1
|
Ren Y, Liu C, Luo J, Deng X, Zheng D, Shao J, Xu Z, Zhang N, Xiong W, Liu H, Li R, Miao Y, Zhang R, Shen Q, Xun W. Substrate preference triggers metabolic patterns of indigenous microbiome during initial composting stages. BIORESOURCE TECHNOLOGY 2025; 419:132034. [PMID: 39761730 DOI: 10.1016/j.biortech.2024.132034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Composting organic waste is a sustainable recycling method in agricultural systems, yet the microbial preferences for different substrates and their influence on composting efficiency remain underexplored. Here, 210 datasets of published 16S ribosomal DNA amplicon sequences from straw and manure composts worldwide were analyzed, and a database of 278 bacterial isolates was compiled. Substrate-driven microbiome variations were most prominent during the initial composting stages. Indigenous synthetic communities exhibit substrate-specific adaptations, increasing compost temperatures by 2 %-10 %, microbial abundance by 44 %-233 %, and microbial activity by 26 %-60 %. Key dissolved substrates, such as choline and succinic acid in straw compost, and phloretin and uric acid in manure compost, drive these microbial preferences. These findings highlight how substrate-specific microbiomes can be engineered to enhance microbial activity, accelerate temperature rise, and extend the thermophilic phase, providing a targeted framework to improve composting efficiency and tailor strategies to different organic waste types.
Collapse
Affiliation(s)
- Yi Ren
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China
| | - Chen Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Jiayu Luo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Daoyue Zheng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Hongjun Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Weibing Xun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|
2
|
Deng Z, Wang J, Yan Y, Wang J, Shao W, Wu Z. Biochar-based Bacillus subtilis inoculants promote plant growth: Regulating microbial community to improve soil properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123534. [PMID: 39626400 DOI: 10.1016/j.jenvman.2024.123534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/26/2024] [Accepted: 11/28/2024] [Indexed: 01/15/2025]
Abstract
Numerous studies support the synergistic use of biochar (BC) and plant growth-promoting rhizobacteria to enhance plant growth. Despite this, the complex and dynamic nature of soil environments necessitates further exploration of the interactions between soil microorganisms and soil properties under BC-based inoculants. This study investigated their combined effects using a BC-based inoculant, Bacillus subtilis SL-44 (BC@SL), to explore the relationship between microorganisms and soil properties. Additionally, differentiating the effects of exogenous auxiliaries BC, SL-44, and BC@SL, which can promote plant growth, enhance plant and soil enzyme activities, regulate microbial communities, and increase soil nutrient content. Compared to BC alone, SL-44 enhances plant superoxide dismutase, peroxidase, and catalase enzyme activities, while BC increases soil cellulase and urease activities. SL-44 elevates Bacillus content, whereas BC boosts overall microbial abundance. Although initial values of most soil properties remain stable under exogenous auxiliaries, by the fourth week, soil pH and organic matter decrease, while electrical conductivity, available phosphorus, and ammonium nitrogen increase significantly across treatments. BC@SL, integrating the advantages of both BC and SL-44, exhibits superior performance. Under BC@SL treatment, Bacillus content rises from 4.36% to 14.96%, and available phosphorus and ammonium nitrogen increase by 81.97% and 53.16%, respectively. Additionally, plant dry weight increases by 51.95%. These results highlight the effectiveness of BC@SL in microbial regulation, soil nutrient enhancement, and plant growth promotion. In summary, BC@SL proves to be a stable and efficient solid soil additive, supporting the advancement of green fertilizer practices.
Collapse
Affiliation(s)
- Zihe Deng
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an, 710048, PR China; Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Jianwen Wang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an, 710048, PR China; Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Yingrou Yan
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Jiani Wang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Wenjun Shao
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an, 710048, PR China.
| |
Collapse
|
3
|
Song Y, Atza E, Sánchez-Gil JJ, Akkermans D, de Jonge R, de Rooij PGH, Kakembo D, Bakker PAHM, Pieterse CMJ, Budko NV, Berendsen RL. Seed tuber microbiome can predict growth potential of potato varieties. Nat Microbiol 2025; 10:28-40. [PMID: 39730984 DOI: 10.1038/s41564-024-01872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/31/2024] [Indexed: 12/29/2024]
Abstract
Potato vigour, the growth potential of seed potatoes, is a key agronomic trait that varies significantly across production fields due to factors such as genetic background and environmental conditions. Seed tuber microbiomes are thought to influence plant health and crop performance, yet the precise relationships between microbiome composition and potato vigour remain unclear. Here we conducted microbiome sequencing on seed tuber eyes and heel ends from 6 potato varieties grown in 240 fields. By using time-resolved drone imaging of three trial fields in the next season to track crop development, we were able to link microbiome composition with potato vigour. We used microbiome data at varying taxonomic resolutions to build random forest predictive models and found that amplicon sequence variants provided the highest predictive accuracy for potato vigour. The model revealed variety-specific relationships between the seed tuber microbiome and next season's crop vigour in independent trial fields. With a coefficient of determination value of 0.69 for the best-performing variety, the model accurately predicted vigour in seed tubers from fields not previously included in the analysis. Moreover, the model identified key microbial indicators of vigour from which a Streptomyces, an Acinetobacter and a Cellvibrio amplicon sequence variant stood out as the most important contributors to the model's accuracy. This study shows that seed potato vigour can be reliably predicted based on the microbiota associated with seed tuber eyes, potentially guiding future microbiome-informed breeding strategies.
Collapse
Affiliation(s)
- Yang Song
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Elisa Atza
- Numerical Analysis, Delft Institute of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands
| | - Juan J Sánchez-Gil
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Doretta Akkermans
- HZPC Research B.V., Department of Plant Pathology, Metslawier, the Netherlands
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
- AI Technology for Life, Department of Information and Computing Sciences, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Peter G H de Rooij
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - David Kakembo
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Peter A H M Bakker
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Neil V Budko
- Numerical Analysis, Delft Institute of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands
| | - Roeland L Berendsen
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Olanrewaju OS, Glick BR, Babalola OO. Beyond correlation: Understanding the causal link between microbiome and plant health. Heliyon 2024; 10:e40517. [PMID: 39669148 PMCID: PMC11636107 DOI: 10.1016/j.heliyon.2024.e40517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024] Open
Abstract
Understanding the causal link between the microbiome and plant health is crucial for the future of crop production. Established studies have shown a symbiotic relationship between microbes and plants, reshaping our knowledge of plant microbiomes' role in health and disease. Addressing confounding factors in microbiome study is essential, as standardization enables precise identification of microbiome features that influence outcomes. The microbiome significantly impacts plant development, necessitating holistic investigation for maintaining plant health. Mechanistic studies have deepened our understanding of microbiome structure and function related to plant health, though much research still needs to be carried out. This review, therefore, discusses current challenges and proposes advancing studies from correlation to causation and translation. We explore current knowledge on the microbiome and plant health, emphasizing multi-omics approaches and hypothesis-driven research. Future studies should focus on developing translational research for producing probiotics and prebiotics from biomarkers that regulate the microbiome-plant health connection, promoting sustainable crop production through microbiome applications.
Collapse
Affiliation(s)
- Oluwaseyi Samuel Olanrewaju
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, South Africa
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Buckhurst road, Ascot, Berkshire, SL5 7PY, UK
| |
Collapse
|
5
|
Chen L, Lü G, Yang S, Gong B, Lu Y, Wu X, Li J, Gao H. Advances in the detection technology of vegetable soil borne fungi and bacteria. Front Microbiol 2024; 15:1460729. [PMID: 39703705 PMCID: PMC11656321 DOI: 10.3389/fmicb.2024.1460729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024] Open
Abstract
Soil borne diseases are one of the most serious diseases which often results the decline of vegetables quality and loss of production. Moreover, it is difficult for plants to exhibit disease symptoms in the early stages attributing to strong concealment of soil borne pathogens. Therefore, early detection of pathogens and their physiological races plays an important role in reducing the harm of pathogens associated with diseases of vegetable crops. The traditional diagnostic techniques relied on the time consuming and less accurate methods like disease symptom observation, microscopic diagnosis, and culture techniques etc. The development of molecular biology technology has brought revolutionary changes to the diagnosis of vegetable soil borne diseases, improving the accuracy and efficiency of diagnosis. This paper reviews the various molecular detection techniques for vegetable soil borne pathogens (PCR, nested-PCR, multiplex PCR, etc.) and their physiological races (host identification, DNA molecular markers, transposon detection, etc.), explains the advantages and disadvantages of each detection technique. Furthermore, the paper comprehensively introduces the application of molecular detection technology for soil borne pathogen detection in soil, plants, and seeds. Finally, we put forward important perspectives for the future development of rapid detection methods, aiming to promote rapid diagnosis of soil pathogenic microorganisms and provide guidance for the control of biological risks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hongbo Gao
- Key Laboratory of North China Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
6
|
Xia Y, Liu J, Yang X, Ling X, Fang Y, Xu Z, Liu F. Using Sediment Bacterial Communities to Predict Trace Metal Pollution Risk in Coastal Environment Management: Feasibility, Reliability, and Practicability. TOXICS 2024; 12:839. [PMID: 39771054 PMCID: PMC11679552 DOI: 10.3390/toxics12120839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
The distribution of trace metals (TMs) in a continuous water body often exhibits watershed attributes, but the tidal gates of the coastal rivers may alter their transformation and accumulation patterns. Therefore, a tidal gate-controlled coastal river was selected to test the distribution and accumulation risks of Al, As, Cr, Cu, Fe, Mn, Ni, Sr, and Zn in the catchment area (CA), estuarine area (EA), and offshore area (OA). Associations between TMs and bacterial communities were analyzed to assess the feasibility of using bacterial parameters as ecological indicators. The results showed that As and Cr were the key pollutants due to the higher enrichment factor and geoaccumulation index, reaching slight to moderate pollution levels. The Nemero index was highest in EAs (14.93), indicating a higher pollution risk in sediments near tide gates. Although the TM dynamics can be explained by the metal-indicating effects of Fe and Mn, they have no linear relationships with toxic metals. Interestingly, the metabolic abundance of bacterial communities showed good correlations with different TMs in the sediment. These results highlight bacterial community characteristics as effective biomarkers for assessing TM pollution and practical tools for managing pollution control in coastal environment.
Collapse
Affiliation(s)
- Yuanfen Xia
- State Power Environmental Protection Research Institute, Nanjing 210031, China; (Y.X.); (X.L.); (Y.F.); (Z.X.)
| | - Jiayuan Liu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China;
| | - Xuechun Yang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China;
| | - Xiaofeng Ling
- State Power Environmental Protection Research Institute, Nanjing 210031, China; (Y.X.); (X.L.); (Y.F.); (Z.X.)
| | - Yan Fang
- State Power Environmental Protection Research Institute, Nanjing 210031, China; (Y.X.); (X.L.); (Y.F.); (Z.X.)
| | - Zhen Xu
- State Power Environmental Protection Research Institute, Nanjing 210031, China; (Y.X.); (X.L.); (Y.F.); (Z.X.)
| | - Fude Liu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China;
| |
Collapse
|
7
|
Fang W, Zhu Y, Liang C, Shao S, Chen J, Qing H, Xu Q. Deciphering differences in microbial community characteristics and main factors between healthy and root rot-infected Carya cathayensis rhizosphere soils. Front Microbiol 2024; 15:1448675. [PMID: 39588107 PMCID: PMC11586369 DOI: 10.3389/fmicb.2024.1448675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Fusarium-induced root rot of Carya cathayensis (C. cathayensis) is a typical soil-borne disease that has severely damaged the Carya cathayensis industry in China. Understanding the interaction among soil microbial communities, soil characteristics, and pathogenic bacteria is very important for the ecological prevention and control of Carya cathayensis root rot. Methods We used Miseq Illumina high-throughput sequencing technology to study the microbial community in the rhizosphere soil of healthy and diseased C. cathayensis, quantified the abundance of bacteria, fungi, and pathogenic fungi, and combined these with soil chemistry and enzyme activity indicators to analyze the characteristics of healthy and diseased rhizosphere soils. Results We found that the pH, soil organic carbon(SOC), available nitrogen (AN), available phosphorus (AP), available potassium (AK),N-acetyl-β-D-glucosaminidase (NAG) β-glucosidase (BG), fungal gene copy number, bacterial community diversity and network complexity of the diseased soil were significantly lower (p < 0.05), while Fusarium graminearum copies number levels increased (p < 0.05). Additionally, the study found that healthy soils were enriched with beneficial bacteria such as Subgroup_7 (0.08%), MND1 (0.29%), SWB02 (0.08%), and Bradyrhizobium (0.09%), as well as potential pathogen-suppressing fungi such as Mortierella (0.13%), Preussia (0.03%), and Humicol (0.37%), were found to be associated with the growth and development of C. cathayensis. Discussion In summary, this research comprehensively reveals the differences in environmental and biological factors between healthy and diseased soils, as well as their correlations. It provides a theoretical basis for optimal soil environmental regulation and the construction of healthy microbial communities. This foundation facilitates the development of multifaceted strategies for the prevention and control of C. cathayensis root rot.
