1
|
Feola B, Beermann A, Manzanarez Felix K, Coleman M, Bouix S, Holt DJ, Lewandowski KE, Öngür D, Breier A, Shenton ME, Heckers S, Brady RO, Blackford JU, Ward HB. Data-driven, connectome-wide analysis identifies psychosis-specific brain correlates of fear and anxiety. Mol Psychiatry 2024; 29:2601-2610. [PMID: 38503924 PMCID: PMC11411017 DOI: 10.1038/s41380-024-02512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Decades of psychosis research highlight the prevalence and the clinical significance of negative emotions, such as fear and anxiety. Translational evidence demonstrates the pivotal role of the amygdala in fear and anxiety. However, most of these approaches have used hypothesis-driven analyses with predefined regions of interest. A data-driven analysis may provide a complimentary, unbiased approach to identifying brain correlates of fear and anxiety. The aim of the current study was to identify the brain basis of fear and anxiety in early psychosis and controls using a data-driven approach. We analyzed data from the Human Connectome Project for Early Psychosis, a multi-site study of 125 people with psychosis and 58 controls with resting-state fMRI and clinical characterization. Multivariate pattern analysis of whole-connectome data was used to identify shared and psychosis-specific brain correlates of fear and anxiety using the NIH Toolbox Fear-Affect and Fear-Somatic Arousal scales. We then examined clinical correlations of Fear-Affect scores and connectivity patterns. Individuals with psychosis had higher levels of Fear-Affect scores than controls (p < 0.05). The data-driven analysis identified a cluster encompassing the amygdala and hippocampus where connectivity was correlated with Fear-Affect score (p < 0.005) in the entire sample. The strongest correlate of Fear-Affect was between this cluster and the anterior insula and stronger connectivity was associated with higher Fear-Affect scores (r = 0.31, p = 0.0003). The multivariate pattern analysis also identified a psychosis-specific correlate of Fear-Affect score between the amygdala/hippocampus cluster and a cluster in the ventromedial prefrontal cortex (VMPFC). Higher Fear-Affect scores were correlated with stronger amygdala/hippocampal-VMPFC connectivity in the early psychosis group (r = 0.33, p = 0.002), but not in controls (r = -0.15, p = 0.28). The current study provides evidence for the transdiagnostic role of the amygdala, hippocampus, and anterior insula in the neural basis of fear and anxiety and suggests a psychosis-specific relationship between fear and anxiety symptoms and amygdala/hippocampal-VMPFC connectivity. Our novel data-driven approach identifies novel, psychosis-specific treatment targets for fear and anxiety symptoms and provides complimentary evidence to decades of hypothesis-driven approaches examining the brain basis of threat processing.
Collapse
Affiliation(s)
- Brandee Feola
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam Beermann
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Michael Coleman
- Department of Psychiatry, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Department of Software Engineering and Information Technology, École de technologie supérieure, Montréal, QC, Canada
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School Boston, Boston, MA, USA
| | | | - Dost Öngür
- McLean Hospital and Harvard Medical School, Boston, MA, USA
| | - Alan Breier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roscoe O Brady
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- McLean Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer Urbano Blackford
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| | - Heather Burrell Ward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Zhang Y, Ma H, Bai Y, Hou X, Yang Y, Wang G, Li Y. Chronic Neuropathic Pain and Comorbid Depression Syndrome: From Neural Circuit Mechanisms to Treatment. ACS Chem Neurosci 2024; 15:2432-2444. [PMID: 38916052 DOI: 10.1021/acschemneuro.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
Chronic neuropathic pain and comorbid depression syndrome (CDS) is a major worldwide health problem that affects the quality of life of patients and imposes a tremendous socioeconomic burden. More than half of patients with chronic neuropathic pain also suffer from moderate or severe depression. Due to the complex pathogenesis of CDS, there are no effective therapeutic drugs available. The lack of research on the neural circuit mechanisms of CDS limits the development of treatments. The purpose of this article is to provide an overview of the various circuits involved in CDS. Notably, activating some neural circuits can alleviate pain and/or depression, while activating other circuits can exacerbate these conditions. Moreover, we discuss current and emerging pharmacotherapies for CDS, such as ketamine. Understanding the circuit mechanisms of CDS may provide clues for the development of novel drug treatments for improved CDS management.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Hui Ma
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yafan Bai
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xiaojuan Hou
- Hebei North University, Zhangjiakou, 075000, China
| | - Yixin Yang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Guyan Wang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yunfeng Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| |
Collapse
|
3
|
Chen S, Cui Q. Manipulating reinforcement probability changes the temporal overestimation of anticipated aversive stimuli. PSYCHOLOGICAL RESEARCH 2024; 88:389-403. [PMID: 37815675 DOI: 10.1007/s00426-023-01882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
The interval timing can be distorted by emotions. Previous studies indicated that anticipated fear stimuli can lead to temporal overestimation, similar to the effects observed from direct exposure to fear stimuli. However, this time distortion may not always manifest when anticipated. This study aimed to systematically examine the effect of the reinforcement probability of anticipated fear stimuli on time perception in predictable emotional scenarios. The experiment established 100% fear conditioning by associating a conditioned stimulus (CS+) with an aversive unconditioned stimulus (US), electrical stimulation. Participants completed a temporal bisection task under different cues (threat CS+ and safe CS-) expectations. Participants were explicitly informed that an aversive electrical stimulus would always follow the threat cues (CS+) with 100% probability, though in reality, different blocks presented the threat cue with probability manipulation of 50 and 100%. Results showed that only in the 50% reinforcement probability, participants overestimated the duration when anticipating aversive electrical stimulation, while no significant differences were observed in the 100% reinforcement probability. Additionally, the effect of anxiety on temporal judgment failed to capture the overall trend as fixed effects but only contributed to the individual variations as random effects. The findings suggest that the anticipated aversive electrical stimulation may lead to temporal overestimation. Furthermore, the results indicate that a reliable approach for manipulating the effect of anticipated aversive electrical stimulation on temporal overestimation is to establish 100% fear conditioning and use a reinforcement probability like 50%.
Collapse
Affiliation(s)
- Shihao Chen
- School of Psychology, Liaoning Normal University, Dalian, 116029, China
| | - Qian Cui
- School of Psychology, Liaoning Normal University, Dalian, 116029, China.
| |
Collapse
|
4
|
Sladky R, Kargl D, Haubensak W, Lamm C. An active inference perspective for the amygdala complex. Trends Cogn Sci 2024; 28:223-236. [PMID: 38103984 DOI: 10.1016/j.tics.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
The amygdala is a heterogeneous network of subcortical nuclei with central importance in cognitive and clinical neuroscience. Various experimental designs in human psychology and animal model research have mapped multiple conceptual frameworks (e.g., valence/salience and decision making) to ever more refined amygdala circuitry. However, these predominantly bottom up-driven accounts often rely on interpretations tailored to a specific phenomenon, thus preventing comprehensive and integrative theories. We argue here that an active inference model of amygdala function could unify these fractionated approaches into an overarching framework for clearer empirical predictions and mechanistic interpretations. This framework embeds top-down predictive models, informed by prior knowledge and belief updating, within a dynamical system distributed across amygdala circuits in which self-regulation is implemented by continuously tracking environmental and homeostatic demands.
Collapse
Affiliation(s)
- Ronald Sladky
- Social, Cognitive, and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Vienna Cognitive Science Hub, University of Vienna, 1010 Vienna, Austria.
| | - Dominic Kargl
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Wulf Haubensak
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030 Vienna, Austria
| | - Claus Lamm
- Social, Cognitive, and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Vienna Cognitive Science Hub, University of Vienna, 1010 Vienna, Austria
| |
Collapse
|
5
|
Roxburgh AD, White DJ, Grillon C, Cornwell BR. A neural oscillatory signature of sustained anxiety. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1534-1544. [PMID: 37880568 PMCID: PMC10684633 DOI: 10.3758/s13415-023-01132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Anxiety is a sustained response to uncertain threats; yet few studies have explored sustained neurobiological activities underlying anxious states, particularly spontaneous neural oscillations. To address this gap, we reanalysed magnetoencephalographic (MEG) data recorded during induced anxiety to identify differences in sustained oscillatory activity between high- and low-anxiety states. METHODS We combined data from three previous MEG studies in which healthy adults (total N = 51) were exposed to alternating periods of threat of unpredictable shock and safety while performing a range of cognitive tasks (passive oddball, mixed-saccade or stop-signal tasks). Spontaneous, band-limited, oscillatory activity was extracted from middle and late intervals of the threat and safe periods, and regional power distributions were reconstructed with adaptive beamforming. Conjunction analyses were used to identify regions showing overlapping spectral power differences between threat and safe periods across the three task paradigms. RESULTS MEG source analyses revealed a robust and widespread reduction in beta (14-30 Hz) power during threat periods in bilateral sensorimotor cortices extending into right prefrontal regions. Alpha (8-13 Hz) power reductions during threat were more circumscribed, with notable peaks in left intraparietal sulcus and thalamus. CONCLUSIONS Threat-induced anxiety is underpinned by a sustained reduction in spontaneous beta- and alpha-band activity in sensorimotor and parietal cortical regions. This general oscillatory pattern likely reflects a state of heightened action readiness and vigilance to cope with uncertain threats. Our findings provide a critical reference for which to identify abnormalities in cortical oscillatory activities in clinically anxious patients as well as evaluating the efficacy of anxiolytic treatments.
