1
|
Aparicio B, Theunissen P, Hervas-Stubbs S, Fortes P, Sarobe P. Relevance of mutation-derived neoantigens and non-classical antigens for anticancer therapies. Hum Vaccin Immunother 2024; 20:2303799. [PMID: 38346926 PMCID: PMC10863374 DOI: 10.1080/21645515.2024.2303799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/06/2024] [Indexed: 02/15/2024] Open
Abstract
Efficacy of cancer immunotherapies relies on correct recognition of tumor antigens by lymphocytes, eliciting thus functional responses capable of eliminating tumor cells. Therefore, important efforts have been carried out in antigen identification, with the aim of understanding mechanisms of response to immunotherapy and to design safer and more efficient strategies. In addition to classical tumor-associated antigens identified during the last decades, implementation of next-generation sequencing methodologies is enabling the identification of neoantigens (neoAgs) arising from mutations, leading to the development of new neoAg-directed therapies. Moreover, there are numerous non-classical tumor antigens originated from other sources and identified by new methodologies. Here, we review the relevance of neoAgs in different immunotherapies and the results obtained by applying neoAg-based strategies. In addition, the different types of non-classical tumor antigens and the best approaches for their identification are described. This will help to increase the spectrum of targetable molecules useful in cancer immunotherapies.
Collapse
Affiliation(s)
- Belen Aparicio
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Patrick Theunissen
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Puri Fortes
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Spanish Network for Advanced Therapies (TERAV ISCIII), Spain
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| |
Collapse
|
2
|
Yao R, Xie C, Xia X. Recent progress in mRNA cancer vaccines. Hum Vaccin Immunother 2024; 20:2307187. [PMID: 38282471 PMCID: PMC10826636 DOI: 10.1080/21645515.2024.2307187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024] Open
Abstract
The research and development of messenger RNA (mRNA) cancer vaccines have gradually overcome numerous challenges through the application of personalized cancer antigens, structural optimization of mRNA, and the development of alternative RNA-based vectors and efficient targeted delivery vectors. Clinical trials are currently underway for various cancer vaccines that encode tumor-associated antigens (TAAs), tumor-specific antigens (TSAs), or immunomodulators. In this paper, we summarize the optimization of mRNA and the emergence of RNA-based expression vectors in cancer vaccines. We begin by reviewing the advancement and utilization of state-of-the-art targeted lipid nanoparticles (LNPs), followed by presenting the primary classifications and clinical applications of mRNA cancer vaccines. Collectively, mRNA vaccines are emerging as a central focus in cancer immunotherapy, offering the potential to address multiple challenges in cancer treatment, either as standalone therapies or in combination with current cancer treatments.
Collapse
Affiliation(s)
- Ruhui Yao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
3
|
Cao S, Jia W, Zhao Y, Liu H, Cao J, Li Z. A recent perspective on designing tumor vaccines for tumor immunology. Int Immunopharmacol 2024; 142:113090. [PMID: 39244900 DOI: 10.1016/j.intimp.2024.113090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
With the rapid development of immunotherapy, therapeutic tumor vaccines, which aim to enhance the immunogenicity of tumor cells and activate the patient's immune system to kill tumor cells, as well as eliminate or inhibit tumor growth, have drawn increasing attention in the field of tumor therapy. However, due to the lack of immune cell infiltration, low immunogenicity, immune escape and other problems, the efficacy of tumor vaccine is often limited. Researchers have developed a variety of strategies to enhance tumor immune recognition, such as improving the immunogenicity of tumor antigens, selecting a suitable vaccine platform, or combining tumor vaccines with other anticancer treatments. In this review, we will deliberate on how to overcome the problem of therapeutic tumor vaccines, and discuss the up-to-date progress and achievements in the tumor vaccine development, as well as their future in cancer treatment.
Collapse
Affiliation(s)
- Shougen Cao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Wenyu Jia
- Department of Endocrinology, Qingdao Municipal Hospital, Qingdao 266071, Shandong, China
| | - Yifan Zhao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071 China
| | - Heng Liu
- School of Nursing, Qingdao University, Qingdao 266071 China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071 China.
| | - Zequn Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
4
|
Ren Y, Yue Y, Li X, Weng S, Xu H, Liu L, Cheng Q, Luo P, Zhang T, Liu Z, Han X. Proteogenomics offers a novel avenue in neoantigen identification for cancer immunotherapy. Int Immunopharmacol 2024; 142:113147. [PMID: 39270345 DOI: 10.1016/j.intimp.2024.113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/11/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Cancer neoantigens are tumor-specific non-synonymous mutant peptides that activate the immune system to produce an anti-tumor response. Personalized cancer vaccines based on neoantigens are currently one of the most promising therapeutic approaches for cancer treatment. By utilizing the unique mutations within each patient's tumor, these vaccines aim to elicit a strong and specific immune response against cancer cells. However, the identification of neoantigens remains challenging due to the low accuracy of current prediction tools and the high false-positive rate of candidate neoantigens. Since the concept of "proteogenomics" emerged in 2004, it has evolved rapidly with the increased sequencing depth of next-generation sequencing technologies and the maturation of mass spectrometry-based proteomics technologies to become a more comprehensive approach to neoantigen identification, allowing the discovery of high-confidence candidate neoantigens. In this review, we summarize the reason why cancer neoantigens have become attractive targets for immunotherapy, the mechanism of cancer vaccines and the advances in cancer immunotherapy. Considerations relevant to the application emerging of proteogenomics technologies for neoantigen identification and challenges in this field are described.
Collapse
Affiliation(s)
- Yuqing Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yi Yue
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinyang Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tengfei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.
| |
Collapse
|
5
|
Chen S, Cheng S, Cai J, Liu Z, Li H, Wang P, Li Y, Yang F, Chen K, Qiu M. The current therapeutic cancer vaccines landscape in non-small cell lung cancer. Int J Cancer 2024; 155:1909-1927. [PMID: 39109825 DOI: 10.1002/ijc.35088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 10/04/2024]
Abstract
Currently, conventional immunotherapies for the treatment of non-small cell lung cancer (NSCLC) have low response rates and benefit only a minority of patients, particularly those with advanced disease, so novel therapeutic strategies are urgent deeded. Therapeutic cancer vaccines, a form of active immunotherapy, harness potential to activate the adaptive immune system against tumor cells via antigen cross-presentation. Cancer vaccines can establish enduring immune memory and guard against recurrences. Vaccine-induced tumor cell death prompts antigen epitope spreading, activating functional T cells and thereby sustaining a cancer-immunity cycle. The success of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rendered cancer vaccines a promising avenue, especially when combined with immunotherapy or chemoradiotherapy for NSCLC. This review delves into the intricate antitumor immune mechanisms underlying therapeutic cancer vaccines, enumerates the tumor antigen spectrum of NSCLC, discusses different cancer vaccines progress and summarizes relevant clinical trials. Additionally, we analyze the combination strategies, current limitations, and future prospects of cancer vaccines in NSCLC treatment, aiming to offer fresh insights for their clinical application in managing NSCLC. Overall, cancer vaccines offer promising potential for NSCLC treatment, particularly combining with chemoradiotherapy or immunotherapy could further improve survival in advanced patients. Exploring inhaled vaccines or prophylactic vaccines represents a crucial research avenue.
Collapse
Affiliation(s)
- Shaoyi Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Sida Cheng
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Jingsheng Cai
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Zheng Liu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Haoran Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Peiyu Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Yun Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Kezhong Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| |
Collapse
|
6
|
Baharom F, Hermans D, Delamarre L, Seder RA. Vax-Innate: improving therapeutic cancer vaccines by modulating T cells and the tumour microenvironment. Nat Rev Immunol 2024:10.1038/s41577-024-01091-9. [PMID: 39433884 DOI: 10.1038/s41577-024-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
T cells have a critical role in mediating antitumour immunity. The success of immune checkpoint inhibitors (ICIs) for cancer treatment highlights how enhancing endogenous T cell responses can mediate tumour regression. However, mortality remains high for many cancers, especially in the metastatic setting. Based on advances in the genetic characterization of tumours and identification of tumour-specific antigens, individualized therapeutic cancer vaccines targeting mutated tumour antigens (neoantigens) are being developed to generate tumour-specific T cells for improved therapeutic responses. Early clinical trials using individualized neoantigen vaccines for patients with advanced disease had limited clinical efficacy despite demonstrated induction of T cell responses. Therefore, enhancing T cell activity by improving the magnitude, quality and breadth of T cell responses following vaccination is one current goal for improving outcome against metastatic tumours. Another major consideration is how T cells can be further optimized to function within the tumour microenvironment (TME). In this Perspective, we focus on neoantigen vaccines and propose a new approach, termed Vax-Innate, in which vaccination through intravenous delivery or in combination with tumour-targeting immune modulators may improve antitumour efficacy by simultaneously increasing the magnitude, quality and breadth of T cells while transforming the TME into a largely immunostimulatory environment for T cells.
Collapse
Affiliation(s)
| | - Dalton Hermans
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Robert A Seder
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Jurczak S, Druchok M. Cancer Immunotherapies Ignited by a Thorough Machine Learning-Based Selection of Neoantigens. Adv Biol (Weinh) 2024; 8:e2400114. [PMID: 38971967 DOI: 10.1002/adbi.202400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/02/2024] [Indexed: 07/08/2024]
Abstract
Identification of neoantigens, derived from somatic DNA alterations, emerges as a promising strategy for cancer immunotherapies. However, not all somatic mutations result in immunogenicity, hence, efficient tools to predict the immunogenicity of neoepitopes are needed. A pipeline is presented that provides a comprehensive solution for the identification of neoepitopes based on genomic sequencing data. The pipeline consists of a data pre-processing step and three machine learning predictive steps. The pre-processing step analyzes genomic data for different types of alterations, produces a list of all possible antigens, and determines the human leukocyte antigen (HLA) type and T-cell receptor (TCR) repertoire. The first predictive step performs a classification into antigens and neoantigens, selecting neoantigens for further consideration. The next step predicts the strength of binding between neoantigens and available major histocompatibility complexes of class I (MHC-I). The third step is engaged to predict the likelihood of inducing an immune response. Neoepitopes satisfying all three predictive stages are assumed to be potent candidates to ensure immunogenicity. The predictive pipeline is used in two regimes: selecting neoantigens from patients' sequencing data and generating novel neoantigen candidates. Two different techniques - Monte Carlo and Reinforcement Learning - are implemented to facilitate the generative regime.
Collapse
Affiliation(s)
- Sebastian Jurczak
- SoftServe Inc., 11/13 Building B, Jaworska St., Wroclaw, 53-612, Poland
| | - Maksym Druchok
- SoftServe Inc., 2d Sadova St., Lviv, 79021, Ukraine
- Institute for Condensed Matter Physics, 1 Svientsitskii St., Lviv, 79011, Ukraine
| |
Collapse
|
8
|
Bojarska J, Wolf WM. Short Peptides as Powerful Arsenal for Smart Fighting Cancer. Cancers (Basel) 2024; 16:3254. [PMID: 39409876 PMCID: PMC11476321 DOI: 10.3390/cancers16193254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Short peptides have been coming around as a strong weapon in the fight against cancer on all fronts-in immuno-, chemo-, and radiotherapy, and also in combinatorial approaches. Moreover, short peptides have relevance in cancer imaging or 3D culture. Thanks to the natural 'smart' nature of short peptides, their unique structural features, as well as recent progress in biotechnological and bioinformatics development, short peptides are playing an enormous role in evolving cutting-edge strategies. Self-assembling short peptides may create excellent structures to stimulate cytotoxic immune responses, which is essential for cancer immunotherapy. Short peptides can help establish versatile strategies with high biosafety and effectiveness. Supramolecular short peptide-based cancer vaccines entered clinical trials. Peptide assemblies can be platforms for the delivery of antigens, adjuvants, immune cells, and/or drugs. Short peptides have been unappreciated, especially in the vaccine aspect. Meanwhile, they still hide the undiscovered unlimited potential. Here, we provide a timely update on this highly active and fast-evolving field.