Collapse
Affiliation(s)
- Wei Fang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| | - Yiyang Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| | - Chenfei Liang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| | - Shuai Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| | - Junhui Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| | - Hua Qing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| | - Qiufang Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
8
|
Du C, Yang D, Jiang S, Zhang J, Ye Y, Pan L, Fu G. Biocontrol Agents Inhibit Banana Fusarium Wilt and Alter the Rooted Soil Bacterial Community in the Field. J Fungi (Basel) 2024; 10:771. [PMID: 39590690 PMCID: PMC11595440 DOI: 10.3390/jof10110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Banana is an important fruit and food crop in tropical and subtropical regions worldwide. Banana production is seriously threatened by Fusarium wilt of banana (FWB), a disease caused by Fusarium oxysporum f. sp. cubense, and biological control is an important means of curbing this soil-borne disease. To reveal the effects of biocontrol agents on inhibiting FWB and altering the soil bacterial community under natural ecosystems, we conducted experiments at a banana plantation. The control efficiency of a compound microbial agent (CM), Paenibacillus polymyxa (PP), Trichoderma harzianum (TH), and carbendazim (CA) on this disease were compared in the field. Meanwhile, the alterations in structure and function of the rooted soil bacterial community in different treatments during the vigorous growth and fruit development stages of banana were analyzed by microbiomics method. The results confirmed that the different biocontrol agents could effectively control FWB. In particular, CM significantly reduced the incidence of the disease and showed a field control efficiency of 60.53%. In terms of bacterial community, there were no significant differences in the richness and diversity of banana rooted soil bacteria among the different treatments at either growth stage, but their relative abundances differed substantially. CM treatment significantly increased the ratios of Bacillus, Bryobacter, Pseudomonas, Jatrophihabitans, Hathewaya, and Chujaibacter in the vigorous growth stage and Jatrophihabitans, Occallatibacter, Cupriavidus, and 1921-3 in the fruit development stage. Furthermore, bacterial community function in the banana rooted soil was affected differently by the various biocontrol agents. CM application increased the relative abundance of multiple soil bacterial functions, including carbohydrate metabolism, xenobiotic biodegradation and metabolism, terpenoid and polyketide metabolism, lipid metabolism, and metabolism of other amino acids. In summary, our results suggest that the tested biocontrol agents can effectively inhibit the occurrence of banana Fusarium wilt and alter the soil bacterial community in the field. They mainly modified the relative abundance of bacterial taxa and the metabolic functions rather than the richness and diversity. These findings provide a scientific basis for the use of biocontrol agents to control banana Fusarium wilt under field conditions, which serves as a reference for the study of the soil microbiological mechanisms of other biocontrol agents.
Collapse
Affiliation(s)
- Chanjuan Du
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (C.D.); (D.Y.); (S.J.); (J.Z.); (L.P.)
| | - Di Yang
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (C.D.); (D.Y.); (S.J.); (J.Z.); (L.P.)
| | - Shangbo Jiang
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (C.D.); (D.Y.); (S.J.); (J.Z.); (L.P.)
| | - Jin Zhang
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (C.D.); (D.Y.); (S.J.); (J.Z.); (L.P.)
| | - Yunfeng Ye
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Lianfu Pan
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (C.D.); (D.Y.); (S.J.); (J.Z.); (L.P.)
| | - Gang Fu
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (C.D.); (D.Y.); (S.J.); (J.Z.); (L.P.)
| |
Collapse
|
9
|
Wang Y, Gong H, Zhang Z, Sun Z, Liu S, Ma C, Wang X, Liu Z. Effects of microbial communities during the cultivation of three salt-tolerant plants in saline-alkali land improvement. Front Microbiol 2024; 15:1470081. [PMID: 39545234 PMCID: PMC11560748 DOI: 10.3389/fmicb.2024.1470081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/27/2024] [Indexed: 11/17/2024] Open
Abstract
Planting vegetation on saline-alkaline land enhances soil fertility and sustainability by improving salt-alkali tolerance. Different salt-tolerant plant species interact with soil microorganisms, enriching bacterial communities and promoting nutrient availability. In this study, mechanisms affecting microbial communities in severely saline-alkaline soils planted with salt-tolerant plants are investigated. Over 4 years, the potential to cultivate three salt-tolerant plant species (tall wheatgrass Agropyron elongatum, chicory Chicorium intybus, and alfalfa Medicago sativa) in severely saline-alkaline soils is compared with a non-cultivated control. Bacterial and fungal communities were characterized through high-throughput sequencing of the 16S rRNA gene V3-V4 region and the V4 region, respectively. Cultivating these three plant species significantly reduces soil electrical conductivity values. Chicory cultivation notably increased soil nutrients, bacterial alpha richness, and fungal alpha diversity and richness. Microbial community structures vary considerably between the control and treatments, significantly correlating with the soil quality index. This index enables an assessment of soil health and fertility by integrating variables such as nutrient content, microbial diversity, and salinity levels. In each plant treatment, particularly alfalfa, the relative abundances of fungal pathogens like Neocosmospora and Gibellulopsis increase, which may pose risks to subsequent crops such as tomatoes, requiring careful consideration in future planting decisions. Conversely, in alfalfa and tall wheatgrass treatments, there was an increase in the relative abundances of fungal genera (e.g., Alternaria and Podospora) that antagonize fungal pathogens, while Paraphoma increased in the chicory treatment. The strong relationship between microorganisms and the rise in pathogen-resistant fungi across different plant treatments highlights robust and beneficial structural characteristics. According to soil quality index scores, each treatment, but especially that of chicory, improved the severely saline-alkaline soil environment.
Collapse
Affiliation(s)
- Yijun Wang
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Agro-Environment of Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Huarui Gong
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Zongxiao Zhang
- College of Geographic Science and Tourism, Xinjiang Normal University, Ürümqi, China
| | - Zeqiang Sun
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Agro-Environment of Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shenglin Liu
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Agro-Environment of Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Changjian Ma
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Institute of Modern Agriculture on Yellow River Delta of Shandong Academy of Agricultural Sciences, Dongying, China
| | - Xuejun Wang
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Agro-Environment of Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhaohui Liu
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Agro-Environment of Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
10
|
Mo Y, Bier R, Li X, Daniels M, Smith A, Yu L, Kan J. Agricultural practices influence soil microbiome assembly and interactions at different depths identified by machine learning. Commun Biol 2024; 7:1349. [PMID: 39424928 PMCID: PMC11489707 DOI: 10.1038/s42003-024-07059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Agricultural practices affect soil microbes which are critical to soil health and sustainable agriculture. To understand prokaryotic and fungal assembly under agricultural practices, we use machine learning-based methods. We show that fertility source is the most pronounced factor for microbial assembly especially for fungi, and its effect decreases with soil depths. Fertility source also shapes microbial co-occurrence patterns revealed by machine learning, leading to fungi-dominated modules sensitive to fertility down to 30 cm depth. Tillage affects soil microbiomes at 0-20 cm depth, enhancing dispersal and stochastic processes but potentially jeopardizing microbial interactions. Cover crop effects are less pronounced and lack depth-dependent patterns. Machine learning reveals that the impact of agricultural practices on microbial communities is multifaceted and highlights the role of fertility source over the soil depth. Machine learning overcomes the linear limitations of traditional methods and offers enhanced insights into the mechanisms underlying microbial assembly and distributions in agriculture soils.
Collapse
Affiliation(s)
- Yujie Mo
- Sino-French Engineer School, Beihang University, Beijing, China
| | - Raven Bier
- Stroud Water Research Center, Avondale, PA, USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA
| | - Xiaolin Li
- Zibo Vocational Institute, Zibo, Shandong, China
| | | | | | - Lei Yu
- Sino-French Engineer School, Beihang University, Beijing, China.
| | - Jinjun Kan
- Stroud Water Research Center, Avondale, PA, USA.
| |
Collapse
|
11
|
Bian-hong Z, Li-na T, Ri-kun L, Rui-xin P, Lin-dong Y, Xiao-yan C, Kai-wen Y, Wen-xiong L, Jin-wen H. Synergistic co-evolution of rhizosphere bacteria in response to acidification amelioration strategies: impacts on the alleviation of tobacco wilt and underlying mechanisms. Front Microbiol 2024; 15:1448950. [PMID: 39411435 PMCID: PMC11473436 DOI: 10.3389/fmicb.2024.1448950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Soil acidification represents a severe threat to tobacco cultivation regions in South China, exacerbating bacterial wilt caused by Ralstonia solanacearum. The comprehension of the underlying mechanisms that facilitate the restoration of rhizosphere microbial communities in "healthy soils" is imperative for ecologically managing tobacco bacterial wilt. This study focuses on acidified tobacco soils that have been subjected to continuous cultivation for 20 years. The experimental treatments included lime (L), biochar (B), and a combination of lime and biochar (L+B), in addition to a control group (CK). Utilizing rhizosphere biology and niche theory, we assessed disease suppression effects, changes in soil properties, and the co-evolution of the rhizosphere bacterial community. Each treatment significantly reduced tobacco bacterial wilt by 16.67% to 20.14% compared to the control group (CK) (p < 0.05) and increased yield by 7.86% to 27.46% (p < 0.05). The biochar treatment (B) proved to be the most effective, followed by the lime-biochar combination (L+B). The key factors controlling wilt were identified through random forest regression analysis as an increase in soil pH and exchangeable bases, along with a decrease in exchangeable acidity. However, lime treatment alone led to an increase in soil bulk density and a decrease in available nutrients, whereas both biochar and lime-biochar treatments significantly improved these parameters (p < 0.05). No significant correlation was found between the abundance of Ralstonia and wilt incidence. Nonetheless, all treatments significantly expanded the ecological niche breadth and average variation degree (AVD), enhanced positive interactions and cohesion within the community, and intensified negative interactions involving Ralstonia. This study suggests that optimizing community niches and enhancing pathogen antagonism are key mechanisms for mitigating tobacco wilt in acidified soils. It recommends using lime-biochar mixtures as soil amendments due to their potential ecological and economic benefits. This study offers valuable insights for disease control strategies and presents a novel perspective for research on Solanaceous crops.
Collapse
Affiliation(s)
- Zhang Bian-hong
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
| | - Tang Li-na
- Tobacco Science Research Institute of Fujian Tobacco Monopoly Bureau, Fuzhou, Fujian, China
| | - Li Ri-kun
- Ganzhou Tobacco Company Shicheng Branch, Ganzhou, Jiangxi, China
| | - Pan Rui-xin
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
| | - You Lin-dong
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
| | - Chen Xiao-yan
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
| | - Yang Kai-wen
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lin Wen-xiong
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huang Jin-wen
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
| |
Collapse
|
12
|
Abdo AI, Li Y, Shi Z, El-Saadony MT, Alkahtani AM, Chen Y, Wang X, Zhang J, Wei H. Biochar of invasive plants alleviated impact of acid rain on soil microbial community structure and functionality better than liming. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116726. [PMID: 39047360 DOI: 10.1016/j.ecoenv.2024.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
Acid rain and invasive plants have quintessential adverse impacts on terrestrial ecosystems. As an environmentally safe method for disposal of invasive plants, we tested the effect of biochar produced from these plants in altering soil deterioration under acid rain as compared with lime. Given the impacts of the feedstock type and soil properties on the response of soil to the added biochar, we hypothesized that the microbial community and functions would respond differently to the charred invasive plants under acid rain. A pot experiment was conducted to examine the response of soil microbiomes and functions to the biochar produced from Blackjack (Biden Pilosa), Wedelia (Wedelia trilobata), and Bitter vine (Mikania micrantha Kunth), or quicklime (CaO) at a rate of 1 % (w/w) under acid rain. Like soil pH, the nutrient contents (nitrogen, phosphorus, and potassium), calcium, and cation exchange capacity (CEC) were important as dominant edaphic factors affecting soil microbial community and functionality. In this respect, lime decreased nutrients availability, driven by 11-fold, 44 %, and 2-fold increments in calcium content, pH, and C/N ratio. Meanwhile, biochar improved nutrients availability under acid rain owing to maintaining a neutral pH (∼6.5), increasing calcium (by only 2-fold), and improving CEC, water repellency, and aggregation while decreasing the C/N ratio and aluminum content. Unlike biochar, lime decreased the relative abundance of Nitrosomonadaceae (the dominant ammonia-oxidizing bacteria) while augmenting the relative abundance of some fungal pathogens such as Spizellomycetaceae and Sporormiaceae. Given the highest nitrogen and dissolved organic carbon content than other biochar types, Wedelia-biochar resulted in the greatest relative abundance of Nitrosomonadaceae; thus, the microbial carbon and nitrogen biomasses were maximized. This study outlined the responses of the soil biogeochemical properties and the related microbial community structure and functionality to the biochar produced from invasive plants under acid rain. This study suggests that biochar can replace lime to ameliorate the effects of acid rain on soil physical, chemical and biological properties.
