1
|
Chen G, Dang D, Zhang C, Qin L, Yan T, Wang W, Liang W. Recent advances in neurotechnology-based biohybrid robots. SOFT MATTER 2024; 20:7993-8011. [PMID: 39328163 DOI: 10.1039/d4sm00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Biohybrid robots retain the innate biological characteristics and behavioral traits of animals, making them valuable in applications such as disaster relief, exploration of unknown terrains, and medical care. This review aims to comprehensively discuss the evolution of biohybrid robots, their key technologies and applications, and the challenges they face. By analyzing studies conducted on terrestrial, aquatic, and aerial biohybrid robots, we gain a deeper understanding of how these technologies have made significant progress in simulating natural organisms, improving mechanical performance, and intelligent control. Additionally, we address challenges associated with the application of electrical stimulation technology, the precision of neural signal monitoring, and the ethical considerations for biohybrid robots. We highlight the importance of future research focusing on developing more sophisticated and biocompatible control methods while prioritizing animal welfare. We believe that exploring multimodal monitoring and stimulation technologies holds the potential to enhance the performance of biohybrid robots. These efforts are expected to pave the way for biohybrid robotics technology to introduce greater innovation and well-being to human society in the future.
Collapse
Affiliation(s)
- Guiyong Chen
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, People's Republic of China.
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Dan Dang
- School of Sciences, Shenyang Jianzhu University, Shenyang 110168, People's Republic of China.
| | - Chuang Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Ling Qin
- School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China
| | - Tao Yan
- Department of Anesthesiology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Beijing 100021, People's Republic of China
- Chinese Academy of Medical Sciences, Beijing 100021, People's Republic of China
- Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Wenxue Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, People's Republic of China.
| |
Collapse
|
2
|
ElGrawani W, Mueller FS, Schalbetter SM, Brown SA, Weber-Stadlbauer U, Tarokh L. Maternal immune activation exerts long-term effects on activity and sleep in male offspring mice. Eur J Neurosci 2024; 60:5505-5521. [PMID: 39210746 DOI: 10.1111/ejn.16506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Exposure to infectious or non-infectious immune activation during early development is a serious risk factor for long-term behavioural dysfunctions. Mouse models of maternal immune activation (MIA) have increasingly been used to address neuronal and behavioural dysfunctions in response to prenatal infections. One commonly employed MIA model involves administering poly(I:C) (polyriboinosinic-polyribocytdilic acid), a synthetic analogue of double-stranded RNA, during gestation, which robustly induces an acute viral-like inflammatory response. Using electroencephalography (EEG) and infrared (IR) activity recordings, we explored alterations in sleep/wake, circadian and locomotor activity patterns on the adult male offspring of poly(I:C)-treated mothers. Our findings demonstrate that these offspring displayed reduced home cage activity during the (subjective) night under both light/dark or constant darkness conditions. In line with this finding, these mice exhibited an increase in non-rapid eye movement (NREM) sleep duration as well as an increase in sleep spindles density. Following sleep deprivation, poly(I:C)-exposed offspring extended NREM sleep duration and prolonged NREM sleep bouts during the dark phase as compared with non-exposed mice. Additionally, these mice exhibited a significant alteration in NREM sleep EEG spectral power under heightened sleep pressure. Together, our study highlights the lasting effects of infection and/or immune activation during pregnancy on circadian activity and sleep/wake patterns in the offspring.
Collapse
Affiliation(s)
- Waleed ElGrawani
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Flavia S Mueller
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
| | - Sina M Schalbetter
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
| | - Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Leila Tarokh
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Blanco-Duque C, Bond SA, Krone LB, Dufour JP, Gillen ECP, Purple RJ, Kahn MC, Bannerman DM, Mann EO, Achermann P, Olbrich E, Vyazovskiy VV. Oscillatory-Quality of sleep spindles links brain state with sleep regulation and function. SCIENCE ADVANCES 2024; 10:eadn6247. [PMID: 39241075 PMCID: PMC11378912 DOI: 10.1126/sciadv.adn6247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/30/2024] [Indexed: 09/08/2024]
Abstract
Here, we characterized the dynamics of sleep spindles, focusing on their damping, which we estimated using a metric called oscillatory-Quality (o-Quality), derived by fitting an autoregressive model to electrophysiological signals, recorded from the cortex in mice. The o-Quality of sleep spindles correlates weakly with their amplitude, shows marked laminar differences and regional topography across cortical regions, reflects the level of synchrony within and between cortical networks, is strongly modulated by sleep-wake history, reflects the degree of sensory disconnection, and correlates with the strength of coupling between spindles and slow waves. As most spindle events are highly localized and not detectable with conventional low-density recording approaches, o-Quality thus emerges as a valuable metric that allows us to infer the spread and dynamics of spindle activity across the brain and directly links their spatiotemporal dynamics with local and global regulation of brain states, sleep regulation, and function.
