1
|
Liu P, Jannatul R, Chen J, Hou L, Gao M, Wang P, Wang L, Jin D, Chen H, Liu R, Wang R, Zhu Y, Fang B, Jia L, Sun Y, Zhang Y, Ren F, Lin W. Programmable Chemical Evolution with Natural/Non-Natural Building Blocks. Angew Chem Int Ed Engl 2024; 63:e202409746. [PMID: 39073275 DOI: 10.1002/anie.202409746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Non-natural building blocks (BBs) present a vast reservoir of chemical diversity for molecular recognition and drug discovery. However, leveraging evolutionary principles to efficiently generate bioactive molecules with a larger number of diverse BBs poses challenges within current laboratory evolution systems. Here, we introduce programmable chemical evolution (PCEvo) by integrating chemoinformatic classification and high-throughput array synthesis/screening. PCEvo initiates evolution by constructing a diversely combinatorial library to create ancestral molecules, streamlines the molecular evolution process and identifies high-affinity binders within 2-4 cycles. By employing PCEvo with 108 BBs and exploring >1017 chemical space, we identify bicyclic peptidomimetic binders against targets SAR-CoV-2 RBD and Claudin18.2, achieving nanomolar affinity. Remarkably, Claudin18.2 binders selectively stain gastric adenocarcinoma cell lines and patient samples. PCEvo achieves expedited evolution in a few rounds, marking a significant advance in utilizing non-natural building blocks for rapid chemical evolution applicable to targets with or without prior structural information and ligand preference.
Collapse
Affiliation(s)
- Ping Liu
- Department of Nutrition and Health, China Agricultural University, 100091, Beijing, China
| | - Refeya Jannatul
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Juan Chen
- Department of Nutrition and Health, China Agricultural University, 100091, Beijing, China
| | - Lihua Hou
- Department of General Surgery, The Third Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
| | - Mingjuan Gao
- Department of General Surgery, The Third Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, 100091, Beijing, China
| | - Lulu Wang
- School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Dekui Jin
- Department of General Surgery, The Third Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
| | - Hao Chen
- National Key Laboratory of Immunity and Inflammation Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 215123, Suzhou, China
| | - Rong Liu
- Department of Nutrition and Health, China Agricultural University, 100091, Beijing, China
| | - Ran Wang
- Department of Nutrition and Health, China Agricultural University, 100091, Beijing, China
| | - Yinhua Zhu
- Department of Nutrition and Health, China Agricultural University, 100091, Beijing, China
| | - Bing Fang
- Department of Nutrition and Health, China Agricultural University, 100091, Beijing, China
| | - Lirong Jia
- Department of Nutrition and Health, China Agricultural University, 100091, Beijing, China
| | - Yanan Sun
- Department of Nutrition and Health, China Agricultural University, 100091, Beijing, China
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307, Dresden, Germany
| | - Fazheng Ren
- Department of Nutrition and Health, China Agricultural University, 100091, Beijing, China
| | - Weilin Lin
- National Key Laboratory of Immunity and Inflammation Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 215123, Suzhou, China
| |
Collapse
|
2
|
Pandkar MR, Shukla S. Epigenetics and alternative splicing in cancer: old enemies, new perspectives. Biochem J 2024; 481:1497-1518. [PMID: 39422322 DOI: 10.1042/bcj20240221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
In recent years, significant strides in both conceptual understanding and technological capabilities have bolstered our comprehension of the factors underpinning cancer initiation and progression. While substantial insights have unraveled the molecular mechanisms driving carcinogenesis, there has been an overshadowing of the critical contribution made by epigenetic pathways, which works in concert with genetics. Mounting evidence demonstrates cancer as a complex interplay between genetics and epigenetics. Notably, epigenetic elements play a pivotal role in governing alternative pre-mRNA splicing, a primary contributor to protein diversity. In this review, we have provided detailed insights into the bidirectional communication between epigenetic modifiers and alternative splicing, providing examples of specific genes and isoforms affected. Notably, succinct discussion on targeting epigenetic regulators and the potential of the emerging field of epigenome editing to modulate splicing patterns is also presented. In summary, this review offers valuable insights into the intricate interplay between epigenetics and alternative splicing in cancer, paving the way for novel approaches to understanding and targeting this critical process.
Collapse
Affiliation(s)
- Madhura R Pandkar
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
3
|
Bannazadeh Baghi H, Bayat M, Mehrasa P, Alavi SMA, Lotfalizadeh MH, Memar MY, Taghavi SP, Zarepour F, Hamblin MR, Sadri Nahand J, Hashemian SMR, Mirzaei H. Regulatory role of microRNAs in virus-mediated inflammation. J Inflamm (Lond) 2024; 21:43. [PMID: 39497125 PMCID: PMC11536602 DOI: 10.1186/s12950-024-00417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Viral infections in humans often cause excessive inflammation. In some viral infections, inflammation can be serious and even fatal, while in other infections it can promote viral clearance. Viruses can escape from the host immune system via regulating inflammatory pathways, thus worsening the illness. MicroRNAs (miRNAs) are tiny non-coding RNA molecules expressed within diverse tissues as well as cells and are engaged in different normal pathological and physiological pathways. Emerging proof suggests that miRNAs can impact innate and adaptive immunity, inflammatory responses, cell invasion, and the progression of viral infections. We discuss some intriguing new findings in the current work, focusing on the impacts of different miRNAs on host inflammatory responses and virus-mediated inflammation. A better understanding of dysregulated miRNAs in viral infections could improve the identification, prevention, and treatment of several serious diseases.
Collapse
Affiliation(s)
- Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Mehrasa
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Zhang L, Khoo CS, Xiahou Z, Reddy N, Li Y, Lv J, Sun M, Fan H, Zhang X. Antioxidant and anti-melanogenesis activities of extracts from Leonurus japonicus Houtt. Biotechnol Genet Eng Rev 2024; 40:2888-2909. [PMID: 37066895 DOI: 10.1080/02648725.2023.2202544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
Leonurus japonicus Houtt is an important anti-skin pigmentation herb used in traditional Chinese medicine. However, the molecular basis for this activity is complex and not fully understood. In this study, water and ethanol extracts and polysaccharide extract from L. japonicus (LJPs) were analyzed by LC-MS/MS and HPLC-DAD separately. Cytotoxicity was analyzed by using CCK-8, antioxidant activity using flow cytometer, anti-MMPs, anti-tyrosinase and signalling pathway analysis using Western blotting to investigate their anti-melanogenesis function. The results showed that the water and ethanol extracts contained alkaloids, flavonoids, and phenolic acids. The LJPs mainly contain glucose, fucose, glucuronic acid, mannose, threonine and arginine, and structure characterization by FITR analyses indicated that LJPs have β- or α-D-glycosidic bonds and contain pyranose rings. The L. japonicus extracts displayed high cell viability at their maximum concentration. The water extract and polysaccharides significantly reduced lipopolysaccharide (LPS)-induced intracellular reactive oxygen species (ROS) content and exhibited a cytoprotective role. Also, these extracts displayed higher matrix metalloproteinase-2 (anti-MMP-2), anti-MMP-9 and anti-tyrosinase activities. Furthermore, the polysaccharides displayed significantly greater inhibitory effect on intracellular ROS and tyrosinase protein expression than α-arbutin and ursolic acid used for the clinical treatment of skin pigmentation. This study also investigated the polysaccharide inhibition of melanin synthesis by repressing the expression of melanocytic lineage-specific transcription factor (MITF) and melanogenic enzymes via modulation of the phosphoinositide 3-kinase (PI3K-Akt-mTOR) and β-catenin pathways. The overall results indicate that L. japonicus is a promising candidate for anti-pigmentation treatment.
Collapse
Affiliation(s)
- Lin Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | | | - ZhiKai Xiahou
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Narsimha Reddy
- School of Science, Parramatta Campus, Western Sydney University, Penrith, Australia
| | - Yue Li
- Department of Instrument Management & Analysis, Beijing Institute for Drug Control, Beijing, China
| | - Jingjing Lv
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Meihe Sun
- Yuzhou Lianyun Technology Co. Ltd, Henan, China
| | - Heming Fan
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Xian Zhang
- Department of Instrument Management & Analysis, Beijing Port Drug Inspection Institute of The People's Republic of China, Beijing, China
- Beijing Institute for Drug Control, Beijing, China
- Beijing Center for Vaccine Control, Beijing, China
| |
Collapse
|
5
|
Wang W, Hu Y, Fu F, Ren W, Wang T, Wang S, Li Y. Advancement in Multi-omics approaches for Uterine Sarcoma. Biomark Res 2024; 12:129. [PMID: 39472980 PMCID: PMC11523907 DOI: 10.1186/s40364-024-00673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Uterine sarcoma (US) is a rare malignant tumor that has various pathological types and high heterogeneity in the female reproductive system. Its subtle early symptoms, frequent recurrence, and resistance to radiation and chemotherapy make the prognosis for US patients very poor. Therefore, understanding the molecular mechanisms underlying tumorigenesis and progression is essential for an accurate diagnosis and targeted therapy to improve patient outcomes. Recent advancements in high-throughput molecular sequencing have allowed for a deeper understanding of diseases through multi-omics technologies. In this review, the latest progress and future potential of multi-omics technologies in US research is examined, and their roles in biomarker discovery and their application in the precise diagnosis and treatment of US are highlighted.
Collapse
Affiliation(s)
- Wuyang Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv. Wuhan, Wuhan, Hubei, 430030, P.R. China
| | - Yu Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv. Wuhan, Wuhan, Hubei, 430030, P.R. China
| | - Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv. Wuhan, Wuhan, Hubei, 430030, P.R. China
| | - Wu Ren
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv. Wuhan, Wuhan, Hubei, 430030, P.R. China
| | - Tian Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv. Wuhan, Wuhan, Hubei, 430030, P.R. China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv. Wuhan, Wuhan, Hubei, 430030, P.R. China.
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv. Wuhan, Wuhan, Hubei, 430030, P.R. China.
| |
Collapse
|
6
|
Dini C, Borges MHR, Malheiros SS, Piazza RD, van den Beucken JJJP, de Avila ED, Souza JGS, Barão VAR. Progress in Designing Therapeutic Antimicrobial Hydrogels Targeting Implant-associated Infections: Paving the Way for a Sustainable Platform Applied to Biomedical Devices. Adv Healthc Mater 2024:e2402926. [PMID: 39440583 DOI: 10.1002/adhm.202402926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Implantable biomedical devices have found widespread use in restoring lost functions or structures within the human body, but they face a significant challenge from microbial-related infections, which often lead to implant failure. In this context, antimicrobial hydrogels emerge as a promising strategy for treating implant-associated infections owing to their tunable physicochemical properties. However, the literature lacks a comprehensive analysis of antimicrobial hydrogels, encompassing their development, mechanisms, and effect on implant-associated infections, mainly in light of existing in vitro, in vivo, and clinical evidence. Thus, this review addresses the strategies employed by existing studies to tailor hydrogel properties to meet the specific needs of each application. Furthermore, this comprehensive review critically appraises the development of antimicrobial hydrogels, with a particular focus on solving infections related to metallic orthopedic or dental implants. Then, preclinical and clinical studies centering on providing quantitative microbiological results associated with the application of antimicrobial hydrogels are systematically summarized. Overall, antimicrobial hydrogels benefit from the tunable properties of polymers and hold promise as an effective strategy for the local treatment of implant-associated infections. However, future clinical investigations, grounded on robust evidence from in vitro and preclinical studies, are required to explore and validate new antimicrobial hydrogels for clinical use.