Collapse
Affiliation(s)
- Ahmed I Abdo
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Yazheng Li
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Zhaoji Shi
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Abdullah M Alkahtani
- Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Yongjian Chen
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Xiaohui Wang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Jiaen Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China.
| | - Hui Wei
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| |
Collapse
|
13
|
Berruto CA, Demirer GS. Engineering agricultural soil microbiomes and predicting plant phenotypes. Trends Microbiol 2024; 32:858-873. [PMID: 38429182 DOI: 10.1016/j.tim.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) can improve crop yields, nutrient use efficiency, plant tolerance to stressors, and confer benefits to future generations of crops grown in the same soil. Unlocking the potential of microbial communities in the rhizosphere and endosphere is therefore of great interest for sustainable agriculture advancements. Before plant microbiomes can be engineered to confer desirable phenotypic effects on their plant hosts, a deeper understanding of the interacting factors influencing rhizosphere community structure and function is needed. Dealing with this complexity is becoming more feasible using computational approaches. In this review, we discuss recent advances at the intersection of experimental and computational strategies for the investigation of plant-microbiome interactions and the engineering of desirable soil microbiomes.
Collapse
Affiliation(s)
- Chiara A Berruto
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Gozde S Demirer
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
14
|
Jia P, Guo X, Ye J, Lu H, Yang J, Hou J. Microbiome of diseased and healthy implants-a comprehensive microbial data analysis. Front Cell Infect Microbiol 2024; 14:1445751. [PMID: 39268486 PMCID: PMC11390503 DOI: 10.3389/fcimb.2024.1445751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
Objective The purpose of this systematic bioinformatics analysis was to describe the compositions and differences in submucosal microbial profiles of peri-implants' diseases and healthy implant. Material and methods PubMed, Embase, ETH Z, Scopus, CNKI, and Wanfang databases were searched to screen relevant literature on the analysis of peri-implant microflora based on the sequencing analysis technique of 16S ribosomal RNA (16S rRNA) gene. High-throughput sequencing of the 16S rRNA gene of microorganisms from healthy implants, peri-implant mucositis, and peri-implantitis was downloaded from the screened articles. EasyAmplicon and Usearch global algorithm were used to match the reads from each dataset to a full length of 16S rRNA or ITS gene sequence. The microorganisms based on the Human Oral Microbiome Database (HOMD) were re-classified, and the microbial diversity, flora composition, and differential species of the samples were re-analyzed, including taxonomic classification and alpha and beta diversity calculations. The co-occurrence network was also re-analyzed. Results A total of seven articles with 240 implants were included. Among them, 51 were healthy implants (HI), 43 were in the peri-implant mucositis (PM) group, and 146 were in the peri-implantitis (PI) group. A total of 26,483 OTUs were obtained, and 877 microorganisms were annotated. The alpha diversity including Chao1 (healthy implants, 121.04 ± 92.76; peri-implant mucositis, 128.21 ± 66.77; peri-implantitis, 131.15 ± 84.69) and Shannon (healthy implants, 3.25 ± 0.65; peri-implant mucositis, 3.73 ± 0.61; peri-implantitis, 3.53 ± 0.67) of the samples from the three groups showed a significant difference. The beta diversity of the three samples was statistically different among groups. The genera of Treponema and Fretibacterium were significantly more abundant in the PI group than in the other two groups, and the genus of Streptococcus was more abundant in the HI group. The relative abundance of Porphyromonas in the peri-implantitis group was 6.1%. The results of the co-occurrence network showed differences in the network topology among the three groups of samples. The most connected three genera in the healthy implants were Halomonas, Fusobacterium, and Fretibacterium. The most connected three genera in peri-implant mucositis were Alistipes, Clostridia UCG-014, and Candidatus Saccharimonas. The most connected three genera in the peri-implantitis group were Lachnoanaerobaculum, Fusobacterium, and Atopobium. The betweenness of Porphvromonas gingivalis (red complex) in the PI group (7,900) was higher than in the HI group (23). Conclusions The community compositions of peri-implant submucosal microorganisms were significantly different in healthy implants, peri-implant mucositis, and peri-implantitis. The submucosal microbial communities in peri-implantitis were characterized by high species richness and diversity compared with the healthy implants; the relative abundance of red complex, some members of the yellow complex, and some novel periodontal pathogens was higher in the peri-implantitis and peri-implant mucositis groups than in the healthy implant group. The core flora of the co-occurrence network of healthy implants, peri-implant mucositis, and peri-implantitis varied considerably. The peri-implantitis site presented a relative disequilibrium microbial community, and Porphyromonas may play an important role in the co-occurrence network.
Collapse
Affiliation(s)
- Pingyi Jia
- Department of the Fifth Division, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and National Healty Center (NHC) Key Laboratory of Digital Stomatology and National Medical Products Administration (NMPA) Key Laboratory for Dental Materials, Beijing, China
| | - Xinran Guo
- Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and National Healty Center (NHC) Key Laboratory of Digital Stomatology and National Medical Products Administration National (NMPA) Key Laboratory for Dental Material, Beijing, China
| | - Jinchen Ye
- Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and National Healty Center (NHC) Key Laboratory of Digital Stomatology and National Medical Products Administration National (NMPA) Key Laboratory for Dental Material, Beijing, China
| | - Hongye Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jingwen Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and National Healty Center (NHC) Key Laboratory of Digital Stomatology and National Medical Products Administration National (NMPA) Key Laboratory for Dental Materials, Beijing, China
| | - Jianxia Hou
- Department of Periodontology, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and National Healty Center (NHC) Key Laboratory of Digital Stomatology and National Medical Products Administration National (NMPA) Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
15
|
Sang Y, Ren K, Chen Y, Wang B, Meng Y, Zhou W, Jiang Y, Xu J. Integration of soil microbiology and metabolomics to elucidate the mechanism of the accelerated infestation of tobacco by the root-knot nematode. Front Microbiol 2024; 15:1455880. [PMID: 39247692 PMCID: PMC11377229 DOI: 10.3389/fmicb.2024.1455880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Tobacco root-knot nematode (TRKN) disease is a soil-borne disease that presents a major hazard to the cultivation of tobacco, causing significant reduction in crop quality and yield, and affecting soil microbial diversity and metabolites. However, differences in rhizosphere soil microbial communities and metabolites between healthy tobacco soils and tobacco soils with varying degrees of TRKN infection remain unclear. Methods In this study, diseased rhizosphere soils of tobacco infected with different degrees of TRKN [severally diseased (DH) soils, moderately diseased (DM) soils, and mildly diseased (DL) soils] and healthy (H) rhizosphere soils were collected. Here, we combined microbiology with metabolomics to investigate changes in rhizosphere microbial communities and metabolism in healthy and TRKN-infected tobacco using high-throughput sequencing and LC-MS/MS platforms. Results The results showed that the Chao1 and Shannon indices of bacterial communities in moderately and mildly diseased soils were significantly higher than healthy soils. The Proteobacteria, Actinobacteria, Ascomycota, Burkholderia, Bradyrhizobium and Dyella were enriched in the rhizosphere soil of healthy tobacco. Basidiomycota, Agaricales, Pseudeurotiaceae and Ralstonia were enriched in severally diseased soils. Besides, healthy soils exhibited a relatively complex and interconnected network of bacterial molecular ecologies, while in severally and moderately diseased soils the fungal molecular networks are relatively complex. Redundancy analysis showed that total nitrogen, nitrate nitrogen, available phosphorus, significantly affected the changes in microbial communities. In addition, metabolomics results indicated that rhizosphere soil metabolites were significantly altered after tobacco plants were infected with TRKNs. The relative abundance of organic acids was higher in severally diseased soils. Spearman's analyses showed that oleic acid, C16 sphinganine, 16-hydroxyhexadecanoic acid, D-erythro-3-methylmalate were positively correlated with Basidiomycota, Agaricales, Ralstonia. Discussion In conclusion, this study revealed the relationship between different levels of TRKN invasion of tobacco root systems with bacteria, fungi, metabolites and soil environmental factors, and provides a theoretical basis for the biological control of TRKN disease.
Collapse
Affiliation(s)
- Yinghua Sang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Ke Ren
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, China
| | - Bin Wang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Yufang Meng
- Yuxi Branch of Yunnan Provincial Tobacco Company, Yuxi, Yunnan, China
| | - Wenbing Zhou
- Yuxi Branch of Yunnan Provincial Tobacco Company, Yuxi, Yunnan, China
| | - Yonglei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, China
| | - Junju Xu
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
16
|
Chen Y, Li X, Zhou D, Wei Y, Feng J, Cai B, Qi D, Zhang M, Zhao Y, Li K, Pan Z, Wang W, Xie J. Streptomyces-Secreted Fluvirucin B6 as a Potential Bio-Fungicide for Managing Banana Fusarium Wilt and Mycotoxins and Modulating the Soil Microbial Community Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17890-17902. [PMID: 39083645 DOI: 10.1021/acs.jafc.4c04077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc TR4) is the most destructive soil-borne fungal disease. Until now, there has been a lack of effective measures to control the disease. It is urgent to explore biocontrol agents to control Foc TR4 and the secretion of mycotoxin. In this study, fluvirucin B6 was screened from Streptomyces solisilvae using an activity-guided method. Fluvirucin B6 exhibited strong antifungal activity against Foc TR4 (0.084 mM of EC50 value) and significantly inhibited mycelial growth and spore germination. Further studies demonstrated that fluvirucin B6 could cause the functional loss of mitochondria, the disorder of metabolism of Foc TR4 cells, and the decrease of enzyme activities in the tricarboxylic acid cycle and electron transport chain, ultimately inhibiting mycotoxin metabolism. In a pot experiment, the application of fluvirucin B6 significantly decreased the incidence of banana Fusarium wilt and the amount of Foc TR4 and controlled fungal toxins in the soil. Additionally, fluvirucin B6 could positively regulate the changes in the structure of the banana rhizosphere microbial community, significantly enriching beneficial microbes associated with disease resistance. In summary, this study identifies fluvirucin B6, which plays versatile roles in managing fungal diseases and mycotoxins.
Collapse
Affiliation(s)
- Yufeng Chen
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - XiaoJuan Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Dengbo Zhou
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yongzan Wei
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Junting Feng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bingyu Cai
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Dengfeng Qi
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Miaoyi Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yankun Zhao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Kai Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zhiqiang Pan
- Agricultural Research Service, Natural Products Utilization Research Unit, U.S. Department of Agriculture, University of Mississippi, University, Mississippi 38677, United States
| | - Wei Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jianghui Xie
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
17
|
Qi Z, Tian L, Zhang H, Zhou X, Lei Y, Tang F. Mycobiome mediates the interaction between environmental factors and mycotoxin contamination in wheat grains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172494. [PMID: 38631642 DOI: 10.1016/j.scitotenv.2024.172494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Environmental factors significantly impact grain mycobiome assembly and mycotoxin contamination. However, there is still a lack of understanding regarding the wheat mycobiome and the role of fungal communities in the interaction between environmental factors and mycotoxins. In this study, we collected wheat grain samples from 12 major wheat-producing provinces in China during both the harvest and storage periods. Our aim was to evaluate the mycobiomes in wheat samples with varying deoxynivalenol (DON) contamination levels and to confirm the correlation between environmental factors, the wheat mycobiome, and mycotoxins. The results revealed significant differences in the wheat mycobiome and co-occurrence network between contaminated and uncontaminated wheat samples. Fusarium was identified as the main differential taxon responsible for inducing DON contamination in wheat. Correlation analysis identified key factors affecting mycotoxin contamination. The results indicate that both environmental factors and the wheat mycobiome play significant roles in the production and accumulation of DON. Environmental factors can affect the wheat mycobiome assembly, and wheat mycobiome mediates the interaction between environmental factors and mycotoxin contamination. Furthermore, a random forest (RF) model was developed using key biological indicators and environmental features to predict DON contamination in wheat with accuracies exceeding 90 %. The findings provide data support for the accurate prediction of mycotoxin contamination and lay the foundation for the research on biological control technologies of mycotoxin through the assembly of synthetic microbial communities.
