal models to determine the effectiveness efficacy of this natural compound for treating mCRC in the future.
Collapse
Affiliation(s)
- Ankita Chakraborty
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Advaitha Midde
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pritha Chakraborty
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sourin Adhikary
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
- Food Toxicology Laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Simran Kumar
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Navpreet Arri
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nabarun Chandra Das
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D. Y. Patil International University, Pune, Maharashtra, India
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Suprabhat Mukherjee
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
19
|
La Vecchia M, Sala G, Sculco M, Aspesi A, Dianzani I. Genetics, diet, microbiota, and metabolome: partners in crime for colon carcinogenesis. Clin Exp Med 2024; 24:248. [PMID: 39470880 PMCID: PMC11522171 DOI: 10.1007/s10238-024-01505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
Colorectal cancer (CRC) ranks among the most prevalent malignant tumors worldwide, with a multifactorial etiology encompassing genetic, environmental, and life-style factors, as well as the intestinal microbiota and its metabolome. These risk factors often work together in specific groups of patients, influencing how CRC develops and progresses. Importantly, alterations in the gut microbiota act as a critical nexus in this interplay, significantly affecting susceptibility to CRC. This review highlights recent insights into unmodifiable and modifiable risk factors for CRC and how they might interact with the gut microbiota and its metabolome. Understanding the mechanisms of these interactions will help us develop targeted, precision-medicine strategies that can adjust the composition of the gut microbiota to meet individual health needs, preventing or treating CRC more effectively.
Collapse
Affiliation(s)
- Marta La Vecchia
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Gloria Sala
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Marika Sculco
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Anna Aspesi
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Irma Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy.
| |
Collapse
|
20
|
Shahgoli VK, Noorolyai S, Ahmadpour Youshanlui M, Saeidi H, Nasiri H, Mansoori B, Holmskov U, Baradaran B. Inflammatory bowel disease, colitis, and cancer: unmasking the chronic inflammation link. Int J Colorectal Dis 2024; 39:173. [PMID: 39465427 PMCID: PMC11513726 DOI: 10.1007/s00384-024-04748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Chronic inflammation is a significant driver in the development of various diseases, including cancer. Colitis-associated colorectal cancer (CA-CRC) refers to the increased risk of colorectal cancer in individuals with chronic inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn's disease. METHODS This narrative review examines the link between chronic inflammation and CA-CRC. A comprehensive literature search was conducted using PubMed, Scopus, and Web of Science, focusing on studies published between 2000 and 2024. Studies were selected based on relevance to the role of inflammation in CA-CRC, specifically targeting molecular pathways and clinical implications. Both clinical and mechanistic studies were reviewed. CONCLUSION Sustained inflammation in the colon fosters a pro-tumorigenic environment, leading to the initiation and progression of CA-CRC. Prevention strategies must focus on controlling chronic inflammation, optimizing IBD management, and implementing regular screenings. Emerging therapies targeting key inflammatory pathways and immune responses, along with microbiome modulation, hold promise for reducing CA-CRC risk. Understanding these molecular mechanisms provides a path toward personalized treatment and better outcomes for patients with IBD at risk of colorectal cancer.