Collapse
Affiliation(s)
- Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Maria Helena Rossy Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Samuel Santana Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Rodolfo Debone Piazza
- Physical Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-900, Brazil
| | | | - Erica Dorigatti de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, São Paulo, 16015-050, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University (UNG), Guarulhos, São Paulo, 07023-070, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| |
Collapse
|
7
|
Huang H, Dong X, Du Z, Guo L, Chen L, Wang X, Lu S, Yue K, Ren Z, Wang J, Ren L, Xu J. Administration of Lactobacillus plantarum GUANKE alleviates SARS-CoV-2-induced pneumonia in mice. Microbiol Spectr 2024:e0160324. [PMID: 39431894 DOI: 10.1128/spectrum.01603-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targets epithelial cells in the respiratory tract, triggering an acute proinflammatory response and chronic lung inflammation. Probiotic supplementation has shown promise in reducing the nasopharyngeal SARS-CoV-2 viral load, diminishing symptom frequency and duration, and mitigating inflammation; thus, it is a potential strategy for treating coronavirus disease 2019 (COVID-19), which is caused by SARS-CoV-2 infection. In this study, we evaluated the effects of the oral administration of the Lactobacillus plantarum GUANKE strain, a gram-positive bacterium originally isolated from a healthy individual, on SARS-CoV-2 infection in a human ACE2 transgenic mouse model. We found that GUANKE significantly reduced inflammatory cell infiltration and pulmonary interstitial exudation in mice. The transcription of CCL2, TNFA, IL1B, IL6, and IL17C in the lungs was reduced. The protein levels of TNF-α, IL-1β, IL-6, and IL-17 in the lungs were significantly lower in GUANKE-treated mice than in control mice. The viral load in GUANKE-treated mice was lower than that in saline-treated mice, although this difference did not reach statistical significance. L. plantarum GUANKE can decrease SARS-CoV-2-induced lung inflammation in mice, suggesting its potential for use as an agent for treating SARS-CoV-2 infection. IMPORTANCE Most otherwise healthy individuals develop only mild or moderate symptoms of coronavirus disease 2019 (COVID-19) caused by current strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and virus replication is mainly confined to the upper respiratory tract; however, the virus can infect the lower respiratory tract and promote inflammation. Probiotic supplementation has been shown to reduce nasopharyngeal SARS-CoV-2 viral load, reduce the overall number and duration of symptoms, and attenuate inflammation in clinical trials. We showed that a novel L. plantarum GUANKE strain alleviated SARS-CoV-2-induced pneumonia in mice. The transcription and production of inflammatory cytokines were suppressed, and GUANKE moderately reduced the viral load. L. plantarum GUANKE has the potential to become a candidate drug for the treatment of COVID-19 or other viral respiratory infections.
Collapse
Affiliation(s)
- He Huang
- NHC Key Laboratory of System Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaojing Dong
- NHC Key Laboratory of System Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zuoyuan Du
- NHC Key Laboratory of System Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Guo
- NHC Key Laboratory of System Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lan Chen
- NHC Key Laboratory of System Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinming Wang
- NHC Key Laboratory of System Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Simin Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kun Yue
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhihong Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianwei Wang
- NHC Key Laboratory of System Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lili Ren
- NHC Key Laboratory of System Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianguo Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Hasan S, Mahmud Z, Hossain M, Islam S. Harnessing the role of aberrant cell signaling pathways in glioblastoma multiforme: a prospect towards the targeted therapy. Mol Biol Rep 2024; 51:1069. [PMID: 39424705 DOI: 10.1007/s11033-024-09996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Glioblastoma Multiforme (GBM), designated as grade IV by the World Health Organization, is the most aggressive and challenging brain tumor within the central nervous system. Around 80% of GBM patients have a poor prognosis, with a median survival of 12-15 months. Approximately 90% of GBM cases originate from normal glial cells via oncogenic processes, while the remainder arise from low-grade tumors. GBM is notorious for its heterogeneity, high recurrence rates, invasiveness, and aggressive behavior. Its malignancy is driven by increased invasive migration, proliferation, angiogenesis, and reduced apoptosis. Throughout various stages of central nervous system (CNS) development, pivotal signaling pathways, including Wnt/β-catenin, Sonic hedgehog signaling (Shh), PI3K/AKT/mTOR, Ras/Raf/MAPK/ERK, STAT3, NF-КB, TGF-β, and Notch signaling, orchestrate the growth, proliferation, differentiation, and migration of neural progenitor cells in the brain. Numerous upstream and downstream regulators within these signaling pathways have been identified as significant contributors to the development of human malignancies. Disruptions or aberrant activations in these pathways are linked to gliomagenesis, enhancing the invasiveness, progression, and aggressiveness of GBM, along with epithelial to mesenchymal transition (EMT) and the presence of glioma stem cells (GSCs). Traditional GBM treatment involves surgery, radiotherapy, and chemotherapy with Temozolomide (TMZ). However, most patients experience tumor recurrence, leading to low survival rates. This review provides an overview of the major cell signaling pathways involved in gliomagenesis. Furthermore, we explore the signaling pathways leading to therapy resistance and target key molecules within these signaling pathways, paving the way for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Subbrina Hasan
- Laboratory of Neuroscience and Neurogenetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Mahmud Hossain
- Laboratory of Neuroscience and Neurogenetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Sohidul Islam
- Department of Biochemistry & Microbiology, North South University, Dhaka, 1229, Bangladesh
| |
Collapse
|
9
|
Hosseinkhani S, Amandadi M, Ghanavatian P, Zarein F, Ataei F, Nikkhah M, Vandenabeele P. Harnessing luciferase chemistry in regulated cell death modalities and autophagy: overview and perspectives. Chem Soc Rev 2024. [PMID: 39417351 DOI: 10.1039/d3cs00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Regulated cell death is a fate of cells in (patho)physiological conditions during which extrinsic or intrinsic signals or redox equilibrium pathways following infection, cellular stress or injury are coupled to cell death modalities like apoptosis, necroptosis, pyroptosis or ferroptosis. An immediate survival response to cellular stress is often induction of autophagy, a process that deals with removal of aggregated proteins and damaged organelles by a lysosomal recycling process. These cellular processes and their regulation are crucial in several human diseases. Exploiting high-throughput assays which discriminate distinct cell death modalities and autophagy are critical to identify potential therapeutic agents that modulate these cellular responses. In the past few years, luciferase-based assays have been widely developed for assessing regulated cell death and autophagy pathways due to their simplicity, sensitivity, known chemistry, different spectral properties and high-throughput potential. Here, we review basic principles of bioluminescent reactions from a mechanistic perspective, along with their implication in vitro and in vivo for probing cell death and autophagy pathways. These include applying luciferase-, luciferin-, and ATP-based biosensors for investigating regulated cell death modalities. We discuss multiplex bioluminescence platforms which simultaneously distinguish between the various cell death phenomena and cellular stress recovery processes such as autophagy. We also highlight the recent technological achievements of bioluminescent tools for the prediction of drug effectiveness in pathways associated with regulated cell death.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parisa Ghanavatian
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fateme Zarein
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
10
|
Saraf P, Bhardwaj B, Verma A, Siddiqui MA, Verma H, Kumar P, Srivastava S, Krishnamurthy S, Srikrishna S, Shrivastava SK. Design, synthesis, and evaluation of benzhydrylpiperazine-based novel dual COX-2/5-LOX inhibitors with anti-inflammatory and anti-cancer activity. RSC Med Chem 2024:d4md00471j. [PMID: 39430948 PMCID: PMC11487423 DOI: 10.1039/d4md00471j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024] Open
Abstract
Piperazine derivatives were screened using the ChEMBL database, paving the way for the design, synthesis, and evaluation of a novel series of dual COX-2/5-LOX inhibitors and identifying their role in mitigating cancer cell proliferation. Compound 9d with 4-Cl substitution at the terminal phenyl ring showed promising inhibition of COX-2 (IC50 = 0.25 ± 0.03 μM) and 5-LOX (IC50 = 7.87 ± 0.33 μM), outperforming the standards celecoxib (IC50 = 0.36 ± 0.023 μM) and zileuton (IC50 = 14.29 ± 0.173 μM), respectively. The two most active derivatives 9d and 9g indicated a significant anti-inflammatory response in a paw edema model by inhibiting PGE2, IL-6, and TNF-α and an increase in IL-10 concentrations. Interestingly, 9d effectively reduced pain by 55.78%, closely comparable to the 59.09% exhibited by the standard indomethacin, and was also devoid of GI, liver, kidney, and cardiac toxicity. Furthermore, 9d demonstrated anti-cancer potential against in vitro A549, COLO-205, and MIA-PA-CA-2 human cancer cell lines and an in vivo Drosophila cancer model. The pharmacokinetic investigations revealed that 9d has good oral absorption characteristics.
Collapse
Affiliation(s)
- Poorvi Saraf
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India +91 945 2156 527
| | - Bhagwati Bhardwaj
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India +91 945 2156 527
| | - Akash Verma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India +91 945 2156 527
| | - Mohammad Aquib Siddiqui
- Pharmacology Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India
| | - Himanshu Verma
- Pharmacology Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India
| | - Pradeep Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University Varanasi-221005 India
| | - Samridhi Srivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India +91 945 2156 527
| | - Sairam Krishnamurthy
- Pharmacology Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University Varanasi-221005 India
| | - Sushant Kumar Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India +91 945 2156 527
| |
Collapse
|
11
|
Wahi K, Freidman N, Wang Q, Devadason M, Quek LE, Pang A, Lloyd L, Larance M, Zanini F, Harvey K, O'Toole S, Guan YF, Holst J. Macropinocytosis mediates resistance to loss of glutamine transport in triple-negative breast cancer. EMBO J 2024:10.1038/s44318-024-00271-6. [PMID: 39420093 DOI: 10.1038/s44318-024-00271-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Triple-negative breast cancer (TNBC) metabolism and cell growth uniquely rely on glutamine uptake by the transporter ASCT2. Despite previous data reporting cell growth inhibition after ASCT2 knockdown, we here show that ASCT2 CRISPR knockout is tolerated by TNBC cell lines. Despite the loss of a glutamine transporter and low rate of glutamine uptake, intracellular glutamine steady-state levels were increased in ASCT2 knockout compared to control cells. Proteomics analysis revealed upregulation of macropinocytosis, reduction in glutamine efflux and increased glutamine synthesis in ASCT2 knockout cells. Deletion of ASCT2 in the TNBC cell line HCC1806 induced a strong increase in macropinocytosis across five ASCT2 knockout clones, compared to a modest increase in ASCT2 knockdown. In contrast, ASCT2 knockout impaired cell proliferation in the non-macropinocytic HCC1569 breast cancer cells. These data identify macropinocytosis as a critical secondary glutamine acquisition pathway in TNBC and a novel resistance mechanism to strategies targeting glutamine uptake alone. Despite this adaptation, TNBC cells continue to rely on glutamine metabolism for their growth, providing a rationale for targeting of more downstream glutamine metabolism components.
Collapse
Affiliation(s)
- Kanu Wahi
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia.
| | - Natasha Freidman
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qian Wang
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Michelle Devadason
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Lake-Ee Quek
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - Angel Pang
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Larissa Lloyd
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Mark Larance
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Fabio Zanini
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Kate Harvey
- Cancer Ecosystems Program, Garvan Institute of Medical Research, UNSW Sydney, Kensington, NSW, Australia
| | - Sandra O'Toole
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yi Fang Guan
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Jeff Holst
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
12
|
Feng N, Zhang R, Wen X, Wang W, Zhang N, Zheng J, Zhang L, Liu N. RABIF promotes hepatocellular carcinoma progression through regulation of mitophagy and glycolysis. Commun Biol 2024; 7:1333. [PMID: 39414994 PMCID: PMC11484875 DOI: 10.1038/s42003-024-07028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
The RAB interacting factor (RABIF) is a putative guanine nucleotide exchange factor that also functions as a RAB-stabilizing holdase chaperone. It has been implicated in pathogenesis of several cancers. However, the functional role and molecular mechanism of RABIF in hepatocellular carcinoma (HCC) are not entirely known. Here, we demonstrate an upregulation of RABIF in patients with HCC, correlating with a poor prognosis. RABIF inhibition results in decreased HCC cell growth both in vitro and in vivo. Our study reveals that depleting RABIF attenuates the STOML2-PARL-PGAM5 axis-mediated mitophagy. Consequently, this reduction in mitophagy results in diminished mitochondrial reactive oxygen species (mitoROS) production, thereby alleviating the HIF1α-mediated downregulation of glycolytic genes HK1, HKDC1, and LDHB. Additionally, we illustrate that RABIF regulates glucose uptake by controlling RAB10 expression. Importantly, the knockout of RABIF or blockade of mitophagy sensitizes HCC cells to sorafenib. This study uncovers a previously unrecognized role of RABIF crucial for HCC growth and identifies it as a potential therapeutic target.