Collapse
Affiliation(s)
- Zhihui Qi
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China; National Engineering Research Center of Grain Storage and Logistics, Beijing 102209, PR China
| | - Lin Tian
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China; National Engineering Research Center of Grain Storage and Logistics, Beijing 102209, PR China
| | - Haiyang Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China; National Engineering Research Center of Grain Storage and Logistics, Beijing 102209, PR China
| | - Xin Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuqing Lei
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China; National Engineering Research Center of Grain Storage and Logistics, Beijing 102209, PR China
| | - Fang Tang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China; National Engineering Research Center of Grain Storage and Logistics, Beijing 102209, PR China.
| |
Collapse
|
18
|
Fujita H, Yoshida S, Suzuki K, Toju H. Soil prokaryotic and fungal biome structures associated with crop disease status across the Japan Archipelago. mSphere 2024; 9:e0080323. [PMID: 38567970 PMCID: PMC11036807 DOI: 10.1128/msphere.00803-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/29/2024] [Indexed: 04/24/2024] Open
Abstract
Archaea, bacteria, and fungi in the soil are increasingly recognized as determinants of agricultural productivity and sustainability. A crucial step for exploring soil microbiomes with important ecosystem functions is to perform statistical analyses on the potential relationship between microbiome structure and functions based on comparisons of hundreds or thousands of environmental samples collected across broad geographic ranges. In this study, we integrated agricultural field metadata with microbial community analyses by targeting 2,903 bulk soil samples collected along a latitudinal gradient from cool-temperate to subtropical regions in Japan (26.1-42.8 °N). The data involving 632 archaeal, 26,868 bacterial, and 4,889 fungal operational taxonomic units detected across the fields of 19 crop plant species allowed us to conduct statistical analyses (permutational analyses of variance, generalized linear mixed models, randomization analyses, and network analyses) on the relationship among edaphic factors, microbiome compositions, and crop disease prevalence. We then examined whether the diverse microbes form species sets varying in potential ecological impacts on crop plants. A network analysis suggested that the observed prokaryotes and fungi were classified into several species sets (network modules), which differed substantially in association with crop disease prevalence. Within the network of microbe-to-microbe coexistence, ecologically diverse microbes, such as an ammonium-oxidizing archaeon, an antibiotics-producing bacterium, and a potentially mycoparasitic fungus, were inferred to play key roles in shifts between crop-disease-promotive and crop-disease-suppressive states of soil microbiomes. The bird's-eye view of soil microbiome structure will provide a basis for designing and managing agroecosystems with high disease-suppressive functions.IMPORTANCEUnderstanding how microbiome structure and functions are organized in soil ecosystems is one of the major challenges in both basic ecology and applied microbiology. Given the ongoing worldwide degradation of agroecosystems, building frameworks for exploring structural diversity and functional profiles of soil microbiomes is an essential task. Our study provides an overview of cropland microbiome states in light of potential crop-disease-suppressive functions. The large data set allowed us to explore highly functional species sets that may be stably managed in agroecosystems. Furthermore, an analysis of network architecture highlighted species that are potentially used to cause shifts from disease-prevalent states of agroecosystems to disease-suppressive states. By extending the approach of comparative analyses toward broader geographic ranges and diverse agricultural practices, agroecosystem with maximized biological functions will be further explored.
Collapse
Affiliation(s)
- Hiroaki Fujita
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Shigenobu Yoshida
- Institute for Plant Protection, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kenta Suzuki
- Integrated Bioresource Information Division, BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
- Center for Living Systems Information Science (CeLiSIS), Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Wu CD, Fan YB, Chen X, Cao JW, Ye JY, Feng ML, Liu XX, Sun WJ, Liu RN, Wang AY. Analysis of endophytic bacterial diversity in seeds of different genotypes of cotton and the suppression of Verticillium wilt pathogen infection by a synthetic microbial community. BMC PLANT BIOLOGY 2024; 24:263. [PMID: 38594616 PMCID: PMC11005247 DOI: 10.1186/s12870-024-04910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND In agricultural production, fungal diseases significantly impact the yield and quality of cotton (Gossypium spp.) with Verticillium wilt posing a particularly severe threat. RESULTS This study is focused on investigating the effectiveness of endophytic microbial communities present in the seeds of disease-resistant cotton genotypes in the control of cotton Verticillium wilt. The technique of 16S ribosomal RNA (16S rRNA) amplicon sequencing identified a significant enrichment of the Bacillus genus in the resistant genotype Xinluzao 78, which differed from the endophytic bacterial community structure in the susceptible genotype Xinluzao 63. Specific enriched strains were isolated and screened from the seeds of Xinluzao 78 to further explore the biological functions of seed endophytes. A synthetic microbial community (SynCom) was constructed using the broken-rod model, and seeds of the susceptible genotype Xinluzao 63 in this community that had been soaked with the SynCom were found to significantly control the occurrence of Verticillium wilt and regulate the growth of cotton plants. Antibiotic screening techniques were used to preliminarily identify the colonization of strains in the community. These techniques revealed that the strains can colonize plant tissues and occupy ecological niches in cotton tissues through a priority effect, which prevents infection by pathogens. CONCLUSION This study highlights the key role of seed endophytes in driving plant disease defense and provides a theoretical basis for the future application of SynComs in agriculture.
Collapse
Affiliation(s)
- Chong-Die Wu
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Yong-Bin Fan
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Xue Chen
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Jiang-Wei Cao
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Jing-Yi Ye
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Meng-Lei Feng
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Xing-Xing Liu
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Wen-Jing Sun
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Rui-Na Liu
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Ai-Ying Wang
- College of Life Sciences, Shihezi University, Shihezi, China.
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China.
| |
Collapse
|
20
|
Venkataraman S, Athilakshmi JK, Rajendran DS, Bharathi P, Kumar VV. A comprehensive review of eclectic approaches to the biological synthesis of vanillin and their application towards the food sector. Food Sci Biotechnol 2024; 33:1019-1036. [PMID: 38440686 PMCID: PMC10908958 DOI: 10.1007/s10068-023-01484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 03/06/2024] Open
Abstract
Vanillin, a highly regarded flavor compound, has earned widespread recognition for its natural and aromatic qualities, piquing substantial interest in the scientific community. This comprehensive review delves deeply into the intricate world of vanillin synthesis, encompassing a wide spectrum of methodologies, including enzymatic, microbial, and immobilized systems. This investigation provides a thorough analysis of the precursors of vanillin and also offers a comprehensive overview of its transformation through these diverse processes, making it an invaluable resource for researchers and enthusiasts alike. The elucidation of different substrates such as ferulic acid, eugenol, veratraldehyde, vanillic acid, glucovanillin, and C6-C3 phenylpropanoids adds a layer of depth and insight to the understanding of vanillin synthesis. Moreover, this comprehensive review explores the multifaceted applications of vanillin within the food industry. While commonly known as a flavoring agent, vanillin transcends this role by finding extensive use in food preservation and food packaging. The review meticulously examines the remarkable preservative properties of vanillin, providing a profound understanding of its crucial role in the culinary and food science sectors, thus making it an indispensable reference for professionals and researchers in these domains. Graphical abstract
Collapse
Affiliation(s)
- Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Jothyswarupha Krishnakumar Athilakshmi
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Priyadharshini Bharathi
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| |
Collapse
|
21
|
Yang Y, Hu J, Wei X, Huang K, Li C, Yang G. Deciphering core microbiota in rhizosphere soil and roots of healthy and Rhizoctonia solani-infected potato plants from various locations. Front Microbiol 2024; 15:1386417. [PMID: 38585705 PMCID: PMC10995396 DOI: 10.3389/fmicb.2024.1386417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Black scurf caused by Rhizoctonia solani severely affects potato production. Through amplification of V3-V4 and ITS1-5f variable regions of 16S and internal transcribed spacer (ITS) rRNA, the study was based on the location (Kunming, Qujing, and Zhaotong), plant components (rhizosphere soil and roots), and sample types (healthy and diseased) to assess the diversity of bacterial and fungal communities. We found plant components significantly influence microbial diversity, with rhizosphere soil being more diverse than roots, and the microbial community in the root is mainly derived from the rhizosphere soil. Moreover, the rhizosphere soil and roots of healthy potato plants exhibit greater microbial diversity compared to those of potato plants infected by Rhizoctonia solani. Bacterial phyla Actinobacteriota and Acidobacteriota were enriched in rhizosphere soil compared to that of roots, whereas Proteobacteria and Cyanobacteria showed the opposite trend. Fungal phylum Ascomycota was found in low relative abundance in rhizosphere soil than in roots, whereas Basidiomycota showed the opposite trend. Bacterial genera including Streptomyces, Lysobacter, Bacillus, Pseudomonas, Ensifer, Enterobacter, and the Rhizobium group (Allorhizobium, Neorhizobium, Pararhizobium, Rhizobium), along with fungal genera such as Aspergillus, Penicillium, Purpureocillium, and Gibberella moniliformis, have the potential ability of plant growth promotion and disease resistance. However, most fungal species and some bacterial species are pathogenic to potato and could provide a conducive environment for black scurf infection. Interaction within the bacterial network increased in healthy plants, contrasting with the trend in the fungal network. Our findings indicate that R. solani significantly alters potato plant microbial diversity, underscoring the complexity and potential interactions between bacterial and fungal communities for promoting potato plant health and resistance against black scurf.
Collapse
Affiliation(s)
| | | | | | | | | | - Genhua Yang
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
22
|
Guo Z, Zhang J, Liu Z, Li Y, Li M, Meng Q, Yang Z, Luo Y, Zhang Q, Yan M. Trichoderma harzianum prevents red kidney bean root rot by increasing plant antioxidant enzyme activity and regulating the rhizosphere microbial community. Front Microbiol 2024; 15:1348680. [PMID: 38572240 PMCID: PMC10987954 DOI: 10.3389/fmicb.2024.1348680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Root rot is one of the main reasons for yield losses of red kidney bean (Phaseolus vulgaris) production. Pre-inoculation with Trichoderma harzianum can effectively lower the incidence of red kidney bean root rot. In this study, four treatments including CK (control), Fu13 (Fusarium oxysporum), T891 (T. harzianum) and T891 + Fu13 (T. harzianum + F. oxysporum) were arranged in a pot experiment to investigate how T891 affected the incidence and severity of root rot, plant growth, and changes of defense enzyme activity in red kidney bean plants. Community composition and diversity of the rhizosphere microbiota was evaluated through high-throughput sequencing, and co-occurrence network was analyzed. The results showed that when compared to the Fu13 treatment, pre-inoculation with T891 reduced the incidence and severity of red kidney bean root rot by 40.62 and 68.03% (p < 0.05), increased the root length, shoot length, total dry biomass by 48.63, 97.72, 122.17%. Upregulated activity of super-oxide dismutase (SOD), peroxidase (POD), catalase (CAT) by 7.32, 38.48, 98.31% (p < 0.05), and reduced malondialdehyde (MDA) by 23.70% (p < 0.05), respectively. Microbiological analyses also showed that F. oxysporum reduced alpha diversity resulting in alteration the composition of the rhizosphere microbial community in red kidney bean. T891 significantly reduced abundance of F. oxysporum, allowing the enrichment of potentially beneficial bacteria Porphyrobacter (ASV 46), Lysobacter (ASV 85), Microbacteriaceae (ASV 105), and Gemmatimonas (ASV 107), resulting in a more stable structure of the microbial network. The results of random forest analysis further revealed that ASV 46 (Porphyrobacter) was the primary influencing factor for the incidence of root rot after inoculation with T891, while ASV 85 (Lysobacter) was the primary influencing factor for the biomass of red kidney bean. In conclusion, T. harzianum promotes the growth of red kidney bean and inhibits root rot by improving plant antioxidant enzyme activity and regulating the rhizosphere microbial community.
Collapse
Affiliation(s)
- Zhifen Guo
- College of Resources and Environment, Shanxi Agricultural University, Taiyuan, China
| | - Jiaxing Zhang
- Key Laboratory for Soil Environment and Nutrient Resources, Taiyuan, Shanxi, China
- Institute of Eco-Environment and Industrial Technology, Shanxi Agricultural University, Taiyuan, China
| | - Zhibin Liu
- College of Resources and Environment, Shanxi Agricultural University, Taiyuan, China
| | - Yu Li
- College of Resources and Environment, Shanxi Agricultural University, Taiyuan, China
| | - Meng Li
- College of Resources and Environment, Shanxi Agricultural University, Taiyuan, China
| | - Qiuxia Meng
- Key Laboratory for Soil Environment and Nutrient Resources, Taiyuan, Shanxi, China
- Institute of Eco-Environment and Industrial Technology, Shanxi Agricultural University, Taiyuan, China
| | - Zhiping Yang
- Key Laboratory for Soil Environment and Nutrient Resources, Taiyuan, Shanxi, China
- Institute of Eco-Environment and Industrial Technology, Shanxi Agricultural University, Taiyuan, China
| | - Yuan Luo
- Institute of Eco-Environment and Industrial Technology, Shanxi Agricultural University, Taiyuan, China
| | - Qiang Zhang
- Shanxi Agricultural University, Taiyuan, China
| | - Min Yan
- Key Laboratory for Soil Environment and Nutrient Resources, Taiyuan, Shanxi, China
- Institute of Eco-Environment and Industrial Technology, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
23
|
Yang Y, Xu N, Zhang Z, Lei C, Chen B, Qin G, Qiu D, Lu T, Qian H. Deciphering Microbial Community and Nitrogen Fixation in the Legume Rhizosphere. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5659-5670. [PMID: 38442360 DOI: 10.1021/acs.jafc.3c09160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Nitrogen is the most limiting factor in crop production. Legumes establish a symbiotic relationship with rhizobia and enhance nitrogen fixation. We analyzed 1,624 rhizosphere 16S rRNA gene samples and 113 rhizosphere metagenomic samples from three typical legumes and three non-legumes. The rhizosphere microbial community of the legumes had low diversity and was enriched with nitrogen-cycling bacteria (Sphingomonadaceae, Xanthobacteraceae, Rhizobiaceae, and Bacillaceae). Furthermore, the rhizosphere microbiota of legumes exhibited a high abundance of nitrogen-fixing genes, reflecting a stronger nitrogen-fixing potential, and Streptomycetaceae and Nocardioidaceae were the predominant nitrogen-fixing bacteria. We also identified helper bacteria and confirmed through metadata analysis and a pot experiment that the synthesis of riboflavin by helper bacteria is the key factor in promoting nitrogen fixation. Our study emphasizes that the construction of synthetic communities of nitrogen-fixing bacteria and helper bacteria is crucial for the development of efficient nitrogen-fixing microbial fertilizers.