Collapse
Affiliation(s)
- Ariel D Roxburgh
- Monash Addiction Research Centre, Eastern Health Clinical School, Monash University, Melbourne, Australia.
- Turning Point, Eastern Health, Melbourne, Australia.
| | - David J White
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Australia
| | | | - Brian R Cornwell
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, Australia
| |
Collapse
|
6
|
Flook EA, Feola B, Benningfield MM, Silveri MM, Winder DG, Blackford JU. Alterations in BNST Intrinsic Functional Connectivity in Early Abstinence from Alcohol Use Disorder. Alcohol Alcohol 2023; 58:298-307. [PMID: 36847484 PMCID: PMC10168710 DOI: 10.1093/alcalc/agad006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/03/2023] [Accepted: 01/22/2023] [Indexed: 03/01/2023] Open
Abstract
AIMS Maintaining abstinence from alcohol use disorder (AUD) is extremely challenging, partially due to increased symptoms of anxiety and stress that trigger relapse. Rodent models of AUD have identified that the bed nucleus of the stria terminalis (BNST) contributes to symptoms of anxiety-like behavior and drug-seeking during abstinence. In humans, however, the BNST's role in abstinence remains poorly understood. The aims of this study were to assess BNST network intrinsic functional connectivity in individuals during abstinence from AUD compared to healthy controls and examine associations between BNST intrinsic functional connectivity, anxiety and alcohol use severity during abstinence. METHODS The study included resting state fMRI scans from participants aged 21-40 years: 20 participants with AUD in abstinence and 20 healthy controls. Analyses were restricted to five pre-selected brain regions with known BNST structural connections. Linear mixed models were used to test for group differences, with sex as a fixed factor given previously shown sex differences. RESULTS BNST-hypothalamus intrinsic connectivity was lower in the abstinent group relative to the control group. There were also pronounced sex differences in both the group and individual analyses; many of the findings were specific to men. Within the abstinent group, anxiety was positively associated with BNST-amygdala and BNST-hypothalamus connectivity, and men, not women, showed a negative relationship between alcohol use severity and BNST-hypothalamus connectivity. CONCLUSIONS Understanding differences in connectivity during abstinence may help explain the clinically observed anxiety and depression symptoms during abstinence and may inform the development of individualized treatments.
Collapse
Affiliation(s)
- Elizabeth A Flook
- Department of Psychiatry, University of Pennsylvania, 3535 Market Street, Philadelphia, PA 19104, USA
- Vanderbilt University School of Medicine, 1161 21st Ave S # D3300, Nashville, TN 37232, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, 2215 Garland Ave, Nashville, TN 37232, USA
| | - Brandee Feola
- Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN 37212, USA
| | - Margaret M Benningfield
- Vanderbilt University School of Medicine, 1161 21st Ave S # D3300, Nashville, TN 37232, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, 2215 Garland Ave, Nashville, TN 37232, USA
- Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN 37212, USA
| | - Marisa M Silveri
- Neurodevelopmental Laboratory on Addictions and Mental Health, Brain Imaging Center, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA 02215, USA
| | - Danny G Winder
- Vanderbilt Center for Addiction Research, Vanderbilt University, 2215 Garland Ave, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2215 Garland Avenue, Nashville, TN 37212, USA
- Department of Pharmacology, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37240, USA
| | - Jennifer Urbano Blackford
- Vanderbilt Center for Addiction Research, Vanderbilt University, 2215 Garland Ave, Nashville, TN 37232, USA
- Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN 37212, USA
- Munroe-Meyer Institute, University of Nebraska Medical Center, 6902 Pine Street, Omaha, NE 68106, USA
| |
Collapse
|
7
|
Rowe EG, Harris CD, Dzafic I, Garrido MI. Anxiety attenuates learning advantages conferred by statistical stability and induces loss of volatility-attuning in brain activity. Hum Brain Mapp 2023; 44:2557-2571. [PMID: 36811216 PMCID: PMC10028666 DOI: 10.1002/hbm.26230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/24/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Anxiety can alter an individual's perception of their external sensory environment. Previous studies suggest that anxiety can increase the magnitude of neural responses to unexpected (or surprising) stimuli. Additionally, surprise responses are reported to be boosted during stable compared to volatile environments. Few studies, however, have examined how learning is impacted by both threat and volatility. To investigate these effects, we used threat-of-shock to transiently increase subjective anxiety in healthy adults while they performed an auditory oddball task under stable and volatile environments and while undergoing functional Magnetic Resonance Imaging (fMRI) scanning. We then used Bayesian Model Selection (BMS) mapping to identify the brain areas where different models of anxiety displayed the highest evidence. Behaviourally, we found that threat-of-shock eliminated the accuracy advantage conferred by environmental stability over volatility. Neurally, we found that threat-of-shock led to attenuation and loss of volatility-attuning of brain activity evoked by surprising sounds across most subcortical and limbic regions including the thalamus, basal ganglia, claustrum, insula, anterior cingulate, hippocampal gyrus and the superior temporal gyrus. Taken together, our findings suggest that threat eliminates learning advantages conferred by statistical stability compared to volatility. Thus, we propose that anxiety disrupts behavioural adaptation to environmental statistics, and that multiple subcortical and limbic regions are implicated in this process.
Collapse
Affiliation(s)
- Elise G Rowe
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Clayton, Victoria, Australia
| | - Clare D Harris
- Australian Research Council Centre of Excellence for Integrative Brain Function, Clayton, Victoria, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Ilvana Dzafic
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Clayton, Victoria, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
- Orygen, the National Centre of Excellence for Youth Mental Health, Melbourne, Victoria, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Marta I Garrido
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Clayton, Victoria, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
- Graeme Clark Institute for Biomedical Engineering, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Bauer EP. Sex differences in fear responses: Neural circuits. Neuropharmacology 2023; 222:109298. [PMID: 36328063 PMCID: PMC11267399 DOI: 10.1016/j.neuropharm.2022.109298] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/26/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Women have increased vulnerability to PTSD and anxiety disorders compared to men. Understanding the neurobiological underpinnings of these disorders is critical for identifying risk factors and developing appropriate sex-specific interventions. Despite the clear clinical relevance of an examination of sex differences in fear responses, the vast majority of pre-clinical research on fear learning and memory formation has exclusively used male animals. This review highlights sex differences in context and cued fear conditioning, fear extinction and fear generalization with a focus on the neural circuits underlying these behaviors in rodents. There are mixed reports of behavioral sex differences in context and cued fear conditioning paradigms, which can depend upon the behavioral indices of fear. However, there is greater evidence of differential activation of the hippocampus, amygdalar nuclei and the prefrontal cortical regions in male and female rodents during context and cued fear conditioning. The bed nucleus of the stria terminalis (BNST), a sexually dimorphic structure, is of particular interest as it differentially contributes to fear responses in males and females. In addition, while the influence of the estrous cycle on different phases of fear conditioning is delineated, the clearest modulatory effect of estrogen is on fear extinction processes. Examining the variability in neural responses and behavior in both sexes should increase our understanding of how that variability contributes to the neurobiology of affective disorders. This article is part of the Special Issue on 'Fear, anxiety and PTSD'.
Collapse
Affiliation(s)
- Elizabeth P Bauer
- Departments of Biology and Neuroscience & Behavior, Barnard College of Columbia University, 3009 Broadway, New York, NY, 10027, United States.
| |
Collapse
|
9
|
Chand T, Alizadeh S, Li M, Fan Y, Jamalabadi H, Danyeli L, Nanni-Zepeda M, Herrmann L, Van der Meer J, Vester JC, Schultz M, Naschold B, Walter M. Nx4 Modulated Resting-State Functional Connectivity Between Amygdala and Prefrontal Cortex in a Placebo-Controlled, Crossover Trial. Brain Connect 2022; 12:812-822. [PMID: 35438535 PMCID: PMC9805862 DOI: 10.1089/brain.2021.0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: The basic functional organization of the resting brain, assessed as resting-state functional connectivity (rsFC), can be affected by previous stress experience and it represents the basis on which subsequent stress experience develops. Notably, the rsFC between the amygdala and the cortical regions associated with emotion regulation and anxiety are affected during stress. The multicomponent drug Neurexan® (Nx4) has previously demonstrated a reduction in amygdala activation in an emotional face matching task and it ameliorated stress-related symptoms. We, thus, investigated the effect of Nx4 on rsFC of the amygdala before stress induction compared with baseline in mildly to moderately stressed participants. Methods: In a randomized, placebo-controlled, double-blind, crossover trial 39 participants received a single dose of placebo or Nx4. Resting-state functional magnetic resonance imaging scans were performed pre-dose and 40 to 60 min post-dose, before any stress induction. First, highly connected functional hubs were identified by global functional connectivity density (gFCD) analysis. Second, by using a seed-based approach, rsFC maps of the left centromedial amygdala (CeMA) were created. The effect of Nx4 on both was evaluated. Results: The medial prefrontal cortex was identified as a relevant functional hub affected by Nx4 in an explorative whole brain gFCD analysis. Using the seed-based approach, we then demonstrated that Nx4 significantly enhanced the negative connectivity between the left CeMA and two cortical regions: the dorsolateral and medial prefrontal cortices. Conclusions: In a resting-state condition, Nx4 reduced the prefrontal cortex gFCD and strengthened the functional coupling between the amygdala and the prefrontal cortex that is relevant for emotion regulation and the stress response. Further studies should elaborate whether this mechanism represents enhanced regulatory control of the amygdala at rest and, consequently, to a diminished susceptibility to stress. ClinicalTrials.gov ID: NCT02602275.