Collapse
Affiliation(s)
- Ning Feng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rui Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Wen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nie Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Longzhen Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Nianli Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Pathology and Laboratory of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
13
|
Nie W, Yu Y, Wang X, Wang R, Li SC. Spatially Informed Graph Structure Learning Extracts Insights from Spatial Transcriptomics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403572. [PMID: 39382177 DOI: 10.1002/advs.202403572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/04/2024] [Indexed: 10/10/2024]
Abstract
Embeddings derived from cell graphs hold significant potential for exploring spatial transcriptomics (ST) datasets. Nevertheless, existing methodologies rely on a graph structure defined by spatial proximity, which inadequately represents the diversity inherent in cell-cell interactions (CCIs). This study introduces STAGUE, an innovative framework that concurrently learns a cell graph structure and a low-dimensional embedding from ST data. STAGUE employs graph structure learning to parameterize and refine a cell graph adjacency matrix, enabling the generation of learnable graph views for effective contrastive learning. The derived embeddings and cell graph improve spatial clustering accuracy and facilitate the discovery of novel CCIs. Experimental benchmarks across 86 real and simulated ST datasets show that STAGUE outperforms 15 comparison methods in clustering performance. Additionally, STAGUE delineates the heterogeneity in human breast cancer tissues, revealing the activation of epithelial-to-mesenchymal transition and PI3K/AKT signaling in specific sub-regions. Furthermore, STAGUE identifies CCIs with greater alignment to established biological knowledge than those ascertained by existing graph autoencoder-based methods. STAGUE also reveals the regulatory genes that participate in these CCIs, including those enriched in neuropeptide signaling and receptor tyrosine kinase signaling pathways, thereby providing insights into the underlying biological processes.
Collapse
Affiliation(s)
- Wan Nie
- Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China
| | - Yingying Yu
- Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China
| | - Xueying Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China
- City University of Hong Kong (Dongguan), Dongguan, 523000, China
| | - Ruohan Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
14
|
Burnat D, Janik M, Kwietniewski N, Martychowiec A, Musolf P, Bartnik K, Koba M, Rygiel TP, Niedziółka-Jönsson J, Śmietana M. Double-layer optical fiber interferometer with bio-layer-modified reflector for label-free biosensing of inflammatory proteins. Sci Rep 2024; 14:23127. [PMID: 39367065 PMCID: PMC11452487 DOI: 10.1038/s41598-024-70058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/12/2024] [Indexed: 10/06/2024] Open
Abstract
This work discusses label-free biosensing application of a double-layer optical fiber interferometer where the second layer tailors the reflection conditions at the external plain and supports changes in reflected optical spectrum when a bio-layer binds to it. The double-layer nanostructure consists of precisely tailored thin films, i.e., titanium (TiO2) and hafnium oxides (HfO2) deposited on single-mode fiber end-face by magnetron sputtering. It has been shown numerically and experimentally that the approach besides well spectrally defined interference pattern distinguishes refractive index (RI) changes taking place in a volume and on the sensor surface. These are of interest when label-free biosensing applications are considered. The case of myeloperoxidase (MPO) detection-a protein, which concentration rises during inflammation-is reported as an example of application. The response of the sensor to MPO in a concentration range of 1 × 10-11-5 × 10-6 g/mL was tested. An increase in the MPO concentration was followed by a redshift of the interference pattern and a decrease in reflected power. The negative control performed using ferritin proved specificity of the sensor. The results reported in this work indicate capability of the approach for diagnostic label-free biosensing, possibly also at in vivo conditions.
Collapse
Affiliation(s)
- Dariusz Burnat
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Monika Janik
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Norbert Kwietniewski
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Agnieszka Martychowiec
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Paulina Musolf
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Krzysztof Bartnik
- Second Department of Radiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Marcin Koba
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
- National Institute of Telecommunications, Szachowa 1, 04-894, Warsaw, Poland
| | - Tomasz P Rygiel
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Joanna Niedziółka-Jönsson
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mateusz Śmietana
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland.
- Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668, Warsaw, Poland.
| |
Collapse
|
15
|
Xiang X, Zhang L, Li S, Ren Y, Chen D, Liu L. Glutamine Attenuates Inflammation and Stimulates Amniotic Cell Proliferation in Premature Rupture of Membranes-related in vitro Models. Reprod Sci 2024:10.1007/s43032-024-01691-9. [PMID: 39367233 DOI: 10.1007/s43032-024-01691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
Premature rupture of membranes (PROM), with a prevalence of 15.3% in China, frequently results in adverse pregnancy outcomes. In this study, we aimed to identify amino acid metabolites that were differentially expressed in PROM versus healthy controls (HC) using targeted metabolomics and further explored their mechanisms of action with in vitro models.Inclusion and exclusion criteria were established to recruit 50 PROM and 50 HC cases for targeted metabolomics analysis. Twenty-three amino acid metabolites were quantified in the secretions of the posterior vaginal fornix of pregnant women between 31 and 36 weeks of gestation. Glutamine (0.0216 vs. 0.037 μg/mg, P = 0.003, AUC = 72.1%) was identified as the most differentially expressed amino acid metabolite between PROM and HC groups, and had a negative correlation with the abundance of Gardnerella (r=-0.3868, P = 0.0055), Megasphaera (r=-0.3130, P = 0.0269), and Prevotella (r=-0.2944, P = 0.0380), respectively.In amniotic epithelial cell and macrophage co-culture model, Glutamine reduced inflammatory cytokines and chemokines expression and suppressed macrophage chemotaxis. In LPS stimulated RAW 264.7 inflammation model, Glutamine inhibited the expression of inflammatory proteins iNOS and COX-2, down-regulated mRNA transcription of TNF, IL-6, and IL-1β, and reduced the production of reactive oxygen species through inhibiting NF-κB signaling pathway, and therefore demonstrated its anti-inflammatory effect. Furthermore, Glutamine protected amniotic epithelial cell from autophagy and stimulated its proliferation, therefore may intensify fetal membrane and prevent PROM in vivo.Our results suggested that low Glutamine level in vaginal secretion can be used as an indicator for PROM, and local Glutamine supplementation is a potential intervention and prevention strategy for PROM.
Collapse
Affiliation(s)
- Xiang Xiang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Linshen Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Su Li
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Yongwei Ren
- Affiliated Women's Hospital of Jiangnan University, Wuxi, 210000, China
| | - Daozhen Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
- Affiliated Women's Hospital of Jiangnan University, Wuxi, 210000, China.
| | - Lou Liu
- Department of Obstetrics, Longgang Maternity and Child Institute of Shantou University Medical College, Shenzhen, 518172, China.
| |
Collapse
|
16
|
Chaudhary N, Newby AN, Whitehead KA. Non-Viral RNA Delivery During Pregnancy: Opportunities and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306134. [PMID: 38145340 PMCID: PMC11196389 DOI: 10.1002/smll.202306134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/25/2023] [Indexed: 12/26/2023]
Abstract
During pregnancy, the risk of maternal and fetal adversities increases due to physiological changes, genetic predispositions, environmental factors, and infections. Unfortunately, treatment options are severely limited because many essential interventions are unsafe, inaccessible, or lacking in sufficient scientific data to support their use. One potential solution to this challenge may lie in emerging RNA therapeutics for gene therapy, protein replacement, maternal vaccination, fetal gene editing, and other prenatal treatment applications. In this review, the current landscape of RNA platforms and non-viral RNA delivery technologies that are under active development for administration during pregnancy is explored. Advancements of pregnancy-specific RNA drugs against SARS-CoV-2, Zika, influenza, preeclampsia, and for in-utero gene editing are discussed. Finally, this study highlights bottlenecks that are impeding translation efforts of RNA therapies, including the lack of accurate cell-based and animal models of human pregnancy and concerns related to toxicity and immunogenicity during pregnancy. Overcoming these challenges will facilitate the rapid development of this new class of pregnancy-safe drugs.
Collapse
Affiliation(s)
- Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Alexandra N. Newby
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Kathryn A. Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
17
|
Kiaie SH, Zangi AR, Sheibani M, Hemmati S, Baradaran B, Valizadeh H. Novel synthesized ionizable lipid for LNP-mediated P2X7siRNA to inhibit migration and induce apoptosis of breast cancer cells. Purinergic Signal 2024; 20:533-546. [PMID: 38436880 PMCID: PMC11377399 DOI: 10.1007/s11302-024-09989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024] Open
Abstract
The development of ionizable lipid (IL) was necessary to enable the effective formulation of small interfering RNA (siRNA) to inhibit P2X7 receptors (P2X7R), a key player in tumor proliferation, apoptosis, and metastasis. In this way, the synthesis and utility of IL for enhancing cellular uptake of lipid nanoparticles (LNP) improve the proper delivery of siRNA-LNPs for knockdown overexpression of P2X7R. Therefore, to evaluate the impact of P2X7 knockdown on breast cancer (BC) migration and apoptosis, a branched and synthesized ionizable lipid (SIL) was performed for efficient transfection of LNP with siRNA for targeting P2X7 receptors (siP2X7) in mouse 4T-1 cells. Following synthesis and structural analysis of SIL, excellent characterization of the LNP was achieved (Z-average 126.8 nm, zeta-potential - 12.33, PDI 0.16, and encapsulation efficiency 85.35%). Afterward, the stability of the LNP was evaluated through an analysis of the leftover composition, and toxic concentration values for SIL and siP2X7 were determined. Furthermore, siP2X7-LNP cellular uptake in the formulation was assessed via confocal microscopy. Following determining the optimal dose (45 pmol), wound healing analysis was assessed using scratch assay microscopy, and apoptosis was evaluated using flow cytometry. The use of the innovative branched SIL in the formulation of siP2X7-LNP resulted in significant inhibition of migration and induction of apoptosis in 4T-1 cells due to improved cellular uptake. Subsequently, the innovative SIL represents a critical role in efficiently delivering siRNA against murine triple-negative breast cancer cells (TNBC) using LNP formulation, resulting in significant efficacy.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center and School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Deng X, Yu YV, Jin YN. Non-canonical translation in cancer: significance and therapeutic potential of non-canonical ORFs, m 6A-modification, and circular RNAs. Cell Death Discov 2024; 10:412. [PMID: 39333489 PMCID: PMC11437038 DOI: 10.1038/s41420-024-02185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Translation is a decoding process that synthesizes proteins from RNA, typically mRNA. The conventional translation process consists of four stages: initiation, elongation, termination, and ribosome recycling. Precise control over the translation mechanism is crucial, as dysregulation in this process is often linked to human diseases such as cancer. Recent discoveries have unveiled translation mechanisms that extend beyond typical well-characterized components like the m7G cap, poly(A)-tail, or translation factors like eIFs. These mechanisms instead utilize atypical elements, such as non-canonical ORF, m6A-modification, and circular RNA, as key components for protein synthesis. Collectively, these mechanisms are classified as non-canonical translations. It is increasingly clear that non-canonical translation mechanisms significantly impact the various regulatory pathways of cancer, including proliferation, tumorigenicity, and the behavior of cancer stem cells. This review explores the involvement of a variety of non-canonical translation mechanisms in cancer biology and provides insights into potential therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Xiaoyi Deng
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yanxun V Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, China
| | - Youngnam N Jin
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
19
|
Ben Abdallah H, Marino G, Idorn M, S Reinert L, Bregnhøj A, Paludan SR, Johansen C. The heat shock protein 90 inhibitor RGRN-305 attenuates SARS-CoV-2 spike protein-induced inflammation in vitro but lacks effectiveness as COVID-19 treatment in mice. PLoS One 2024; 19:e0310915. [PMID: 39325762 PMCID: PMC11426470 DOI: 10.1371/journal.pone.0310915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024] Open
Abstract
The inhibition of heat shock protein 90 (HSP90), a molecular chaperone, has been proposed to be a potential novel treatment strategy for Coronavirus disease 2019 (COVID-19). In contrast to other studies, our data demonstrated that RGRN-305, a HSP90 inhibitor, exacerbated the cytopathic effect and did not reduce the viral shedding in VeroE6-hTMPRSS2 cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Likewise in a murine model of SARS-CoV-2, transgenic mice treated orally with RGRN-305 exhibited reduced survival by the end of the experiment (day 12) as 14% (1/7) survived compared to 63% (5/8) of those treated with drug-vehicle. Animal weight was not reduced by the RGRN-305 treatment. Interestingly, we demonstrated that inhibition of HSP90 by RGRN-305 significantly dampened the inflammatory response induced by SARS-CoV-2 spike protein in human macrophage-like cells (U937) and human lung epithelial cells (A549). Measured by quantitative real-time PCR, the mRNA expression of the proinflammatory cytokines TNF, IL1B and IL6 were significantly reduced. Together, these data suggest that HSP90 inhibition by RGRN-305 exacerbates the SARS-CoV-2 infection in vitro and reduces the survival of mice infected with SARS-CoV-2, but exhibits strong anti-inflammatory properties. This data shows that while RGRN-305 may be helpful in a 'cytokine storm', it has no beneficial impact on viral replication or survival in animals as a monotherapy. Further animal studies with HSP90 inhibitors in combination with an anti-viral drug may provide additional insights into its utility in viral infections and whether HSP90 inhibition may continue to be a potential treatment strategy for COVID-19 disease.