Collapse
Affiliation(s)
- Vahid Khaze Shahgoli
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Saeed Noorolyai
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Saeidi
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Uffe Holmskov
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Behzad Baradaran
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Ahmad MS, Braoudaki M, Siddiqui SS. Differential expression of ST6GALNAC1 and ST6GALNAC2 and their clinical relevance to colorectal cancer progression. PLoS One 2024; 19:e0311212. [PMID: 39348343 PMCID: PMC11441655 DOI: 10.1371/journal.pone.0311212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024] Open
Abstract
Colorectal cancer (CRC) has become a significant global health concern and ranks among the leading causes of morbidity and mortality worldwide. Due to its malignant nature, current immunotherapeutic treatments are used to tackle this issue. However, not all patients respond positively to treatment, thereby limiting clinical effectiveness and requiring the identification of novel therapeutic targets to optimise current strategies. The putative ligand of Siglec-15, Sialyl-Tn (STn), is associated with tumour progression and is synthesised by the sialyltransferases ST6GALNAC1 and ST6GALNAC2. However, the deregulation of both sialyltransferases within the literature remain limited, and the involvement of microRNAs (miRNAs) in STn production require further elucidation. Here, we identified miRNAs involved in the regulation of ST6GALNAC1 via a computational approach and further analysis of miRNA binding sites were determined. In silico tools predicted miR-21, miR-30e and miR-26b to regulate the ST6GALNAC1 gene, all of which had shown significant upregulated expression in the tumour cohort. Moreover, each miRNA displayed a high binding affinity towards the seed region of ST6GALNAC1. Additionally, enrichment analysis outlined pathways associated with several cancer hallmarks, including epithelial to mesenchymal transition (EMT) and MYC targets associated with tumour progression. Furthermore, our in silico findings demonstrated that the ST6GALNAC1 expression profile was significantly downregulated in CRC tumours, and its low expression correlated with poor survival outcomes when compared with patient survival data. In comparison to its counterpart, there were no significant differences in the expression of ST6GALNAC2 between normal and malignant tissues, which was further evidenced in our immunohistochemistry analysis. Immunohistochemistry staining highlighted significantly higher expression was more prevalent in normal human tissues with regard to ST6GALNAC1. In conclusion, the integrated in silico analysis highlighted that STn production is not reliant on deregulated sialyltransferase expression in CRC, and ST6GALNAC1 expression is regulated by several oncomirs. We proposed the involvement of other sialyltransferases in the production of the STn antigen and CRC progression via the Siglec-15/Sia axis.
Collapse
Affiliation(s)
- Mohammed Saqif Ahmad
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Maria Braoudaki
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
22
|
Khan F, Abdulla N, du Plessis TL, Karlsson K, Barrow P, Bebington B, Gu L, Kaur M. Identification and Validation of Biomarkers to Predict Early Diagnosis of Inflammatory Bowel Disease and Its Progression to Colorectal Cancer. Biochem Genet 2024:10.1007/s10528-024-10917-z. [PMID: 39325241 DOI: 10.1007/s10528-024-10917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Inflammatory bowel disease (IBD) has become a common global health problem as prevalence continues to rise. It is often associated with increased risk of colorectal cancer (CRC) development. Limitations in current IBD biomarker-based diagnosis hinder the accuracy of early detection of CRC progression. Therefore, in this study, we proposed the use of transcription factor (TF)-based biomarkers that can potentially detect the transition of IBD to CRC. Various bioinformatic analysis and online database validations, and RT-qPCR validations were performed to identify possible diagnostic TFs. RUNX1 was identified as a promising TF that regulates 106 IBD/CRC-related genes. The incorporation of RUNX1 in combination with currently known IBD biomarkers, FEV + NFKB1 + RELA, achieved a comparable sensitivity and specificity scores of 99% and 87%, respectively, while RUNX1 in combination with known CRC markers, CEA + TIMP1 + CA724 + CA199, achieved a sensitivity and specificity score of 97% and 99%, respectively. Furthermore, a small pilot RT-qPCR-based analysis confirmed a demarcated shift in expression profiles in CA724, CEA, RUNX1 and TIMP1 in IBD patients compared to CRC patients' tissue samples. Specifically, CA724 is noticeably elevated in IBD, while the levels of CEA, RUNX1 with TIMP1 are probable genes that may be employed in discerning IBD progression to CRC. Therefore, these preliminary results once validated in large patient cohorts could potentially have a significant impact on CRC disease stratification, resulting in a more precise prediction for treatment and treatment outcomes, especially in South African patients.