Collapse
Affiliation(s)
- Tara Chand
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Sarah Alizadeh
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Yan Fan
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Lena Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Melanni Nanni-Zepeda
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Luisa Herrmann
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Johan Van der Meer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | | | - Martin Walter
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Address correspondence to: Martin Walter, Department of Psychiatry and Psychotherapy, University of Tübingen, Leipziger Str. 44, Tübingen 39120, Germany
| |
Collapse
|
10
|
Kenwood MM, Oler JA, Tromp DPM, Fox AS, Riedel MK, Roseboom PH, Brunner KG, Aggarwal N, Murray EA, Kalin NH. Prefrontal influences on the function of the neural circuitry underlying anxious temperament in primates. OXFORD OPEN NEUROSCIENCE 2022; 2:kvac016. [PMID: 37583705 PMCID: PMC10426770 DOI: 10.1093/oons/kvac016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 08/17/2023]
Abstract
Anxious temperament, characterized by heightened behavioral and physiological reactivity to potential threat, is an early childhood risk factor for the later development of stress-related psychopathology. Using a well-validated nonhuman primate model, we tested the hypothesis that the prefrontal cortex (PFC) is critical in regulating the expression of primate anxiety-like behavior, as well as the function of subcortical components of the anxiety-related neural circuit. We performed aspiration lesions of a narrow 'strip' of the posterior orbitofrontal cortex (OFC) intended to disrupt both cortex and axons entering, exiting and coursing through the pOFC, particularly those of the uncinate fasciculus (UF), a white matter tract that courses adjacent to and through this region. The OFC is of particular interest as a potential regulatory region because of its extensive reciprocal connections with amygdala, other subcortical structures and other frontal lobe regions. We validated this lesion method by demonstrating marked lesion-induced decreases in the microstructural integrity of the UF, which contains most of the fibers that connect the ventral PFC with temporal lobe structures as well as with other frontal regions. While the lesions resulted in modest decreases in threat-related behavior, they substantially decreased metabolism in components of the circuit underlying threat processing. These findings provide evidence for the importance of structural connectivity between the PFC and key subcortical structures in regulating the functions of brain regions known to be involved in the adaptive and maladaptive expression of anxiety.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kevin G Brunner
- Wisconsin National Primate Research Center, Univ. of Wisconsin, Madison, WI
| | | | - Elisabeth A Murray
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, NIMH, Bethesda, MD
| | - Ned H Kalin
- Psychiatry, Univ. of Wisconsin, Madison, WI
- Wisconsin National Primate Research Center, Univ. of Wisconsin, Madison, WI
| |
Collapse
|
11
|
Vantrease JE, Avonts B, Padival M, DeJoseph MR, Urban JH, Rosenkranz JA. Sex Differences in the Activity of Basolateral Amygdalar Neurons That Project to the Bed Nucleus of the Stria Terminalis and Their Role in Anticipatory Anxiety. J Neurosci 2022; 42:4488-4504. [PMID: 35477901 PMCID: PMC9172066 DOI: 10.1523/jneurosci.1499-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Abnormal fear and anxiety can manifest as psychiatric disorders. The bed nucleus of the stria terminalis (BNST) is implicated in sustained responding to, or anticipation of, an aversive event which can be expressed as anticipatory anxiety. The BLA is also active during anticipatory anxiety and sends projections to the BNST. However, little is known about the role for BLA neurons that project to BNST (BLA-BNST) in anticipatory anxiety in rodents. To address this, we tested whether chemogenetic inactivation of the BLA-BNST pathway attenuates sustained conditioned responses produced by anticipation of an aversive stimulus. For comparison, we also assessed BLA-BNST inactivation during social interaction, which is sensitive to unlearned anxiety. We found that BLA-BNST inactivation reduced conditioned sustained freezing and increased social behaviors, but surprisingly, only in males. To determine whether sex differences in BLA-BNST neuronal activity contribute to the differences in behavior, we used in vivo and ex vivo electrophysiological approaches. In males, BLA-BNST projection neurons were more active and excitable, which coincided with a smaller after-hyperpolarization current (I AHP) compared with other BLA neurons; whereas in females, BLA-BNST neurons were less excitable and had larger I AHP compared with other BLA neurons. These findings demonstrate that activity of BLA-BNST neurons mediates conditioned anticipatory anxiety-like behavior in males. The lack of a role of BLA-BNST in females in this behavior, possibly because of low excitability of these neurons, also highlights the need for caution when generalizing the role of specific neurocircuits in fear and anxiety.SIGNIFICANCE STATEMENT Anxiety disorders disproportionately affect women. This hints toward sex differences within anxiety neurocircuitry, yet most of our understanding is derived from male rodents. Furthermore, debilitating anticipation of adverse events is among the most severe anxiety symptoms, but little is known about anticipatory anxiety neurocircuitry. Here we demonstrated that BLA-BNST activity is required for anticipatory anxiety to a prolonged aversive cue, but only in males. Moreover, BLA-BNST neurons are hypoactive and less excitable in females. These results uncover BLA-BNST as a key component of anticipatory anxiety circuitry, and cellular differences may explain the sex-dependent role of this circuit. Uncovering this disparity provides evidence that the assumed basic circuitry of an anxiety behavior might not readily transpose from males to females.
Collapse
Affiliation(s)
- Jaime E Vantrease
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Brittany Avonts
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Mallika Padival
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - M Regina DeJoseph
- Discipline of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Janice H Urban
- Discipline of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - J Amiel Rosenkranz
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| |
Collapse
|
12
|
Visser RM, Bathelt J, Scholte HS, Kindt M. Robust BOLD Responses to Faces But Not to Conditioned Threat: Challenging the Amygdala's Reputation in Human Fear and Extinction Learning. J Neurosci 2021; 41:10278-10292. [PMID: 34750227 PMCID: PMC8672698 DOI: 10.1523/jneurosci.0857-21.2021] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022] Open
Abstract
Most of our knowledge about human emotional memory comes from animal research. Based on this work, the amygdala is often labeled the brain's "fear center", but it is unclear to what degree neural circuitries underlying fear and extinction learning are conserved across species. Neuroimaging studies in humans yield conflicting findings, with many studies failing to show amygdala activation in response to learned threat. Such null findings are often treated as resulting from MRI-specific problems related to measuring deep brain structures. Here we test this assumption in a mega-analysis of three studies on fear acquisition (n = 98; 68 female) and extinction learning (n = 79; 53 female). The conditioning procedure involved the presentation of two pictures of faces and two pictures of houses: one of each pair was followed by an electric shock [a conditioned stimulus (CS+)], the other one was never followed by a shock (CS-), and participants were instructed to learn these contingencies. Results revealed widespread responses to the CS+ compared with the CS- in the fear network, including anterior insula, midcingulate cortex, thalamus, and bed nucleus of the stria terminalis, but not the amygdala, which actually responded stronger to the CS- Results were independent of spatial smoothing, and of individual differences in trait anxiety and conditioned pupil responses. In contrast, robust amygdala activation distinguished faces from houses, refuting the idea that a poor signal could account for the absence of effects. Moving forward, we suggest that, apart from imaging larger samples at higher resolution, alternative statistical approaches may be used to identify cross-species similarities in fear and extinction learning.SIGNIFICANCE STATEMENT The science of emotional memory provides the foundation of numerous theories on psychopathology, including stress and anxiety disorders. This field relies heavily on animal research, which suggests a central role of the amygdala in fear learning and memory. However, this finding is not strongly corroborated by neuroimaging evidence in humans, and null findings are too easily explained away by methodological limitations inherent to imaging deep brain structures. In a large nonclinical sample, we find widespread BOLD activation in response to learned fear, but not in the amygdala. A poor signal could not account for the absence of effects. While these findings do not disprove the involvement of the amygdala in human fear learning, they challenge its typical portrayals and illustrate the complexities of translational science.