Collapse
Affiliation(s)
- Hakim Ben Abdallah
- Department of Dermatology, Aarhus University Hospital, Aarhus N, Denmark
| | - Giorgia Marino
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Manja Idorn
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Line S Reinert
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Anne Bregnhøj
- Department of Dermatology, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
20
|
Liu F, Chen Y, Huang Y, Jin Q, Ji J. Nanomaterial-based therapeutics for enhanced antifungal therapy. J Mater Chem B 2024; 12:9173-9198. [PMID: 39192670 DOI: 10.1039/d4tb01484g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The application of nanotechnology in antifungal therapy is gaining increasing attention. Current antifungal drugs have significant limitations, such as severe side effects, low bioavailability, and the rapid development of resistance. Nanotechnology offers an innovative solution to address these issues. This review discusses three key strategies of nanotechnology to enhance antifungal efficacy. Firstly, nanomaterials can enhance their interaction with fungal cells via ingenious surface tailoring of nanomaterials. Effective adhesion of nanoparticles to fungal cells can be achieved by electrostatic interaction or specific targeting to the fungal cell wall and cell membrane. Secondly, stimuli-responsive nanomaterials are developed to realize smart release of drugs in the specific microenvironment of pathological tissues, such as the fungal biofilm microenvironment and inflammatory microenvironment. Thirdly, nanomaterials can be designed to cross different physiological barriers, effectively addressing challenges posed by skin, corneal, and blood-brain barriers. Additionally, some new nanomaterial-based strategies in treating fungal infections are discussed, including the development of fungal vaccines, modulation of macrophage activity, phage therapy, the application of high-throughput screening in drug discovery, and so on. Despite the challenges faced in applying nanotechnology to antifungal therapy, its significant potential and innovation open new possibilities for future clinical antifungal applications.
Collapse
Affiliation(s)
- Fang Liu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yongcheng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, China
| |
Collapse
|
21
|
Hara MA, Ramadan M, Abdelhameid MK, Taher ES, Mohamed KO. Pyroptosis and chemical classification of pyroptotic agents. Mol Divers 2024:10.1007/s11030-024-10987-6. [PMID: 39316325 DOI: 10.1007/s11030-024-10987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Pyroptosis, as a lytic-inflammatory type of programmed cell death, has garnered considerable attention due to its role in cancer chemotherapy and many inflammatory diseases. This review will discuss the biochemical classification of pyroptotic inducers according to their chemical structure, pyroptotic mechanism, and cancer type of these targets. A structure-activity relationship study on pyroptotic inducers is revealed based on the surveyed pyroptotic inducer chemotherapeutics. The shared features in the chemical structures of current pyroptotic inducer agents were displayed, including an essential cyclic head, a vital linker, and a hydrophilic tail that is significant for π-π interactions and hydrogen bonding. The presented structural features will open the way to design new hybridized classes or scaffolds as potent pyroptotic inducers in the future, which may represent a solution to the apoptotic-resistance dilemma along with synergistic chemotherapeutic advantage.
Collapse
Affiliation(s)
- Mohammed A Hara
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al Azhar University (Assiut), Assiut, 71524, Egypt
| | - Mohamed Ramadan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al Azhar University (Assiut), Assiut, 71524, Egypt.
| | - Mohammed K Abdelhameid
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ehab S Taher
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al Azhar University (Assiut), Assiut, 71524, Egypt
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Khaled O Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sinai University (Arish Branch), ElArich, Egypt
| |
Collapse
|
22
|
Bordone R, Ivy DM, D'Amico R, Barba M, Gaggianesi M, Di Pastena F, Cesaro B, Bufalieri F, Balzerano A, De Smaele E, Giannini G, Di Marcotullio L, Fatica A, Stassi G, Di Magno L, Coni S, Canettieri G. MYC upstream region orchestrates resistance to PI3K inhibitors in cancer cells through FOXO3a-mediated autophagic adaptation. Oncogene 2024:10.1038/s41388-024-03170-6. [PMID: 39306615 DOI: 10.1038/s41388-024-03170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
The MYC oncogene is frequently overexpressed in tumors and inhibition of its translation is considered an attractive therapeutic opportunity. Despite numerous reports proposing an internal ribosome entry site (IRES) within the MYC Upstream Region (MYC UR) to sustain MYC translation during cellular stress or chemotherapy, conflicting evidence remains regarding the validity of such a mechanism. Through comprehensive investigations in MYC-driven Colorectal Cancer (CRC) and Burkitt Lymphoma (BL) cells, we demonstrate that MYC UR does not facilitate cap-independent translation, but instead orchestrates resistance to PI3K inhibitors. Genomic deletion of MYC UR neither impacts MYC protein levels nor viability in CRC cells, either untreated or exposed to cellular stress. However, in response to PI3K inhibitors, MYC UR drives a FOXO3a-dependent transcriptional upregulation of MYC, conferring drug resistance. This resistance is mediated by enhanced autophagic flux, governed by MYC, and blockade of autophagy sensitizes CRC cells to PI3K inhibition in vitro and in vivo. Remarkably, BL cells lacking the translocation of MYC UR exhibit sensitivity to PI3K inhibitors, whereas MYC UR-translocated cells respond to these drugs only when autophagy is inhibited. These findings challenge previous notions regarding IRES-mediated translation and highlight a promising strategy to overcome resistance to PI3K inhibitors in MYC-driven malignancies, offering potential clinical implications for CRC and BL treatment.
Collapse
Affiliation(s)
- Rosa Bordone
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Devon Michael Ivy
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Rodrigo D'Amico
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Martina Barba
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127, Palermo, Italy
| | - Fiorella Di Pastena
- McMaster University, Faculty of Health Sciences, Department of Medicine, 1200, Main St W, Hamilton, ON, Canada
| | - Bianca Cesaro
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesca Bufalieri
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Alessio Balzerano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127, Palermo, Italy
| | - Laura Di Magno
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Sonia Coni
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
- Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| |
Collapse
|
23
|
Attiq A, Afzal S, Wahab HA, Ahmad W, Kandeel M, Almofti YA, Alameen AO, Wu YS. Cytokine Storm-Induced Thyroid Dysfunction in COVID-19: Insights into Pathogenesis and Therapeutic Approaches. Drug Des Devel Ther 2024; 18:4215-4240. [PMID: 39319193 PMCID: PMC11421457 DOI: 10.2147/dddt.s475005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Angiotensin-converting enzyme 2 receptors (ACE2R) are requisite to enter the host cells for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). ACE2R is constitutive and functions as a type I transmembrane metallo-carboxypeptidase in the renin-angiotensin system (RAS). On thyroid follicular cells, ACE2R allows SARS-CoV-2 to invade the thyroid gland, impose cytopathic effects and produce endocrine abnormalities, including stiff back, neck pain, muscle ache, lethargy, and enlarged, inflamed thyroid gland in COVID-19 patients. Further damage is perpetuated by the sudden bursts of pro-inflammatory cytokines, which is suggestive of a life-threatening syndrome known as a "cytokine storm". IL-1β, IL-6, IFN-γ, and TNF-α are identified as the key orchestrators of the cytokine storm. These inflammatory mediators upregulate transcriptional turnover of nuclear factor-kappa B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), and mitogen-activated protein kinase (MAPK), paving the pathway for cytokine storm-induced thyroid dysfunctions including euthyroid sick syndrome, autoimmune thyroid diseases, and thyrotoxicosis in COVID-19 patients. Targeted therapies with corticosteroids (dexamethasone), JAK inhibitor (baricitinib), nucleotide analogue (remdesivir) and N-acetyl-cysteine have demonstrated effectiveness in terms of attenuating the severity and frequency of cytokine storm-induced thyroid dysfunctions, morbidity and mortality in severe COVID-19 patients. Here, we review the pathogenesis of cytokine storms and the mechanisms and pathways that establish the connection between thyroid disorder and COVID-19. Moreover, cross-talk interactions of signalling pathways and therapeutic strategies to address COVID-19-associated thyroid diseases are also discussed herein.
Collapse
Affiliation(s)
- Ali Attiq
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Waqas Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrel Sheikh, 6860404, Egypt
| | - Yassir A Almofti
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Biochemistry, Molecular Biology and Bioinformatics, College of Veterinary Medicine, University of Bahri, Khartoum, 12217, Sudan
| | - Ahmed O Alameen
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Physiology, Faculty of Veterinary Medicine, University of Khartoum, Shambat, 13314, Sudan
| | - Yuan Seng Wu
- Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, 47500, Malaysia
| |
Collapse
|
24
|
Foran G, Hallam RD, Megaly M, Turgambayeva A, Antfolk D, Li Y, Luca VC, Necakov A. Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping. Sci Rep 2024; 14:21912. [PMID: 39300145 PMCID: PMC11413390 DOI: 10.1038/s41598-024-71634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
The Notch receptor is a pleiotropic signaling protein that translates intercellular ligand interactions into changes in gene expression via the nuclear localization of the Notch intracellular Domain (NICD). Using a combination of immunohistochemistry, RNA in situ, Optogenetics and super-resolution live imaging of transcription in human cells, we show that the N1ICD can form condensates that positively facilitate Notch target gene expression. We determined that N1ICD undergoes Phase Separation Coupled Percolation (PSCP) into transcriptional condensates, which recruit, enrich, and encapsulate a broad set of core transcriptional proteins. We show that the capacity for condensation is due to the intrinsically disordered transcriptional activation domain of the N1ICD. In addition, the formation of such transcriptional condensates acts to promote Notch-mediated super enhancer-looping and concomitant activation of the MYC protooncogene expression. Overall, we introduce a novel mechanism of Notch1 activity in which discrete changes in nuclear N1ICD abundance are translated into the assembly of transcriptional condensates that facilitate gene expression by enriching essential transcriptional machineries at target genomic loci.
Collapse
Affiliation(s)
- Gregory Foran
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Ryan Douglas Hallam
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Marvel Megaly
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Anel Turgambayeva
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Daniel Antfolk
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Yifeng Li
- Department of Computer Science, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Vincent C Luca
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Aleksandar Necakov
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
25
|
Dore MD, Laurent Q, Lachance-Brais C, Das T, Luo X, Sleiman HF. DNA Hierarchical Superstructures from Micellar Units: Stiff Hydrogels and Anisotropic Nanofibers. Chemistry 2024; 30:e202401453. [PMID: 38951115 DOI: 10.1002/chem.202401453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Supramolecular materials have been assembled using a wide range of interactions, including the hydrophobic effect, DNA base-pairing, and hydrogen bonding. Specifically, DNA amphiphiles with a hydrophobic building block self-assemble into diverse morphologies depending on the length and composition of both blocks. Herein, we take advantage of the orthogonality of different supramolecular interactions - the hydrophobic effect, Watson-Crick-Franklin base pairing and RNA kissing loops - to create hierarchical self-assemblies with controlled morphologies on both the nanometer and the micrometer scales. Assembly through base-pairing leads to the formation of hybrid, multi-phasic hydrogels with high stiffness and self-healing properties. Assembly via hydrophobic core interactions gives anisotropic, discrete assemblies, where DNA fibers with one sequence are terminated with DNA spheres bearing different sequences. This work opens new avenues for the bottom-up construction of DNA-based materials, with promising applications in drug delivery, tissue engineering, and the creation of complex DNA structures from a minimum array of components.