Collapse
Affiliation(s)
- Cristina Blanco-Duque
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, MA 02139, USA
| | - Suraya A Bond
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
- UK Dementia Research Institute at UCL, University College London, WC1E 6BT London, UK
| | - Lukas B Krone
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| | - Jean-Phillipe Dufour
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
| | - Edward C P Gillen
- Astrophysics Group, Cavendish Laboratory, J.J. Thomson Avenue, Cambridge CB30HE, UK
- Astronomy Unit, Queen Mary University of London, Mile End Road, London E14NS, UK
| | - Ross J Purple
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
- School of Physiology Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Martin C Kahn
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, MA 02139, USA
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Edward O Mann
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Eckehard Olbrich
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
- Sleep and Circadian Neuroscience Institute, University of Oxford, Sherrington Rd, Oxford OX1 3QU, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Sherrington Rd, Oxford OX1 3QU, UK
| |
Collapse
|
4
|
Herrera CG, Tarokh L. A Thalamocortical Perspective on Sleep Spindle Alterations in Neurodevelopmental Disorders. CURRENT SLEEP MEDICINE REPORTS 2024; 10:103-118. [PMID: 38764858 PMCID: PMC11096120 DOI: 10.1007/s40675-024-00284-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 05/21/2024]
Abstract
Purpose of Review Neurodevelopmental disorders are a group of conditions that affect the development and function of the nervous system, typically arising early in life. These disorders can have various genetic, environmental, and/or neural underpinnings, which can impact the thalamocortical system. Sleep spindles, brief bursts of oscillatory activity that occur during NREM sleep, provide a unique in vivo measure of the thalamocortical system. In this manuscript, we review the development of the thalamocortical system and sleep spindles in rodent models and humans. We then utilize this as a foundation to discuss alterations in sleep spindle activity in four of the most pervasive neurodevelopmental disorders-intellectual disability, attention deficit hyperactivity disorder, autism, and schizophrenia. Recent Findings Recent work in humans has shown alterations in sleep spindles across several neurodevelopmental disorders. Simultaneously, rodent models have elucidated the mechanisms which may underlie these deficits in spindle activity. This review merges recent findings from these two separate lines of research to draw conclusions about the pathogenesis of neurodevelopmental disorders. Summary We speculate that deficits in the thalamocortical system associated with neurodevelopmental disorders are exquisitely reflected in sleep spindle activity. We propose that sleep spindles may represent a promising biomarker for drug discovery, risk stratification, and treatment monitoring.