Collapse
Affiliation(s)
- Renée M Visser
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| | - Joe Bathelt
- Department of Psychology, Royal Holloway University of London, Egham TW20 0EX, United Kingdom
| | - H Steven Scholte
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| | - Merel Kindt
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Chand T, Alizadeh S, Jamalabadi H, Herrmann L, Krylova M, Surova G, van der Meer J, Wagner G, Engert V, Walter M. EEG revealed improved vigilance regulation after stress exposure under Nx4 - A randomized, placebo-controlled, double-blind, cross-over trial. IBRO Neurosci Rep 2021; 11:175-182. [PMID: 34729551 PMCID: PMC8545679 DOI: 10.1016/j.ibneur.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/13/2021] [Accepted: 09/18/2021] [Indexed: 11/18/2022] Open
Abstract
Objectives Vigilance is characterized by alertness and sustained attention. The hyper-vigilance states are indicators of stress experience in the resting brain. Neurexan (Nx4) has been shown to modulate the neuroendocrine stress response. Here, we hypothesized that the intake of Nx4 would alter brain vigilance states at rest. Method In this post-hoc analysis of the NEURIM study, EEG recordings of three, 12 min resting-state conditions in 39 healthy male volunteers were examined in a randomized, placebo-controlled, double-blind, cross-over clinical trial. EEG was recorded at three resting-state sessions: at baseline (RS0), after single-dose treatment with Nx4 or placebo (RS1), and subsequently after a psychosocial stress task (RS2). During each resting-state session, each 2-s segment of the consecutive EEG epochs was classified into one of seven different brain states along a wake-sleep continuum using the VIGALL 2.1 algorithm. Results In the post-stress resting-state, subjects exhibited a hyper-stable vigilance regulation characterized by an increase in the mean vigilance level and by more rigidity in the higher vigilance states for a longer period of time. Importantly, Nx4-treated participants exhibited significantly lower mean vigilance level compared to placebo-treated ones. Also, Nx4- compared to placebo-treated participants spent comparably less time in higher vigilance states and more time in lower vigilance states in the post-stress resting-state. Conclusion Study participants showed a significantly lower mean vigilance level in the post-stress resting-state condition and tended to stay longer in lower vigilance states after treatment with Nx4. These findings support the known stress attenuation effect of Nx4.
Collapse
Affiliation(s)
- Tara Chand
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany.,Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen 72076, Germany
| | - Sarah Alizadeh
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany.,Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen 72076, Germany
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen 72076, Germany.,Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Luisa Herrmann
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany.,Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen 72076, Germany
| | - Marina Krylova
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany.,Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen 72076, Germany
| | - Galina Surova
- Department of Psychiatry and Psychotherapy, Leipzig University Medical Center, Leipzig 04103, Germany
| | - Johan van der Meer
- QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia.,Amsterdam UMC, Department of Radiology and Nuclear Medicine, 1105AZ, Amsterdam, The Netherlands
| | - Gred Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany
| | - Veronika Engert
- Institute of Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Jena 07443, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany.,Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
14
|
Better living through understanding the insula: Why subregions can make all the difference. Neuropharmacology 2021; 198:108765. [PMID: 34461066 DOI: 10.1016/j.neuropharm.2021.108765] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Insula function is considered critical for many motivated behaviors, with proposed functions ranging from attention, behavioral control, emotional regulation, goal-directed and aversion-resistant responding. Further, the insula is implicated in many neuropsychiatric conditions including substance abuse. More recently, multiple insula subregions have been distinguished based on anatomy, connectivity, and functional contributions. Generally, posterior insula is thought to encode more somatosensory inputs, which integrate with limbic/emotional information in middle insula, that in turn integrate with cognitive processes in anterior insula. Together, these regions provide rapid interoceptive information about the current or predicted situation, facilitating autonomic recruitment and quick, flexible action. Here, we seek to create a robust foundation from which to understand potential subregion differences, and provide direction for future studies. We address subregion differences across humans and rodents, so that the latter's mechanistic interventions can best mesh with clinical relevance of human conditions. We first consider the insula's suggested roles in humans, then compare subregional studies, and finally describe rodent work. One primary goal is to encourage precision in describing insula subregions, since imprecision (e.g. including both posterior and anterior studies when describing insula work) does a disservice to a larger understanding of insula contributions. Additionally, we note that specific task details can greatly impact recruitment of various subregions, requiring care and nuance in design and interpretation of studies. Nonetheless, the central ethological importance of the insula makes continued research to uncover mechanistic, mood, and behavioral contributions of paramount importance and interest. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
|
15
|
Weis CN, Bennett KP, Huggins AA, Parisi EA, Gorka SM, Larson C. A 7-Tesla MRI Study of the Periaqueductal Grey: Resting State and Task Activation Under Threat. Soc Cogn Affect Neurosci 2021; 17:187-197. [PMID: 34244809 PMCID: PMC8847906 DOI: 10.1093/scan/nsab085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
The periaqueductal grey (PAG) is a region of the midbrain implicated in a variety of behaviors including defensive responses to threat. Despite the wealth of knowledge pertaining to the differential functional roles of the PAG columns in nonhuman and human research, the basic functional connectivity of the PAG at rest has not been well characterized. Therefore, the current study utilized 7-Tesla MRI to characterize PAG functional connectivity at rest and task activation under uncertain threat. A sample of 53 neurologically healthy undergraduate participants (Mage=22.2, SDage=3.62) underwent structural and resting state functional MRI scans. Supporting previous work, voxel-wise analyses showed the PAG is functionally connected to emotion regulation and fear networks. Comparison of functional connectivity of PAG columns did not reveal any significant differences. Thirty-five participants from the same sample also completed an uncertain threat task with blocks of 3 conditions-No shock, Predictable shock, and Unpredictable shock. There were no robust activity differences within the PAG columns or the whole PAG across conditions, though there was differential activity at the voxel level in the PAG and in other regions theoretically relevant to uncertain threat. Results of this study elucidate PAG connectivity at rest and activation in response to uncertain threat.
Collapse
Affiliation(s)
- Carissa N Weis
- University of Wisconsin, Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | | | - Ashley A Huggins
- University of Wisconsin, Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Elizabeth A Parisi
- University of Wisconsin, Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Stephanie M Gorka
- The Ohio State University, Institute for Behavioral Medicine Research, Columbus, OH, USA
| | - Christine Larson
- University of Wisconsin, Milwaukee, Department of Psychology, Milwaukee, WI, USA
| |
Collapse
|
16
|
Neural substrates of human fear generalization: A 7T-fMRI investigation. Neuroimage 2021; 239:118308. [PMID: 34175426 DOI: 10.1016/j.neuroimage.2021.118308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/30/2022] Open
Abstract
Fear generalization - the tendency to interpret ambiguous stimuli as threatening due to perceptual similarity to a learned threat - is an adaptive process. Overgeneralization, however, is maladaptive and has been implicated in a number of anxiety disorders. Neuroimaging research has indicated several regions sensitive to effects of generalization, including regions involved in fear excitation (e.g., amygdala, insula) and inhibition (e.g., ventromedial prefrontal cortex). Research has suggested several other small brain regions may play an important role in this process (e.g., hippocampal subfields, bed nucleus of the stria terminalis [BNST], habenula), but, to date, these regions have not been examined during fear generalization due to limited spatial resolution of standard human neuroimaging. To this end, we utilized the high spatial resolution of 7T fMRI to characterize the neural circuits involved in threat discrimination and generalization. Additionally, we examined potential modulating effects of trait anxiety and intolerance of uncertainty on neural activation during threat generalization. In a sample of 31 healthy undergraduate students, significant positive generalization effects (i.e., greater activation for stimuli with increasing perceptual similarity to a learned threat cue) were observed in the visual cortex, thalamus, habenula and BNST, while negative generalization effects were observed in the dentate gyrus, CA1, and CA3. Associations with individual differences were underpowered, though preliminary findings suggested greater generalization in the insula and primary somatosensory cortex may be correlated with self-reported anxiety. Overall, findings largely support previous neuroimaging work on fear generalization and provide additional insight into the contributions of several previously unexplored brain regions.
Collapse
|
17
|
Binti Affandi AH, Pike AC, Robinson OJ. Threat of shock promotes passive avoidance, but not active avoidance. Eur J Neurosci 2021; 55:2571-2580. [PMID: 33714211 DOI: 10.1111/ejn.15184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/29/2021] [Accepted: 03/09/2021] [Indexed: 11/28/2022]
Abstract
Anxiety and stress are adaptive responses to threat that promote harm avoidance. In particular, prior work has shown that anxiety induced in humans using threat of unpredictable shock promotes behavioral inhibition in the face of harm. This is consistent with the idea that anxiety promotes passive avoidance-that is, withholding approach actions that could lead to harm. However, harm can also be avoided through active avoidance, where a (withdrawal) action is taken to avoid harm. Here, we provide the first direct within-study comparison of the effects of threat of shock on active and passive avoidance. We operationalize passive avoidance as withholding a button press response in the face of negative outcomes, and active avoidance as lifting/releasing a button press in the face of negative outcomes. We explore the impact of threat of unpredictable shock on the learning of these behavioral responses (alongside matched responses to rewards) within a single cognitive task. We predicted that threat of shock would promote both active and passive avoidance, and that this would be driven by increased reliance on Pavlovian bias, as parameterized within reinforcement-learning models. Consistent with our predictions, we provide evidence that threat of shock promotes passive avoidance as conceptualized by our task. However, inconsistent with predictions, we found no evidence that threat of shock promoted active avoidance, nor evidence of elevated Pavlovian bias in any condition. One hypothetical framework with which to understand these findings is that anxiety promotes passive over active harm avoidance strategies in order to conserve energy while avoiding harm.