Collapse
Affiliation(s)
- Yaohui Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Chaotang Lei
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Bingfeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Guoyan Qin
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Danyan Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| |
Collapse
|
24
|
Han Q, Chen Y, Li Z, Zhang Z, Qin Y, Liu Z, Liu G. Changes in the soil fungal communities of steppe grasslands at varying degradation levels in North China. Can J Microbiol 2024; 70:70-85. [PMID: 38096505 DOI: 10.1139/cjm-2023-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The grasslands in North China are rich in fungal resources. However, the knowledge of the structure and function of fungal communities and the role of microbial communities in vegetation restoration and succession are limited. Thus, we used an Illumina HiSeq PE250 high-throughput sequencing platform to study the changing characteristics of soil fungal communities in degraded grasslands, which were categorized as non-degraded (ND), lightly degraded, moderately degraded, and severely degraded (SD). Moreover, a correlation analysis between soil physical and chemical properties and fungal communities was completed. The results showed that the number of plant species, vegetation coverage, aboveground biomass, and diversity index decreased significantly with increasing degradation, and there were significant differences in the physical and chemical properties of the soil among the different degraded grasslands. The dominant fungal phyla in the degraded grassland were as follows: Ascomycota, 44.88%-65.03%; Basidiomycota, 12.68%-29.91%; and unclassified, 5.51%-16.91%. The dominant fungi were as follows: Mortierella, 6.50%-11.41%; Chaetomium, 6.71%-11.58%; others, 25.95%-36.14%; and unclassified, 25.56%-53.0%. There were significant differences in the microbial Shannon-Wiener and Chao1 indices between the ND and degraded meadows, and the composition and diversity of the soil fungal community differed significantly as the meadows continued to deteriorate. The results showed that pH was the most critical factor affecting soil microbial and fungal communities in SD grasslands, whereas soil microbial and fungal communities in ND grasslands were mainly affected by water content and other environmental factors.
Collapse
Affiliation(s)
- Qiqi Han
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Yuhang Chen
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Zichao Li
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Zhuo Zhang
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Yuao Qin
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Zhongkuan Liu
- Institute of Agro-resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Guixia Liu
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
25
|
Walsh C, Stallard-Olivera E, Fierer N. Nine (not so simple) steps: a practical guide to using machine learning in microbial ecology. mBio 2024; 15:e0205023. [PMID: 38126787 PMCID: PMC10865974 DOI: 10.1128/mbio.02050-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Due to the complex nature of microbiome data, the field of microbial ecology has many current and potential uses for machine learning (ML) modeling. With the increased use of predictive ML models across many disciplines, including microbial ecology, there is extensive published information on the specific ML algorithms available and how those algorithms have been applied. Thus, our goal is not to summarize the breadth of ML models available or compare their performances. Rather, our goal is to provide more concrete and actionable information to guide microbial ecologists in how to select, run, and interpret ML algorithms to predict the taxa or genes associated with particular sample categories or environmental gradients of interest. Such microbial data often have unique characteristics that require careful consideration of how to apply ML models and how to interpret the associated results. This review is intended for practicing microbial ecologists who may be unfamiliar with some of the intricacies of ML models. We provide examples and discuss common opportunities and pitfalls specific to applying ML models to the types of data sets most frequently collected by microbial ecologists.
Collapse
Affiliation(s)
- Corinne Walsh
- Cooperative Institute of Research in Environmental Sciences, CU Boulder, Boulder, Colorado, USA
- Ecology and Evolutionary Biology Department, CU Boulder, Boulder, Colorado, USA
| | - Elías Stallard-Olivera
- Cooperative Institute of Research in Environmental Sciences, CU Boulder, Boulder, Colorado, USA
- Ecology and Evolutionary Biology Department, CU Boulder, Boulder, Colorado, USA
| | - Noah Fierer
- Cooperative Institute of Research in Environmental Sciences, CU Boulder, Boulder, Colorado, USA
- Ecology and Evolutionary Biology Department, CU Boulder, Boulder, Colorado, USA
| |
Collapse
|
26
|
Bai Y, Wu D, Dolfing J, Zhang L, Xie B. Dynamics and functions of biomarker taxa determine substrate-specific organic waste composting. BIORESOURCE TECHNOLOGY 2024; 393:130118. [PMID: 38029801 DOI: 10.1016/j.biortech.2023.130118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Bacteria are an influential component of diverse composting microbiomes, but their structure and underlying dynamics are poorly understood. This study analyzed the bacterial communities of 577 compost datasets globally and constructed a substrate-dependent catalog with more than 15 million non-redundant 16S rRNA gene sequences. Using a random-forest machine-learning model, 30 biomarker taxa were identified that accurately distinguish between the food, sludge and manure waste composting microbiomes (accuracy >98 %). These biomarker taxa were closely associated with carbon and nitrogen metabolic processes, during which they contributed to the predominant stochastic process and are influenced by different factors in the substrate-specific composts. This is corroborated by the community topological characteristics, which feature the biomarkers as keystone taxa maintaining the bacterial network stability. These findings provide a theoretical basis to identify and enhance the biomarker-functional bacteria for optimizing the composting performance of different organic wastes.
Collapse
Affiliation(s)
- Yudan Bai
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Jan Dolfing
- Faculty Energy and Environment, Northumbria University, Newcastle upon Tyne NE1 8QH, United Kingdom
| | - Liangmao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
27
|
Li J, Hou L, Zhang G, Cheng L, Liu Y. Comparative Analysis of Rhizosphere and Endosphere Fungal Communities in Healthy and Diseased Faba Bean Plants. J Fungi (Basel) 2024; 10:84. [PMID: 38276030 PMCID: PMC10817651 DOI: 10.3390/jof10010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
This study used the ITS approach based on Illumina MiSeq sequencing to assess the endosphere and rhizosphere fungal communities in healthy and diseased faba bean plants. The findings indicate that the most predominant phyla in all samples were Ascomycota (49.89-99.56%) and Basidiomycota (0.33-25.78%). In healthy endosphere samples, Glomeromycota (0.08-1.17%) was the only predominant phylum. In diseased endosphere samples, Olpidiomycota (0.04-1.75%) was the only predominant phylum. At the genus level, Penicillium (0.47-35.21%) was more abundant in rhizosphere soil, while Paraphoma (3.48-91.16%) was predominant in the endosphere roots of faba bean plants. Significant differences were observed in the alpha diversity of rhizosphere samples from different germplasm resources (p < 0.05). The fungal community structures were clearly distinguished between rhizosphere and endosphere samples and between healthy and diseased endosphere samples (p < 0.05). Saccharomyces was significantly enriched in diseased endosphere samples, whereas Apiotrichum was enriched in healthy endosphere samples. Vishniacozyma and Phialophora were enriched in diseased rhizosphere samples, while Pseudogymnoascus was enriched in healthy rhizosphere samples. Diseased samples displayed more strongly correlated genera than healthy samples. Saprotrophs accounted for a larger proportion of the fungal microbes in rhizosphere soil than in endosphere roots. This study provides a better understanding of the composition and diversity of fungal communities in the rhizosphere and endosphere of faba bean plants as well as a theoretical guidance for future research on the prevention or control of faba bean root rot disease.
Collapse
Affiliation(s)
- Juan Li
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (J.L.); (G.Z.); (L.C.)
- Key Laboratory of Agricultural Integrated Pest Management, Xining 810016, China
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Lu Hou
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (J.L.); (G.Z.); (L.C.)
- Key Laboratory of Agricultural Integrated Pest Management, Xining 810016, China
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Gui Zhang
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (J.L.); (G.Z.); (L.C.)
- Key Laboratory of Agricultural Integrated Pest Management, Xining 810016, China
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Liang Cheng
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (J.L.); (G.Z.); (L.C.)
- Key Laboratory of Agricultural Integrated Pest Management, Xining 810016, China
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yujiao Liu
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (J.L.); (G.Z.); (L.C.)
- Key Laboratory of Agricultural Integrated Pest Management, Xining 810016, China
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| |
Collapse
|
28
|
Bian R, Huang S, Cao X, Qi W, Peng J, Liu H, Wu X, Li C, Qu J. Spatial and temporal distribution of the microbial community structure in the receiving rivers of the middle and lower reaches of the Yangtze River under the influence of different wastewater types. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132835. [PMID: 37879279 DOI: 10.1016/j.jhazmat.2023.132835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/01/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
The gradual intensification of human activity has caused severe negative impacts on the ecosystems of the Yangtze River Basin. Treated effluents still affect the environment and health of receiving rivers, particularly in terms of microbial community structure. However, relatively few studies have been conducted on the differences in the effects of wastewater types on microbial community structure. Three sampling campaigns (237 samples) were conducted in the Nanjing and Wuhan sections of the Yangtze River Basin. Our results showed that the microbial community structure differed significantly among the water periods and could recover to its original state at > 500 m downstream of the outfall. The diversity of the receiving rivers under the influence of industrial wastewater was higher than that of the other wastewater types, although the number of taxa was lower than that of other wastewater types. Cyanobium_PCC-6307 and Rhodoferax were screened for biomarkers in samples affected by domestic and industrial wastewater, respectively. Although different kinds of wastewater influenced the microbial community structure, environmental factors, and geographical distance were still the main drivers. This study suggests that treated wastewater still poses a risk to ecosystems and highlights the importance of effective management strategies for assessing ecosystem health.
Collapse
Affiliation(s)
- Rui Bian
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; School of Environment, Northeast Normal University, Changchun 130117, China; Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Shier Huang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Cao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xinghua Wu
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Chong Li
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
29
|
Connors E, Dutta A, Trinh R, Erazo N, Dasarathy S, Ducklow H, Weissman JL, Yeh YC, Schofield O, Steinberg D, Fuhrman J, Bowman JS. Microbial community composition predicts bacterial production across ocean ecosystems. THE ISME JOURNAL 2024; 18:wrae158. [PMID: 39105280 PMCID: PMC11385589 DOI: 10.1093/ismejo/wrae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/28/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Microbial ecological functions are an emergent property of community composition. For some ecological functions, this link is strong enough that community composition can be used to estimate the quantity of an ecological function. Here, we apply random forest regression models to compare the predictive performance of community composition and environmental data for bacterial production (BP). Using data from two independent long-term ecological research sites-Palmer LTER in Antarctica and Station SPOT in California-we found that community composition was a strong predictor of BP. The top performing model achieved an R2 of 0.84 and RMSE of 20.2 pmol L-1 hr-1 on independent validation data, outperforming a model based solely on environmental data (R2 = 0.32, RMSE = 51.4 pmol L-1 hr-1). We then operationalized our top performing model, estimating BP for 346 Antarctic samples from 2015 to 2020 for which only community composition data were available. Our predictions resolved spatial trends in BP with significance in the Antarctic (P value = 1 × 10-4) and highlighted important taxa for BP across ocean basins. Our results demonstrate a strong link between microbial community composition and microbial ecosystem function and begin to leverage long-term datasets to construct models of BP based on microbial community composition.