Collapse
Affiliation(s)
- Joanna Bojarska
- Chemistry Department, Institute of Inorganic and Ecological Chemistry, Łódź University of Technology, S. Żeromskiego Str. 116, 90-924 Łódź, Poland;
| | | |
Collapse
|
9
|
Gupta DS, Gupta DS, Abjani NK, Dave Y, Apte K, Kaur G, Kaur D, Saini AK, Sharma U, Haque S, Tuli HS. Vaccine-based therapeutic interventions in lung cancer management: A recent perspective. Med Oncol 2024; 41:249. [PMID: 39316239 DOI: 10.1007/s12032-024-02489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/24/2024] [Indexed: 09/25/2024]
Abstract
The incidence of lung cancer continues to grow globally, contributing to an ever-increasing load on healthcare systems. Emerging evidence has indicated lowered efficacy of conventional treatment strategies, such as chemotherapy, surgical interventions and radiotherapy, prompting the need for exploring alternative interventions. A growing focus on immunotherapy and the development of personalized medicine has paved the way for vaccine-based delivery in lung cancer. With various prominent targets such as CD8+T cells and PD-L1, immune-targeted, anti-cancer vaccines have been evaluated in both, pre-clinical and clinical settings, to improve therapeutic outcomes. However, there are a number of challenges that must be addressed, including the scalability of such delivery systems, heterogeneity of lung cancers, and long-term safety as well as efficacy. In addition to this, natural compounds, in combination with immunotherapy, have gained considerable research interest in recent times. This makes it necessary to explore their role in synergism with immune-targeted agents. The authors of this review aim to offer an overview of recent advances in our understanding of lung cancer pathogenesis, detection and management strategies, and the emergence of immunotherapy with a special focus on vaccine delivery. This finding is supported with evidence from testing in non-human and human models, showcasing promising results. Prospects for phytotherapy have also been discussed, in order to combat some pitfalls and limitations. Finally, the future perspectives of vaccine usage in lung cancer management have also been discussed, to offer a holistic perspective to readers, and to prompt further research in the domain.
Collapse
Affiliation(s)
- Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Daksh Sanjay Gupta
- Vivekanand Education Society's College of Pharmacy, Chembur, Mumbai, Maharashtra, 400074, India
| | - Nosheen Kamruddin Abjani
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Yash Dave
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Ketaki Apte
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India.
| | - Damandeep Kaur
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Adesh Kumar Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
10
|
Chen J, Duan Y, Che J, Zhu J. Dysfunction of dendritic cells in tumor microenvironment and immunotherapy. Cancer Commun (Lond) 2024; 44:1047-1070. [PMID: 39051512 PMCID: PMC11492303 DOI: 10.1002/cac2.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/10/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024] Open
Abstract
Dendritic cells (DCs) comprise diverse cell populations that play critical roles in antigen presentation and triggering immune responses in the body. However, several factors impair the immune function of DCs and may promote immune evasion in cancer. Understanding the mechanism of DC dysfunction and the diverse functions of heterogeneous DCs in the tumor microenvironment (TME) is critical for designing effective strategies for cancer immunotherapy. Clinical applications targeting DCs summarized in this report aim to improve immune infiltration and enhance the biological function of DCs to modulate the TME to prevent cancer cells from evading the immune system. Herein, factors in the TME that induce DC dysfunction, such as cytokines, hypoxic environment, tumor exosomes and metabolites, and co-inhibitory molecules, have been described. Furthermore, several key signaling pathways involved in DC dysfunction and signal-relevant drugs evaluated in clinical trials were identified. Finally, this review provides an overview of current clinical immunotherapies targeting DCs, especially therapies with proven clinical outcomes, and explores future developments in DC immunotherapies.
Collapse
Affiliation(s)
- Jie Chen
- Jecho Institute Co., LtdShanghaiP. R. China
| | - Yuhang Duan
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of EducationBeijingP. R. China
- Shanghai Jiao Tong University, School of PharmacyShanghaiP. R. China
| | - Junye Che
- Jecho Institute Co., LtdShanghaiP. R. China
| | - Jianwei Zhu
- Jecho Institute Co., LtdShanghaiP. R. China
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of EducationBeijingP. R. China
- Shanghai Jiao Tong University, School of PharmacyShanghaiP. R. China
| |
Collapse
|
11
|
Wang X, Niu Y, Bian F. The progress of tumor vaccines clinical trials in non-small cell lung cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03678-z. [PMID: 39179939 DOI: 10.1007/s12094-024-03678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains a significant global health challenge, with high mortality rates and limited treatment options. Tumor vaccines have emerged as a potential therapeutic approach, aiming to stimulate the immune system to specifically target tumor cells. METHODS This study screened 283 clinical trials registered on ClinicalTrials.gov through July 31, 2023. After excluding data that did not meet the inclusion criteria, a total of 108 trials were assessed. Data on registered number, study title, study status, vaccine types, study results, conditions, interventions, outcome measures, sponsor, collaborators, drug target, phases, enrollment, start date, completion date and locations were extracted and analyzed. RESULTS The number of vaccines clinical trials for NSCLC has continued to increase in recent years, the majority of which were conducted in the United States. Most of the clinical trials were at stages ranging from Phase I to Phase II. Peptide-based vaccines accounted for the largest proportion. Others include tumor cell vaccines, DNA/RNA vaccines, viral vector vaccines, and DC vaccines. Several promising tumor vaccine candidates have shown encouraging results in early-phase clinical trials. However, challenges such as heterogeneity of tumor antigens and immune escape mechanisms still need to be addressed. CONCLUSION Tumor vaccines represent a promising avenue in the treatment of NSCLC. Ongoing clinical trials are crucial for optimizing vaccine strategies and identifying the most effective combinations. Further research is needed to overcome existing limitations and translate these promising findings into clinical practice, offering new hope for NSCLC patients.
Collapse
Affiliation(s)
- Xiaomu Wang
- Department of Pharmacy, Xiangyang Key Laboratory of Special Preparation of Vitiligo, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yunping Niu
- Department of Laboratory Medicine, The First People's Hospital of Xiangyang, Xiangyang, Hubei, China
| | - Fang Bian
- Department of Pharmacy, Xiangyang Key Laboratory of Special Preparation of Vitiligo, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
12
|
Liu T, Yao W, Sun W, Yuan Y, Liu C, Liu X, Wang X, Jiang H. Components, Formulations, Deliveries, and Combinations of Tumor Vaccines. ACS NANO 2024; 18:18801-18833. [PMID: 38979917 DOI: 10.1021/acsnano.4c05065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tumor vaccines, an important part of immunotherapy, prevent cancer or kill existing tumor cells by activating or restoring the body's own immune system. Currently, various formulations of tumor vaccines have been developed, including cell vaccines, tumor cell membrane vaccines, tumor DNA vaccines, tumor mRNA vaccines, tumor polypeptide vaccines, virus-vectored tumor vaccines, and tumor-in-situ vaccines. There are also multiple delivery systems for tumor vaccines, such as liposomes, cell membrane vesicles, viruses, exosomes, and emulsions. In addition, to decrease the risk of tumor immune escape and immune tolerance that may exist with a single tumor vaccine, combination therapy of tumor vaccines with radiotherapy, chemotherapy, immune checkpoint inhibitors, cytokines, CAR-T therapy, or photoimmunotherapy is an effective strategy. Given the critical role of tumor vaccines in immunotherapy, here, we look back to the history of tumor vaccines, and we discuss the antigens, adjuvants, formulations, delivery systems, mechanisms, combination therapy, and future directions of tumor vaccines.
Collapse
Affiliation(s)
- Tengfei Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyan Yao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyu Sun
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yihan Yuan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chen Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
13
|
WU D, LI C, WANG Y, HE Z, JIN C, GUO M, CHEN R, ZHOU C. [Antitumor Study of Neoantigen-reactive T Cells Co-expressing IL-7 and CCL19
in Mouse Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:504-513. [PMID: 39147704 PMCID: PMC11331258 DOI: 10.3779/j.issn.1009-3419.2024.106.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Neoantigen reactive T cell (NRT) has the ability to inhibit the growth of tumors expressing specific neoantigens. However, due to the difficult immune infiltration and the inhibition of tumor microenvironment, the therapeutic effect of NRT in solid tumors is limited. In this study, we designed NRT cells (7×19 NRT) that can express both interleukin-7 (IL-7) and chemokine C-C motif ligand 19 (CCL19) in mouse lung cancer cells, and evaluated the difference in anti-tumor effect between 7×19 NRT cells and conventional NRT cells. METHODS We performed next-generation sequencing and neoantigen prediction for mouse Lewis lung carcinoma (LLC), prepared RNA vaccine, cultured NRT cells, constructed retroviral vectors encoding IL-7 and CCL19, transduced NRT cells and IL-7 and CCL19 were successfully expressed, and 7×19 NRT was successfully obtained. The anti-tumor effect was evaluated in vivo and in vitro in mice. RESULTS The 7×19 NRT cells significantly enhanced the proliferation and invasion ability of T cells by secreting IL-7 and CCL19, achieved significant tumor inhibition in the mouse lung cancer and extended the survival period of mice. The T cell infiltration into tumor tissue and the necrosis of tumor tissue increased significantly after 7×19 NRT treatment. In addition, both 7×19 NRT treatment and conventional NRT treatment were safe. CONCLUSIONS The anti-solid tumor ability of NRT cells is significantly enhanced by the arming of IL-7 and CCL19, which is a safe and effective genetic modification of NRT.
Collapse
|
14
|
Cui G, Sun Y, Qu L, Shen C, Sun Y, Meng F, Zheng Y, Zhong Z. Uplifting Antitumor Immunotherapy with Lymph-Node-Targeted and Ratio-Controlled Codelivery of Tumor Cell Lysate and Adjuvant. Adv Healthc Mater 2024; 13:e2303690. [PMID: 38458152 DOI: 10.1002/adhm.202303690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cancer vaccines provide a potential strategy to cure patients. Their clinical utilization and efficacy is, however, limited by incomplete coverage of tumor neoantigens and unspecific and restricted activation of dendritic cells (DCs). Tumor cell lysates (TCLs) containing a broad spectrum of neoantigens, while are considered ideal in formulating personalized vaccines, induce generally poor antigen presentation and transient antitumor immune response. Here, intelligent polymersomal nanovaccines (PNVs) that quantitatively coload, efficiently codeliver, and responsively corelease TCL and CpG adjuvant to lymph node (LN) DCs are developed to boost antigen presentation and to induce specific and robust antitumor immunity. PNVs carrying CpG and ovalbumin (OVA) markedly enhance the maturation, antigen presentation, and downstream T cell activation ability of bone-marrow-derived dendritic cells and induce strong systemic immune response after tail base injection. Remarkably, PNVs carrying CpG and TCL cure 85% of B16-F10 melanoma-bearing mice and generate long-lasting anticancer immune memory at a low dose, protecting all cured mice from tumor rechallenge. These LN-directed PNVs being highly versatile and straightforward opens a new door for personalized cancer vaccines.