Collapse
Affiliation(s)
- Aida Helana Binti Affandi
- Anxiety Lab, Neuroscience and Mental Health Group, Institute of Cognitive Neuroscience, University College London, London, UK
| | - Alexandra C Pike
- Anxiety Lab, Neuroscience and Mental Health Group, Institute of Cognitive Neuroscience, University College London, London, UK
| | - Oliver Joe Robinson
- Anxiety Lab, Neuroscience and Mental Health Group, Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
18
|
Marvar PJ, Andero R, Hurlemann R, Lago TR, Zelikowsky M, Dabrowska J. Limbic Neuropeptidergic Modulators of Emotion and Their Therapeutic Potential for Anxiety and Post-Traumatic Stress Disorder. J Neurosci 2021; 41:901-910. [PMID: 33472824 PMCID: PMC7880296 DOI: 10.1523/jneurosci.1647-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is characterized by hypervigilance, increased reactivity to unpredictable versus predictable threat signals, deficits in fear extinction, and an inability to discriminate between threat and safety. First-line pharmacotherapies for psychiatric disorders have limited therapeutic efficacy in PTSD. However, recent studies have advanced our understanding of the roles of several limbic neuropeptides in the regulation of defensive behaviors and in the neural processes that are disrupted in PTSD. For example, preclinical studies have shown that blockers of tachykinin pathways, such as the Tac2 pathway, attenuate fear memory consolidation in mice and thus might have unique potential as early post-trauma interventions to prevent PTSD development. Targeting this pathway might also be beneficial in regulating other symptoms of PTSD, including trauma-induced aggressive behavior. In addition, preclinical and clinical studies have shown the important role of angiotensin receptors in fear extinction and the promise of using angiotensin II receptor blockade to reduce PTSD symptom severity. Additional preclinical studies have demonstrated that the oxytocin receptors foster accurate fear discrimination by facilitating fear responses to predictable versus unpredictable threats. Complementary human imaging studies demonstrate unique neural targets of intranasal oxytocin and compare its efficacy with well-established anxiolytic treatments. Finally, promising data from human subjects have demonstrated that a selective vasopressin 1A receptor antagonist reduces anxiety induced by unpredictable threats. This review highlights these novel promising targets for the treatment of unique core elements of PTSD pathophysiology.
Collapse
Affiliation(s)
- Paul J Marvar
- Department of Pharmacology & Physiology, Department of Psychiatry and Behavioral Sciences, George Washington Institute for Neuroscience, George Washington University, Washington, DC, 20037
| | - Raül Andero
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain, 08193. Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain, 28029. ICREA, Pg. Lluís Companys 23, Barcelona, Spain, 08010
| | - Rene Hurlemann
- Department of Psychiatry, School of Medicine & Health Sciences, and Research Center Neurosensory Science, University of Oldenburg, Oldenburg, 26129, Germany
| | - Tiffany R Lago
- Department of Psychiatry, Veterans Administration Boston Healthcare System, Boston, Massachusetts, 02130
| | - Moriel Zelikowsky
- Department of Neurobiology and Anatomy, University of Utah, School of Medicine, Salt Lake City, Utah, 84112
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, 60064
| |
Collapse
|
19
|
Awasthi S, Pan H, LeDoux JE, Cloitre M, Altemus M, McEwen B, Silbersweig D, Stern E. The bed nucleus of the stria terminalis and functionally linked neurocircuitry modulate emotion processing and HPA axis dysfunction in posttraumatic stress disorder. NEUROIMAGE-CLINICAL 2020; 28:102442. [PMID: 33070099 PMCID: PMC7569227 DOI: 10.1016/j.nicl.2020.102442] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022]
Abstract
Task-based functional cooccurrence (tbFC) elucidates role of BNST in human PTSD neurocircuitry. The BNST is hyperactive during the processing of trauma-related words in PTSD. BNST activity correlates to PTSD symptom severity and reduced diurnal cortisol index. The BNST has positive tbFC with negative emotion- and stress-related neurocircuitry. The BNST has negative tbFC with executive function and stress regulation neurocircuitry.
Background The bed nucleus of the stria terminalis (BNST) plays an important role in rodent posttraumatic stress disorder (PTSD), but evidence to support its relevance to human PTSD is limited. We sought to understand the role of the BNST in human PTSD via fMRI, behavioral, and physiological measurements. Methods 29 patients with PTSD (childhood sexual abuse) and 23 healthy controls (HC) underwent BOLD imaging with an emotional word paradigm. Symptom severity was assessed using the Clinician-Administered PTSD Scale and HPA-axis dysfunction was assessed by measuring the diurnal cortisol amplitude index (DCAI). A data-driven multivariate analysis was used to determine BNST task-based functional co-occurrence (tbFC) across individuals. Results In the trauma-versus-neutral word contrast, patients showed increased activation compared to HC in the BNST, medial prefrontal cortex (mPFC), posterior cingulate gyrus (PCG), caudate heads, and midbrain, and decreased activation in dorsolateral prefrontal cortex (DLPFC). Symptom severity positively correlated with activity in the BNST, caudate head, amygdala, hippocampus, dorsal anterior cingulate gyrus (dACG), and PCG, and negatively with activity in the medial orbiotofrontal cortex (mOFC) and DLPFC. Patients and HC showed marked differences in the relationship between the DCAI and BOLD activity in the BNST, septal nuclei, dACG, and PCG. Patients showed stronger tbFC between the BNST and closely linked limbic and subcortical regions, and a loss of negative tbFC between the BNST and DLPFC. Conclusions Based upon novel data, we present a new model of dysexecutive emotion processing and HPA-axis dysfunction in human PTSD that incorporates the role of the BNST and functionally linked neurocircuitry.
Collapse
Affiliation(s)
- Samir Awasthi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hong Pan
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph E LeDoux
- Center for Neural Science, New York University, New York, NY, USA
| | - Marylene Cloitre
- National Center for PTSD, Veteran Affairs Palo Alto Health Care System, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Margaret Altemus
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | - David Silbersweig
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Emily Stern
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Greater activation of the response inhibition network in females compared to males during stop signal task performance. Behav Brain Res 2020; 386:112586. [DOI: 10.1016/j.bbr.2020.112586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/26/2022]
|
21
|
Mechanistic link between right prefrontal cortical activity and anxious arousal revealed using transcranial magnetic stimulation in healthy subjects. Neuropsychopharmacology 2020; 45:694-702. [PMID: 31791039 PMCID: PMC7021903 DOI: 10.1038/s41386-019-0583-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/08/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
Much of the mechanistic research on anxiety focuses on subcortical structures such as the amygdala; however, less is known about the distributed cortical circuit that also contributes to anxiety expression. One way to learn about this circuit is to probe candidate regions using transcranial magnetic stimulation (TMS). In this study, we tested the involvement of the dorsolateral prefrontal cortex (dlPFC), in anxiety expression using 10 Hz repetitive TMS (rTMS). In a within-subject, crossover experiment, the study measured anxiety in healthy subjects before and after a session of 10 Hz rTMS to the right dorsolateral prefrontal cortex (dlPFC). It used threat of predictable and unpredictable shock to induce anxiety and anxiety potentiated startle to assess anxiety. Counter to our hypotheses, results showed an increase in anxiety-potentiated startle following active but not sham rTMS. These results suggest a mechanistic link between right dlPFC activity and physiological anxiety expression. This result supports current models of prefrontal asymmetry in affect, and lays the groundwork for further exploration into the cortical mechanisms mediating anxiety, which may lead to novel anxiety treatments.
Collapse
|
22
|
Low-frequency parietal repetitive transcranial magnetic stimulation reduces fear and anxiety. Transl Psychiatry 2020; 10:68. [PMID: 32066739 PMCID: PMC7026136 DOI: 10.1038/s41398-020-0751-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/02/2020] [Accepted: 01/10/2020] [Indexed: 12/23/2022] Open
Abstract
Anxiety disorders are the most prevalent mental disorders, with few effective neuropharmacological treatments, making treatments development critical. While noninvasive neuromodulation can successfully treat depression, few treatment targets have been identified specifically for anxiety disorders. Previously, we showed that shock threat increases excitability and connectivity of the intraparietal sulcus (IPS). Here we tested the hypothesis that inhibitory repetitive transcranial magnetic stimulation (rTMS) targeting this region would reduce induced anxiety. Subjects were exposed to neutral, predictable, and unpredictable shock threat, while receiving double-blinded, 1 Hz active or sham IPS rTMS. We used global brain connectivity and electric-field modelling to define the single-subject targets. We assessed subjective anxiety with online ratings and physiological arousal with the startle reflex. Startle stimuli (103 dB white noise) probed fear and anxiety during the predictable (fear-potentiated startle, FPS) and unpredictable (anxiety-potentiated startle, APS) conditions. Active rTMS reduced both FPS and APS relative to both the sham and no stimulation conditions. However, the online anxiety ratings showed no difference between the stimulation conditions. These results were not dependent on the laterality of the stimulation, or the subjects' perception of the stimulation (i.e. active vs. sham). Results suggest that reducing IPS excitability during shock threat is sufficient to reduce physiological arousal related to both fear and anxiety, and are consistent with our previous research showing hyperexcitability in this region during threat. By extension, these results suggest that 1 Hz parietal stimulation may be an effective treatment for clinical anxiety, warranting future work in anxiety patients.