Collapse
Affiliation(s)
- Farhat Khan
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS-2050, South Africa
| | - Naaziyah Abdulla
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS-2050, South Africa
| | - Thea-Leonie du Plessis
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS-2050, South Africa
| | - Kay Karlsson
- Wits Donald Gordon Medical Centre, Park Town, Johannesburg, 2193, South Africa
| | - Peter Barrow
- Wits Donald Gordon Medical Centre, Park Town, Johannesburg, 2193, South Africa
| | - Brendan Bebington
- Wits Donald Gordon Medical Centre, Park Town, Johannesburg, 2193, South Africa
| | - Liang Gu
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS-2050, South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS-2050, South Africa.
| |
Collapse
|
23
|
Mohd Tamsir N, Mohd Esa N, Shafie NH, Hamzah H. Manilkara zapota (L.) P. Royen Leaf Mitigates Colitis-Associated Colon Cancer through Anti-inflammatory Modulation in BALB/C Mice. Adv Pharmacol Pharm Sci 2024; 2024:1137696. [PMID: 39290583 PMCID: PMC11407886 DOI: 10.1155/2024/1137696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024] Open
Abstract
Colitis-associated colon cancer (CAC) arises from prolonged inflammation of the inner colon lining. An alternative approach to treating or preventing CAC involves the use of natural products such as Manilkara zapota (L.) P. Royen or M. zapota, which has been studied for its medicinal and pharmacological properties. Previous research has demonstrated the anticancer effects of M. zapota leaf aqueous extract (MZLAE) on colon cancer cells. However, no animal study has investigated the effects of MZLAE on CAC. Therefore, this study aimed to assess the potential anti-inflammatory effects of MZLAE on CAC in mice. In the present study, CAC was induced using azoxymethane (AOM) and dextran sodium sulphate (DSS). The mice were randomly assigned into five groups: (a) normal, (b) AOM/DSS, (c) AOM/DSS + 50 mg/kg MZLAE, (d) AOM/DSS + 100 mg/kg MZLAE, and (e) AOM/DSS + 200 mg/kg MZLAE. Various parameters including disease activity index (DAI), colon length and weight, reactive oxygen species (ROS), superoxide, superoxide dismutase (SOD), histopathological assessment, and proinflammatory cytokines expression were analysed. The results indicated that MZLAE improved DAI scores, colon length, colon histological dysplasia and inflammation scores, and SOD level, while also reducing ROS production and expression of proinflammatory cytokines (tumour necrosis factor-alpha (TNF- α) and interleukin 6 (IL-6)). In conclusion, this study suggests that MZLAE may serve as a promising source of antioxidants and anti-inflammatory agents for alleviating CAC.
Collapse
Affiliation(s)
- Norain Mohd Tamsir
- Department of Nutrition Faculty of Medicine and Health Sciences Universiti Putra Malaysia 43400, Serdang, Selangor, Malaysia
| | - Norhaizan Mohd Esa
- Department of Nutrition Faculty of Medicine and Health Sciences Universiti Putra Malaysia 43400, Serdang, Selangor, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds) Institute of Bioscience Universiti Putra Malaysia 43400, Serdang, Selangor, Malaysia
| | - Nurul Husna Shafie
- Department of Nutrition Faculty of Medicine and Health Sciences Universiti Putra Malaysia 43400, Serdang, Selangor, Malaysia
- Laboratory of UPM-MAKNA Cancer Research Institute of Bioscience Universiti Putra Malaysia 43400, Serdang, Selangor, Malaysia
| | - Hazilawati Hamzah
- Department of Veterinary Pathology and Microbiology Faculty of Veterinary Medicine Universiti Putra Malaysia 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
24
|
Sayed IM, Chakraborty A, Inouye K, Dugan L, Tocci S, Advani I, Park K, Hazra TK, Das S, Crotty Alexander LE. E-cigarettes increase the risk of adenoma formation in murine colorectal cancer model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609469. [PMID: 39253444 PMCID: PMC11383026 DOI: 10.1101/2024.08.23.609469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background E-cigarettes (E.cigs) cause inflammation and damage to human organs, including the lungs and heart. In the gut, E.cig vaping promotes inflammation and gut leakiness. Further, E.cig vaping increases tumorigenesis in oral and lung epithelial cells by inducing mutations and suppressing host DNA repair enzymes. It is well known that cigarette (cig) smoking increases the risk of colorectal cancer (CRC). To date, it is unknown whether E.cig