Collapse
Affiliation(s)
- Guanhong Cui
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yinping Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Liping Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Cui Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yu Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yiran Zheng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
15
|
Guo X, Yang Y, Qian Z, Chang M, Zhao Y, Ma W, Wang Y, Xing B. Immune landscape and progress in immunotherapy for pituitary neuroendocrine tumors. Cancer Lett 2024; 592:216908. [PMID: 38677640 DOI: 10.1016/j.canlet.2024.216908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Pituitary neuroendocrine tumors (pitNETs) are the second most common primary brain tumors. Despite their prevalence, the tumor immune microenvironment (TIME) and its clinical implications remain largely unexplored. This review provides a comprehensive overview of current knowledge on the immune landscape and advancements in targeted immunotherapy for pitNETs. Macrophages and T cells are principal immune infiltrates within the TIME. Different subtypes of pitNETs display distinct immune patterns, influencing tumor progressive behaviors. PD-L1, the most extensively studied immune checkpoint, is prominently expressed in hormonal pitNETs and correlates with tumor growth and invasion. Cytokines and chemokines including interleukins, CCLs, and CXCLs have complex correlations with tumor subtypes and immune cell infiltration. Crosstalk between macrophages and pitNET cells highlights bidirectional regulatory roles, suggesting potential macrophage-targeted strategies. Recent preclinical studies have demonstrated the efficacy of anti-PD-L1 therapy in a mouse model of corticotroph pitNET. Moreover, anti-PD-1 and/or anti-CTLA-4 immunotherapy has been applied globally in 28 cases of refractory pitNETs, showing more favorable responses in pituitary carcinomas than aggressive pitNETs. In conclusion, the TIME of pitNETs represents a promising avenue for targeted immunotherapy and warrants further investigation.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiying Yang
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Eight-Year Program of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhihong Qian
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Mengqi Chang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Bing Xing
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
16
|
Mahadevan KK, Dyevoich AM, Chen Y, Li B, Sugimoto H, Sockwell AM, McAndrews KM, Sthanam LK, Wang H, Shalapour S, Watowich SS, Kalluri R. Type I conventional dendritic cells facilitate immunotherapy in pancreatic cancer. Science 2024; 384:eadh4567. [PMID: 38935717 DOI: 10.1126/science.adh4567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/23/2024] [Indexed: 06/29/2024]
Abstract
Inflammation and tissue damage associated with pancreatitis can precede or occur concurrently with pancreatic ductal adenocarcinoma (PDAC). We demonstrate that in PDAC coupled with pancreatitis (ptPDAC), antigen-presenting type I conventional dendritic cells (cDC1s) are specifically activated. Immune checkpoint blockade therapy (iCBT) leads to cytotoxic CD8+ T cell activation and elimination of ptPDAC with restoration of life span even upon PDAC rechallenge. Using PDAC antigen-loaded cDC1s as a vaccine, immunotherapy-resistant PDAC was rendered sensitive to iCBT with elimination of tumors. cDC1 vaccination coupled with iCBT identified specific CDR3 sequences in the tumor-infiltrating CD8+ T cells with potential therapeutic importance. This study identifies a fundamental difference in the immune microenvironment in PDAC concurrent with, or without, pancreatitis and provides a rationale for combining cDC1 vaccination with iCBT as a potential treatment option.
Collapse
Affiliation(s)
- Krishnan K Mahadevan
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Allison M Dyevoich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Chen
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingrui Li
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amari M Sockwell
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lakshmi Kavitha Sthanam
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shabnam Shalapour
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
17
|
Hao Q, Long Y, Yang Y, Deng Y, Ding Z, Yang L, Shu Y, Xu H. Development and Clinical Applications of Therapeutic Cancer Vaccines with Individualized and Shared Neoantigens. Vaccines (Basel) 2024; 12:717. [PMID: 39066355 PMCID: PMC11281709 DOI: 10.3390/vaccines12070717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individualized tumor-specific antigens (TSA) entail considerable costs and time due to the variable immunogenicity and response rates of these neoantigens-based vaccines, influenced by factors such as neoantigen response, vaccine types, and combination therapy. Given the crucial role of neoantigen efficacy, a number of bioinformatics algorithms and pipelines have been developed to improve the accuracy rate of prediction through considering a series of factors involving in HLA-peptide-TCR complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. On the other hand, shared neoantigens, originating from driver mutations at hot mutation spots (e.g., KRASG12D), offer a promising and ideal target for the development of therapeutic cancer vaccines. A series of clinical practices have established the efficacy of these vaccines in patients with distinct HLA haplotypes. Moreover, increasing evidence demonstrated that a combination of tumor associated antigens (TAAs) and neoantigens can also improve the prognosis, thus expand the repertoire of shared neoantigens for cancer vaccines. In this review, we provide an overview of the complex process involved in identifying personalized neoantigens, their clinical applications, advances in vaccine technology, and explore the therapeutic potential of shared neoantigen strategies.
Collapse
Affiliation(s)
- Qing Hao
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yuhang Long
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yi Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yiqi Deng
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenyu Ding
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
- Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Center of Clinical Laboratory Medicine, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Gromek P, Senkowska Z, Płuciennik E, Pasieka Z, Zhao LY, Gielecińska A, Kciuk M, Kłosiński K, Kałuzińska-Kołat Ż, Kołat D. Revisiting the standards of cancer detection and therapy alongside their comparison to modern methods. World J Methodol 2024; 14:92982. [PMID: 38983668 PMCID: PMC11229876 DOI: 10.5662/wjm.v14.i2.92982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 06/13/2024] Open
Abstract
In accordance with the World Health Organization data, cancer remains at the forefront of fatal diseases. An upward trend in cancer incidence and mortality has been observed globally, emphasizing that efforts in developing detection and treatment methods should continue. The diagnostic path typically begins with learning the medical history of a patient; this is followed by basic blood tests and imaging tests to indicate where cancer may be located to schedule a needle biopsy. Prompt initiation of diagnosis is crucial since delayed cancer detection entails higher costs of treatment and hospitalization. Thus, there is a need for novel cancer detection methods such as liquid biopsy, elastography, synthetic biosensors, fluorescence imaging, and reflectance confocal microscopy. Conventional therapeutic methods, although still common in clinical practice, pose many limitations and are unsatisfactory. Nowadays, there is a dynamic advancement of clinical research and the development of more precise and effective methods such as oncolytic virotherapy, exosome-based therapy, nanotechnology, dendritic cells, chimeric antigen receptors, immune checkpoint inhibitors, natural product-based therapy, tumor-treating fields, and photodynamic therapy. The present paper compares available data on conventional and modern methods of cancer detection and therapy to facilitate an understanding of this rapidly advancing field and its future directions. As evidenced, modern methods are not without drawbacks; there is still a need to develop new detection strategies and therapeutic approaches to improve sensitivity, specificity, safety, and efficacy. Nevertheless, an appropriate route has been taken, as confirmed by the approval of some modern methods by the Food and Drug Administration.
Collapse
Affiliation(s)
- Piotr Gromek
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zuzanna Senkowska
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Karol Kłosiński
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| |
Collapse
|
19
|
Chaudhry Z, Boyadzhyan A, Sasaninia K, Rai V. Targeting Neoantigens in Cancer: Possibilities and Opportunities in Breast Cancer. Antibodies (Basel) 2024; 13:46. [PMID: 38920970 PMCID: PMC11200483 DOI: 10.3390/antib13020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
As one of the most prevalent forms of cancer worldwide, breast cancer has garnered significant attention within the clinical research setting. While traditional treatment employs a multidisciplinary approach including a variety of therapies such as chemotherapy, hormone therapy, and even surgery, researchers have since directed their attention to the budding role of neoantigens. Neoantigens are defined as tumor-specific antigens that result from a multitude of genetic alterations, the most prevalent of which is the single nucleotide variant. As a result of their foreign nature, neoantigens elicit immune responses upon presentation by Major Histocompatibility Complexes I and II followed by recognition by T cell receptors. Previously, researchers have been able to utilize these immunogenic properties and manufacture neoantigen-specific T-cells and neoantigen vaccines. Within the context of breast cancer, biomarkers such as tumor protein 53 (TP53), Survivin, Partner and Localizer of BRCA2 (PALB2), and protein tyrosine phosphatase receptor T (PTPRT) display exceeding potential to serve as neoantigens. However, despite their seemingly limitless potential, neoantigens must overcome various obstacles if they are to be fairly distributed to patients. For instance, a prolonged period between the identification of a neoantigen and the dispersal of treatment poses a serious risk within the context of breast cancer. Regardless of these current obstacles, it appears highly promising that future research into neoantigens will make an everlasting impact on the health outcomes within the realm of breast cancer. The purpose of this literature review is to comprehensively discuss the etiology of various forms of breast cancer and current treatment modalities followed by the significance of neoantigens in cancer therapeutics and their application to breast cancer. Further, we have discussed the limitations, future directions, and the role of transcriptomics in neoantigen identification and personalized medicine. The concepts discussed in the original and review articles were included in this review article.
Collapse
Affiliation(s)
| | | | | | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (Z.C.); (A.B.); (K.S.)
| |
Collapse
|
20
|
Teodoro Da Silva L, Tiaki Tiyo B, de Jesus Mota S, Mazzilli Ortega M, Justamante Handel Schmitz G, Nosomi Taniwaki N, Mitsue Namiyama Nishina G, José da Silva Duarte A, Miyuki Oshiro T. Effects of Injectable Solutions on the Quality of Monocyte-Derived Dendritic Cells for Immunotherapy. J Immunol Res 2024; 2024:6817965. [PMID: 38962578 PMCID: PMC11221978 DOI: 10.1155/2024/6817965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 07/05/2024] Open
Abstract
Therapeutic vaccines based on monocyte-derived dendritic cells have been shown to be promising strategies and may act as complementary treatments for viral infections, cancers, and, more recently, autoimmune diseases. Alpha-type-1-polarized dendritic cells (aDC1s) have been shown to induce type-1 immunity with a high capacity to produce interleukin-12p70 (IL-12p70). In the clinical use of cell-based therapeutics, injectable solutions can affect the morphology, immunophenotypic profile, and viability of cells before delivery and their survival after injection. In this sense, preparing a cell suspension that maintains the quality of aDC1s is essential to ensure effective immunotherapy. In the present study, monocytes were differentiated into aDC1s in the presence of IL-4 and GM-CSF. On day 5, the cells were matured by the addition of a cytokine cocktail consisting of IFN-α, IFN-γ, IL-1β, TNF-α, and Poly I:C. After 48 hr, mature aDC1s were harvested and suspended in two different solutions: normal saline and Ringer's lactate. The maintenance of cells in suspension was evaluated after 4, 6, and 8 hr of storage. Cell viability, immunophenotyping, and apoptosis analyses were performed by flow cytometry. Cellular morphology was observed by electron microscopy, and the production of IL-12p70 by aDC1s was evaluated by ELISA. Compared with normal saline, Ringer's lactate solution was more effective at maintaining DC viability for up to 8 hr of incubation at 4 or 22°C.