Collapse
|
23
|
Gaillard C, Guillod M, Ernst M, Federspiel A, Schoebi D, Recabarren RE, Ouyang X, Mueller-Pfeiffer C, Horsch A, Homan P, Wiest R, Hasler G, Martin-Soelch C. Striatal reactivity to reward under threat-of-shock and working memory load in adults at increased familial risk for major depression: A preliminary study. Neuroimage Clin 2020; 26:102193. [PMID: 32036303 PMCID: PMC7011085 DOI: 10.1016/j.nicl.2020.102193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/27/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Anhedonia, a core symptom of Major Depressive Disorder (MDD), manifests as a lack or loss of motivation as reflected by decreased reward responsiveness, at both behavioral and neural (i.e., striatum) levels. Exposure to stressful life events is another important risk factor for MDD. However, the mechanisms linking reward-deficit and stress to MDD remain poorly understood. Here, we explore whether the effects of stress exposure on reward processing might differentiate between Healthy Vulnerable adults (HVul, i.e., positive familial MDD) from Healthy Controls (HCon). Furthermore, the well-described reduction in cognitive resources in MDD might facilitate the stress-induced decrease in reward responsiveness in HVul individuals. Accordingly, this study includes a manipulation of cognitive resources to address the latter possibility. METHODS 16 HVul (12 females) and 16 gender- and age-matched HCon completed an fMRI study, during which they performed a working memory reward task. Three factors were manipulated: reward (reward, no-reward), cognitive resources (working memory at low and high load), and stress level (no-shock, unpredictable threat-of-shock). Only the reward anticipation phase was analyzed. Imaging analyses focused on striatal function. RESULTS Compared to HCon, HVul showed lower activation in the caudate nucleus across all conditions. The HVul group also exhibited lower stress-related activation in the nucleus accumbens, but only in the low working memory (WM) load condition. Moreover, while stress potentiated putamen reactivity to reward cues in HVul when the task was more demanding (high WM load), stress blunted putamen reactivity in both groups when no reward was at stake. CONCLUSION Findings suggest that HVul might be at increased risk of developing anhedonic symptoms due to weaker encoding of reward value, higher difficulty to engage in goal-oriented behaviors and increased sensitivity to negative feedback, particularly in stressful contexts. These findings open new avenues for a better understanding of the mechanisms underlying how the complex interaction between the systems of stress and reward responsiveness contribute to the vulnerability to MDD, and how cognitive resources might modulate this interaction.
Collapse
Affiliation(s)
- Claudie Gaillard
- IReach Lab, Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland; Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, Maryland, USA.
| | - Matthias Guillod
- IReach Lab, Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Monique Ernst
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Andrea Federspiel
- Psychiatric Neuroimaging Unit, Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Dominik Schoebi
- Unit of Clinical Family Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Romina Evelyn Recabarren
- IReach Lab, Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Xinyi Ouyang
- iBM Lab, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Christoph Mueller-Pfeiffer
- Department of Consultation-Liaison-Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Antje Horsch
- Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland; Institute of Higher Education and Research in Healthcare, University of Lausanne, Lausanne, Switzerland
| | - Philipp Homan
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, New York, New York, USA
| | - Roland Wiest
- Department of Diagnostic and Interventional Neuroradiology, University Hospital of Bern, Bern, Switzerland
| | - Gregor Hasler
- Unit of Psychiatry Research, University of Fribourg, Fribourg, Switzerland
| | - Chantal Martin-Soelch
- IReach Lab, Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
24
|
Clauss J. Extending the neurocircuitry of behavioural inhibition: a role for the bed nucleus of the stria terminalis in risk for anxiety disorders. Gen Psychiatr 2019; 32:e100137. [PMID: 31922088 PMCID: PMC6937153 DOI: 10.1136/gpsych-2019-100137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
Behavioural inhibition is a biologically based risk factor for anxiety disorders. Children with behavioural inhibition are shy, cautious and avoidant of new situations. Much research on behavioural inhibition has focused on the amygdala as an underlying neural substrate and has identified differences in amygdala function and volume; however, amygdala findings have yet to lead to meaningful interventions for prevention or treatment of anxiety disorders. The bed nucleus of the stria terminalis (BNST) is a prime candidate to be a neural substrate of behavioural inhibition, given current evidence of BNST function and development in human research and animal models. Children with behavioural inhibition have an increased startle response to safety cues and an increased cortisol response to social evaluative situations, both of which are mediated by the BNST. In rodents, activation of the BNST underlies contextual fear responses and responses to uncertain and sustained threat. Non-human primates with anxious temperament (the macaque equivalent of behavioural inhibition) have increased BNST activity to ambiguous social situations, and activity of the BNST in anxious temperament is significantly heritable. Importantly, the BNST is sexually dimorphic and continues to develop into adulthood, paralleling the development of anxiety disorders in humans. Together, these findings suggest that further investigation of the BNST in behavioural inhibition is necessary and may lead to new avenues for the prevention and treatment of anxiety disorders.
Collapse
Affiliation(s)
- Jacqueline Clauss
- Child and Adolescent Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Child and Adolescent Psychiatry, McLean Hospital, Belmont, Massachusetts, USA
| |
Collapse
|
25
|
Threat Anticipation in Pulvinar and in Superficial Layers of Primary Visual Cortex (V1). Evidence from Layer-Specific Ultra-High Field 7T fMRI. eNeuro 2019; 6:ENEURO.0429-19.2019. [PMID: 31694815 PMCID: PMC6901684 DOI: 10.1523/eneuro.0429-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 11/21/2022] Open
Abstract
The perceptual system gives priority to threat-relevant signals with survival value. In addition to the processing initiated by sensory inputs of threat signals, prioritization of threat signals may also include processes related to threat anticipation. These neural mechanisms remain largely unknown. Using ultra-high-field 7 tesla (7T) fMRI, we show that anticipatory processing takes place in the early stages of visual processing, specifically in the pulvinar and V1. The perceptual system gives priority to threat-relevant signals with survival value. In addition to the processing initiated by sensory inputs of threat signals, prioritization of threat signals may also include processes related to threat anticipation. These neural mechanisms remain largely unknown. Using ultra-high-field 7 tesla (7T) fMRI, we show that anticipatory processing takes place in the early stages of visual processing, specifically in the pulvinar and V1. When anticipation of a threat-relevant fearful face target triggered false perception of not-presented target, there was enhanced activity in the pulvinar as well as in the V1 superficial-cortical-depth (layers 1–3). The anticipatory activity was absent in the LGN or higher visual cortical areas (V2–V4). The effect in V1 was specific to the perception of fearful face targets and did not generalize to happy face targets. A preliminary analysis showed that the connectivity between the pulvinar and V1 superficial-cortical-depth was enhanced during false perception of threat, indicating that the pulvinar and V1 may interact in preparation of anticipated threat. The anticipatory processing supported by the pulvinar and V1 may play an important role in non-sensory-input-driven anxiety states.
Collapse
|
26
|
Weis CN, Huggins AA, Bennett KP, Parisi EA, Larson CL. High-Resolution Resting-State Functional Connectivity of the Extended Amygdala. Brain Connect 2019; 9:627-637. [DOI: 10.1089/brain.2019.0688] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Carissa N. Weis
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
| | - Ashley A. Huggins
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
| | - Kenneth P. Bennett
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
| | - Elizabeth A. Parisi
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
| | - Christine L. Larson
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
| |
Collapse
|
27
|
Gaillard C, Guillod M, Ernst M, Torrisi S, Federspiel A, Schoebi D, Recabarren RE, Ouyang X, Mueller-Pfeiffer C, Horsch A, Homan P, Wiest R, Hasler G, Martin-Soelch C. Striatal responsiveness to reward under threat-of-shock and working memory load: A preliminary study. Brain Behav 2019; 9:e01397. [PMID: 31557426 PMCID: PMC6790302 DOI: 10.1002/brb3.1397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Reward and stress are important determinants of motivated behaviors. Striatal regions play a crucial role in both motivation and hedonic processes. So far, little is known on how cognitive effort interacts with stress to modulate reward processes. This study examines how cognitive effort (load) interacts with an unpredictable acute stressor (threat-of-shock) to modulate motivational and hedonic processes in healthy adults. MATERIALS AND METHODS A reward task, involving stress with unpredictable mild electric shocks, was conducted in 23 healthy adults aged 20-37 (mean age: 24.7 ± 0.9; 14 females) during functional magnetic resonance imaging (fMRI). Manipulation included the use of (a) monetary reward for reinforcement, (b) threat-of-shock as the stressor, and (c) a spatial working memory task with two levels of difficulty (low and high load) for cognitive load. Reward-related activation was investigated in a priori three regions of interest, the nucleus accumbens (NAcc), caudate nucleus, and putamen. RESULTS During anticipation, threat-of-shock or cognitive load did not affect striatal responsiveness to reward. Anticipated reward increased activation in the ventral and dorsal striatum. During feedback delivery, both threat-of-shock and cognitive effort modulated striatal activation. Higher working memory load blunted NAcc responsiveness to reward delivery, while stress strengthened caudate nucleus reactivity regardless reinforcement or load. CONCLUSIONS These findings provide initial evidence that both stress and cognitive load modulate striatal responsiveness during feedback delivery but not during anticipation in healthy adults. Of clinical importance, sustained stress exposure might go along with dysregulated arousal, increasing therefore the risk for the development of maladaptive incentive-triggered motivation. This study brings new insight that might help to build a framework to understand common stress-related disorders, given that these psychiatric disorders involve disturbances of the reward system, cognitive deficits, and abnormal stress reactivity.