Collapse
Affiliation(s)
- Carolina Gutierrez Herrera
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Rosenbühlgasse 25, Bern, Switzerland
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Rosenbühlgasse 17, Bern, Switzerland
- Department of Biomedical Research (DBMR), Inselspital University Hospital Bern, University of Bern, Murtenstrasse 24 CH-3008 Bern, Bern, Switzerland
| | - Leila Tarokh
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, Haus A, 3000, Bern, Switzerland
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, Haus A, 3000, Bern, Switzerland
| |
Collapse
|
5
|
Bian WJ, González OC, de Lecea L. Adolescent sleep defects and dopaminergic hyperactivity in mice with a schizophrenia-linked Shank3 mutation. Sleep 2023; 46:zsad131. [PMID: 37144901 PMCID: PMC10334736 DOI: 10.1093/sleep/zsad131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/03/2023] [Indexed: 05/06/2023] Open
Abstract
Shank3 is a shared risk gene for autism spectrum disorders and schizophrenia. Sleep defects have been characterized for autism models with Shank3 mutations; however, evidence has been lacking for the potential sleep defects caused by Shank3 mutation associated with schizophrenia and how early in development these defects may occur. Here we characterized the sleep architecture of adolescent mice carrying a schizophrenia-linked, R1117X mutation in Shank3. We further employed GRABDA dopamine sensor and fiber photometry to record dopamine release in the nucleus accumbens during sleep/wake states. Our results show that homozygous mutant R1117X mice have significantly reduced sleep in the dark phase during adolescence, altered electroencephalogram power, especially during the rapid-eye-movement sleep, and dopamine hyperactivity during sleep but not during wakefulness. Further analyses suggest that these adolescent defects in sleep architecture and dopaminergic neuromodulation tightly correlate with the social novelty preference later in adulthood and predict adult social performance during same-sex social interactions. Our results provide novel insights into the sleep phenotypes in mouse models of schizophrenia and the potential use of developmental sleep as a predictive metric for adult social symptoms. Together with recent studies in other Shank3 models, our work underscores the idea that Shank3-involved circuit disruptions may be one of the shared pathologies in certain types of schizophrenia and autism. Future research is needed to establish the causal relationship among adolescent sleep defects, dopaminergic dysregulation, and adult behavioral changes in Shank3 mutation animals and other models.
Collapse
Affiliation(s)
- Wen-Jie Bian
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Oscar C González
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Arnold E, Soler-Llavina G, Kambara K, Bertrand D. The importance of ligand gated ion channels in sleep and sleep disorders. Biochem Pharmacol 2023; 212:115532. [PMID: 37019187 DOI: 10.1016/j.bcp.2023.115532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
On average, humans spend about 26 years of their life sleeping. Increased sleep duration and quality has been linked to reduced disease risk; however, the cellular and molecular underpinnings of sleep remain open questions. It has been known for some time that pharmacological modulation of neurotransmission in the brain can promote either sleep or wakefulness thereby providing some clues about the molecular mechanisms at play. However, the field of sleep research has developed an increasingly detailed understanding of the requisite neuronal circuitry and key neurotransmitter receptor subtypes, suggesting that it may be possible to identify next generation pharmacological interventions to treat sleep disorders within this same space. The aim of this work is to examine the latest physiological and pharmacological findings highlighting the contribution of ligand gated ion channels including the inhibitory GABAA and glycine receptors and excitatory nicotinic acetylcholine receptors and glutamate receptors in the sleep-wake cycle regulation. Overall, a better understanding of ligand gated ion channels in sleep will help determine if these highly druggable targets could facilitate a better night's sleep.
Collapse
|
7
|
Zhang W, Xin M, Song G, Liang J. Childhood absence epilepsy patients with cognitive impairment have decreased sleep spindle density. Sleep Med 2023; 103:89-97. [PMID: 36773472 DOI: 10.1016/j.sleep.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/22/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To explore the differences in sleep spindle (SS) characteristics during stage N2 sleep between children with childhood absence epilepsy and healthy controls, and between children with childhood absence epilepsy with or without cognitive impairment. METHODS We recruited 29 children (14 females, 15 males, mean age: 8 (2.5) years) with childhood absence epilepsy who did not undergone antiseizure treatments previously and 30 age-matched controls (14 females, 16 males, mean age: 9 (3.0) years). For all patients, data on medical history were collected. Each child was monitored overnight by long-term video electroencephalography and was evaluated by the Wechsler Intelligence Scale for Children-Fourth Edition. Next, we compared anterior SS characteristics, including density, frequency, cycle length, duration, amplitude, and percentage of sleep stages. RESULTS The childhood absence epilepsy group exhibited lower spindle density and duration in the first 37.5 min of stage N2 sleep than the control group (P < 0.01). A decrease in spindle density could be observed in the childhood absence epilepsy group with aggravated cognition impairment. The spindle density was substantially lower in the cognitively impaired group than in the cognitively unimpaired group (P < 0.01). No significant differences were observed in SS amplitude, SS frequency, SS cycle length, and the distribution of sleep stages. CONCLUSIONS Reduction in spindle density and duration is associated with the mechanisms underlying childhood absence epilepsy. The deficit in SS density is related with impaired cognition. This deficiency in SSs may be a useful predictive indicator of cognitive impairment in children with absence epilepsy, indicating that SSs may become a useful biomarker and potential adjuvant anti-seizure target for cognitive impairment caused by childhood absence epilepsy.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, China.