Collapse
Affiliation(s)
- Elizabeth Connors
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, United States
- Scripps Polar Center, UC San Diego, La Jolla, CA 92037, United States
| | - Avishek Dutta
- Department of Geology, University of Georgia, Athens, GA 30602, United States
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, United States
| | - Rebecca Trinh
- Lamont-Doherty Earth Observatory, Columbia University, New York, NY 10964, United States
| | - Natalia Erazo
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, United States
| | - Srishti Dasarathy
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, United States
| | - Hugh Ducklow
- Lamont-Doherty Earth Observatory, Columbia University, New York, NY 10964, United States
| | - J L Weissman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
- Department of Biology, The City College of New York, New York, NY 10003, United States
| | - Yi-Chun Yeh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Oscar Schofield
- Coastal Ocean Observation Laboratory, Institute of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, United States
| | - Deborah Steinberg
- Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA 23062, United States
| | - Jed Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Jeff S Bowman
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, United States
- Scripps Polar Center, UC San Diego, La Jolla, CA 92037, United States
| |
Collapse
|
30
|
Zhao H, Sun L, Liu J, Shi B, Zhang Y, Qu-Zong CR, Dorji T, Wang T, Yuan H, Yang J. Meta-analysis identifying gut microbial biomarkers of Qinghai-Tibet Plateau populations and the functionality of microbiota-derived butyrate in high-altitude adaptation. Gut Microbes 2024; 16:2350151. [PMID: 38715346 PMCID: PMC11086029 DOI: 10.1080/19490976.2024.2350151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
The extreme environmental conditions of a plateau seriously threaten human health. The relationship between gut microbiota and human health at high altitudes has been extensively investigated. However, no universal gut microbiota biomarkers have been identified in the plateau population, limiting research into gut microbiota and high-altitude adaptation. 668 16s rRNA samples were analyzed using meta-analysis to reduce batch effects and uncover microbiota biomarkers in the plateau population. Furthermore, the robustness of these biomarkers was validated. Mendelian randomization (MR) results indicated that Tibetan gut microbiota may mediate a reduced erythropoietic response. Functional analysis and qPCR revealed that butyrate may be a functional metabolite in high-altitude adaptation. A high-altitude rat model showed that butyrate reduced intestinal damage caused by high altitudes. According to cell experiments, butyrate may downregulate hypoxia-inducible factor-1α (HIF-1α) expression and blunt cellular responses to hypoxic stress. Our research found universally applicable biomarkers and investigated their potential roles in promoting human health at high altitudes.
Collapse
Affiliation(s)
- Hongwen Zhao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Longjie Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yaopeng Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ci-Ren Qu-Zong
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- College of Ecology and Environment, Tibet University, Tibet, China
| | - Tsechoe Dorji
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Kong L, Zhang L, Wang Y, Huang Z. Impact of Ecological Restoration on the Physicochemical Properties and Bacterial Communities in Alpine Mining Area Soils. Microorganisms 2023; 12:41. [PMID: 38257868 PMCID: PMC10818615 DOI: 10.3390/microorganisms12010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Ecological restoration has notably impacted microbe and soil characteristics in abandoned open pit mines, especially in alpine regions. Yet, the adaptive responses of microbial communities in the initial years of mine site restoration remain largely unexplored. This study endeavors to offer a thorough comprehension of soil properties and microbial dynamics during the initial phases of alpine mining land reclamation. It places emphasis on physicochemical properties and microbial community composition and evaluates the feasibility of phytoremediation, along with proposing subsequent measures. Our study employs spatial sequence instead of time-sequenceal sequence to investigate early-stage changes in soil microbes and physicochemical properties in alpine mining land reclamation. We used high-throughput sequencing for the 16S rRNA amplicon study. Over time, soil physicochemical properties improved noticeably. Soil pH shifted from neutral to alkaline (7.04-8.0), while soil electrical conductivity (EC) decreased to 77 μS·cm-1 in R_6a. Cation exchange capacity (CEC) initially decreased from R_2a (12.30-27.98 cmol·kg-1) and then increased. Soil organic matter increased from 17.7 to 43.2 g·kg-1 over time during mine reclamation and restoration. The dominant bacterial community consisted of Proteobacteria (33.94% to 52.09%), Acidobacteriota (4.94% to 15.88%), Bacteroidota (6.52% to 11.15%), Actinobacteriota (7.18% to 9.61%), and Firmicutes (4.52% to 16.80%) with varying relative abundances. Gene annotation of sequences from various reclamation years revealed general function prediction, translation, ribosome structure, cell wall/membrane/envelope biogenesis, nucleotide translocation, and metabolism, along with other related functions. Mine reclamation improved soil fertility and properties, with the R_6a treatment being the most effective. Starting in the 2nd year of reclamation, the effective phosphorus content and the dominance of microbial bacteria, notably the Bacillus content, decreased. Firmicute fertilization promoted phosphorus and bacterial growth. In conclusion, employing a blend of sequencing and experimental approaches, our study unveils early-stage enhancements in soil microbial and physicochemical properties during the reclamation of alpine mining areas. The results underscore the beneficial impacts of vegetation restoration on key properties, including soil fertility, pore structure, and bacterial community composition. Special attention is given to assessing the effectiveness of the R_6a treatment and identifying deficiencies in the R_2a treatment. It serves as a reference for addressing the challenges associated with soil fertility and microbial community structure restoration in high-altitude mining areas in Qinghai-Tibet. This holds great significance for soil and water conservation as well as vegetation restoration in alpine mining regions. Furthermore, it supports the sustainable restoration of local ecosystems.
Collapse
Affiliation(s)
| | | | | | - Zhanbin Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; (L.K.); (L.Z.); (Y.W.)
| |
Collapse
|
32
|
Dong W, Ricker N, Holman DB, Johnson TA. Meta-analysis reveals the predictable dynamic development of the gut microbiota in commercial pigs. Microbiol Spectr 2023; 11:e0172223. [PMID: 37815394 PMCID: PMC10715009 DOI: 10.1128/spectrum.01722-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE The swine gut microbiome undergoes an age-dependent assembly pattern with a developmental phase at early ages and a stabilization phase at later ages. Shorter time intervals and a wider range of data sources provided a clearer understanding of the gut microbiota colonization and succession and their associations with pig growth and development. The rapidly changing microbiota of suckling and weaning pigs implies potential time targets for growth and health regulation through gut microbiota manipulation. Since swine gut microbiota development is predictable, swine microbiota age can be calculated and compared between animal treatment groups rather than relying only on static time-matched comparisons.
Collapse
Affiliation(s)
- Wenxuan Dong
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Nicole Ricker
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Timothy A. Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
33
|
Jiang H, Luo J, Liu Q, Ogunyemi SO, Ahmed T, Li B, Yu S, Wang X, Yan C, Chen J, Li B. Rice bacterial leaf blight drives rhizosphere microbial assembly and function adaptation. Microbiol Spectr 2023; 11:e0105923. [PMID: 37846986 PMCID: PMC10715139 DOI: 10.1128/spectrum.01059-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/27/2023] [Indexed: 10/18/2023] Open
Abstract
IMPORTANCE Our results suggest that rhizosphere bacteria are more sensitive to bacterial leaf blight (BLB) than fungi. BLB infection decreased the diversity of the rhizosphere bacterial community but increased the complexity and size of the rhizosphere microbial community co-occurrence networks. In addition, the relative abundance of the genera Streptomyces, Chitinophaga, Sphingomonas, and Bacillus increased significantly. Finally, these findings contribute to the understanding of plant-microbiome interactions by providing critical insight into the ecological mechanisms by which rhizosphere microbes respond to phyllosphere diseases. In addition, it also lays the foundation and provides data to support the use of plant microbes to promote plant health in sustainable agriculture, providing critical insight into ecological mechanisms.
Collapse
Affiliation(s)
- Hubiao Jiang
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai, China
| | - Quanhong Liu
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Bing Li
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Shanhong Yu
- Taizhou Academy of Agricultural Sciences, Taizhou, China
| | - Xiao Wang
- Ningbo Jiangbei District Agricultural Technology Extension Service Station, Ningbo , China
| | - Chenqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| |
Collapse
|
34
|
Todorović I, Moënne-Loccoz Y, Raičević V, Jovičić-Petrović J, Muller D. Microbial diversity in soils suppressive to Fusarium diseases. FRONTIERS IN PLANT SCIENCE 2023; 14:1228749. [PMID: 38111879 PMCID: PMC10726057 DOI: 10.3389/fpls.2023.1228749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023]
Abstract
Fusarium species are cosmopolitan soil phytopathogens from the division Ascomycota, which produce mycotoxins and cause significant economic losses of crop plants. However, soils suppressive to Fusarium diseases are known to occur, and recent knowledge on microbial diversity in these soils has shed new lights on phytoprotection effects. In this review, we synthesize current knowledge on soils suppressive to Fusarium diseases and the role of their rhizosphere microbiota in phytoprotection. This is an important issue, as disease does not develop significantly in suppressive soils even though pathogenic Fusarium and susceptible host plant are present, and weather conditions are suitable for disease. Soils suppressive to Fusarium diseases are documented in different regions of the world. They contain biocontrol microorganisms, which act by inducing plants' resistance to the pathogen, competing with or inhibiting the pathogen, or parasitizing the pathogen. In particular, some of the Bacillus, Pseudomonas, Paenibacillus and Streptomyces species are involved in plant protection from Fusarium diseases. Besides specific bacterial populations involved in disease suppression, next-generation sequencing and ecological networks have largely contributed to the understanding of microbial communities in soils suppressive or not to Fusarium diseases, revealing different microbial community patterns and differences for a notable number of taxa, according to the Fusarium pathosystem, the host plant and the origin of the soil. Agricultural practices can significantly influence soil suppressiveness to Fusarium diseases by influencing soil microbiota ecology. Research on microbial modes of action and diversity in suppressive soils should help guide the development of effective farming practices for Fusarium disease management in sustainable agriculture.
Collapse
Affiliation(s)
- Irena Todorović
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
- University of Belgrade, Faculty of Agriculture, Belgrade, Serbia
| | - Yvan Moënne-Loccoz
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Vera Raičević
- University of Belgrade, Faculty of Agriculture, Belgrade, Serbia
| | | | - Daniel Muller
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
35
|
Thompson MEH, Shrestha A, Rinne J, Limay-Rios V, Reid L, Raizada MN. The Cultured Microbiome of Pollinated Maize Silks Shifts after Infection with Fusarium graminearum and Varies by Distance from the Site of Pathogen Inoculation. Pathogens 2023; 12:1322. [PMID: 38003787 PMCID: PMC10675081 DOI: 10.3390/pathogens12111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Styles transmit pollen-derived sperm nuclei from pollen to ovules, but also transmit environmental pathogens. The microbiomes of styles are likely important for reproduction/disease, yet few studies exist. Whether style microbiome compositions are spatially responsive to pathogens is unknown. The maize pathogen Fusarium graminearum enters developing grain through the style (silk). We hypothesized that F. graminearum treatment shifts the cultured transmitting silk microbiome (TSM) compared to healthy silks in a distance-dependent manner. Another objective of the study was to culture microbes for future application. Bacteria were cultured from husk-covered silks of 14 F. graminearum-treated diverse maize genotypes, proximal (tip) and distal (base) to the F. graminearum inoculation site. Long-read 16S sequences from 398 isolates spanned 35 genera, 71 species, and 238 OTUs. More bacteria were cultured from F. graminearum-inoculated tips (271 isolates) versus base (127 isolates); healthy silks were balanced. F. graminearum caused a collapse in diversity of ~20-25% across multiple taxonomic levels. Some species were cultured exclusively or, more often, from F. graminearum-treated silks (e.g., Delftia acidovorans, Klebsiella aerogenes, K. grimontii, Pantoea ananatis, Stenotrophomonas pavanii). Overall, the results suggest that F. graminearum alters the TSM in a distance-dependent manner. Many isolates matched taxa that were previously identified using V4-MiSeq (core and F. graminearum-induced), but long-read sequencing clarified the taxonomy and uncovered greater diversity than was initially predicted (e.g., within Pantoea). These isolates represent the first comprehensive cultured collection from pathogen-treated maize silks to facilitate biocontrol efforts and microbial marker-assisted breeding.
Collapse
Affiliation(s)
- Michelle E. H. Thompson
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| | - Anuja Shrestha
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| | - Jeffrey Rinne
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| | - Victor Limay-Rios
- Department of Plant Agriculture, University of Guelph Ridgetown Campus, 120 Main Street E, Ridgetown, ON N0P 2C0, Canada
| | - Lana Reid
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Central Experimental Farm, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| |
Collapse
|
36
|
Zhang Y, Tao J, Bai Y, Wang F, Xie B. Incomplete degradation of aromatic-aliphatic copolymer leads to proliferation of microplastics and antibiotic resistance genes. ENVIRONMENT INTERNATIONAL 2023; 181:108291. [PMID: 37907056 DOI: 10.1016/j.envint.2023.108291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
Biodegradable plastics (BDPs) have attracted extensive attention as an alternative to conventional plastics. BDPs could be mineralized by composting, while the quality of compost affected by the presence of BDPs and the residual microplastics (MPs) has not been well evaluated. This study aimed to explore the MPs release potential and environmental implications of commercial BDPs (aromatic-aliphatic copolymer) films in uncontrolled composting. Results showed that the molecular weight of BDPs decreased by >60% within 60 d. However, the non-extracted organic matter and wet-sieving measurements indicated that MPs continuously released and accumulated during regular composting. The average MPs release potential (0.1-5 mm) was 134.6 ± 18.1 particles/mg (BDPs), which resulted in 103-104 particles/g dw in compost. The plastisphere of MPs showed a significantly higher (0.95-16.76 times) abundance of antibiotic resistance genes (ARGs), which resulted in the rising (1.34-2.24 times) of ARGs in compost heaps, in comparison to the control groups. Overall, BDPs promote the spread of ARGs through the selective enrichment of bacteria and horizontal transfer from released MPs. These findings confirmed that BDPs could enhance the release potential of MPs and the dissemination of ARGs, which would promote the holistic understanding and environmental risk of BDPs.