Collapse
Affiliation(s)
- Claudie Gaillard
- IReach Lab, Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Matthias Guillod
- IReach Lab, Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Monique Ernst
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD
| | - Salvatore Torrisi
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD
| | - Andrea Federspiel
- Psychiatric Neuroimaging Unit, Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Dominik Schoebi
- Unit of Clinical Family Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Romina E Recabarren
- IReach Lab, Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Xinyi Ouyang
- iBM Lab, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Christoph Mueller-Pfeiffer
- Department of Consultation-Liaison-Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Antje Horsch
- Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland.,Institute of Higher Education and Research in Healthcare, University of Lausanne, Lausanne, Switzerland
| | - Philipp Homan
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, New York, NY
| | - Roland Wiest
- Department of Diagnostic and Interventional Neuroradiology, University Hospital of Bern, Bern, Switzerland
| | - Gregor Hasler
- Unit of Psychiatry Research, University of Fribourg, Fribourg, Switzerland
| | - Chantal Martin-Soelch
- IReach Lab, Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
28
|
Torrisi S, Alvarez GM, Gorka AX, Fuchs B, Geraci M, Grillon C, Ernst M. Resting-state connectivity of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in clinical anxiety. J Psychiatry Neurosci 2019; 44:313-323. [PMID: 30964612 PMCID: PMC6710087 DOI: 10.1503/jpn.180150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/11/2018] [Accepted: 01/16/2019] [Indexed: 01/06/2023] Open
Abstract
Background The central nucleus of the amygdala and bed nucleus of the stria terminalis are involved primarily in phasic and sustained aversive states. Although both structures have been implicated in pathological anxiety, few studies with a clinical population have specifically focused on them, partly because of their small size. Previous work in our group used high-resolution imaging to map the restingstate functional connectivity of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in healthy subjects at 7 T, confirming and extending structural findings in humans and animals, while providing additional insight into cortical connectivity that is potentially unique to humans. Methods In the current follow-up study, we contrasted resting-state functional connectivity in the bed nucleus of the stria terminalis and central nucleus of the amygdala at 7 T between healthy volunteers (n = 30) and patients with generalized and/or social anxiety disorder (n = 30). Results Results revealed significant voxel-level group differences. Compared with healthy volunteers, patients showed stronger resting-state functional connectivity between the central nucleus of the amygdala and the lateral orbitofrontal cortex and superior temporal sulcus. They also showed weaker resting-state functional connectivity between the bed nucleus of the stria terminalis and the dorsolateral prefrontal cortex and occipital cortex. Limitations These findings depart from a previous report of resting-state functional connectivity in the central nucleus of the amygdala and bed nucleus of the stria terminalis under sustained threat of shock in healthy volunteers. Conclusion This study provides functional MRI proxies of the functional dissociation of the bed nucleus of the stria terminalis and central nucleus of the amygdala, and suggests that resting-state functional connectivity of key structures in the processing of defensive responses do not recapitulate changes related to induced state anxiety. Future work needs to replicate and further probe the clinical significance of these findings.
Collapse
Affiliation(s)
- Salvatore Torrisi
- From the Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA (Torrisi, Alvarez, Gorka, Fuchs, Geraci, Grillon, Ernst)
| | - Gabriella M. Alvarez
- From the Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA (Torrisi, Alvarez, Gorka, Fuchs, Geraci, Grillon, Ernst)
| | - Adam X. Gorka
- From the Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA (Torrisi, Alvarez, Gorka, Fuchs, Geraci, Grillon, Ernst)
| | - Bari Fuchs
- From the Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA (Torrisi, Alvarez, Gorka, Fuchs, Geraci, Grillon, Ernst)
| | - Marilla Geraci
- From the Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA (Torrisi, Alvarez, Gorka, Fuchs, Geraci, Grillon, Ernst)
| | - Christian Grillon
- From the Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA (Torrisi, Alvarez, Gorka, Fuchs, Geraci, Grillon, Ernst)
| | - Monique Ernst
- From the Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA (Torrisi, Alvarez, Gorka, Fuchs, Geraci, Grillon, Ernst)
| |
Collapse
|
29
|
Clauss JA, Avery SN, Benningfield MM, Blackford JU. Social anxiety is associated with BNST response to unpredictability. Depress Anxiety 2019; 36:666-675. [PMID: 30953446 PMCID: PMC6679811 DOI: 10.1002/da.22891] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/04/2019] [Accepted: 03/02/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Anxiety disorders are highly prevalent and cause substantial suffering and impairment. Whereas the amygdala has well-established contributions to anxiety, evidence from rodent and nonhuman primate models suggests that the bed nucleus of the stria terminalis (BNST) may play a critical, and possibly distinct, role in human anxiety disorders. The BNST mediates hypervigilance and anticipatory anxiety in response to an unpredictable or ambiguous threat, core symptoms of social anxiety, yet little is known about the BNST's role in social anxiety. METHODS Functional magnetic resonance imaging was used to measure neural responses during a cued anticipation task with an unpredictable, predictable threat, and predictable neutral cues followed by threat or neutral images. Social anxiety was examined using a dimensional approach (N = 44 adults). RESULTS For unpredictable cues, higher social anxiety was associated with lower BNST-amygdala connectivity. For unpredictable images, higher social anxiety was associated with greater connectivity between the BNST and both the ventromedial prefrontal cortex and the posterior cingulate cortex and lower connectivity between the BNST and postcentral gyrus. Social anxiety moderated the BNST-amygdala dissociation for unpredictable images; higher social anxiety was associated with BNST > amygdala response to unpredictable threat relative to unpredictable neutral images. CONCLUSIONS Social anxiety was associated with alterations in BNST responses to unpredictability, particularly in the BNST's interactions with other brain regions, including the amygdala and prefrontal cortex. To our knowledge, these findings provide the first evidence for the BNST's role in social anxiety, which may be a potential new target for prevention and intervention.
Collapse
Affiliation(s)
- Jacqueline A Clauss
- Massachusetts General and McLean Hospitals, Harvard Medical School, Boston, MA
| | - Suzanne N Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Margaret M Benningfield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN,Department of Psychology, Vanderbilt University, Nashville, TN,Research Service, Research and Development, Department of Veterans Affairs Medical Center, Nashville, TN
| |
Collapse
|
30
|
Velasco ER, Florido A, Milad MR, Andero R. Sex differences in fear extinction. Neurosci Biobehav Rev 2019; 103:81-108. [PMID: 31129235 PMCID: PMC6692252 DOI: 10.1016/j.neubiorev.2019.05.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/08/2019] [Accepted: 05/19/2019] [Indexed: 12/18/2022]
Abstract
Despite the exponential increase in fear research during the last years, few studies have included female subjects in their design. The need to include females arises from the knowledge gap of mechanistic processes underlying the behavioral and neural differences observed in fear extinction. Moreover, the exact contribution of sex and hormones in relation to learning and behavior is still largely unknown. Insights from this field could be beneficial as fear-related disorders are twice as prevalent in women compared to men. Here, we review an up-to-date summary of animal and human studies in adulthood that report sex differences in fear extinction from a structural and functional approach. Furthermore, we describe how these factors could contribute to the observed sex differences in fear extinction during normal and pathological conditions.