Collapse
Affiliation(s)
- Michael D Dore
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, H3A 0B8, Montréal, QC, Canada
| | - Quentin Laurent
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, H3A 0B8, Montréal, QC, Canada
| | | | - Trishalina Das
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, H3A 0B8, Montréal, QC, Canada
| | - Xin Luo
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, H3A 0B8, Montréal, QC, Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, H3A 0B8, Montréal, QC, Canada
| |
Collapse
|
26
|
Xiao Y, Li Y, Zhao H. Spatiotemporal metabolomic approaches to the cancer-immunity panorama: a methodological perspective. Mol Cancer 2024; 23:202. [PMID: 39294747 PMCID: PMC11409752 DOI: 10.1186/s12943-024-02113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Metabolic reprogramming drives the development of an immunosuppressive tumor microenvironment (TME) through various pathways, contributing to cancer progression and reducing the effectiveness of anticancer immunotherapy. However, our understanding of the metabolic landscape within the tumor-immune context has been limited by conventional metabolic measurements, which have not provided comprehensive insights into the spatiotemporal heterogeneity of metabolism within TME. The emergence of single-cell, spatial, and in vivo metabolomic technologies has now enabled detailed and unbiased analysis, revealing unprecedented spatiotemporal heterogeneity that is particularly valuable in the field of cancer immunology. This review summarizes the methodologies of metabolomics and metabolic regulomics that can be applied to the study of cancer-immunity across single-cell, spatial, and in vivo dimensions, and systematically assesses their benefits and limitations.
Collapse
Affiliation(s)
- Yang Xiao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Huakan Zhao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
27
|
Jawale D, Khandibharad S, Singh S. Innate Immune Response and Epigenetic Regulation: A Closely Intertwined Tale in Inflammation. Adv Biol (Weinh) 2024:e2400278. [PMID: 39267219 DOI: 10.1002/adbi.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Indexed: 09/17/2024]
Abstract
Maintenance of delicate homeostasis is very important in various diseases because it ensures appropriate immune surveillance against pathogens and prevents excessive inflammation. In a disturbed homeostatic condition, hyperactivation of immune cells takes place and interplay between these cells triggers a plethora of signaling pathways, releasing various pro-inflammatory cytokines such as Tumor necrosis factor alpha (TNFα), Interferon-gamma (IFNƴ), Interleukin-6 (IL-6), and Interleukin-1 beta (IL-1β), which marks cytokine storm formation. To be precise, dysregulated balance can impede or increase susceptibility to various pathogens. Pathogens have the ability to hijack the host immune system by interfering with the host's chromatin architecture for their survival and replication in the host cell. Cytokines, particularly IL-6, Interleukin-17 (IL-17), and Interleukin-23 (IL-23), play a key role in orchestrating innate immune responses and shaping adaptive immunity. Understanding the interplay between immune response and the role of epigenetic modification to maintain immune homeostasis and the structural aspects of IL-6, IL-17, and IL-23 can be illuminating for a novel therapeutic regimen to treat various infectious diseases. In this review, the light is shed on how the orchestration of epigenetic regulation facilitates immune homeostasis.
Collapse
Affiliation(s)
- Diksha Jawale
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| | - Shweta Khandibharad
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| | - Shailza Singh
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| |
Collapse
|
28
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
29
|
Dong Z, Wang Q. The causal relationship between human blood metabolites and risk of peripheral artery disease: a Mendelian randomization study. Front Cardiovasc Med 2024; 11:1435106. [PMID: 39318836 PMCID: PMC11420124 DOI: 10.3389/fcvm.2024.1435106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Background Peripheral Artery Disease (PAD) is a common vascular disorder typically caused by atherosclerosis, leading to impaired blood supply to the lower extremities, resulting in pain, necrosis, and even amputation. Despite extensive research into the pathogenesis of PAD, many mysteries remain, particularly regarding its association with human blood metabolites. Methods To explore the causal relationship between 1,400 serum metabolites and PAD, a two-sample Mendelian randomization (MR) analysis was conducted. The Inverse Variance-Weighted (IVW) method was the primary technique used to estimate the causal impact of the metabolites on PAD. To enhance the analysis, several additional methods were employed: MR-Egger regression, weighted median, simple mode, and weighted mode. These methods provided a comprehensive evaluation beyond the primary IVW estimation. To ensure the validity of the MR findings, sensitivity analysis was performed. Furthermore, a bidirectional MR approach was applied to explore the possibility of a reverse causal effect between PAD and potential candidate metabolites. Results After rigorous selection, significant associations were found between 1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (p-18:0/20:4) and X-17653 levels with PAD. 1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (p-18:0/20:4) was positively associated with increased PAD risk (IVW OR = 1.13, 95% CI, 1.06-1.21; P < 0.001). X-17653 levels were associated with decreased PAD risk (IVW OR = 0.88, 95% CI, 0.83-0.94; P < 0.001). In the reverse direction, PAD was positively associated with increased 1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (p-18:0/20:4) levels (IVW OR = 1.16, 95% CI, 1.01-1.34; P = 0.036). PAD was not associated with X-17653. Conclusion Among 1,400 blood metabolites, 1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (p-18:0/20:4) and X-17653 are significantly associated with PAD risk. Importantly, in the reverse direction, PAD was found to be positively associated with increased levels of 1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (p-18:0/20:4). This highlights the bidirectional nature of the association and suggests a potential feedback mechanism between PAD and this specific lipid species. 1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (p-18:0/20:4) may serve as potential biomarkers for PAD, aiding early diagnosis and providing novel avenues for personalized treatment and management. However, further validation and research are warranted despite the promising results.
Collapse
Affiliation(s)
| | - Qingyun Wang
- Department of Cardiothoracic Surgery, Beijing Shunyi Hospital, Beijing, China
| |
Collapse
|
30
|
Liu X, Zhou C, Cheng B, Xiong Y, Zhou Q, Wan E, He Y. Genipin promotes the apoptosis and autophagy of neuroblastoma cells by suppressing the PI3K/AKT/mTOR pathway. Sci Rep 2024; 14:20231. [PMID: 39215133 PMCID: PMC11364629 DOI: 10.1038/s41598-024-71123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
This study investigated the underlying function and mechanism of genipin in neuroblastoma (NB). Using flow cytometry analysis and cytotoxicity tests, in vitro studies were conducted to assess the effects of genipin on the SK-N-SH cell line. The mechanism of action of genipin was explored through immunofluorescence staining, Western blotting, and caspase-3 activity assays. In addition, we also created a xenograft tumour model to investigate the effects of genipin in vivo. This research confirmed that genipin suppressed cell viability, induced apoptosis, and promoted autophagy, processes that are likely linked to the inhibition of the PI3K/AKT/mTOR signalling pathway. Autophagy inhibition increases the sensitivity of SK-N-SH cells to genipin. Furthermore, combination treatment with a PI3K inhibitor enhanced the therapeutic efficacy of genipin. These results highlight the potential of genipin as a candidate drug for the treatment of NB.
Collapse
Affiliation(s)
- Xinying Liu
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
- Science and Technology Innovation Centre, North Sichuan Medical College, Shunqing District, Nanchong, 637000, Sichuan, China
- Institute of Hepatobiliary Research, North Sichuan Medical College, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Can Zhou
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Boli Cheng
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Yan Xiong
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Qin Zhou
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Enyu Wan
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Yun He
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
31
|
Coënon L, Geindreau M, Ghiringhelli F, Villalba M, Bruchard M. Natural Killer cells at the frontline in the fight against cancer. Cell Death Dis 2024; 15:614. [PMID: 39179536 PMCID: PMC11343846 DOI: 10.1038/s41419-024-06976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
Natural Killer (NK) cells are innate immune cells that play a pivotal role as first line defenders in the anti-tumor response. To prevent tumor development, NK cells are searching for abnormal cells within the body and appear to be key players in immunosurveillance. Upon recognition of abnormal cells, NK cells will become activated to destroy them. In order to fulfill their anti-tumoral function, they rely on the secretion of lytic granules, expression of death receptors and production of cytokines. Additionally, NK cells interact with other cells in the tumor microenvironment. In this review, we will first focus on NK cells' activation and cytotoxicity mechanisms as well as NK cells behavior during serial killing. Lastly, we will review NK cells' crosstalk with the other immune cells present in the tumor microenvironment.
Collapse
Affiliation(s)
- Loïs Coënon
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Mannon Geindreau
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM CTM-UMR1231, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
| | - François Ghiringhelli
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM CTM-UMR1231, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
- Platform of Transfer in Biological Oncology, Georges-François Leclerc Cancer Center, Dijon, France
| | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Institut du Cancer Avignon-Provence Sainte Catherine, Avignon, France
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Mélanie Bruchard
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM CTM-UMR1231, Dijon, France.
- University of Bourgogne Franche-Comté, Dijon, France.
- Platform of Transfer in Biological Oncology, Georges-François Leclerc Cancer Center, Dijon, France.
| |
Collapse
|
32
|
Fu H, Pickering H, Rubbi L, Ross TM, Zhou W, Reed EF, Pellegrini M. The response to influenza vaccination is associated with DNA methylation-driven regulation of T cell innate antiviral pathways. Clin Epigenetics 2024; 16:114. [PMID: 39169387 PMCID: PMC11340180 DOI: 10.1186/s13148-024-01730-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND The effect of vaccination on the epigenome remains poorly characterized. In previous research, we identified an association between seroprotection against influenza and DNA methylation at sites associated with the RIG-1 signaling pathway, which recognizes viral double-stranded RNA and leads to a type I interferon response. However, these studies did not fully account for confounding factors including age, gender, and BMI, along with changes in cell-type composition. RESULTS Here, we studied the influenza vaccine response in a longitudinal cohort vaccinated over two consecutive years (2019-2020 and 2020-2021), using peripheral blood mononuclear cells and a targeted DNA methylation approach. To address the effects of multiple factors on the epigenome, we designed a multivariate multiple regression model that included seroprotection levels as quantified by the hemagglutination-inhibition (HAI) assay test. CONCLUSIONS Our findings indicate that 179 methylation sites can be combined as potential signatures to predict seroprotection. These sites were not only enriched for genes involved in the regulation of the RIG-I signaling pathway, as found previously, but also enriched for other genes associated with innate immunity to viruses and the transcription factor binding sites of BRD4, which is known to impact T cell memory. We propose a model to suggest that the RIG-I pathway and BRD4 could potentially be modulated to improve immunization strategies.
Collapse
Affiliation(s)
- Hongxiang Fu
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Liudmilla Rubbi
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ted M Ross
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Anglada-Girotto M, Ciampi L, Bonnal S, Head SA, Miravet-Verde S, Serrano L. In silico RNA isoform screening to identify potential cancer driver exons with therapeutic applications. Nat Commun 2024; 15:7039. [PMID: 39147755 PMCID: PMC11327330 DOI: 10.1038/s41467-024-51380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
Alternative splicing is crucial for cancer progression and can be targeted pharmacologically, yet identifying driver exons genome-wide remains challenging. We propose identifying such exons by associating statistically gene-level cancer dependencies from knockdown viability screens with splicing profiles and gene expression. Our models predict the effects of splicing perturbations on cell proliferation from transcriptomic data, enabling in silico RNA screening and prioritizing targets for splicing-based therapies. We identified 1,073 exons impacting cell proliferation, many from genes not previously linked to cancer. Experimental validation confirms their influence on proliferation, especially in highly proliferative cancer cell lines. Integrating pharmacological screens with splicing dependencies highlights the potential driver exons affecting drug sensitivity. Our models also allow predicting treatment outcomes from tumor transcriptomes, suggesting applications in precision oncology. This study presents an approach to identifying cancer driver exon and their therapeutic potential, emphasizing alternative splicing as a cancer target.
Collapse
Affiliation(s)
- Miquel Anglada-Girotto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
| | - Ludovica Ciampi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Sarah A Head
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Samuel Miravet-Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland.
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
34
|
Amarsi R, Furse S, Cleaton MAM, Maurel S, Mitchell AL, Ferguson-Smith AC, Cenac N, Williamson C, Koulman A, Charalambous M. A co-ordinated transcriptional programme in the maternal liver supplies long chain polyunsaturated fatty acids to the conceptus using phospholipids. Nat Commun 2024; 15:6767. [PMID: 39117683 PMCID: PMC11310303 DOI: 10.1038/s41467-024-51089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The long and very long chain polyunsaturated fatty acids (LC-PUFAs) are preferentially transported by the mother to the fetus. Failure to supply LC-PUFAs is strongly linked with stillbirth, fetal growth restriction, and impaired neurodevelopmental outcomes. However, dietary supplementation during pregnancy is unable to simply reverse these outcomes, suggesting imperfectly understood interactions between dietary fatty acid intake and the molecular mechanisms of maternal supply. Here we employ a comprehensive approach combining untargeted and targeted lipidomics with transcriptional profiling of maternal and fetal tissues in mouse pregnancy. Comparison of wild-type mice with genetic models of impaired lipid metabolism allows us to describe maternal hepatic adaptations required to provide LC-PUFAs to the developing fetus. A late pregnancy-specific, selective activation of the Liver X Receptor signalling pathway dramatically increases maternal supply of LC-PUFAs within circulating phospholipids. Crucially, genetic ablation of this pathway in the mother reduces LC-PUFA accumulation by the fetus, specifically of docosahexaenoic acid (DHA), a critical nutrient for brain development.