vaping impacts CRC development. Methods A mouse model of human familial adenomatous polyposis (CPC-APC) was utilized wherein a mutation in the adenomatous polyposis coli (APC) gene, CDX2-Cre-APCMin/+, leads to the development of colon adenomas within 16 weeks. Mice were exposed to air (controls), E.cig vaping, cig, or both (dual exposure). After 4 weeks of 2-hour exposures per day (1 hour of each for dual exposures), the colon was collected and assessed for polyp number and pathology scores by microscopy. Expression of inflammatory cytokines and cancer stem cell markers were quantified. DNA damage such as double-strand DNA breaks was evaluated by immunofluorescence, western blot and gene-specific long amplicon qPCR. DNA repair enzyme levels (NEIL-2, NEIL-1, NTH1, and OGG1) were quantified by western blot. Proliferation markers were assessed by RT-qPCR and ELISA. Results CPC-APC mice exposed to E.cig, cig, and dual exposure developed a higher number of polyps compared to controls. Inflammatory proteins, DNA damage, and cancer stemness markers were higher in E-cig, cig, and dual-exposed mice as well. DNA damage was found to be associated with the suppression of DNA glycosylases, particularly with NEIL-2 and NTH1. E.cig and dual exposure both stimulated cancer cell stem markers (CD44, Lgr-5, DCLK1, and Ki67). The effect of E.cigs on polyp formation and CRC development was less than that of cigs, while dual exposure was more tumorigenic than either of the inhalants alone. Conclusion E.cig vaping promotes CRC by stimulating inflammatory pathways, mediating DNA damage, and upregulating transcription of cancer stem cell markers. Critically, combining E.cig vaping with cig smoking leads to higher levels of tumorigenesis. Thus, while the chemical composition of these two inhalants, E.cigs and cigs, is highly disparate, they both drive the development of cancer and when combined, a highly common pattern of use, they can have additive or synergistic effects.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, University of California, San Diego, CA, 92093, USA
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kaili Inouye
- Department of Pathology, University of California, San Diego, CA, 92093, USA
| | - Leanne Dugan
- Department of Pathology, University of California, San Diego, CA, 92093, USA
| | - Stefania Tocci
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Ira Advani
- Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Kenneth Park
- Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Tapas K Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Soumita Das
- Department of Pathology, University of California, San Diego, CA, 92093, USA
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Laura E. Crotty Alexander
- Department of Medicine, University of California, San Diego, CA, 92093, USA
- Medicine Service, VA San Diego Healthcare System, San Diego, CA, 92161, USA
| |
Collapse
|
25
|
Rais T, Riaz R, Siddiqui T, Shakeel A, Khan A, Zafar H. Innovations in colorectal cancer treatment: trifluridine and tipiracil with bevacizumab for improved outcomes - a review. Front Oncol 2024; 14:1296765. [PMID: 39070141 PMCID: PMC11272516 DOI: 10.3389/fonc.2024.1296765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 06/14/2024] [Indexed: 07/30/2024] Open
Abstract
Colorectal cancer ranks second in cancer-related deaths throughout the world. At the time of diagnosis, at least 20% of the patients with CRC had already developed metastases. Treating and effectively managing metastatic colorectal cancer remains an unsolved task for the health sector. Research and clinical trials have been done to find the best possible solution for patients diagnosed with metastatic colorectal cancer. The approval of the combination therapy of trifluridine and tipiracil with bevacizumab for previously treated metastatic colorectal cancer (CRC) by the Food and Drug Administration (FDA) is a remarkable breakthrough in CRC treatment. Our goal through this article is to give detailed knowledge about the pathogenesis of CRC, its prevalence, and its clinical features. Here, we have also discussed the past medical treatments that have been used for treating mCRC, including the anti-EGFR therapy, aflibercept, ramucirumab, and regorafenib. However, the focus of this document is to assess the combination of LONSURF (trifluridine/tipiracil) and bevacizumab by reviewing the clinical trials and relevant research.