| | - Meiying Xin
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, China.
| | - Ge Song
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jianmin Liang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, China.
| |
Collapse
|
8
|
Identification of rare missense mutations in the glutamate ionotropic receptor AMPA type subunit genes in schizophrenia. Psychiatr Genet 2023; 33:20-25. [PMID: 36617743 DOI: 10.1097/ypg.0000000000000328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors significantly regulate the synaptic transmission and functions of various synaptic receptors. This study aimed to identify single nucleotide mutations in the glutamate receptor, ionotropic, AMPA type (GRIA) gene family, which is associated with schizophrenia. METHODS The exon regions of four genes (GRIA1, GRIA2, GRIA3, and GRIA4) encoding glutamate ionotropic receptor AMPA type proteins were resequenced in 516 patients with schizophrenia. We analyzed the protein function of the identified rare mutants via immunoblotting. RESULTS A total of 24 coding variants were detected in the GRIA gene family, including six missense mutations, 17 synonymous mutations, and one frameshift insertion. Notably, three ultra-rare missense mutations (GRIA1p.V182A, GRIA2p.P123Q, and GRIA4p.Y491H) were not documented in the single nucleotide polymorphism database, gnomAD genomes, and 1517 healthy controls available from Taiwan BioBank. Immunoblotting revealed GRIA4p.Y491H mutant with altered protein expressions in cultured cells compared with the wild type. CONCLUSION Our findings suggest that, in some patients affected by schizophrenia, the GRIA gene family harbors rare functional mutations, which support rare coding variants that could contribute to the genetic architecture of this illness. The in-vitro impacts of these rare pathological mutations on the pathophysiology of schizophrenia are worthy of future investigation.
Collapse
|
9
|
Huang Y, Liu Y, Song W, Liu Y, Wang X, Han J, Ye J, Han H, Wang L, Li J, Wang T. Assessment of Cognitive Function with Sleep Spindle Characteristics in Adults with Epilepsy. Neural Plast 2023; 2023:7768980. [PMID: 37101904 PMCID: PMC10125769 DOI: 10.1155/2023/7768980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/31/2022] [Accepted: 03/14/2023] [Indexed: 04/28/2023] Open
Abstract
Objective Epilepsy may cause chronic cognitive impairment by disturbing sleep plasticity. Sleep spindles play a crucial role in sleep maintenance and brain plasticity. This study explored the relationship between cognition and spindle characteristics in adult epilepsy. Methods Participants underwent one-night sleep electroencephalogram recording and neuropsychological tests on the same day. Spindle characteristics during N2 sleep were extracted using a learning-based system for sleep staging and an automated spindle detection algorithm. We investigated the difference between cognitive subgroups in spindle characteristics. Multiple linear regressions were applied to analyze associations between cognition and spindle characteristics. Results Compared with no/mild cognitive impairment, epilepsy patients who developed severe cognitive impairment had lower sleep spindle density, the differences mainly distributed in central, occipital, parietal, middle temporal, and posterior temporal (P < 0.05), and had relatively long spindle duration in occipital and posterior temporal (P < 0.05). Mini-Mental State Examination (MMSE) was associated with spindle density (pars triangularis of the inferior frontal gyrus (IFGtri): β = 0.253, P = 0.015, and P.adjust = 0.074) and spindle duration (IFGtri: β = -0.262, P = 0.004, and P.adjust = 0.030). Montreal Cognitive Assessment (MoCA) was associated with spindle duration (IFGtri: β = -0.246, P = 0.010, and P.adjust = 0.055). Executive Index Score (MoCA-EIS) was associated with spindle density (IFGtri: β = 0.238, P = 0.019, and P.adjust = 0.087; parietal: β = 0.227, P = 0.017, and P.adjust = 0.082) and spindle duration (parietal: β = -0.230, P = 0.013, and P.adjust = 0.065). Attention Index Score (MoCA-AIS) was associated with spindle duration (IFGtri: β = -0.233, P = 0.017, and P.adjust = 0.081). Conclusions The findings suggested that the altered spindle activity in epilepsy with severe cognitive impairment, the associations between the global cognitive status of adult epilepsy and spindle characteristics, and specific cognitive domains may relate to spindle characteristics in particular brain regions.