Collapse
Affiliation(s)
- Risha Amarsi
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, SE19RT, UK
- Pregnancy Physiology Laboratory, Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Samuel Furse
- Biological chemistry group, Jodrell laboratory, Royal Botanic Gardens Kew, Kew Road, Richmond, Surrey, TW9 3DS, UK
- Core Metabolomics and Lipidomics Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Treatment Centre, Keith Day Road, Cambridge, CB2 0QQ, UK
| | - Mary A M Cleaton
- Department of Genetics, Downing Street, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Sarah Maurel
- IRSD, Université de Toulouse-Paul Sabatier, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Alice L Mitchell
- Department of Women and Children's Health, King's College London, Guy's Campus, London, UK
| | - Anne C Ferguson-Smith
- Department of Genetics, Downing Street, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Nicolas Cenac
- IRSD, Université de Toulouse-Paul Sabatier, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Catherine Williamson
- Department of Women and Children's Health, King's College London, Guy's Campus, London, UK
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Treatment Centre, Keith Day Road, Cambridge, CB2 0QQ, UK
| | - Marika Charalambous
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, SE19RT, UK.
- Pregnancy Physiology Laboratory, Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK.
| |
Collapse
|
35
|
Rodrigues-Amorim D, Bozzelli PL, Kim T, Liu L, Gibson O, Yang CY, Murdock MH, Galiana-Melendez F, Schatz B, Davison A, Islam MR, Shin Park D, Raju RM, Abdurrob F, Nelson AJ, Min Ren J, Yang V, Stokes MP, Tsai LH. Multisensory gamma stimulation mitigates the effects of demyelination induced by cuprizone in male mice. Nat Commun 2024; 15:6744. [PMID: 39112447 PMCID: PMC11306744 DOI: 10.1038/s41467-024-51003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Demyelination is a common pathological feature in a wide range of diseases, characterized by the loss of myelin sheath and myelin-supporting oligodendrocytes. These losses lead to impaired axonal function, increased vulnerability of axons to damage, and result in significant brain atrophy and neuro-axonal degeneration. Multiple pathomolecular processes contribute to neuroinflammation, oligodendrocyte cell death, and progressive neuronal dysfunction. In this study, we use the cuprizone mouse model of demyelination to investigate long-term non-invasive gamma entrainment using sensory stimulation as a potential therapeutic intervention for promoting myelination and reducing neuroinflammation in male mice. Here, we show that multisensory gamma stimulation mitigates demyelination, promotes oligodendrogenesis, preserves functional integrity and synaptic plasticity, attenuates oligodendrocyte ferroptosis-induced cell death, and reduces brain inflammation. Thus, the protective effects of multisensory gamma stimulation on myelin and anti-neuroinflammatory properties support its potential as a therapeutic approach for demyelinating disorders.
Collapse
Grants
- R01 AG069232 NIA NIH HHS
- R01 AT011460 NCCIH NIH HHS
- R01 NS122742 NINDS NIH HHS
- R56 AG069232 NIA NIH HHS
- We would like to acknowledge the following individuals and organizations for their support: Fundacion Bancaria la Caixa, The JPB Foundation, Carol and Gene Ludwig Family Foundation, Lester A. Gimpelson, Eduardo Eurnekian, The Dolby Family, Kathy and Miguel Octavio, the Marc Haas Foundation, Ben Lenail and Laurie Yoler, and NIH RO1 grants AG069232, AT011460 and R01NS122742 to L.-H.T.
Collapse
Affiliation(s)
- Daniela Rodrigues-Amorim
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - P Lorenzo Bozzelli
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - TaeHyun Kim
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Liwang Liu
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Cheng-Yi Yang
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mitchell H Murdock
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fabiola Galiana-Melendez
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brooke Schatz
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexis Davison
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Md Rezaul Islam
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dong Shin Park
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ravikiran M Raju
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Newborn Medicine, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Fatema Abdurrob
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Jian Min Ren
- Cell Signaling Technology, 3 Trask Lane, Danvers, MA, USA
| | - Vicky Yang
- Cell Signaling Technology, 3 Trask Lane, Danvers, MA, USA
| | | | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
36
|
Nguyen DH, You SH, Ngo HTT, Van Nguyen K, Tran KV, Chu TH, Kim SY, Ha SJ, Hong Y, Min JJ. Reprogramming the tumor immune microenvironment using engineered dual-drug loaded Salmonella. Nat Commun 2024; 15:6680. [PMID: 39107284 PMCID: PMC11303714 DOI: 10.1038/s41467-024-50950-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/22/2024] [Indexed: 08/09/2024] Open
Abstract
Synergistic combinations of immunotherapeutic agents can improve the performance of anti-cancer therapies but may lead to immune-mediated adverse effects. These side-effects can be overcome by using a tumor-specific delivery system. Here, we report a method of targeted immunotherapy using an attenuated Salmonella typhimurium (SAM-FC) engineered to release dual payloads: cytolysin A (ClyA), a cytolytic anti-cancer agent, and Vibrio vulnificus flagellin B (FlaB), a potent inducer of anti-tumor innate immunity. Localized secretion of ClyA from SAM-FC induces immunogenic cancer cell death and promotes release of tumor-specific antigens and damage-associated molecular patterns, which establish long-term antitumor memory. Localized secretion of FlaB promotes phenotypic and functional remodeling of intratumoral macrophages that markedly inhibits tumor metastasis in mice bearing tumors of mouse and human origin. Both primary and metastatic tumors from bacteria-treated female mice are characterized by massive infiltration of anti-tumorigenic innate immune cells and activated tumor-specific effector/memory T cells; however, the percentage of immunosuppressive cells is low. Here, we show that SAM-FC induces functional reprogramming of the tumor immune microenvironment by activating both the innate and adaptive arms of the immune system and can be used for targeted delivery of multiple immunotherapeutic payloads for the establishment of potent and long-lasting antitumor immunity.
Collapse
Affiliation(s)
- Dinh-Huy Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, 58128, Republic of Korea
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | | | - Hien Thi-Thu Ngo
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
- Department of Biochemistry, Hanoi Medical University, Dong Da, No 1, Ton That Tung St., Hanoi, 100000, Vietnam
| | - Khuynh Van Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Khang Vuong Tran
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Tan-Huy Chu
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - So-Young Kim
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- CNCure Co. Ltd, Hwasun, 58128, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Yeongjin Hong
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea.
- CNCure Co. Ltd, Hwasun, 58128, Republic of Korea.
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, 58128, Republic of Korea.
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea.
- CNCure Co. Ltd, Hwasun, 58128, Republic of Korea.
| |
Collapse
|
37
|
Artimovič P, Špaková I, Macejková E, Pribulová T, Rabajdová M, Mareková M, Zavacká M. The ability of microRNAs to regulate the immune response in ischemia/reperfusion inflammatory pathways. Genes Immun 2024; 25:277-296. [PMID: 38909168 PMCID: PMC11327111 DOI: 10.1038/s41435-024-00283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
MicroRNAs play a crucial role in regulating the immune responses induced by ischemia/reperfusion injury. Through their ability to modulate gene expression, microRNAs adjust immune responses by targeting specific genes and signaling pathways. This review focuses on the impact of microRNAs on the inflammatory pathways triggered during ischemia/reperfusion injury and highlights their ability to modulate inflammation, playing a critical role in the pathophysiology of ischemia/reperfusion injury. Dysregulated expression of microRNAs contributes to the pathogenesis of ischemia/reperfusion injury, therefore targeting specific microRNAs offers an opportunity to restore immune homeostasis and improve patient outcomes. Understanding the complex network of immunoregulatory microRNAs could provide novel therapeutic interventions aimed at attenuating excessive inflammation and preserving tissue integrity.
Collapse
Affiliation(s)
- Peter Artimovič
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Ema Macejková
- Department of Vascular Surgery, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Timea Pribulová
- Department of Vascular Surgery, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Martina Zavacká
- Department of Vascular Surgery, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia.
| |
Collapse
|
38
|
Chernov AS, Telegin GB, Minakov AN, Kazakov VA, Rodionov MV, Palikov VA, Kudriaeva AA, Belogurov AA. Synthetic Amphipathic Helical Peptide L-37pA Ameliorates the Development of Acute Respiratory Distress Syndrome (ARDS) and ARDS-Induced Pulmonary Fibrosis in Mice. Int J Mol Sci 2024; 25:8384. [PMID: 39125954 PMCID: PMC11312864 DOI: 10.3390/ijms25158384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
In this study, we evaluated the ability of the synthetic amphipathic helical peptide (SAHP), L-37pA, which mediates pathogen recognition and innate immune responses, to treat acute respiratory distress syndrome (ARDS) accompanied by diffuse alveolar damage (DAD) and chronic pulmonary fibrosis (PF). For the modeling of ARDS/DAD, male ICR mice were used. Intrabronchial instillation (IB) of 200 µL of inflammatory agents was performed by an intravenous catheter 20 G into the left lung lobe only, leaving the right lobe unaffected. Intravenous injections (IVs) of L-37pA, dexamethasone (DEX) and physiological saline (saline) were used as therapies for ARDS/DAD. L37pA inhibited the circulating levels of inflammatory cytokines, such as IL-8, TNFα, IL1α, IL4, IL5, IL6, IL9 and IL10, by 75-95%. In all cases, the computed tomography (CT) data indicate that L-37pA reduced lung density faster to -335 ± 23 Hounsfield units (HU) on day 7 than with DEX and saline, to -105 ± 29 HU and -23 ± 11 HU, respectively. The results of functional tests showed that L-37pA treatment 6 h after ARDS/DAD initiation resulted in a more rapid improvement in the physiological respiratory lung by 30-45% functions compared with the comparison drugs. Our data suggest that synthetic amphipathic helical peptide L-37pA blocked a cytokine storm, inhibited acute and chronic pulmonary inflammation, prevented fibrosis development and improved physiological respiratory lung function in the ARDS/DAD mouse model. We concluded that a therapeutic strategy using SAHPs targeting SR-B receptors is a potential novel effective treatment for inflammation-induced ARDS, DAD and lung fibrosis of various etiologies.
Collapse
Affiliation(s)
- Aleksandr S. Chernov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Georgii B. Telegin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Alexey N. Minakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Vitaly A. Kazakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Maksim V. Rodionov
- Medical Radiological Research Center (MRRC) Named after A.F. Tsyb-Branch of the National Medical Radiological Research Center of the Ministry of Health of the Russian Federation, Obninsk 249031, Russia;
| | - Viktor A. Palikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Anna A. Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Alexey A. Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
- Department of Biological Chemistry, Russian University of Medicine of the Ministry of Health of the Russian Federation, Moscow 127473, Russia
| |
Collapse
|
39
|
Elvira-Blázquez D, Fernández-Justel JM, Arcas A, Statello L, Goñi E, González J, Ricci B, Zaccara S, Raimondi I, Huarte M. YTHDC1 m 6A-dependent and m 6A-independent functions converge to preserve the DNA damage response. EMBO J 2024; 43:3494-3522. [PMID: 38951610 PMCID: PMC11329685 DOI: 10.1038/s44318-024-00153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Cells have evolved a robust and highly regulated DNA damage response to preserve their genomic integrity. Although increasing evidence highlights the relevance of RNA regulation, our understanding of its impact on a fully efficient DNA damage response remains limited. Here, through a targeted CRISPR-knockout screen, we identify RNA-binding proteins and modifiers that participate in the p53 response. Among the top hits, we find the m6A reader YTHDC1 as a master regulator of p53 expression. YTHDC1 binds to the transcription start sites of TP53 and other genes involved in the DNA damage response, promoting their transcriptional elongation. YTHDC1 deficiency also causes the retention of introns and therefore aberrant protein production of key DNA damage factors. While YTHDC1-mediated intron retention requires m6A, TP53 transcriptional pause-release is promoted by YTHDC1 independently of m6A. Depletion of YTHDC1 causes genomic instability and aberrant cancer cell proliferation mediated by genes regulated by YTHDC1. Our results uncover YTHDC1 as an orchestrator of the DNA damage response through distinct mechanisms of co-transcriptional mRNA regulation.