Collapse
Affiliation(s)
- Taruba Rais
- Internal Medicine, Dow University of Health Sciences (DUHS), Karachi, Pakistan
| | - Rumaisa Riaz
- Internal Medicine, Dow University of Health Sciences (DUHS), Karachi, Pakistan
| | - Tasmiyah Siddiqui
- Internal Medicine, Dow University of Health Sciences (DUHS), Karachi, Pakistan
| | - Amna Shakeel
- Internal Medicine, Dow University of Health Sciences (DUHS), Karachi, Pakistan
| | - Afsheen Khan
- Internal Medicine, Dow University of Health Sciences (DUHS), Karachi, Pakistan
| | - Habiba Zafar
- Internal Medicine, Jinnah Sindh Medical University (JSMU), Karachi, Pakistan
| |
Collapse
|
26
|
Axelrad JE, Hashash JG, Itzkowitz SH. AGA Clinical Practice Update on Management of Inflammatory Bowel Disease in Patients With Malignancy: Commentary. Clin Gastroenterol Hepatol 2024; 22:1365-1372. [PMID: 38752967 DOI: 10.1016/j.cgh.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 06/23/2024]
Abstract
DESCRIPTION The purpose of this American Gastroenterological Association (AGA) Institute Clinical Practice Update (CPU) Commentary is to discuss the risks of various malignancies in patients with inflammatory bowel diseases (IBD) and the impact of the available medical therapies on these risks. The CPU will also guide the approach to the patient with IBD who develops a malignancy or the patient with a history of cancer in terms of IBD medication management. METHODS This CPU was commissioned and approved by the AGA Institute CPU committee and the AGA Governing Board to provide timely guidance on a topic of high clinical importance to the AGA membership and underwent internal peer review by the CPU committee and external peer review through standard procedures of Clinical Gastroenterology and Hepatology. This communication incorporates important and recently published studies in the field, and it reflects the experiences of the authors who are experts in the diagnosis and management of IBD.
Collapse
Affiliation(s)
- Jordan E Axelrad
- Inflammatory Bowel Disease Center at NYU Langone Health, Division of Gastroenterology, NYU Grossman School of Medicine, New York, New York.
| | - Jana G Hashash
- Inflammatory Bowel Disease Center, Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida
| | - Steven H Itzkowitz
- Division of Gastroenterology, the Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
27
|
Hiura K, Watanabe M, Hirose N, Nakano K, Okamura T, Sasaki H, Sasaki N. Mitotic Spindle Positioning (MISP) Facilitates Colorectal Cancer Progression by Forming a Complex with Opa Interacting Protein 5 (OIP5) and Activating the JAK2-STAT3 Signaling Pathway. Int J Mol Sci 2024; 25:3061. [PMID: 38474305 DOI: 10.3390/ijms25053061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/09/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Patients with inflammatory bowel disease (IBD) who experience long-term chronic inflammation of the colon are at an increased risk of developing colorectal cancer (CRC). Mitotic spindle positioning (MISP), an actin-binding protein, plays a role in mitosis and spindle positioning. MISP is found on the apical membrane of the intestinal mucosa and helps stabilize and elongate microvilli, offering protection against colitis. This study explored the role of MISP in colorectal tumorigenesis using a database, human CRC cells, and a mouse model for colitis-induced colorectal tumors triggered by azoxymethane (AOM)/dextran sodium sulfate (DSS) treatment. We found that MISP was highly expressed in colon cancer patient tissues and that reduced MISP expression inhibited cell proliferation. Notably, MISP-deficient mice showed reduced colon tumor formation in the AOM/DSS-induced colitis model. Furthermore, MISP was found to form a complex with Opa interacting protein 5 (OIP5) in the cytoplasm, influencing the expression of OIP5 in a unidirectional manner. We also observed that MISP increased the levels of phosphorylated STAT3 in the JAK2-STAT3 signaling pathway, which is linked to tumorigenesis. These findings indicate that MISP could be a risk factor for CRC, and targeting MISP might provide insights into the mechanisms of colitis-induced colorectal tumorigenesis.