Collapse
Affiliation(s)
- E R Velasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - A Florido
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - M R Milad
- Department of Psychiatry, University of Illinois at Chicago, USA
| | - R Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Corporació Sanitaria Parc Taulí, Sabadell, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
31
|
Hur J, Stockbridge MD, Fox AS, Shackman AJ. Dispositional negativity, cognition, and anxiety disorders: An integrative translational neuroscience framework. PROGRESS IN BRAIN RESEARCH 2019; 247:375-436. [PMID: 31196442 PMCID: PMC6578598 DOI: 10.1016/bs.pbr.2019.03.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
When extreme, anxiety can become debilitating. Anxiety disorders, which often first emerge early in development, are common and challenging to treat, yet the underlying mechanisms have only recently begun to come into focus. Here, we review new insights into the nature and biological bases of dispositional negativity, a fundamental dimension of childhood temperament and adult personality and a prominent risk factor for the development of pediatric and adult anxiety disorders. Converging lines of epidemiological, neurobiological, and mechanistic evidence suggest that dispositional negativity increases the likelihood of psychopathology via specific neurocognitive mechanisms, including attentional biases to threat and deficits in executive control. Collectively, these observations provide an integrative translational framework for understanding the development and maintenance of anxiety disorders in adults and youth and set the stage for developing improved intervention strategies.
Collapse
Affiliation(s)
- Juyoen Hur
- Department of Psychology, University of Maryland, College Park, MD, United States.
| | | | - Andrew S Fox
- Department of Psychology, University of California, Davis, CA, United States; California National Primate Research Center, University of California, Davis, CA, United States
| | - Alexander J Shackman
- Department of Psychology, University of Maryland, College Park, MD, United States; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, United States; Maryland Neuroimaging Center, University of Maryland, College Park, MD, United States.
| |
Collapse
|
32
|
Miles OW, Maren S. Role of the Bed Nucleus of the Stria Terminalis in PTSD: Insights From Preclinical Models. Front Behav Neurosci 2019; 13:68. [PMID: 31024271 PMCID: PMC6461014 DOI: 10.3389/fnbeh.2019.00068] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) afflicts approximately 8% of the United States population and represents a significant public health burden, but the underlying neural mechanisms of this and other anxiety- and stressor-related disorders are largely unknown. Within the last few decades, several preclinical models of PSTD have been developed to help elucidate the mechanisms underlying dysregulated fear states. One brain area that has emerged as a critical mediator of stress-related behavioral processing in both clinical and laboratory settings is the bed nucleus of the stria terminalis (BNST). The BNST is interconnected with essential emotional processing regions, including prefrontal cortex, hippocampus and amygdala. It is activated by stressor exposure and undergoes neurochemical and morphological alterations as a result of stressor exposure. Stress-related neuro-peptides including corticotropin-releasing factor (CRF) and pituitary adenylate cyclase activating peptide (PACAP) are also abundant in the BNST, further implicating an involvement of BNST in stress responses. Behaviorally, the BNST is critical for acquisition and expression of fear and is well positioned to regulate fear relapse after periods of extinction. Here, we consider the role of the BNST in stress and memory processes in the context of preclinical models of PTSD.
Collapse
Affiliation(s)
- Olivia W. Miles
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | | |
Collapse
|
33
|
Goode TD, Ressler RL, Acca GM, Miles OW, Maren S. Bed nucleus of the stria terminalis regulates fear to unpredictable threat signals. eLife 2019; 8:46525. [PMID: 30946011 PMCID: PMC6456295 DOI: 10.7554/elife.46525] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) has been implicated in conditioned fear and anxiety, but the specific factors that engage the BNST in defensive behaviors are unclear. Here we examined whether the BNST mediates freezing to conditioned stimuli (CSs) that poorly predict the onset of aversive unconditioned stimuli (USs) in rats. Reversible inactivation of the BNST selectively reduced freezing to CSs that poorly signaled US onset (e.g., a backward CS that followed the US), but did not eliminate freezing to forward CSs even when they predicted USs of variable intensity. Additionally, backward (but not forward) CSs selectively increased Fos in the ventral BNST and in BNST-projecting neurons in the infralimbic region of the medial prefrontal cortex (mPFC), but not in the hippocampus or amygdala. These data reveal that BNST circuits regulate fear to unpredictable threats, which may be critical to the etiology and expression of anxiety.
Collapse
Affiliation(s)
- Travis D Goode
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| | - Reed L Ressler
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| | - Gillian M Acca
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| | - Olivia W Miles
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| |
Collapse
|
34
|
Naaz F, Knight LK, Depue BE. Explicit and Ambiguous Threat Processing: Functionally Dissociable Roles of the Amygdala and Bed Nucleus of the Stria Terminalis. J Cogn Neurosci 2019; 31:543-559. [DOI: 10.1162/jocn_a_01369] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Highly influential models have proposed that responses to different types of threat are mediated by partially segregated neural systems, with the amygdala underlying phasic responses to explicit threat (fear) and the bed nucleus of the stria terminalis (BNST) mediating sustained responses to ambiguous threat (anxiety). However, newer models have suggested similar recruitment of both regions across a wide spectrum of threat. Therefore, to empirically test these models and further elucidate the activation profiles and connectivity patterns of the amygdala and the BNST during threat processing, 20 participants were scanned using high-resolution fMRI (1.5 mm3). Using fearful faces and human screams as aversive stimuli, two threat conditions were created: Explicit Threat in which threats were certain and predictable (fear) and Ambiguous Threat in which threats were uncertain and unpredictable (anxiety). Results indicated that, although the amygdala and the BNST both showed heightened engagement across both threat conditions, the amygdala showed preferential engagement during Explicit Threat and displayed functional connectivity with regions involved in stimulus processing and motor response. By contrast, the BNST preferentially responded during Ambiguous Threat and exhibited functional connectivity with prefrontal regions underlying interoception and rumination. Furthermore, correlations with questionnaires measuring trait anxiety, worry, and rumination suggested that individual differences in affective style play a modulatory role in regional recruitment and network connectivity during threat processing.
Collapse
|
35
|
Hofmann D, Straube T. Resting-state fMRI effective connectivity between the bed nucleus of the stria terminalis and amygdala nuclei. Hum Brain Mapp 2019; 40:2723-2735. [PMID: 30829454 DOI: 10.1002/hbm.24555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 12/17/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) and the laterobasal nucleus (LB), centromedial nucleus (CM), and superficial nucleus (SF) of the amygdala form an interconnected dynamical system, whose combined activity mediates a variety of behavioral and autonomic responses in reaction to homeostatic challenges. Although previous research provided deeper insight into the structural and functional connections between these nuclei, studies investigating their resting-state functional magnetic resonance imaging (fMRI) connectivity were solely based on undirected connectivity measures. Here, we used high-quality data of 391 subjects from the Human Connectome Project to estimate the effective connectivity (EC) between the BNST, the LB, CM, and SF through spectral dynamic causal modeling, the relation of the EC estimates with age and sex as well as their stability over time. Our results reveal a time-stable asymmetric EC structure with positive EC between all amygdala nuclei, which strongly inhibited the BNST while the BNST exerted positive influence onto all amygdala nuclei. Simulation of the impulse response of the estimated system showed that this EC structure shapes partially antagonistic (out of phase) activity flow between the BNST and amygdala nuclei. Moreover, the BNST-LB and BNST-CM EC parameters were less negative in males. In conclusion, our data points toward partially separated information processing between BNST and amygdala nuclei in the resting-state.
Collapse
Affiliation(s)
- David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Muenster, Muenster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
36
|
Functional Connectivity within the Primate Extended Amygdala Is Heritable and Associated with Early-Life Anxious Temperament. J Neurosci 2018; 38:7611-7621. [PMID: 30061190 DOI: 10.1523/jneurosci.0102-18.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/23/2018] [Accepted: 07/07/2018] [Indexed: 02/08/2023] Open
Abstract
Children with an extremely inhibited, anxious temperament (AT) are at increased risk for anxiety disorders and depression. Using a rhesus monkey model of early-life AT, we previously demonstrated that metabolism in the central extended amygdala (EAc), including the central nucleus of the amygdala (Ce) and bed nucleus of the stria terminalis (BST), is associated with trait-like variation in AT. Here, we use fMRI to examine relationships between Ce-BST functional connectivity and AT in a large multigenerational family pedigree of rhesus monkeys (n = 170 females and 208 males). Results demonstrate that Ce-BST functional connectivity is heritable, accounts for a significant but modest portion of the variance in AT, and is coheritable with AT. Interestingly, Ce-BST functional connectivity and AT-related BST metabolism were not correlated and accounted for non-overlapping variance in AT. Exploratory analyses suggest that Ce-BST functional connectivity is associated with metabolism in the hypothalamus and periaqueductal gray. Together, these results suggest the importance of coordinated function within the EAc for determining individual differences in AT and metabolism in brain regions associated with its behavioral and neuroendocrine components.SIGNIFICANCE STATEMENT Anxiety disorders directly impact the lives of nearly one in five people, accounting for substantial worldwide suffering and disability. Here, we use a nonhuman primate model of anxious temperament (AT) to understand the neurobiology underlying the early-life risk to develop anxiety disorders. Leveraging the same kinds of neuroimaging measures routinely used in human studies, we demonstrate that coordinated activation between the central nucleus of the amygdala and the bed nucleus of the stria terminalis is correlated with, and coinherited with, early-life AT. Understanding how these central extended amygdala regions work together to produce extreme anxiety provides a neural target for early-life interventions with the promise of preventing lifelong disability in at-risk children.
Collapse
|