Collapse
Affiliation(s)
- Daniel Elvira-Blázquez
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - José Miguel Fernández-Justel
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Aida Arcas
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
- Clarivate, Barcelona, Spain
| | - Luisa Statello
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Goñi
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Jovanna González
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Benedetta Ricci
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sara Zaccara
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ivan Raimondi
- New York Genome Center, New York, NY, USA.
- Weill Cornell Medicine, New York, NY, USA.
| | - Maite Huarte
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
40
|
Ishikawa S, Kamata H, Sakai T. Enhancing cell adhesion in synthetic hydrogels via physical confinement of peptide-functionalized polymer clusters. J Mater Chem B 2024; 12:7103-7112. [PMID: 38919129 DOI: 10.1039/d4tb00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Artificially synthesized poly(ethylene glycol) (PEG)-based hydrogels are extensively utilized as biomaterials for tissue scaffolds and cell culture matrices due to their non-protein adsorbing properties. Although these hydrogels are inherently non-cell-adhesive, advancements in modifying polymer networks with functional peptides have led to PEG hydrogels with diverse functionalities, such as cell adhesion and angiogenesis. However, traditional methods of incorporating additives into hydrogel networks often result in the capping of crosslinking points with heterogeneous substances, potentially impairing mechanical properties and obscuring the causal relationships of biological functions. This study introduces polymer additives designed to resist prolonged elution from hydrogels, providing a novel approach to facilitate cell culture on non-adhesive surfaces. By clustering tetra-branched PEG to form ultra-high molecular weight hyper-branched structures and functionalizing their termini with cell-adhesive peptides, we successfully entrapped these clusters within the hydrogel matrix without compromising mechanical strength. This method has enabled successful cell culture on inherently non-adhesive PEG hydrogel surfaces at high peptide densities, a feat challenging to achieve with conventional means. The approach proposed in this study not only paves the way for new possibilities with polymer additives but also serves as a new design paradigm for cell culturing on non-cell-adhesive hydrogels.
Collapse
Affiliation(s)
- Shohei Ishikawa
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Hiroyuki Kamata
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Takamasa Sakai
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
41
|
Juvenal G, Higa GSV, Bonfim Marques L, Tessari Zampieri T, Costa Viana FJ, Britto LR, Tang Y, Illes P, di Virgilio F, Ulrich H, de Pasquale R. Regulation of GABAergic neurotransmission by purinergic receptors in brain physiology and disease. Purinergic Signal 2024:10.1007/s11302-024-10034-x. [PMID: 39046648 DOI: 10.1007/s11302-024-10034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Purinergic receptors regulate the processing of neural information in the hippocampus and cerebral cortex, structures related to cognitive functions. These receptors are activated when astrocytic and neuronal populations release adenosine triphosphate (ATP) in an autocrine and paracrine manner, following sustained patterns of neuronal activity. The modulation by these receptors of GABAergic transmission has only recently been studied. Through their ramifications, astrocytes and GABAergic interneurons reach large groups of excitatory pyramidal neurons. Their inhibitory effect establishes different synchronization patterns that determine gamma frequency rhythms, which characterize neural activities related to cognitive processes. During early life, GABAergic-mediated synchronization of excitatory signals directs the experience-driven maturation of cognitive development, and dysfunctions concerning this process have been associated with neurological and neuropsychiatric diseases. Purinergic receptors timely modulate GABAergic control over ongoing neural activity and deeply affect neural processing in the hippocampal and neocortical circuitry. Stimulation of A2 receptors increases GABA release from presynaptic terminals, leading to a considerable reduction in neuronal firing of pyramidal neurons. A1 receptors inhibit GABAergic activity but only act in the early postnatal period when GABA produces excitatory signals. P2X and P2Y receptors expressed in pyramidal neurons reduce the inhibitory tone by blocking GABAA receptors. Finally, P2Y receptor activation elicits depolarization of GABAergic neurons and increases GABA release, thus favoring the emergence of gamma oscillations. The present review provides an overall picture of purinergic influence on GABAergic transmission and its consequences on neural processing, extending the discussion to receptor subtypes and their involvement in the onset of brain disorders, including epilepsy and Alzheimer's disease.
Collapse
Affiliation(s)
- Guilherme Juvenal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Guilherme Shigueto Vilar Higa
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lucas Bonfim Marques
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Thais Tessari Zampieri
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Felipe José Costa Viana
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luiz R Britto
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Yong Tang
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany
| | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Roberto de Pasquale
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
42
|
Li W, Yin Z, Li X, Ma D, Yi S, Zhang Z, Zou C, Bu K, Dai M, Yue J, Chen Y, Zhang X, Zhang S. A hybrid quantum computing pipeline for real world drug discovery. Sci Rep 2024; 14:16942. [PMID: 39043787 PMCID: PMC11266395 DOI: 10.1038/s41598-024-67897-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Quantum computing, with its superior computational capabilities compared to classical approaches, holds the potential to revolutionize numerous scientific domains, including pharmaceuticals. However, the application of quantum computing for drug discovery has primarily been limited to proof-of-concept studies, which often fail to capture the intricacies of real-world drug development challenges. In this study, we diverge from conventional investigations by developing a hybrid quantum computing pipeline tailored to address genuine drug design problems. Our approach underscores the application of quantum computation in drug discovery and propels it towards more scalable system. We specifically construct our versatile quantum computing pipeline to address two critical tasks in drug discovery: the precise determination of Gibbs free energy profiles for prodrug activation involving covalent bond cleavage, and the accurate simulation of covalent bond interactions. This work serves as a pioneering effort in benchmarking quantum computing against veritable scenarios encountered in drug design, especially the covalent bonding issue present in both of the case studies, thereby transitioning from theoretical models to tangible applications. Our results demonstrate the potential of a quantum computing pipeline for integration into real world drug design workflows.
Collapse
Affiliation(s)
- Weitang Li
- Tencent Quantum Lab, Shenzhen, 518057, China
| | - Zhi Yin
- AceMapAI Biotechnology, Suzhou, 215000, China.
- School of Science, Ningbo University of Technology, Ningbo, 315211, China.
| | - Xiaoran Li
- AceMapAI Biotechnology, Suzhou, 215000, China
| | | | - Shuang Yi
- AceMapAI Biotechnology, Suzhou, 215000, China
| | | | - Chenji Zou
- Tencent Quantum Lab, Shenzhen, 518057, China
| | - Kunliang Bu
- Tencent Quantum Lab, Shenzhen, 518057, China
| | - Maochun Dai
- Tencent Quantum Lab, Shenzhen, 518057, China
| | - Jie Yue
- Tencent Quantum Lab, Shenzhen, 518057, China
| | - Yuzong Chen
- AceMapAI Joint Lab, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaojin Zhang
- AceMapAI Joint Lab, China Pharmaceutical University, Nanjing, 211198, China.
| | | |
Collapse
|
43
|
Sekar RP, Lawson JL, Wright ARE, McGrath C, Schadeck C, Kumar P, Tay JW, Dragavon J, Kumar R. Poly(l-glutamic acid) augments the transfection performance of lipophilic polycations by overcoming tradeoffs among cytotoxicity, pDNA delivery efficiency, and serum stability. RSC APPLIED POLYMERS 2024; 2:701-718. [PMID: 39035825 PMCID: PMC11255917 DOI: 10.1039/d4lp00085d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/27/2024] [Indexed: 07/23/2024]
Abstract
Polycations are scalable and affordable nanocarriers for delivering therapeutic nucleic acids. Yet, cationicity-dependent tradeoffs between nucleic acid delivery efficiency, cytotoxicity, and serum stability hinder clinical translation. Typically, the most efficient polycationic vehicles also tend to be the most toxic. For lipophilic polycations-which recruit hydrophobic interactions in addition to electrostatic interactions to bind and deliver nucleic acids-extensive chemical or architectural modifications sometimes fail to resolve intractable toxicity-efficiency tradeoffs. Here, we employ a facile post-synthetic polyplex surface modification strategy wherein poly(l-glutamic acid) (PGA) rescues toxicity, inhibits hemolysis, and prevents serum inhibition of lipophilic polycation-mediated plasmid (pDNA) delivery. Importantly, the sequence in which polycations, pDNA, and PGA are combined dictates pDNA conformations and spatial distribution. Circular dichroism spectroscopy reveals that PGA must be added last to polyplexes assembled from lipophilic polycations and pDNA; else, PGA will disrupt polycation-mediated pDNA condensation. Although PGA did not mitigate toxicity caused by hydrophilic PEI-based polycations, PGA tripled the population of transfected viable cells for lipophilic polycations. Non-specific adsorption of serum proteins abrogated pDNA delivery mediated by lipophilic polycations; however, PGA-coated polyplexes proved more serum-tolerant than uncoated polyplexes. Despite lower cellular uptake than uncoated polyplexes, PGA-coated polyplexes were imported into nuclei at higher rates. PGA also silenced the hemolytic activity of lipophilic polycations. Our work provides fundamental insights into how polyanionic coatings such as PGA transform intermolecular interactions between lipophilic polycations, nucleic acids, and serum proteins, and facilitate gentle yet efficient transgene delivery.
Collapse
Affiliation(s)
- Ram Prasad Sekar
- Chemical and Biological Engineering, Colorado School of Mines Golden CO 80401 USA
| | | | - Aryelle R E Wright
- Quantitative Biosciences and Engineering, Colorado School of Mines Golden CO 80401 USA
| | - Caleb McGrath
- Quantitative Biosciences and Engineering, Colorado School of Mines Golden CO 80401 USA
| | - Cesar Schadeck
- Materials Science, Colorado School of Mines Golden CO 80401 USA
| | - Praveen Kumar
- Shared Instrumentation Facility, Colorado School of Mines Golden CO USA
| | - Jian Wei Tay
- BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Joseph Dragavon
- BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Ramya Kumar
- Chemical and Biological Engineering, Colorado School of Mines Golden CO 80401 USA
| |
Collapse
|
44
|
Pfeiffer IPM, Schröder MP, Mordhorst S. Opportunities and challenges of RiPP-based therapeutics. Nat Prod Rep 2024; 41:990-1019. [PMID: 38411278 DOI: 10.1039/d3np00057e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Covering: up to 2024Ribosomally synthesised and post-translationally modified peptides (RiPPs) comprise a substantial group of peptide natural products exhibiting noteworthy bioactivities ranging from antiinfective to anticancer and analgesic effects. Furthermore, RiPP biosynthetic pathways represent promising production routes for complex peptide drugs, and the RiPP technology is well-suited for peptide engineering to produce derivatives with specific functions. Thus, RiPP natural products possess features that render them potentially ideal candidates for drug discovery and development. Nonetheless, only a small number of RiPP-derived compounds have successfully reached the market thus far. This review initially outlines the therapeutic opportunities that RiPP-based compounds can offer, whilst subsequently discussing the limitations that require resolution in order to fully exploit the potential of RiPPs towards the development of innovative drugs.
Collapse
Affiliation(s)
- Isabel P-M Pfeiffer
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Maria-Paula Schröder
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Silja Mordhorst
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
45
|
Yim J, Park J, Kim G, Lee HH, Chung JS, Jo A, Koh M, Park J. Conditional PROTAC: Recent Strategies for Modulating Targeted Protein Degradation. ChemMedChem 2024:e202400326. [PMID: 38993102 DOI: 10.1002/cmdc.202400326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) have emerged as a promising technology for inducing targeted protein degradation by leveraging the intrinsic ubiquitin-proteasome system (UPS). While the potential druggability of PROTACs toward undruggable proteins has accelerated their rapid development and the wide-range of applications across diverse disease contexts, off-tissue effects and side-effects of PROTACs have recently received attentions to improve their efficacy. To address these issues, spatial or temporal target protein degradation by PROTACs has been spotlighted. In this review, we explore chemical strategies for modulating protein degradation in a cell type-specific (spatio-) and time-specific (temporal-) manner, thereby offering insights for expanding PROTAC applications to overcome the current limitations of target protein degradation strategy.