Collapse
Affiliation(s)
- Yuchen Zhang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jianping Tao
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yudan Bai
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Feng Wang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
37
|
He J, Zhou T, Shen X, Zhang N, Sun C, Lu S, Shao Y. Primer selection impacts the evaluation of microecological patterns in environmental microbiomes. IMETA 2023; 2:e135. [PMID: 38868223 PMCID: PMC10989904 DOI: 10.1002/imt2.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 06/14/2024]
Abstract
This study revealed that primer selection substantially influences the taxonomic and predicted functional composition and the characterization of microecological patterns, which was not alleviated by close-reference clustering. Biases were relatively consistent across different habitats in community profiling but not in microecological patterns. These primer biases could be attributed to multiple aspects, including taxa specificity, regional hypervariability, and amplification efficiency.
Collapse
Affiliation(s)
- Jintao He
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental SciencesZhejiang UniversityHangzhouChina
| | - Tong Zhou
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of OceanologyChinese Academy of SciencesQingdaoChina
| | - Xiaoqiang Shen
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental SciencesZhejiang UniversityHangzhouChina
| | - Nan Zhang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental SciencesZhejiang UniversityHangzhouChina
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental SciencesZhejiang UniversityHangzhouChina
| | - Shipeng Lu
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang ProvinceHangzhouChina
- Key Laboratory for Molecular Animal NutritionMinistry of EducationHangzhouChina
| |
Collapse
|
38
|
Zhang J, Fang H, Zhao Y, Zheng Y, Jiang J, Gu X. Responses of soil nutrients and rhizosphere microbial communities of a medicinal plant Pinelliaternata to vermicompost. 3 Biotech 2023; 13:353. [PMID: 37810193 PMCID: PMC10555985 DOI: 10.1007/s13205-023-03780-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Vermicomposting is an important strategy for restoring soil function and fertility. However, information on the effects of vermicompost application in intensive Pinellia ternata planting systems has rarely been reported. Here, we focus on the effects of different vermicompost levels and chemical fertilizer (CF) strategies on soil chemical properties, soil enzymes, and soil rhizosphere microbial communities (bacteria and fungi) in a field experiment. Compared to no added fertilizers (CK), vermicompost was more effective than the CF treatment in increasing P. ternata yield. We found that the 5 t ha-1 vermicompost treatment (VC2) significantly increased the tuber yield by 44.43% and 6.55% compared to the CK and CF treatment, respectively, and water-soluble exudates by 6.56% and 9.63% (P < 0.05). The vermicompost and CF treatments significantly increased the total phosphorus (TP), urease (Ure), and soil catalase (Cat) contents (P < 0.05). Compared to the vermicompost and CK treatments, the CF treatment significantly decreased soil organic carbon (SOC), C/N ratio, and soil acid phosphatase (Pac) (P < 0.05). Redundancy analysis (RDA) showed that Ure and total potassium (TK) were the major drivers in the bacterial community, whereas TP, total nitrogen (TN), Pac, and TK were the major drivers in the fungal community. We also found a positive correlation between soil enzyme activities, including between Ure and bacterial genera (Clostridium, Pseudoclavibacter, Stella, Hyphomicrobium, Mesorhizobium, and Adlercreutzia). In summary, vermicompost application promotes P. ternata soil microecosystems and improves soil fertility, soil enzyme activities, and rhizosphere microbial structure and function. Vermicomposting is a novel and promising approach to sustainable ecological cultivation of Chinese herbs via the promotion of soil properties and beneficial organisms.
Collapse
Affiliation(s)
- Jianyun Zhang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200 China
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
| | - Huiyong Fang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200 China
| | - Yunsheng Zhao
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200 China
| | - Yuguang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200 China
- Department of Pharmaceutical Engineering, Hebei Chemical and Pharmaceutical College, Shijiazhuang, 050026 China
| | - Jianming Jiang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
| | - Xian Gu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200 China
| |
Collapse
|
39
|
Mei JL, Chai LJ, Zhong XZ, Lu ZM, Zhang XJ, Wang ST, Shen CH, Shi JS, Xu ZH. Microbial biogeography of pit mud from an artificial brewing ecosystem on a large time scale: all roads lead to Rome. mSystems 2023; 8:e0056423. [PMID: 37768045 PMCID: PMC10654081 DOI: 10.1128/msystems.00564-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Baijiu is a typical example of how humans employ microorganisms to convert grains into new flavors. Mud cellars are used as the fermentation vessel for strong-flavor Baijiu (SFB) to complete the decomposition process of grains. The typical flavor of SFB is mainly attributed to the metabolites of the pit mud microbiome. China has a large number of SFB-producing regions. Previous research revealed the temporal profiles of the pit mud microbiome in different geographical regions. However, each single independent study rarely yields a thorough understanding of the pit mud ecosystem. Will the pit mud microbial communities in different production regions exhibit similar succession patterns and structures under the impact of the brewing environment? Hence, we conducted research in pit mud microbial biogeography to uncover the impact of specific environment on the microbial community over a long time scale.
Collapse
Affiliation(s)
- Jun-Lan Mei
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Li-Juan Chai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Zhong Zhong
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhen-Ming Lu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Juan Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Song-Tao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Cai-Hong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Jin-Song Shi
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, Jiangsu, China
| | - Zheng-Hong Xu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| |
Collapse
|
40
|
Duan P, Liu X, Niu G, Jia N, Wen T, Zeng J, Chen Q, Zhang J, Xue C, Shen Q, Yuan J. Application of coronarin enhances maize drought tolerance by affecting interactions between rhizosphere fungal community and metabolites. Comput Struct Biotechnol J 2023; 21:5273-5284. [PMID: 37954150 PMCID: PMC10632596 DOI: 10.1016/j.csbj.2023.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/05/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023] Open
Abstract
Coronarin (COR), an analog of jasmonic acid, has been shown to enhance the tolerance of plants to drought. However, the effects of COR on the interactions among microorganisms associated with plant roots and their implications for enhancing the drought tolerance of plants remain unclear. Here, we studied the effects of applying COR on the microorganisms associated with plant roots and the rhizosphere metabolome. Treatment with COR affected the fungal community of the rhizosphere by inducing changes in the rhizosphere metabolome, which enhanced the drought tolerance of plants. However, treatment with COR had no significant effect on root microorganisms or rhizosphere bacteria. Specifically, the application of COR resulted in a significant reduction in the relative abundance of metabolites, such as mucic acid, 1,4-cyclohexanedione, 4-acetylbutyric acid, Ribonic acid, palmitic acid, and stearic acid, in maize roots under drought conditions; COR application also led to increases in the abundance of drought-resistant fungal microorganisms, including Rhizopus, and the assembly of a highly drought-resistant rhizosphere fungal network, which enhanced the drought tolerance of plants. Overall, the results of our study indicate that COR application positively regulates interactions between plants and microbes and increases the drought tolerance of plants.
Collapse
Affiliation(s)
- Pengfei Duan
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Xiaoyu Liu
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoqing Niu
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Nanyu Jia
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Wen
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - JianGuo Zeng
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiaowei Chen
- Chengdu Kentu Agricultural Technology Co., Ltd., Chengdu 610000, China
| | - Jian Zhang
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Green Intelligent Fertilizer Innovation, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210031, China
| | - Chao Xue
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Yuan
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
41
|
Xue Y, Zhao F, Sun Z, Bai W, Zhang Y, Zhang Z, Yang N, Feng C, Feng L. Long-term mulching of biodegradable plastic film decreased fungal necromass C with potential consequences for soil C storage. CHEMOSPHERE 2023; 337:139280. [PMID: 37385482 DOI: 10.1016/j.chemosphere.2023.139280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
The use of biodegradable plastic film mulching as a replacement for polyethylene plastic film has gained recognition due to its reduced environmental pollution. However, its impact on soil environment is not yet fully understood. Here, we compared the effects of different plastic film mulching on the accumulation of microbial necromass carbon (C) and its contribution to soil total C in 2020 and 2021. Results showed that biodegradable plastic film mulching decreased the accumulation of fungal necromass C compared to no plastic film mulching and polyethylene film mulching. However, the bacterial necromass C and soil total C were not affected by the plastic film mulching. Biodegradable plastic film mulching decreased the soil dissolved organic carbon content after maize harvest. Random forest models suggested that soil dissolved organic C, soil pH and the ratio of soil dissolved organic C to microbial biomass C were important factors in regulating the accumulation of fungal necromass C. The abundance of the fungal genus Mortierella was also found to have a significant positive contribution to the accumulation of fungal necromass C. These findings suggest that biodegradable plastic film mulching may decrease the accumulation of fungal necromass C by changing substrate availability, soil pH, and fungal community composition, with potential implications for soil C storage.
Collapse
Affiliation(s)
- Yinghao Xue
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China; Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Fengyan Zhao
- Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China; National Agricultural Experimental Station for Agricultural Environment, Fuxin, 123102, China
| | - Zhanxiang Sun
- Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China; National Agricultural Experimental Station for Agricultural Environment, Fuxin, 123102, China.
| | - Wei Bai
- Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China; National Agricultural Experimental Station for Agricultural Environment, Fuxin, 123102, China
| | - Yongyong Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhe Zhang
- Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China; National Agricultural Experimental Station for Agricultural Environment, Fuxin, 123102, China
| | - Ning Yang
- Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China; National Agricultural Experimental Station for Agricultural Environment, Fuxin, 123102, China
| | - Chen Feng
- Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China; National Agricultural Experimental Station for Agricultural Environment, Fuxin, 123102, China
| | - Liangshan Feng
- Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China; National Agricultural Experimental Station for Agricultural Environment, Fuxin, 123102, China.
| |
Collapse
|
42
|
Wang M, Cernava T. Soterobionts: disease-preventing microorganisms and proposed strategies to facilitate their discovery. Curr Opin Microbiol 2023; 75:102349. [PMID: 37369150 DOI: 10.1016/j.mib.2023.102349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
Crop production and the food security that it provides are currently threatened worldwide by plant pathogens. Conventional control measures, such as breeding for resistant plants, are progressively losing their efficacy due to rapidly evolving pathogens. The plant microbiota contributes to essential functions of host plants, among which is protection against pathogens. Only recently, microorganisms that provide holistic protection against certain plant diseases were identified. They were termed as 'soterobionts' and extend their host's immune system, which results in disease-resistant phenotypes. Further exploration of such microorganisms could not only provide answers to better understand the implications of the plant microbiota in health and disease, but also contribute to new developments in agriculture and beyond. The aim of this work is to point out how the identification of plant-associated soterobionts can be facilitated, and to discuss technologies that will be required to enable this.
Collapse
Affiliation(s)
- Mengcen Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China; Global Education Program for AgriScience Frontiers, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Tomislav Cernava
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom.
| |
Collapse
|
43
|
Xie J, Wicaksono WA, Lv Z, Berg G, Cernava T, Ge B. Rhizosphere bacteria show a stronger response to antibiotic-based biopesticide than to conventional pesticides. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132035. [PMID: 37453358 DOI: 10.1016/j.jhazmat.2023.132035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/09/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
The plant microbiota can substantially contribute to various functions related to host health, fitness, and productivity. Therefore, maintaining the integrity of the microbiota is beginning to be seen as a crucial factor in modern agriculture. Here, we evaluated the effects of two chemical pesticides (azoxystrobin and carbendazim) and an antibiotic-based biopesticide (wuyiencin) on the rhizosphere microbiome of tomato plants. It was found that all treatments resulted in changes in the bacterial community structure to varying degrees. The most pronounced changes were observed with the biopesticide, which resulted in an enrichment of Streptomyces in the microbiome. In contrast, the relative abundance of Actinobacteria decreased in samples that were treated with low and high dosages of carbendazim. Clostridia were enriched after the applications of azoxystrobin and wuyiencin. When functioning of the microbiome was assessed, it was shown that genes encoding multidrug efflux pumps and ABC transporters related to nutrient uptake were enriched. This enrichment is likely to overcome potentially negative effects linked to the exposure to the employed substances. The study provides new insights into the potential of different pesticides to modulate native plant microbiomes, and thus highlights the importance to include such evaluations when new active agents are developed.