Collapse
Affiliation(s)
- Laís Teodoro Da Silva
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Bruna Tiaki Tiyo
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Silvia de Jesus Mota
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Marina Mazzilli Ortega
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Gabriela Justamante Handel Schmitz
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | - Alberto José da Silva Duarte
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Telma Miyuki Oshiro
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
21
|
Chen MY, Zhang F, Goedegebuure SP, Gillanders WE. Dendritic cell subsets and implications for cancer immunotherapy. Front Immunol 2024; 15:1393451. [PMID: 38903502 PMCID: PMC11188312 DOI: 10.3389/fimmu.2024.1393451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Dendritic cells (DCs) play a central role in the orchestration of effective T cell responses against tumors. However, their functional behavior is context-dependent. DC type, transcriptional program, location, intratumoral factors, and inflammatory milieu all impact DCs with regard to promoting or inhibiting tumor immunity. The following review introduces important facets of DC function, and how subset and phenotype can affect the interplay of DCs with other factors in the tumor microenvironment. It will also discuss how current cancer treatment relies on DC function, and survey the myriad ways with which immune therapy can more directly harness DCs to enact antitumor cytotoxicity.
Collapse
Affiliation(s)
- Michael Y. Chen
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Felicia Zhang
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Simon Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, United States
| | - William E. Gillanders
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
22
|
Lin C, Teng W, Tian Y, Li S, Xia N, Huang C. Immune landscape and response to oncolytic virus-based immunotherapy. Front Med 2024; 18:411-429. [PMID: 38453818 DOI: 10.1007/s11684-023-1048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/15/2023] [Indexed: 03/09/2024]
Abstract
Oncolytic virus (OV)-based immunotherapy has emerged as a promising strategy for cancer treatment, offering a unique potential to selectively target malignant cells while sparing normal tissues. However, the immunosuppressive nature of tumor microenvironment (TME) poses a substantial hurdle to the development of OVs as effective immunotherapeutic agents, as it restricts the activation and recruitment of immune cells. This review elucidates the potential of OV-based immunotherapy in modulating the immune landscape within the TME to overcome immune resistance and enhance antitumor immune responses. We examine the role of OVs in targeting specific immune cell populations, including dendritic cells, T cells, natural killer cells, and macrophages, and their ability to alter the TME by inhibiting angiogenesis and reducing tumor fibrosis. Additionally, we explore strategies to optimize OV-based drug delivery and improve the efficiency of OV-mediated immunotherapy. In conclusion, this review offers a concise and comprehensive synopsis of the current status and future prospects of OV-based immunotherapy, underscoring its remarkable potential as an effective immunotherapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Chaolong Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Wenzhong Teng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Yang Tian
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Shaopeng Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China.
| | - Chenghao Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
23
|
Sanaei MJ, Pourbagheri-Sigaroodi A, Rezvani A, Zaboli E, Salari S, Masjedi MR, Bashash D. Lung cancer vaccination from concept to reality: A critical review of clinical trials and latest advances. Life Sci 2024; 346:122652. [PMID: 38641048 DOI: 10.1016/j.lfs.2024.122652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Lung cancer is a highly lethal malignancy that poses a significant burden on public health worldwide. There have been numerous therapeutic approaches, among which cancer vaccines have emerged as a promising approach to harnessing the patient's immune system to induce long-lasting anti-tumor immunity. The current study aims to provide an overview of cancer vaccination in the context of lung cancer to establish a clearer landscape for lung cancer treatment. To provide a comprehensive review, we not only gathered the published studies of lung cancer vaccination and discussed their effectiveness and safety profile but also analyzed all the relevant clinical trials registered on www.clinicaltrials.gov until March 2024. We demonstrated all utilized vaccine platforms along with having a glance at novel technologies such as mRNA vaccines. The present review discussed the challenges and shortcomings of lung cancer vaccination, as well as the way they could be managed to pave the way for reaching the most optimized vaccine formulation.
Collapse
Affiliation(s)
- Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Rezvani
- Department of Internal Medicine, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Zaboli
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sina Salari
- Department of Medical Oncology-Hematology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Masjedi
- Cancer Control Research Center, Cancer Control Foundation, Iran University of Medical Sciences, Tehran, Iran; Department of Pulmonary Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Huang KCY, Chen WTL, Chen JY, Lee CY, Wu CH, Lai CY, Yang PC, Liang JA, Shiau AC, Chao KSC, Ke TW. Neoantigen-augmented iPSC cancer vaccine combined with radiotherapy promotes antitumor immunity in poorly immunogenic cancers. NPJ Vaccines 2024; 9:95. [PMID: 38821980 PMCID: PMC11143272 DOI: 10.1038/s41541-024-00881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 06/02/2024] Open
Abstract
Although irradiated induced-pluripotent stem cells (iPSCs) as a prophylactic cancer vaccine elicit an antitumor immune response, the therapeutic efficacy of iPSC-based cancer vaccines is not promising due to their insufficient antigenicity and the immunosuppressive tumor microenvironment. Here, we found that neoantigen-engineered iPSC cancer vaccines can trigger neoantigen-specific T cell responses to eradicate cancer cells and increase the therapeutic efficacy of RT in poorly immunogenic colorectal cancer (CRC) and triple-negative breast cancer (TNBC). We generated neoantigen-augmented iPSCs (NA-iPSCs) by engineering AAV2 vector carrying murine neoantigens and evaluated their therapeutic efficacy in combination with radiotherapy. After administration of NA-iPSC cancer vaccine and radiotherapy, we found that ~60% of tumor-bearing mice achieved a complete response in microsatellite-stable CRC model. Furthermore, splenocytes from mice treated with NA-iPSC plus RT produced high levels of IFNγ secretion in response to neoantigens and had a greater cytotoxicity to cancer cells, suggesting that the NA-iPSC vaccine combined with radiotherapy elicited a superior neoantigen-specific T-cell response to eradicate cancer cells. The superior therapeutic efficacy of NA-iPSCs engineered by mouse TNBC neoantigens was also observed in the syngeneic immunocompetent TNBC mouse model. We found that the risk of spontaneous lung and liver metastasis was dramatically decreased by NA-iPSCs plus RT in the TNBC animal model. Altogether, these results indicated that autologous iPSC cancer vaccines engineered by neoantigens can elicit a high neoantigen-specific T-cell response, promote tumor regression, and reduce the risk of distant metastasis in combination with local radiotherapy.
Collapse
Affiliation(s)
- Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 406040, Taiwan, ROC.
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan, ROC.
| | - William Tzu-Liang Chen
- Department of Surgery, School of Medicine, China Medical University, Taichung, 406040, Taiwan, ROC
- Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu, 302, Taiwan, ROC
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - Jia-Yi Chen
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - Chien-Yueh Lee
- Innovation Frontier Institute of Research for Science and Technology, National Taipei University of Technology, Taipei, 106344, Taiwan, ROC
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, 106344, Taiwan, ROC
- Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan, ROC
| | - Chia-Hsin Wu
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, 10055, Taiwan, ROC
| | - Chia-Ying Lai
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 406040, Taiwan, ROC
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - Pei-Chen Yang
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
- Department of Radiotherapy, School of Medicine, China Medical University, Taichung, 406040, Taiwan, ROC
| | - An-Cheng Shiau
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 406040, Taiwan, ROC
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - K S Clifford Chao
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC.
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC.
- Department of Radiotherapy, School of Medicine, China Medical University, Taichung, 406040, Taiwan, ROC.
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC.
- School of Chinese Medicine and Graduate Institute of Chinese Medicine, China Medical University, Taichung, 406040, Taiwan, ROC.
| |
Collapse
|
25
|
Liu Q, Ma H. Cancer biotherapy: review and prospect. Clin Exp Med 2024; 24:114. [PMID: 38801637 PMCID: PMC11130057 DOI: 10.1007/s10238-024-01376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Malignant tumors pose a grave threat to the quality of human life. The prevalence of malignant tumors in China is steadily rising. Presently, clinical interventions encompass surgery, radiotherapy, and pharmaceutical therapy in isolation or combination. Nonetheless, these modalities fail to completely eradicate malignant tumor cells, frequently leading to metastasis and recurrence. Conversely, tumor biotherapy has emerged as an encouraging fourth approach in preventing and managing malignant tumors owing to its safety, efficacy, and minimal adverse effects. Currently, a range of tumor biotherapy techniques are employed, including gene therapy, tumor vaccines, monoclonal antibody therapy, cancer stem cell therapy, cytokine therapy, and adoptive cellular immunotherapy. This study aims to comprehensively review the latest developments in biological treatments for malignant tumors.
Collapse
Affiliation(s)
- Qi Liu
- Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Department of Thoracic Oncology, The Second Affiliated Hospital of Zunyi Medical University, Guizhou, 56300, Zunyi, China
| | - Hu Ma
- Zunyi Medical University, Zunyi, Guizhou, 563000, China.
- Department of Thoracic Oncology, The Second Affiliated Hospital of Zunyi Medical University, Guizhou, 56300, Zunyi, China.
| |
Collapse
|
26
|
Ingels J, De Cock L, Stevens D, Mayer RL, Théry F, Sanchez GS, Vermijlen D, Weening K, De Smet S, Lootens N, Brusseel M, Verstraete T, Buyle J, Van Houtte E, Devreker P, Heyns K, De Munter S, Van Lint S, Goetgeluk G, Bonte S, Billiet L, Pille M, Jansen H, Pascal E, Deseins L, Vantomme L, Verdonckt M, Roelandt R, Eekhout T, Vandamme N, Leclercq G, Taghon T, Kerre T, Vanommeslaeghe F, Dhondt A, Ferdinande L, Van Dorpe J, Desender L, De Ryck F, Vermassen F, Surmont V, Impens F, Menten B, Vermaelen K, Vandekerckhove B. Neoantigen-targeted dendritic cell vaccination in lung cancer patients induces long-lived T cells exhibiting the full differentiation spectrum. Cell Rep Med 2024; 5:101516. [PMID: 38626769 PMCID: PMC11148567 DOI: 10.1016/j.xcrm.2024.101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 05/24/2024]
Abstract
Non-small cell lung cancer (NSCLC) is known for high relapse rates despite resection in early stages. Here, we present the results of a phase I clinical trial in which a dendritic cell (DC) vaccine targeting patient-individual neoantigens is evaluated in patients with resected NSCLC. Vaccine manufacturing is feasible in six of 10 enrolled patients. Toxicity is limited to grade 1-2 adverse events. Systemic T cell responses are observed in five out of six vaccinated patients, with T cell responses remaining detectable up to 19 months post vaccination. Single-cell analysis indicates that the responsive T cell population is polyclonal and exhibits the near-entire spectrum of T cell differentiation states, including a naive-like state, but excluding exhausted cell states. Three of six vaccinated patients experience disease recurrence during the follow-up period of 2 years. Collectively, these data support the feasibility, safety, and immunogenicity of this treatment in resected NSCLC.