Collapse
Affiliation(s)
- Koki Hiura
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| | - Masaki Watanabe
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| | - Naoki Hirose
- The Institute of Experimental Animal Sciences, Faculty of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Hayato Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| |
Collapse
|
28
|
Wayman JA, Yang Z, Angerman E, Bonkowski E, Jurickova I, Chen X, Bejjani AT, Parks L, Parameswaran S, Miethke AG, VanDussen KL, Dhaliwal J, Weirauch MT, Kottyan LC, Denson LA, Miraldi ER. Accessible chromatin maps of inflammatory bowel disease intestine nominate cell-type mediators of genetic disease risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579678. [PMID: 38405748 PMCID: PMC10888857 DOI: 10.1101/2024.02.09.579678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Inflammatory Bowel Disease ( IBD ) is a chronic and often debilitating autoinflammatory condition, with an increasing incidence in children. Standard-of-care therapies lead to sustained transmural healing and clinical remission in fewer than one-third of patients. For children, TNFα inhibition remains the only FDA-approved biologic therapy, providing an even greater urgency to understanding mechanisms of response. Genome-wide association studies ( GWAS ) have identified 418 independent genetic risk loci contributing to IBD, yet the majority are noncoding and their mechanisms of action are difficult to decipher. If causal, they likely alter transcription factor ( TF ) binding and downstream gene expression in particular cell types and contexts. To bridge this knowledge gap, we built a novel resource: multiome-seq (tandem single-nuclei ( sn )RNA-seq and chromatin accessibility ( snATAC )-seq) of intestinal tissue from pediatric IBD patients, where anti-TNF response was defined by endoscopic healing. From the snATAC-seq data, we generated a first-time atlas of chromatin accessibility (putative regulatory elements) for diverse intestinal cell types in the context of IBD. For cell types/contexts mediating genetic risk, we reasoned that accessible chromatin will co-localize with genetic disease risk loci. We systematically tested for significant co-localization of our chromatin accessibility maps and risk variants for 758 GWAS traits. Globally, genetic risk variants for IBD, autoimmune and inflammatory diseases are enriched in accessible chromatin of immune populations, while other traits (e.g., colorectal cancer, metabolic) are enriched in epithelial and stromal populations. This resource opens new avenues to uncover the complex molecular and cellular mechanisms mediating genetic disease risk.
Collapse
|
29
|
Addington E, Sandalli S, Roe AJ. Current understandings of colibactin regulation. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001427. [PMID: 38314762 PMCID: PMC10924459 DOI: 10.1099/mic.0.001427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
The biosynthetic machinery for the production of colibactin is encoded by 19 genes (clbA - S) within the pks pathogenicity island harboured by many E. coli of the B2-phylogroup. Colibactin is a potent genotoxic metabolite which causes DNA-damage and which has potential roles in microbial competition and fitness of pks+ bacteria. Colibactin has also been strongly implicated in the development of colorectal cancer. Given the genotoxicity of colibactin and the metabolic cost of its synthesis, the regulatory system governing the clb cluster is accordingly highly complex, and many of the mechanisms remain to be elucidated. In this review we summarise the current understanding of regulation of colibactin biosynthesis by internal molecular components and how these factors are modulated by signals from the external environment.
Collapse
Affiliation(s)
- Emily Addington
- School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - Sofia Sandalli
- School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - Andrew J. Roe
- School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| |
Collapse
|