Collapse
Affiliation(s)
- Jiabei Xie
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, No. 2, Haidian District, Beijing 100193, China
| | - Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 10, Graz 8010, Austria
| | - Zhaoyang Lv
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, No. 2, Haidian District, Beijing 100193, China
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 10, Graz 8010, Austria; Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469 Potsdam, Germany; Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam OT Golm, Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 10, Graz 8010, Austria; School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom.
| | - Beibei Ge
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, No. 2, Haidian District, Beijing 100193, China.
| |
Collapse
|
44
|
Yuan J, Wen T, Yang S, Zhang C, Zhao M, Niu G, Xie P, Liu X, Zhao X, Shen Q, Bezemer TM. Growth substrates alter aboveground plant microbial and metabolic properties thereby influencing insect herbivore performance. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1728-1741. [PMID: 36932313 DOI: 10.1007/s11427-022-2279-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/19/2023] [Indexed: 03/19/2023]
Abstract
The gut microbiome of plant-eaters is affected by the food they eat, but it is currently unclear how the plant metabolome and microbiome are influenced by the substrate the plant grows in and how this subsequently impacts the feeding behavior and gut microbiomes of insect herbivores. Here, we use Plutella xylostella caterpillars and show that the larvae prefer leaves of cabbage plants growing in a vermiculite substrate to those from plants growing in conventional soil systems. From a plant metabolomics analysis, we identified 20 plant metabolites that were related to caterpillar feeding performance. In a bioassay, the effects of these plant metabolites on insects' feeding were tested. Nitrate and compounds enriched with leaves of soilless cultivation promoted the feeding of insects, while compounds enriched with leaves of plants growing in natural soil decreased feeding. Several microbial groups (e.g., Sporolactobacillus, Haliangium) detected inside the plant correlated with caterpillar feeding performance and other microbial groups, such as Ramlibacter and Methylophilus, correlated with the gut microbiome. Our results highlight the role of growth substrates on the food metabolome and microbiome and on the feeding performance and the gut microbiome of plant feeders. It illustrates how belowground factors can influence the aboveground properties of plant-animal systems, which has important implications for plant growth and pest control.
Collapse
Affiliation(s)
- Jun Yuan
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tao Wen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengdie Yang
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Zhang
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengli Zhao
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guoqing Niu
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Penghao Xie
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyu Liu
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyuan Zhao
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China.
| | - T Martijn Bezemer
- Institute of Biology, Above-Belowground Interactions group, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, P.O. Box 50, 6700 AB, Wageningen, The Netherlands
| |
Collapse
|
45
|
Guan TK, Wang QY, Li JS, Yan HW, Chen QJ, Sun J, Liu CJ, Han YY, Zou YJ, Zhang GQ. Biochar immobilized plant growth-promoting rhizobacteria enhanced the physicochemical properties, agronomic characters and microbial communities during lettuce seedling. Front Microbiol 2023; 14:1218205. [PMID: 37476665 PMCID: PMC10354297 DOI: 10.3389/fmicb.2023.1218205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Spent mushroom substrate (SMS) is the by-products of mushroom production, which is mainly composed of disintegrated lignocellulosic biomass, mushroom mycelia and some minerals. The huge output and the lack of effective utilization methods make SMS becoming a serious environmental problem. In order to improve the application of SMS and SMS derived biochar (SBC), composted SMS (CSMS), SBC, combined plant growth-promoting rhizobacteria (PGPR, Bacillus subtilis BUABN-01 and Arthrobacter pascens BUAYN-122) and SBC immobilized PGPR (BCP) were applied in the lettuce seedling. Seven substrate treatments were used, including (1) CK, commercial control; (2) T1, CSMS based blank control; (3) T2, T1 with combined PGPR (9:1, v/v); (4) T3, T1 with SBC (19:1, v/v); (5) T4, T1 with SBC (9:1, v/v); (6) T5, T1 with BCP (19:1, v/v); (7) T6, T1 with BCP (9:1, v/v). The physicochemical properties of substrate, agronomic and physicochemical properties of lettuce and rhizospheric bacterial and fungal communities were investigated. The addition of SBC and BCP significantly (p < 0.05) improved the total nitrogen and available potassium content. The 5% (v/v) BCP addiction treatment (T5) represented the highest fresh weight of aboveground and underground, leave number, chlorophyll content and leaf anthocyanin content, and the lowest root malondialdehyde content. Moreover, high throughput sequencing revealed that the biochar immobilization enhanced the adaptability of PGPR. The addition of PGPR, SBC and BCP significantly enriched the unique bacterial biomarkers. The co-occurrence network analysis revealed that 5% BCP greatly increased the network complexity of rhizospheric microorganisms and improved the correlations of the two PGPR with other microorganisms. Furthermore, microbial functional prediction indicated that BCP enhanced the nutrient transport of rhizospheric microorganisms. This study showed the BCP can increase the agronomic properties of lettuce and improve the rhizospheric microbial community.
Collapse
Affiliation(s)
- Ti-Kun Guan
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qiu-Ying Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Jia-Shu Li
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Hui-Wen Yan
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qing-Jun Chen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jian Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chao-Jie Liu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ying-Yan Han
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ya-Jie Zou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guo-Qing Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
46
|
Zhang J, Feng Y, Maestre FT, Berdugo M, Wang J, Coleine C, Sáez-Sandino T, García-Velázquez L, Singh BK, Delgado-Baquerizo M. Water availability creates global thresholds in multidimensional soil biodiversity and functions. Nat Ecol Evol 2023; 7:1002-1011. [PMID: 37169879 DOI: 10.1038/s41559-023-02071-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
Soils support an immense portion of Earth's biodiversity and maintain multiple ecosystem functions which are essential for human well-being. Environmental thresholds are known to govern global vegetation patterns, but it is still unknown whether they can be used to predict the distribution of soil organisms and functions across global biomes. Using a global field survey of 383 sites across contrasting climatic and vegetation conditions, here we showed that soil biodiversity and functions exhibited pervasive nonlinear patterns worldwide and are mainly governed by water availability (precipitation and potential evapotranspiration). Changes in water availability resulted in drastic shifts in soil biodiversity (bacteria, fungi, protists and invertebrates) and soil functions including plant-microbe interactions, plant productivity, soil biogeochemical cycles and soil carbon sequestration. Our findings highlight that crossing specific water availability thresholds can have critical consequences for the provision of essential ecosystem services needed to sustain our planet.
Collapse
Affiliation(s)
- Jianwei Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Youzhi Feng
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, China.
| | - Fernando T Maestre
- Instituto Multidisciplinar para el Estudio del Medio 'Ramón Margalef', Universidad de Alicante, Alicante, Spain
- Departamento de Ecología, Universidad de Alicante, Alicante, Spain
| | - Miguel Berdugo
- Department of Environment Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Depatamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain
| | - Juntao Wang
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Tadeo Sáez-Sandino
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, Spain
| | - Laura García-Velázquez
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, Spain
| | - Brajesh K Singh
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain.
| |
Collapse
|
47
|
Liu R, Liang J, Yang Y, Jiang H, Tian X. Effect of polylactic acid microplastics on soil properties, soil microbials and plant growth. CHEMOSPHERE 2023; 329:138504. [PMID: 37011822 DOI: 10.1016/j.chemosphere.2023.138504] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Biodegradable plastic is considered one of the most promising alternatives to agricultural mulch. However, the impact of biodegradable microplastics on agricultural ecosystems is still lacking. We conducted a controlled experiment with polylactic acid microplastics (PLA MPs) to examine the effects of biodegradable plastic on soil properties, corn growth, the microbial community and hotspots of enzyme activity. The results showed that PLA MPs in soil significantly reduced the soil pH value but increased the soil C:N ratio. High levels of PLA MPs significantly reduced the biomass of plant shoots and roots as well as chlorophyll, leaf C and N and root N contents. PLA MPs increased bacterial abundance but decreased the abundance of dominant fungal taxa. As the level of PLA MPs increased, the soil bacterial community structure became more complex, while the fungal community became more singular. The results of the in situ zymogram showed that low levels of PLA MPs increased the hotspots of enzyme activity. The effect of PLA MPs on enzyme activity hotspots was regulated by a combination of soil properties and microbial diversity. Generally, the addition of PLA MPs at high concentrations will have a negative impact on soil characteristics, soil microbials and plant growth in a short period of time. Therefore, we should be aware of the potential risks of biodegradable plastic to agricultural ecosystems.
Collapse
Affiliation(s)
- Run Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, 550001, China
| | - Jiawen Liang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yinghui Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Han Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xingjun Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
48
|
Yu X, Zhang Y, Shen M, Dong S, Zhang F, Gao Q, He P, Shen G, Yang J, Wang Z, Bo G. Soil Conditioner Affects Tobacco Rhizosphere Soil Microecology. MICROBIAL ECOLOGY 2023; 86:460-473. [PMID: 35596751 DOI: 10.1007/s00248-022-02030-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Reasonable fertilization management can increase nutrient content and enzyme activity in rhizosphere soil, and even increase soil microbial richness. However, different fertilizers could raise distinct influences on the soil properties, including soil environmental factors (physicochemical properties and enzymatic activities) and microbial community. Here, the effects of two soil amendments (microbial fertilizer and woody peat) on environmental factors and microbial community structure in tobacco rhizosphere soil were evaluated, with the correlations between microbes and environmental factors explored. As the results, microbial fertilizer could effectively alleviate soil acidification, increase available potassium and organic matter contents in soil, and was also beneficial to increase nitrate reductase activity in rhizosphere soil. Fertilizers cause changes in the abundance of certain microbes in the soil. Besides, it was shown that the candidate phyla Gal15, Acidobacterota, Latescibacterota, Mortierellommycota, Basidiomycota, and Rozellomycota in tobacco rhizosphere soil had significant correlation with soil environmental factors. Through the functional analysis of these populations, it can be deduced that the changes in the abundance of certain microorganisms may be an important reason for the differences in environmental factors. All these indicated that the differences of environmental factors in different treatments are closely related to the abundance of some special soil microorganisms. Studying the life activities of these microbes would provide good guidance for exploring the interaction among crops, soil, and microorganisms and improving crop yields.
Collapse
Affiliation(s)
- Xiangquan Yu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yuzhen Zhang
- Energy-Rich Compounds Production By Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Minchong Shen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Shanyu Dong
- Yichang Tobacco Company of Hubei Province, Yichang, China
| | - Fujun Zhang
- Linyi Tobacco Company of Shandong Province, Linyi, China
| | - Qiang Gao
- Linyi Tobacco Company of Shandong Province, Linyi, China
| | - Penglin He
- Linyi Tobacco Company of Shandong Province, Linyi, China
| | - Guoming Shen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jianming Yang
- Energy-Rich Compounds Production By Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zhaobao Wang
- Energy-Rich Compounds Production By Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Guodong Bo
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China.
| |
Collapse
|
49
|
Xie P, Yang S, Liu X, Zhang T, Zhao X, Wen T, Zhang J, Xue C, Shen Q, Yuan J. Learning from Seed Microbes: Trichoderma Coating Intervenes in Rhizosphere Microbiome Assembly. Microbiol Spectr 2023; 11:e0309722. [PMID: 37195176 PMCID: PMC10269462 DOI: 10.1128/spectrum.03097-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/28/2023] [Indexed: 05/18/2023] Open
Abstract
Seed-associated microbiomes can impact the later colonization of a plant rhizosphere microbiome. However, there remains little insight into the underlying mechanisms concerning how alterations in the composition of the seed microbiome may intervene in the assembly of a rhizosphere microbiome. In this study, the fungus Trichoderma guizhouense NJAU4742 was introduced to both maize and watermelon seed microbiomes by seed coating. Application was found to significantly promote seed germination and improve plant growth and rhizosphere soil quality. The activities of acid phosphatase, cellulase, peroxidase, sucrase, and α-glucosidase increased significantly in two crops. The introduction of Trichoderma guizhouense NJAU4742 also led to a decrease in the occurrence of disease. Coating with T. guizhouense NJAU4742 did not alter the alpha diversities of the bacterial and fungal communities but formed a key network module that contained both Trichoderma and Mortierella. This key network module comprised of these potentially beneficial microorganisms was positively linked with the belowground biomass and activities of rhizosphere soil enzymes but negatively correlated with disease incidence. Overall, this study provides insights into plant growth promotion and plant health maintenance via seed coating in order to influence the rhizosphere microbiome. IMPORTANCE Seed-associated microbiomes can impact the rhizosphere microbiome assembly and function display. However, there remains little insight into the underlying mechanisms concerning how alterations in the composition of the seed microbiome with the beneficial microbes may intervene in the assembly of a rhizosphere microbiome. Here, we introduced T. guizhouense NJAU4742 to the seed microbiome by seed coating. This introduction led to a decrease in the occurrence of disease and an increase in plant growth; furthermore, it formed a key network module that contained both Trichoderma and Mortierella. Our study provides insights into plant growth promotion and plant health maintenance via seed coating in order to influence the rhizosphere microbiome.
Collapse
Affiliation(s)
- Penghao Xie
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Shengdie Yang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyu Liu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Tianyi Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Xinyuan Zhao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Tao Wen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jian Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
- The Key Laboratory of Green Intelligent Fertilizer Innovation, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, China
| | - Chao Xue
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jun Yuan
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
50
|
Hereira-Pacheco SE, Estrada-Torres A, Dendooven L, Navarro-Noya YE. Shifts in root-associated fungal communities under drought conditions in Ricinus communis. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2023.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|