Collapse
Affiliation(s)
- Joline Ingels
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium
| | - Laurenz De Cock
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Dieter Stevens
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Respiratory Medicine, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Rupert L Mayer
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, East-Flanders, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, East-Flanders, Belgium
| | - Fabien Théry
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, East-Flanders, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, East-Flanders, Belgium
| | - Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, 1050 Brussels, Brussels, Belgium; Institute for Medical Immunology, Université Libre de Bruxelles, 1050 Brussels, Brussels, Belgium; Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles, 1050 Brussels, Brussels, Belgium; WELBIO Department, WEL Research Institute, 1300 Wavre, Walloon Brabant, Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, 1050 Brussels, Brussels, Belgium; Institute for Medical Immunology, Université Libre de Bruxelles, 1050 Brussels, Brussels, Belgium; Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles, 1050 Brussels, Brussels, Belgium; WELBIO Department, WEL Research Institute, 1300 Wavre, Walloon Brabant, Belgium
| | - Karin Weening
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Saskia De Smet
- GMP Unit Cell Therapy, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Nele Lootens
- GMP Unit Cell Therapy, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Marieke Brusseel
- GMP Unit Cell Therapy, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Tasja Verstraete
- Respiratory Medicine, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Jolien Buyle
- Respiratory Medicine, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Eva Van Houtte
- GMP Unit Cell Therapy, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Pam Devreker
- GMP Unit Cell Therapy, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Kelly Heyns
- GMP Unit Cell Therapy, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Stijn De Munter
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium
| | - Sandra Van Lint
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Respiratory Medicine, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Glenn Goetgeluk
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Sarah Bonte
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, East-Flanders, Belgium
| | - Lore Billiet
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium
| | - Melissa Pille
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Hanne Jansen
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Eva Pascal
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium
| | - Lucas Deseins
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium
| | - Lies Vantomme
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Maarten Verdonckt
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Ria Roelandt
- VIB Single Cell Core, VIB, 9000/3000 Ghent/Leuven, East-Flanders/Flemish Brabant, Belgium
| | - Thomas Eekhout
- VIB Single Cell Core, VIB, 9000/3000 Ghent/Leuven, East-Flanders/Flemish Brabant, Belgium
| | - Niels Vandamme
- VIB Single Cell Core, VIB, 9000/3000 Ghent/Leuven, East-Flanders/Flemish Brabant, Belgium
| | - Georges Leclercq
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Tessa Kerre
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, East-Flanders, Belgium; Hematology, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Floris Vanommeslaeghe
- Nephrology, Ghent University Hospital, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Annemieke Dhondt
- Nephrology, Ghent University Hospital, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Liesbeth Ferdinande
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Pathology, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Jo Van Dorpe
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Pathology, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Liesbeth Desender
- Thoracic and Vascular Surgery, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Frederic De Ryck
- Thoracic and Vascular Surgery, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Frank Vermassen
- Thoracic and Vascular Surgery, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Veerle Surmont
- Respiratory Medicine, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Francis Impens
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, East-Flanders, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, East-Flanders, Belgium
| | - Björn Menten
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Karim Vermaelen
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Respiratory Medicine, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium.
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; GMP Unit Cell Therapy, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium.
| |
Collapse
|
27
|
Dong W, Zhang H, Han L, Zhao H, Zhang Y, Liu S, Zhang J, Niu B, Xiao W. Revealing prognostic insights of programmed cell death (PCD)-associated genes in advanced non-small cell lung cancer. Aging (Albany NY) 2024; 16:8110-8141. [PMID: 38728242 PMCID: PMC11131998 DOI: 10.18632/aging.205807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/26/2024] [Indexed: 05/12/2024]
Abstract
The management of patients with advanced non-small cell lung cancer (NSCLC) presents significant challenges due to cancer cells' intricate and heterogeneous nature. Programmed cell death (PCD) pathways are crucial in diverse biological processes. Nevertheless, the prognostic significance of cell death in NSCLC remains incompletely understood. Our study aims to investigate the prognostic importance of PCD genes and their ability to precisely stratify and evaluate the survival outcomes of patients with advanced NSCLC. We employed Weighted Gene Co-expression Network Analysis (WGCNA), Least Absolute Shrinkage and Selection Operator (LASSO), univariate and multivariate Cox regression analyses for prognostic gene screening. Ultimately, we identified seven PCD-related genes to establish the PCD-related risk score for the advanced NSCLC model (PRAN), effectively stratifying overall survival (OS) in patients with advanced NSCLC. Multivariate Cox regression analysis revealed that the PRAN was the independent prognostic factor than clinical baseline factors. It was positively related to specific metabolic pathways, including hexosamine biosynthesis pathways, which play crucial roles in reprogramming cancer cell metabolism. Furthermore, drug prediction for different PRAN risk groups identified several sensitive drugs explicitly targeting the cell death pathway. Molecular docking analysis suggested the potential therapeutic efficacy of navitoclax in NSCLC, as it demonstrated strong binding with the amino acid residues of C-C motif chemokine ligand 14 (CCL14), carboxypeptidase A3 (CPA3), and C-X3-C motif chemokine receptor 1 (CX3CR1) proteins. The PRAN provides a robust personalized treatment and survival assessment tool in advanced NSCLC patients. Furthermore, identifying sensitive drugs for distinct PRAN risk groups holds promise for advancing targeted therapies in NSCLC.
Collapse
Affiliation(s)
- Weiwei Dong
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100071, P.R. China
| | - He Zhang
- Department of Oncology, The Forth Medical Center of PLA General Hospital, Beijing 100048, P.R. China
| | - Li Han
- Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing 100176, P.R. China
| | - Huixia Zhao
- Department of Oncology, The Forth Medical Center of PLA General Hospital, Beijing 100048, P.R. China
| | - Yue Zhang
- Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing 100176, P.R. China
| | - Siyao Liu
- Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing 100176, P.R. China
| | - Jiali Zhang
- Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing 100176, P.R. China
| | - Beifang Niu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100083, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wenhua Xiao
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100071, P.R. China
| |
Collapse
|
28
|
Kumari K, Singh A, Chaudhary A, Singh RK, Shanker A, Kumar V, Haque R. Neoantigen Identification and Dendritic Cell-Based Vaccines for Lung Cancer Immunotherapy. Vaccines (Basel) 2024; 12:498. [PMID: 38793749 PMCID: PMC11125796 DOI: 10.3390/vaccines12050498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Immunotherapies can treat many cancers, including difficult-to-treat cases such as lung cancer. Due to its tolerability, long-lasting therapeutic responses, and efficacy in a wide spectrum of patients, immunotherapy can also help to treat lung cancer, which has few treatment choices. Tumor-specific antigens (TSAs) for cancer vaccinations and T-cell therapies are difficult to discover. Neoantigens (NeoAgs) from genetic mutations, irregular RNA splicing, protein changes, or viral genetic sequences in tumor cells provide a solution. NeoAgs, unlike TSAs, are non-self and can cause an immunological response. Next-generation sequencing (NGS) and bioinformatics can swiftly detect and forecast tumor-specific NeoAgs. Highly immunogenic NeoAgs provide personalized or generalized cancer immunotherapies. Dendritic cells (DCs), which originate and regulate T-cell responses, are widely studied potential immunotherapeutic therapies for lung cancer and other cancers. DC vaccines are stable, reliable, and safe in clinical trials. The purpose of this article is to evaluate the current status, limitations, and prospective clinical applications of DC vaccines, as well as the identification and selection of major histocompatibility complex (MHC) class I and II genes for NeoAgs. Our goal is to explain DC biology and activate DC manipulation to help researchers create extremely potent cancer vaccines for patients.
Collapse
Affiliation(s)
- Komal Kumari
- Department of Biotechnology, Central University of South Bihar, Gaya 824236, Bihar, India; (K.K.); (A.C.)
| | - Amarnath Singh
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
| | - Archana Chaudhary
- Department of Biotechnology, Central University of South Bihar, Gaya 824236, Bihar, India; (K.K.); (A.C.)
| | - Rakesh Kumar Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India;
| | - Asheesh Shanker
- Department of Bioinformatics, Central University of South Bihar, Gaya 824236, Bihar, India
| | - Vinay Kumar
- Heart and Vascular Institute, Pennsylvania State University, Hershey Medical Center, Hershey, PA 17033, USA;
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya 824236, Bihar, India; (K.K.); (A.C.)
| |
Collapse
|
29
|
Chen Y, Yu D, Qian H, Shi Y, Tao Z. CD8 + T cell-based cancer immunotherapy. J Transl Med 2024; 22:394. [PMID: 38685033 PMCID: PMC11057112 DOI: 10.1186/s12967-024-05134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
The immune system in humans is a defense department against both exogenous and endogenous hazards, where CD8+ T cells play a crucial role in opposing pathological threats. Various immunotherapies based on CD8+ T cells have emerged in recent decades, showing their promising results in treating intractable diseases. However, in the fight against the constantly changing and evolving cancers, the formation and function of CD8+ T cells can be challenged by tumors that might train a group of accomplices to resist the T cell killing. As cancer therapy stepped into the era of immunotherapy, understanding the physiological role of CD8+ T cells, studying the machinery of tumor immune escape, and thereby formulating different therapeutic strategies become the imperative missions for clinical and translational researchers to fulfill. After brief basics of CD8+ T cell-based biology is covered, this review delineates the mechanisms of tumor immune escape and discusses different cancer immunotherapy regimens with their own advantages and setbacks, embracing challenges and perspectives in near future.