Collapse
Affiliation(s)
- Junhyeong Yim
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Junyoung Park
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Gabin Kim
- Department of Chemistry and Chemistry, Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyung Ho Lee
- Department of Urology, Urological Cancer Center, Research Institute and Hospital of National Cancer Center, Goyang, 10408, Republic of Korea
| | - Jin Soo Chung
- Department of Urology, Urological Cancer Center, Research Institute and Hospital of National Cancer Center, Goyang, 10408, Republic of Korea
| | - Ala Jo
- Center for Nanomedicine, Institute for Basic Science, Seoul, 03722, Republic of Korea
| | - Minseob Koh
- Department of Chemistry and Chemistry, Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
46
|
Kanniyappan H, Gnanasekar V, Parise V, Debnath K, Sun Y, Thakur S, Thakur G, Perumal G, Kumar R, Wang R, Merchant A, Sriram R, Mathew MT. Harnessing extracellular vesicles-mediated signaling for enhanced bone regeneration: novel insights into scaffold design. Biomed Mater 2024; 19:10.1088/1748-605X/ad5ba9. [PMID: 38917828 PMCID: PMC11305091 DOI: 10.1088/1748-605x/ad5ba9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
The increasing prevalence of bone replacements and complications associated with bone replacement procedures underscores the need for innovative tissue restoration approaches. Existing synthetic grafts cannot fully replicate bone vascularization and mechanical characteristics. This study introduces a novel strategy utilizing pectin, chitosan, and polyvinyl alcohol to create interpenetrating polymeric network (IPN) scaffolds incorporated with extracellular vesicles (EVs) isolated from human mesenchymal stem cells (hMSCs). We assess the osteointegration and osteoconduction abilities of these modelsin vitrousing hMSCs and MG-63 osteosarcoma cells. Additionally, we confirm exosome properties through Transmission Electron Microscopy (TEM), immunoblotting, and Dynamic Light Scattering (DLS).In vivo, chick allantoic membrane assay investigates vascularization characteristics. The study did not includein vivoanimal experiments. Our results demonstrate that the IPN scaffold is highly porous and interconnected, potentially suitable for bone implants. EVs, approximately 100 nm in size, enhance cell survival, proliferation, alkaline phosphatase activity, and the expression of osteogenic genes. EVs-mediated IPN scaffolds demonstrate promise as precise drug carriers, enabling customized treatments for bone-related conditions and regeneration efforts. Therefore, the EVs-mediated IPN scaffolds demonstrate promise as precise carriers for the transport of drugs, allowing for customized treatments for conditions connected to bone and efforts in regeneration.
Collapse
Affiliation(s)
- Hemalatha Kanniyappan
- Regeneratve Medicine and Disability Research Laboratory (RMDR), Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States of America
- Department of Chemistry, Illinois Institute of Technology (IIT), Chicago, IL, United States of America
| | - Varun Gnanasekar
- University of Wisconsin-Madison, Madison, WI, United States of America
| | - Vincent Parise
- Regeneratve Medicine and Disability Research Laboratory (RMDR), Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States of America
| | - Koushik Debnath
- College of Dentistry, University of Illinois, Chicago, IL, United States of America
| | - Yani Sun
- Department of Material Sciences, University of Illinois, Chicago, IL, United States of America
| | - Shriya Thakur
- Regeneratve Medicine and Disability Research Laboratory (RMDR), Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States of America
| | - Gitika Thakur
- Regeneratve Medicine and Disability Research Laboratory (RMDR), Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States of America
| | - Govindaraj Perumal
- Regeneratve Medicine and Disability Research Laboratory (RMDR), Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States of America
| | - Raj Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Rong Wang
- Department of Chemistry, Illinois Institute of Technology (IIT), Chicago, IL, United States of America
| | - Aftab Merchant
- Regeneratve Medicine and Disability Research Laboratory (RMDR), Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States of America
| | - Ravindran Sriram
- College of Dentistry, University of Illinois, Chicago, IL, United States of America
| | - Mathew T Mathew
- Regeneratve Medicine and Disability Research Laboratory (RMDR), Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States of America
| |
Collapse
|
47
|
Kubota S, Sun Y, Morii M, Bai J, Ideue T, Hirayama M, Sorin S, Eerdunduleng, Yokomizo-Nakano T, Osato M, Hamashima A, Iimori M, Araki K, Umemoto T, Sashida G. Chromatin modifier Hmga2 promotes adult hematopoietic stem cell function and blood regeneration in stress conditions. EMBO J 2024; 43:2661-2684. [PMID: 38811851 PMCID: PMC11217491 DOI: 10.1038/s44318-024-00122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
The molecular mechanisms governing the response of hematopoietic stem cells (HSCs) to stress insults remain poorly defined. Here, we investigated effects of conditional knock-out or overexpression of Hmga2 (High mobility group AT-hook 2), a transcriptional activator of stem cell genes in fetal HSCs. While Hmga2 overexpression did not affect adult hematopoiesis under homeostasis, it accelerated HSC expansion in response to injection with 5-fluorouracil (5-FU) or in vitro treatment with TNF-α. In contrast, HSC and megakaryocyte progenitor cell numbers were decreased in Hmga2 KO animals. Transcription of inflammatory genes was repressed in Hmga2-overexpressing mice injected with 5-FU, and Hmga2 bound to distinct regions and chromatin accessibility was decreased in HSCs upon stress. Mechanistically, we found that casein kinase 2 (CK2) phosphorylates the Hmga2 acidic domain, promoting its access and binding to chromatin, transcription of anti-inflammatory target genes, and the expansion of HSCs under stress conditions. Notably, the identified stress-regulated Hmga2 gene signature is activated in hematopoietic stem progenitor cells of human myelodysplastic syndrome patients. In sum, these results reveal a TNF-α/CK2/phospho-Hmga2 axis controlling adult stress hematopoiesis.
Collapse
Affiliation(s)
- Sho Kubota
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuqi Sun
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Hematology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Mariko Morii
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jie Bai
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takako Ideue
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mayumi Hirayama
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Supannika Sorin
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Eerdunduleng
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takako Yokomizo-Nakano
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motomi Osato
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of General Internal Medicine, Kumamoto Kenhoku Hospital, Kumamoto, Japan
| | - Ai Hamashima
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mihoko Iimori
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Terumasa Umemoto
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
48
|
Fortin BM, Pfeiffer SM, Insua-Rodríguez J, Alshetaiwi H, Moshensky A, Song WA, Mahieu AL, Chun SK, Lewis AN, Hsu A, Adam I, Eng OS, Pannunzio NR, Seldin MM, Marazzi I, Marangoni F, Lawson DA, Kessenbrock K, Masri S. Circadian control of tumor immunosuppression affects efficacy of immune checkpoint blockade. Nat Immunol 2024; 25:1257-1269. [PMID: 38806707 PMCID: PMC11374317 DOI: 10.1038/s41590-024-01859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
The circadian clock is a critical regulator of immunity, and this circadian control of immune modulation has an essential function in host defense and tumor immunosurveillance. Here we use a single-cell RNA sequencing approach and a genetic model of colorectal cancer to identify clock-dependent changes to the immune landscape that control the abundance of immunosuppressive cells and consequent suppression of cytotoxic CD8+ T cells. Of these immunosuppressive cell types, PD-L1-expressing myeloid-derived suppressor cells (MDSCs) peak in abundance in a rhythmic manner. Disruption of the epithelial cell clock regulates the secretion of cytokines that promote heightened inflammation, recruitment of neutrophils and the subsequent development of MDSCs. We also show that time-of-day anti-PD-L1 delivery is most effective when synchronized with the abundance of immunosuppressive MDSCs. Collectively, these data indicate that circadian gating of tumor immunosuppression informs the timing and efficacy of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Bridget M Fortin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Shannon M Pfeiffer
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Jacob Insua-Rodríguez
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Hamad Alshetaiwi
- Department of Pathology, University of Hail, Hail, Saudi Arabia
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Alexander Moshensky
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Wei A Song
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Alisa L Mahieu
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Sung Kook Chun
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Amber N Lewis
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Alex Hsu
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Isam Adam
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Oliver S Eng
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Department of Surgery, Division of Surgical Oncology, University of California Irvine, Orange, CA, USA
| | - Nicholas R Pannunzio
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Department of Medicine, Division of Hematology/Oncology, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA
| | - Ivan Marazzi
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA
| | - Francesco Marangoni
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Devon A Lawson
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA.
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
49
|
Lorenzo-Sanz L, Lopez-Cerda M, da Silva-Diz V, Artés MH, Llop S, Penin RM, Bermejo JO, Gonzalez-Suarez E, Esteller M, Viñals F, Espinosa E, Oliva M, Piulats JM, Martin-Liberal J, Muñoz P. Cancer cell plasticity defines response to immunotherapy in cutaneous squamous cell carcinoma. Nat Commun 2024; 15:5352. [PMID: 38914547 PMCID: PMC11196727 DOI: 10.1038/s41467-024-49718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Immune checkpoint blockade (ICB) approaches have changed the therapeutic landscape for many tumor types. However, half of cutaneous squamous cell carcinoma (cSCC) patients remain unresponsive or develop resistance. Here, we show that, during cSCC progression in male mice, cancer cells acquire epithelial/mesenchymal plasticity and change their immune checkpoint (IC) ligand profile according to their features, dictating the IC pathways involved in immune evasion. Epithelial cancer cells, through the PD-1/PD-L1 pathway, and mesenchymal cancer cells, through the CTLA-4/CD80 and TIGIT/CD155 pathways, differentially block antitumor immune responses and determine the response to ICB therapies. Accordingly, the anti-PD-L1/TIGIT combination is the most effective strategy for blocking the growth of cSCCs that contain both epithelial and mesenchymal cancer cells. The expression of E-cadherin/Vimentin/CD80/CD155 proteins in cSCC, HNSCC and melanoma patient samples predicts response to anti-PD-1/PD-L1 therapy. Collectively, our findings indicate that the selection of ICB therapies should take into account the epithelial/mesenchymal features of cancer cells.
Collapse
Affiliation(s)
- Laura Lorenzo-Sanz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Marta Lopez-Cerda
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Victoria da Silva-Diz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Rutgers Cancer Institute of New Jersey, Rutgers University, 08901, New Brunswick, NJ, USA
| | - Marta H Artés
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sandra Llop
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rosa M Penin
- Pathology Service, Bellvitge University Hospital/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Oriol Bermejo
- Plastic Surgery Unit, Bellvitge University Hospital/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eva Gonzalez-Suarez
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), 08916, Badalona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08908, Barcelona, Spain
| | - Francesc Viñals
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08908, Barcelona, Spain
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO)/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Enrique Espinosa
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
- Medical Oncology Department, La Paz University Hospital, Autonomous University of Madrid (UAM), 28046, Madrid, Spain
| | - Marc Oliva
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Piulats
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Juan Martin-Liberal
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Purificación Muñoz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
50
|
Narasipura EA, Fenton OS. Advances in non-viral mRNA delivery to the spleen. Biomater Sci 2024; 12:3027-3044. [PMID: 38712531 PMCID: PMC11175841 DOI: 10.1039/d4bm00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Developing safe and effective delivery strategies for localizing messenger RNA (mRNA) payloads to the spleen is an important goal in the field of genetic medicine. Accomplishing this goal is challenging due to the instability, size, and charge of mRNA payloads. Here, we provide an analysis of non-viral delivery technologies that have been developed to deliver mRNA payloads to the spleen. Specifically, our review begins by outlining the unique anatomy and potential targets for mRNA delivery within the spleen. Next, we describe approaches in mRNA sequence engineering that can be used to improve mRNA delivery to the spleen. Then, we describe advances in non-viral carrier systems that can package and deliver mRNA payloads to the spleen, highlighting key advances in the literature in lipid nanoparticle (LNP) and polymer nanoparticle (PNP) technology platforms. Finally, we provide commentary and outlook on how splenic mRNA delivery may afford next-generation treatments for autoimmune disorders and cancers. In undertaking this approach, our goal with this review is to both establish a fundamental understanding of drug delivery challenges associated with localizing mRNA payloads to the spleen, while also broadly highlighting the potential to use these genetic medicines to treat disease.
Collapse
Affiliation(s)
- Eshan A Narasipura
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|