Collapse
Affiliation(s)
- Yanxia Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dingning Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- Department of Laboratory Medicine, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yinghong Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Zhimin Tao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- Department of Emergency Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| |
Collapse
|
30
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Advances in Therapeutic Cancer Vaccines, Their Obstacles, and Prospects Toward Tumor Immunotherapy. Mol Biotechnol 2024:10.1007/s12033-024-01144-3. [PMID: 38625508 DOI: 10.1007/s12033-024-01144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Over the past few decades, cancer immunotherapy has experienced a significant revolution due to the advancements in immune checkpoint inhibitors (ICIs) and adoptive cell therapies (ACTs), along with their regulatory approvals. In recent times, there has been hope in the effectiveness of cancer vaccines for therapy as they have been able to stimulate de novo T-cell reactions against tumor antigens. These tumor antigens include both tumor-associated antigen (TAA) and tumor-specific antigen (TSA). Nevertheless, the constant quest to fully achieve these abilities persists. Therefore, this review offers a broad perspective on the existing status of cancer immunizations. Cancer vaccine design has been revolutionized due to the advancements made in antigen selection, the development of antigen delivery systems, and a deeper understanding of the strategic intricacies involved in effective antigen presentation. In addition, this review addresses the present condition of clinical tests and deliberates on their approaches, with a particular emphasis on the immunogenicity specific to tumors and the evaluation of effectiveness against tumors. Nevertheless, the ongoing clinical endeavors to create cancer vaccines have failed to produce remarkable clinical results as a result of substantial obstacles, such as the suppression of the tumor immune microenvironment, the identification of suitable candidates, the assessment of immune responses, and the acceleration of vaccine production. Hence, there are possibilities for the industry to overcome challenges and enhance patient results in the coming years. This can be achieved by recognizing the intricate nature of clinical issues and continuously working toward surpassing existing limitations.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
31
|
Zhang Z, Li L, Gao Y, Xiao X, Ji L, Zhou Z, Jiang J, Liu S, An J, Deng P, Du N, Li P, Xia X, Hu C, Li M. Immune characteristics associated with lymph node metastasis in early-stage NSCLC. Cell Oncol (Dordr) 2024; 47:447-461. [PMID: 37728859 DOI: 10.1007/s13402-023-00873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
PURPOSE Tumor metastasis significantly impacts the prognosis of non-small cell lung cancer (NSCLC) patients, with lymph node (LN) metastasis being the most common and early form of spread. With the development of adjuvant immunotherapy, increasing attention has been paid to the tumor-draining lymph nodes(TDLN) in early-stage NSCLC, especially tumor-metastatic lymph nodes, which provides poor prognostic information but has potential benefits in adjuvant treatment. METHODS We showed the remodeled immune environment in TDLNs through using TCR-seq to analyse 24 primary lung cancer tissues and 134 LNs from 24 lung cancer patients with or without LN metastasis. Additionally, we characterized the spatial profiling of immunocytes and tumor cells in TDLNs and primary tumor sites through using multi-IHC. RESULTS We found the remodeled immune environment in TDLNs through analyzing primary lung cancer tissues and LNs from NSCLC patients with or without LN metastasis. Considering the intricate communication between tumor and immunocytes, we further subdivided TDLNs, revealing that metastasis-negative LNs from LN-metastatic patients (MNLN) exhibited greater immune activation, exhaustion, and memory in comparison to both metastasis-positive LNs (MPLN) and TDLNs from non-LN-metastatic patients (NMLN). CONCLUSIONS Our data indicate that LN metastasis facilitated tumor-specific antigen presentation in TDLNs and induces T cell priming, while existing tumor cells generate an immune-suppressive environment in MPLNs through multiple mechanisms. These findings contribute to a comprehensive understanding of the immunological mechanisms through which LN metastasis influences tumor progression and plays a role in immunotherapy for NSCLC patients.
Collapse
Affiliation(s)
- Ziyu Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Li Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Gao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxiong Xiao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Liyan Ji
- Geneplus-Beijing Institute, Beijing, China
| | | | - Juan Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Shiqing Liu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Jian An
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Pengbo Deng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - NanNan Du
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Pansong Li
- Geneplus-Beijing Institute, Beijing, China
| | | | - Chengping Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Min Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China.
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Changsha, China.
| |
Collapse
|
32
|
Xie X, Zhai J, Zhou X, Guo Z, Lo PC, Zhu G, Chan KWY, Yang M. Magnetic Particle Imaging: From Tracer Design to Biomedical Applications in Vasculature Abnormality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306450. [PMID: 37812831 DOI: 10.1002/adma.202306450] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Indexed: 10/11/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging non-invasive tomographic technique based on the response of magnetic nanoparticles (MNPs) to oscillating drive fields at the center of a static magnetic gradient. In contrast to magnetic resonance imaging (MRI), which is driven by uniform magnetic fields and projects the anatomic information of the subjects, MPI directly tracks and quantifies MNPs in vivo without background signals. Moreover, it does not require radioactive tracers and has no limitations on imaging depth. This article first introduces the basic principles of MPI and important features of MNPs for imaging sensitivity, spatial resolution, and targeted biodistribution. The latest research aiming to optimize the performance of MPI tracers is reviewed based on their material composition, physical properties, and surface modifications. While the unique advantages of MPI have led to a series of promising biomedical applications, recent development of MPI in investigating vascular abnormalities in cardiovascular and cerebrovascular systems, and cancer are also discussed. Finally, recent progress and challenges in the clinical translation of MPI are discussed to provide possible directions for future research and development.
Collapse
Affiliation(s)
- Xulin Xie
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Jiao Zhai
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Zhengjun Guo
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
- Department of Oncology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Pui-Chi Lo
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
33
|
Wu Y, Han W, Dong H, Liu X, Su X. The rising roles of exosomes in the tumor microenvironment reprogramming and cancer immunotherapy. MedComm (Beijing) 2024; 5:e541. [PMID: 38585234 PMCID: PMC10999178 DOI: 10.1002/mco2.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Exosomes are indispensable for intercellular communications. Tumor microenvironment (TME) is the living environment of tumor cells, which is composed of various components, including immune cells. Based on TME, immunotherapy has been recently developed for eradicating cancer cells by reactivating antitumor effect of immune cells. The communications between tumor cells and TME are crucial for tumor development, metastasis, and drug resistance. Exosomes play an important role in mediating these communications and regulating the reprogramming of TME, which affects the sensitivity of immunotherapy. Therefore, it is imperative to investigate the role of exosomes in TME reprogramming and the impact of exosomes on immunotherapy. Here, we review the communication role of exosomes in regulating TME remodeling and the efficacy of immunotherapy, as well as summarize the underlying mechanisms. Furthermore, we also introduce the potential application of the artificially modified exosomes as the delivery systems of antitumor drugs. Further efforts in this field will provide new insights on the roles of exosomes in intercellular communications of TME and cancer progression, thus helping us to uncover effective strategies for cancer treatment.
Collapse
Affiliation(s)
- Yu Wu
- Clinical Medical Research Center of the Affiliated HospitalInner Mongolia Medical UniversityHohhotChina
| | - Wenyan Han
- Clinical Laboratorythe Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Hairong Dong
- Clinical LaboratoryHohhot first hospitalHohhotChina
| | - Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department IKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital and InstituteBeijingChina
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated HospitalInner Mongolia Medical UniversityHohhotChina
| |
Collapse
|
34
|
Jiani W, Qin T, Jie M. Tumor neoantigens and tumor immunotherapies. Aging Med (Milton) 2024; 7:224-230. [PMID: 38725698 PMCID: PMC11077340 DOI: 10.1002/agm2.12295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
As a high-risk group of patients with cancer, the elderly exhibit limited efficacy with traditional treatments. Immunotherapy emerges as a promising adjunctive therapeutic approach that holds potential in addressing the needs of geriatric patients with cancer. Neoantigens, a unique class of tumor-specific antigens generated by non-synonymous mutations, are garnering increasing attention as targets for immunotherapy in clinical applications. Newly developed technologies, such as second-generation gene sequencing and mass spectrometry, have provided powerful technical support for the identification and prediction of neoantigens. At present, neoantigen-based immunotherapy has been extensively applied in clinical trials and has demonstrated both safety and efficacy, marking the beginning of a new era for cancer immunotherapy. This article reviews the conception, classification, inducers, and screening process of tumor neoantigens, as well as the application prospects and combination therapy strategies of neoantigen-based cancer immunotherapy.
Collapse
Affiliation(s)
- Wang Jiani
- Department of Biotherapy Center, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Tan Qin
- Department of Biotherapy Center, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Ma Jie
- Department of Biotherapy Center, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
35
|
Gong T, Huang X, Wang Z, Chu Y, Wang L, Wang Q. IL-2 promotes expansion and intratumoral accumulation of tumor infiltrating dendritic cells in pancreatic cancer. Cancer Immunol Immunother 2024; 73:84. [PMID: 38554155 PMCID: PMC10981618 DOI: 10.1007/s00262-024-03669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
This study aims to investigate the diagnostic potential of IL-2 for PDAC and develop a method to improve the dendritic cell (DC) based vaccine against PDAC. The gene expression data and clinical characteristics information for 178 patients with PDAC were obtained from The Cancer Genome Atlas (TCGA). DCs were isolated from Human peripheral blood mononuclear cells (PBMCs) and were cultured in 4 different conditions. DCs were pulsed by tumor cell lysates or KRAS G12D1 - 23 peptide, and then used to activate T cells. The mixture of DCs and T cells were administered to xenograft mouse model through the tail vein. The infiltration of DCs and T cells were detected by immunohistochemistry. The generation of KRAS G12D mutation specific cytotoxic T cells was determined by in vitro killing assay. We observed that PDAC patients with higher IL-2 mRNA levels exhibited improved overall survival and increased infiltration of CD8 + T cells, NK cells, naïve B cells, and resting myeloid DCs in the tumor microenvironment. IL-2 alone did not enhance DC proliferation, antigen uptake, or apoptosis inhibition unless co-cultured with PBMCs. DCs co-cultured with PBMCs in IL-2-containing medium demonstrated the strongest tumor repression effect in vitro and in vivo. Compared to DCs obtained through the traditional method (cultured in medium containing GM-CSF and IL-4), DCs cultured with PBMCs, and IL-2 exhibited increased tumor infiltration capacity, potentially facilitating sustained T cell immunity. DCs cultured in the PBMCs-IL-2 condition could promote the generation of cytotoxic T cells targeting tumor cells carrying KRAS G12D mutation.
Collapse
Affiliation(s)
- Tingting Gong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xinyang Huang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhuoxin Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Ye Chu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Lifu Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Qi Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
36
|
Huang X, Zhu X, Yang H, Li Q, Gai L, Sui X, Lu H, Feng J. Nanomaterial Delivery Vehicles for the Development of Neoantigen Tumor Vaccines for Personalized Treatment. Molecules 2024; 29:1462. [PMID: 38611742 PMCID: PMC11012694 DOI: 10.3390/molecules29071462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Tumor vaccines have been considered a promising therapeutic approach for treating cancer in recent years. With the development of sequencing technologies, tumor vaccines based on neoantigens or genomes specifically expressed in tumor cells, mainly in the form of peptides, nucleic acids, and dendritic cells, are beginning to receive widespread attention. Therefore, in this review, we have introduced different forms of neoantigen vaccines and discussed the development of these vaccines in treating cancer. Furthermore, neoantigen vaccines are influenced by factors such as antigen stability, weak immunogenicity, and biosafety in addition to sequencing technology. Hence, the biological nanomaterials, polymeric nanomaterials, inorganic nanomaterials, etc., used as vaccine carriers are principally summarized here, which may contribute to the design of neoantigen vaccines for improved stability and better efficacy.
Collapse
Affiliation(s)
- Xiaoyu Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (X.H.); (X.Z.); (H.Y.); (Q.L.); (X.S.)
| | - Xiaolong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (X.H.); (X.Z.); (H.Y.); (Q.L.); (X.S.)
| | - Huan Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (X.H.); (X.Z.); (H.Y.); (Q.L.); (X.S.)
| | - Qinyi Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (X.H.); (X.Z.); (H.Y.); (Q.L.); (X.S.)
| | - Lizhi Gai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China;
| | - Xinbing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (X.H.); (X.Z.); (H.Y.); (Q.L.); (X.S.)
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China;
| | - Jiao Feng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (X.H.); (X.Z.); (H.Y.); (Q.L.); (X.S.)
| |
Collapse
|
37
|
Zeng F, Pan Y, Wu M, Lu Q, Qin S, Gao Y, Luan X, Chen R, He G, Wang Y, He B, Chen Z, Song Y. Self-Metallized Whole Cell Vaccines Prepared by Microfluidics for Bioorthogonally Catalyzed Antitumor Immunotherapy. ACS NANO 2024; 18:7923-7936. [PMID: 38445625 DOI: 10.1021/acsnano.3c09871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Tumor whole cell, carrying a complete set of tumor-associated antigens and tumor-specific antigens, has shown great potential in the construction of tumor vaccines but is hindered by the complex engineering means and limited efficacy to cause immunity. Herein, we provided a strategy for the self-mineralization of autologous tumor cells with palladium ions in microfluidic droplets, which endowed the engineered cells with both immune and catalytic functions, to establish a bioorthogonally catalytic tumor whole-cell vaccine. This vaccine showed strong inhibition both in the occurrence and recurrence of tumor by invoking the immediate antitumor immunity and building a long-term immunity.
Collapse
Affiliation(s)
- Fei Zeng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Mengnan Wu
- College of Chemistry, Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, China
| | - Qianglan Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Shurong Qin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Ruiyue Chen
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Guanzhong He
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yuzhen Wang
- Key Laboratoty of Flexible Electronics& Institute of Advanced Materials, Nanjing Technology University, Nanjing 211816, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Zhaowei Chen
- College of Chemistry, Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
38
|
Kenoosh HA, Pallathadka H, Hjazi A, Al-Dhalimy AMB, Zearah SA, Ghildiyal P, Al-Mashhadani ZI, Mustafa YF, Hizam MM, Elawady A. Recent advances in mRNA-based vaccine for cancer therapy; bench to bedside. Cell Biochem Funct 2024; 42:e3954. [PMID: 38403905 DOI: 10.1002/cbf.3954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
The messenger RNA (mRNA) vaccines have progressed from a theoretical concept to a clinical reality over the last few decades. Compared to conventional vaccination methods, these vaccines have a number of benefits, such as substantial potency, rapid growth, inexpensive production, and safe administration. Nevertheless, their usefulness was restricted up to now due to worries about the erratic and ineffective circulation of mRNA in vivo. Thankfully, these worries have largely been allayed by recent technological developments, which have led to the creation of multiple mRNA vaccination platforms for cancer and viral infections. The mRNA vaccines have been demonstrated as a powerful alternative to traditional conventional vaccines because of their high potency, safety and efficacy, capacity for rapid clinical development, and potential for rapid, low-cost manufacturing. The paper will examine the present status of mRNA vaccine technology and suggest future paths for the advancement and application of this exciting vaccine platform as a common therapeutic choice.
Collapse
Affiliation(s)
- Hadeel Ahmed Kenoosh
- Department of Medical Laboratory Techniques, Al-Maarif University College, AL-Anbar, Iraq
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Manar Mohammed Hizam
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
39
|
Liu Y, Yan Q, Zeng Z, Fan C, Xiong W. Advances and prospects of mRNA vaccines in cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189068. [PMID: 38171406 DOI: 10.1016/j.bbcan.2023.189068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Cancer vaccines, designed to activate the body's own immune system to fight against tumors, are a current trend in cancer treatment and receiving increasing attention. Cancer vaccines mainly include oncolytic virus vaccine, cell vaccine, peptide vaccine and nucleic acid vaccine. Over the course of decades of research, oncolytic virus vaccine T-VEC, cellular vaccine sipuleucel-T, various peptide vaccines, and DNA vaccine against HPV positive cervical cancer have brought encouraging results for cancer therapy, but are losing momentum in development due to their respective shortcomings. In contrast, the advantages of mRNA vaccines such as high safety, ease of production, and unmatched efficacy are on full display. In addition, advances in technology such as pseudouridine modification have cracked down the bottleneck for developing mRNA vaccines including instability, innate immunogenicity, and low efficiency of in vivo delivery. Several cancer mRNA vaccines have achieved promising results in clinical trials, and their usage in conjunction with other immune checkpoint inhibitors (ICIs) has further boosted the efficiency of anti-tumor immune response. We expect a rapid development of mRNA vaccines for cancer immunotherapy in the near future. This review provides a brief overview of the current status of mRNA vaccines, highlights the action mechanism of cancer mRNA vaccines, their recent advances in clinical trials, and prospects for their clinical applications.
Collapse
Affiliation(s)
- Yixuan Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
40
|
Wu Y, Li J, Shu L, Tian Z, Wu S, Wu Z. Ultrasound combined with microbubble mediated immunotherapy for tumor microenvironment. Front Pharmacol 2024; 15:1304502. [PMID: 38487163 PMCID: PMC10937735 DOI: 10.3389/fphar.2024.1304502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/11/2024] [Indexed: 03/17/2024] Open
Abstract
The tumor microenvironment (TME) plays an important role in dynamically regulating the progress of cancer and influencing the therapeutic results. Targeting the tumor microenvironment is a promising cancer treatment method in recent years. The importance of tumor immune microenvironment regulation by ultrasound combined with microbubbles is now widely recognized. Ultrasound and microbubbles work together to induce antigen release of tumor cell through mechanical or thermal effects, promoting antigen presentation and T cells' recognition and killing of tumor cells, and improve tumor immunosuppression microenvironment, which will be a breakthrough in improving traditional treatment problems such as immune checkpoint blocking (ICB) and himeric antigen receptor (CAR)-T cell therapy. In order to improve the therapeutic effect and immune regulation of TME targeted tumor therapy, it is necessary to develop and optimize the application system of microbubble ultrasound for organs or diseases. Therefore, the combination of ultrasound and microbubbles in the field of TME will continue to focus on developing more effective strategies to regulate the immunosuppression mechanisms, so as to activate anti-tumor immunity and/or improve the efficacy of immune-targeted drugs, At present, the potential value of ultrasound combined with microbubbles in TME targeted therapy tumor microenvironment targeted therapy has great potential, which has been confirmed in the experimental research and application of breast cancer, colon cancer, pancreatic cancer and prostate cancer, which provides a new alternative idea for clinical tumor treatment. This article reviews the research progress of ultrasound combined with microbubbles in the treatment of tumors and their application in the tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | | | | | - Zuohui Wu
- Department of Ultrasound, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
41
|
Hato L, Vizcay A, Eguren I, Pérez-Gracia JL, Rodríguez J, Gállego Pérez-Larraya J, Sarobe P, Inogés S, Díaz de Cerio AL, Santisteban M. Dendritic Cells in Cancer Immunology and Immunotherapy. Cancers (Basel) 2024; 16:981. [PMID: 38473341 DOI: 10.3390/cancers16050981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer immunotherapy modulates the immune system, overcomes immune escape and stimulates immune defenses against tumors. Dendritic cells (DCs) are professional promoters of immune responses against tumor antigens with the outstanding ability to coordinate the innate and adaptive immune systems. Evidence suggests that there is a decrease in both the number and function of DCs in cancer patients. Therefore, they represent a strong scaffold for therapeutic interventions. DC vaccination (DCV) is safe, and the antitumoral responses induced are well established in solid tumors. Although the addition of checkpoint inhibitors (CPIs) to chemotherapy has provided new options in the treatment of cancer, they have shown no clinical benefit in immune desert tumors or in those tumors with dysfunctional or exhausted T-cells. In this way, DC-based therapy has demonstrated the ability to modify the tumor microenvironment for immune enriched tumors and to potentiate systemic host immune responses as an active approach to treating cancer patients. Application of DCV in cancer seeks to obtain long-term antitumor responses through an improved T-cell priming by enhancing previous or generating de novo immune responses. To date, DCV has induced immune responses in the peripheral blood of patients without a significant clinical impact on outcome. Thus, improvements in vaccines formulations, selection of patients based on biomarkers and combinations with other antitumoral therapies are needed to enhance patient survival. In this work, we review the role of DCV in different solid tumors with their strengths and weaknesses, and we finally mention new trends to improve the efficacy of this immune strategy.
Collapse
Affiliation(s)
- Laura Hato
- Immunology, Riberalab, 03203 Alicante, Spain
| | - Angel Vizcay
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Iñaki Eguren
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | | | - Javier Rodríguez
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | | | - Pablo Sarobe
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Program of Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- CIBEREHD, 31008 Pamplona, Spain
| | - Susana Inogés
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Cell Therapy Unit, Program of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Ascensión López Díaz de Cerio
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Cell Therapy Unit, Program of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Marta Santisteban
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
42
|
Tai Y, Chen M, Wang F, Fan Y, Zhang J, Cai B, Yan L, Luo Y, Li Y. The role of dendritic cells in cancer immunity and therapeutic strategies. Int Immunopharmacol 2024; 128:111548. [PMID: 38244518 DOI: 10.1016/j.intimp.2024.111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Dendritic cells (DCs) are asserted as the most potent antigen-presenting cells (APCs) that orchestrate both innate and adaptive immunity, being extremely effective in the induction of robust anti-cancer T cell responses. Hence, the modulation of DCs function represents an attractive target for improving cancer immunotherapy efficacy. A better understanding of the immunobiology of DCs, the interaction among DCs, immune effector cells and tumor cells in tumor microenvironment (TME) and the latest advances in biomedical engineering technology would be required for the design of optimal DC-based immunotherapy. In this review, we focus on elaborating the immunobiology of DCs in healthy and cancer environments, the recent advances in the development of enhancing endogenous DCs immunocompetence via immunomodulators as well as DC-based vaccines. The rapidly developing field of applying nanotechnology to improve DC-based immunotherapy is also highlighted.
Collapse
Affiliation(s)
- Yunze Tai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Man Chen
- Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Fang Wang
- Department of Medical Laboratory, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Yu Fan
- Department of Urology, National Clinical Research Center for Geriatrics and Organ Transplantation Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
43
|
Li W, Zhou M, Wang L, Huang L, Chen X, Sun X, Liu T. Evaluation of the safety and efficiency of cytotoxic T cell therapy sensitized by tumor antigens original from T-ALL-iPSC in vivo. CANCER INNOVATION 2024; 3:e95. [PMID: 38948536 PMCID: PMC11212296 DOI: 10.1002/cai2.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/17/2023] [Accepted: 07/04/2023] [Indexed: 07/02/2024]
Abstract
Background Since RNA sequencing has shown that induced pluripotent stem cells (iPSCs) share a common antigen profile with tumor cells, cancer vaccines that focus on iPSCs have made promising progress in recent years. Previously, we showed that iPSCs derived from leukemic cells of patients with primary T cell acute lymphoblastic leukemia (T-ALL) have a gene expression profile similar to that of T-ALL cell lines. Methods Mice with T-ALL were treated with dendritic and T (DC-T) cells loaded with intact and complete antigens from T-ALL-derived iPSCs (T-ALL-iPSCs). We evaluated the safety and antitumor efficiency of autologous tumor-derived iPSC antigens by flow cytometry, cytokine release assay, acute toxicity experiments, long-term toxicity experiments, and other methods. Results Our results indicate that complete tumor antigens from T-ALL-iPSCs could inhibit the growth of inoculated tumors in immunocompromised mice without causing acute and long-term toxicity. Conclusion T-ALL-iPSC-based treatment is safe and can be used as a potential strategy for leukemia immunotherapy.
Collapse
Affiliation(s)
- Weiran Li
- Department of Tumor Immunotherapy, Shenzhen Luohu People's HospitalThe Third Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
- Cell Quality Testing Laboratory of Shenzhen Luohu Hospital GroupShenzhenGuangdongChina
| | - Meiling Zhou
- Department of Tumor Immunotherapy, Shenzhen Luohu People's HospitalThe Third Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
- Cell Quality Testing Laboratory of Shenzhen Luohu Hospital GroupShenzhenGuangdongChina
| | - Lu Wang
- Department of Tumor Immunotherapy, Shenzhen Luohu People's HospitalThe Third Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
- Cell Quality Testing Laboratory of Shenzhen Luohu Hospital GroupShenzhenGuangdongChina
| | - Liying Huang
- Department of Tumor Immunotherapy, Shenzhen Luohu People's HospitalThe Third Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Xuemei Chen
- Department of Tumor Immunotherapy, Shenzhen Luohu People's HospitalThe Third Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
- Cell Quality Testing Laboratory of Shenzhen Luohu Hospital GroupShenzhenGuangdongChina
| | - Xizhuo Sun
- Department of Tumor Immunotherapy, Shenzhen Luohu People's HospitalThe Third Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Tao Liu
- Department of Tumor Immunotherapy, Shenzhen Luohu People's HospitalThe Third Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
- Cell Quality Testing Laboratory of Shenzhen Luohu Hospital GroupShenzhenGuangdongChina
| |
Collapse
|
44
|
Yu R, Zhao F, Xu Z, Zhang G, Du B, Shu Q. Current status and future of cancer vaccines: A bibliographic study. Heliyon 2024; 10:e24404. [PMID: 38293405 PMCID: PMC10826732 DOI: 10.1016/j.heliyon.2024.e24404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Background Cancer vaccines are an important component of tumour immunotherapy. An increasing number of studies have shown that cancer vaccines have considerable clinical benefits. With the development of tumour precision medicine, cancer vaccines have become important because of their individualised targeting effects. However, few bibliometric studies have conducted comprehensive systematic reviews in this field. This study aimed to assess the scientific output and trends in cancer vaccine research from a global perspective. Methods We collected publications on cancer vaccines from the Web of Science Core Collection database, which was limited to articles and reviews in English. Microsoft Excel, VOS Viewer, and CiteSpace V were used for quantitative and visual analyses. Results A total of 7807 articles were included. From 1991 to 2022, the number of publications increased annually. The United States had the highest number of articles published in this field (48.28 %), the highest citation frequency (183,964 times), and the highest H-index (182). The National Institutes of Health topped the list with 476 articles. Schlom J had the highest number of published articles (128) and was the main investigator in this field. The journal, Cancer Immunology Immunotherapy, had published the highest number of articles in related fields. In recent years, tumour microenvironment, immune checkpoint inhibitors, particle vaccines, tumour antigens, and dendritic cells have become research hotspots related to cancer vaccines. Conclusion Cancer vaccines are a popular research topic in the field of tumour immunotherapy. Related research and publications will enter a boom stage. "Immune checkpoint inhibitors", "tumour microenvironment" and "dendritic cells" may become future research hotspots, while "T-cell suppressor" is a potential puzzle to be solved.
Collapse
Affiliation(s)
- Rui Yu
- The First School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangmin Zhao
- The First School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zeting Xu
- The First School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gaochenxi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bingqing Du
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qijin Shu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
45
|
Lin X, Tang S, Guo Y, Tang R, Li Z, Pan X, Chen G, Qiu L, Dong X, Zhang L, Liu X, Cai Z, Xie B. Personalized neoantigen vaccine enhances the therapeutic efficacy of bevacizumab and anti-PD-1 antibody in advanced non-small cell lung cancer. Cancer Immunol Immunother 2024; 73:26. [PMID: 38280084 PMCID: PMC10821847 DOI: 10.1007/s00262-023-03598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 01/29/2024]
Abstract
Clinically, a considerable number of non-small cell lung cancer (NSCLC) patients are unable to receive or resist chemotherapy, and the efficacy of non-chemotherapy treatment strategies based on anti-angiogenic agents combined with immune checkpoint blockade is still unsatisfactory. Neoantigen vaccine, based on personalized tumor DNA mutations, could elicit tumor specific T cell infiltration into the tumor site, exerting potent anti-tumor efficacy. Here, we evaluated the feasibility and safety of a new antitumor strategy by adding neoantigen vaccine to the regimen of bevacizumab and anti-PD-1 antibody. Firstly, 7 novel immunogenic neoantigen peptides were identified and developed for neoantigen vaccine (LLCvac), which can elicit strong antitumor immune response in vivo. Then, in orthotopic lung cancer model, LLCvac further combining with bevacizumab and anti-PD-1 antibody exerted a stronger antitumor effect, exhibiting significant decrease of tumor volume without obvious toxicity. Furthermore, tumor immune microenvironment assessment also showed that the proportion of neoantigen-specific T cells in blood could be induced dramatically by the combined therapy. And a large amount of neoantigen-specific Ki67-positive CD8+ T cells were found in tumor tissues, which infiltrated tumor tissues effectively to kill tumor cells expressing identified neoantigens. Overall, these results suggested that this combined therapy could safely induce robust antitumor efficacy, serving as an effective chemotherapy-free strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Xiuhua Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Shichuan Tang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Yutong Guo
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Ruijing Tang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Zhenli Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Xinting Pan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Geng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Liman Qiu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Xiuqing Dong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine On Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China.
| | - Baosong Xie
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China.
| |
Collapse
|
46
|
A R, Han Z, Wang T, Zhu M, Zhou M, Sun X. Pulmonary delivery of nano-particles for lung cancer diagnosis and therapy: Recent advances and future prospects. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1933. [PMID: 37857568 DOI: 10.1002/wnan.1933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Although our understanding of lung cancer has significantly improved in the past decade, it is still a disease with a high incidence and mortality rate. The key reason is that the efficacy of the therapeutic drugs is limited, mainly due to insufficient doses of drugs delivered to the lungs. To achieve precise lung cancer diagnosis and treatment, nano-particles (NPs) pulmonary delivery techniques have attracted much attention and facilitate the exploration of the potential of those in inhalable NPs targeting tumor lesions. Since the therapeutic research focusing on pulmonary delivery NPs has rapidly developed and evolved substantially, this review will mainly discuss the current developments of pulmonary delivery NPs for precision lung cancer diagnosis and therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Rong A
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Zhaoguo Han
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Tianyi Wang
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Mengyuan Zhu
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Meifang Zhou
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Xilin Sun
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| |
Collapse
|
47
|
Buckley CW, O’Reilly EM. Next-generation therapies for pancreatic cancer. Expert Rev Gastroenterol Hepatol 2024; 18:55-72. [PMID: 38415709 PMCID: PMC10960610 DOI: 10.1080/17474124.2024.2322648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION Pancreas ductal adenocarcinoma (PDAC) is a frequently lethal malignancy that poses unique therapeutic challenges. The current mainstay of therapy for metastatic PDAC (mPDAC) is cytotoxic chemotherapy. NALIRIFOX (liposomal irinotecan, fluorouracil, leucovorin, oxaliplatin) is an emerging standard of care in the metastatic setting. An evolving understanding of PDAC pathogenesis is driving a shift toward targeted therapy. Olaparib, a poly-ADP-ribose polymerase (PARP) inhibitor, has regulatory approval for maintenance therapy in BRCA-mutated mPDAC along with other targeted agents receiving disease-agnostic approvals including for PDAC with rare fusions and mismatch repair deficiency. Ongoing research continues to identify and evaluate an expanding array of targeted therapies for PDAC. AREAS COVERED This review provides a brief overview of standard therapies for PDAC and an emphasis on current and emerging targeted therapies. EXPERT OPINION There is notable potential for targeted therapies for KRAS-mutated PDAC with opportunity for meaningful benefit for a sizable portion of patients with this disease. Further, emerging approaches are focused on novel immune, tumor microenvironment, and synthetic lethality strategies.
Collapse
Affiliation(s)
- Conor W. Buckley
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Eileen M. O’Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
- Weill Cornell Medicine, New York, USA
| |
Collapse
|
48
|
Piplani N, Roy T, Saxena N, Sen S. Bulky glycocalyx shields cancer cells from invasion-associated stresses. Transl Oncol 2024; 39:101822. [PMID: 37931370 PMCID: PMC10654248 DOI: 10.1016/j.tranon.2023.101822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
The glycocalyx-that forms a protective barrier around cells-has been implicated in cancer cell proliferation, survival, and metastasis. However, its role in maintaining the integrity of DNA/nucleus during migration through dense matrices remains unexplored. In this study, we address this question by first documenting heterogeneity in glycocalyx expression in highly invasive MDA-MB-231 breast cancer cells, and establishing a negative correlation between cell size and glycocalyx levels. Next, we set-up transwell migration through 3 µm pores, to isolate two distinct sub-populations and to show that the early migrating cell sub-population possesses a bulkier glycocalyx and undergoes less DNA damage and nuclear rupture, assessed using γH2AX foci formation and nuclear/cytoplasmic distribution of Ku70/80. Interestingly, enzymatic removal of glycocalyx led to disintegration of the nuclear membrane indicated by increased cytoplasmic localisation of Ku70/80, increased nuclear blebbing and reduction in nuclear area. Together, these results illustrate an inverse association between bulkiness of the glycocalyx and nuclear stresses, and highlights the mechanical role of the glycocalyx in shielding migration associated stresses.
Collapse
Affiliation(s)
- Niyati Piplani
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Tanusri Roy
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Neha Saxena
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Shamik Sen
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India.
| |
Collapse
|
49
|
Duan Z, Yang D, Yuan P, Dai X, Chen G, Wu D. Advances, opportunities and challenges in developing therapeutic cancer vaccines. Crit Rev Oncol Hematol 2024; 193:104198. [PMID: 37949152 DOI: 10.1016/j.critrevonc.2023.104198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
Therapeutic cancer vaccines have shown promising efficacy in helping immunotherapy for cancer patients, but the systematic characterization of the clinical application and the method for improving efficacy is lacking. Here, we mainly summarize the classification of therapeutic cancer vaccines, including protein vaccines, nucleic acid vaccines, cellular vaccines and anti-idiotypic antibody vaccines, and subdivide the above vaccines according to different types and delivery forms. Additionally, we outline the clinical efficacy and safety of vaccines, as well as the combination strategies of therapeutic cancer vaccines with other therapies. This review will provide a detailed overview and rationale for the future clinical application and development of therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Zhihui Duan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Dandan Yang
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ping Yuan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoming Dai
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guodong Chen
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
50
|
Pan S, Fan R, Han B, Tong A, Guo G. The potential of mRNA vaccines in cancer nanomedicine and immunotherapy. Trends Immunol 2024; 45:20-31. [PMID: 38142147 DOI: 10.1016/j.it.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023]
Abstract
Owing to their outstanding performance against COVID-19, mRNA vaccines have brought great hope for combating various incurable diseases, including cancer. Differences in the encoded proteins result in different molecular and cellular mechanisms of mRNA vaccines. With the rapid development of nanotechnology and molecular medicine, personalized antigen-encoding mRNA vaccines that enhance antigen presentation can trigger effective immune responses and prevent off-target toxicities. Herein, we review new insights into the influence of encoded antigens, cytokines, and other functional proteins on the mechanisms of mRNA vaccines. We also highlight the importance of delivery systems and chemical modifications for mRNA translation efficiency, stability, and targeting, and we discuss the potential problems and application prospects of mRNA vaccines as versatile tools for combating cancer.
Collapse
Affiliation(s)
- Shulin Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rangrang Fan
- Department of Neurosurgery and Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Han
- School of Pharmacy, Shihezi University, and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, China
| | - Aiping Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|