Collapse
Affiliation(s)
- Yajin Huang
- The Second Clinical Medical College, Lanzhou University/Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730000, China
| | - Yaqing Liu
- Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730000, China
| | - Wenjun Song
- Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730000, China
| | - Yanjun Liu
- Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730000, China
| | - Xiaoqian Wang
- The Second Clinical Medical College, Lanzhou University/Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730000, China
| | - Juping Han
- The Second Clinical Medical College, Lanzhou University/Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730000, China
| | - Jiang Ye
- Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730000, China
| | - Hongmei Han
- Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730000, China
| | - Li Wang
- Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730000, China
| | - Juan Li
- Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730000, China
| | - Tiancheng Wang
- Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Zhang Q, Yang P, Pang X, Guo W, Sun Y, Wei Y, Pang C. Preliminary exploration of the co-regulation of Alzheimer's disease pathogenic genes by microRNAs and transcription factors. Front Aging Neurosci 2022; 14:1069606. [PMID: 36561136 PMCID: PMC9764863 DOI: 10.3389/fnagi.2022.1069606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Alzheimer's disease (AD) is the most common form of age-related neurodegenerative disease. Unfortunately, due to the complexity of pathological types and clinical heterogeneity of AD, there is a lack of satisfactory treatment for AD. Previous studies have shown that microRNAs and transcription factors can modulate genes associated with AD, but the underlying pathophysiology remains unclear. Methods The datasets GSE1297 and GSE5281 were downloaded from the gene expression omnibus (GEO) database and analyzed to obtain the differentially expressed genes (DEGs) through the "R" language "limma" package. The GSE1297 dataset was analyzed by weighted correlation network analysis (WGCNA), and the key gene modules were selected. Next, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis for the key gene modules were performed. Then, the protein-protein interaction (PPI) network was constructed and the hub genes were identified using the STRING database and Cytoscape software. Finally, for the GSE150693 dataset, the "R" package "survivation" was used to integrate the data of survival time, AD transformation status and 35 characteristics, and the key microRNAs (miRNAs) were selected by Cox method. We also performed regression analysis using least absolute shrinkage and selection operator (Lasso)-Cox to construct and validate prognostic features associated with the four key genes using different databases. We also tried to find drugs targeting key genes through DrugBank database. Results GO and KEGG enrichment analysis showed that DEGs were mainly enriched in pathways regulating chemical synaptic transmission, glutamatergic synapses and Huntington's disease. In addition, 10 hub genes were selected from the PPI network by using the algorithm Between Centrality. Then, four core genes (TBP, CDK7, GRM5, and GRIA1) were selected by correlation with clinical information, and the established model had very good prognosis in different databases. Finally, hsa-miR-425-5p and hsa-miR-186-5p were determined by COX regression, AD transformation status and aberrant miRNAs. Conclusion In conclusion, we tried to construct a network in which miRNAs and transcription factors jointly regulate pathogenic genes, and described the process that abnormal miRNAs and abnormal transcription factors TBP and CDK7 jointly regulate the transcription of AD central genes GRM5 and GRIA1. The insights gained from this study offer the potential AD biomarkers, which may be of assistance to the diagnose and therapy of AD.
Collapse
Affiliation(s)
- Qi Zhang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Ping Yang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Xinping Pang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Wenbo Guo
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Yue Sun
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Yanyu Wei
- National Key Laboratory of Science and Technology on Vacuum Electronics, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Chaoyang Pang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
11
|
Czekus C, Steullet P, Orero López A, Bozic I, Rusterholz T, Bandarabadi M, Do KQ, Gutierrez Herrera C. Alterations in TRN-anterodorsal thalamocortical circuits affect sleep architecture and homeostatic processes in oxidative stress vulnerable Gclm -/- mice. Mol Psychiatry 2022; 27:4394-4406. [PMID: 35902628 PMCID: PMC9734061 DOI: 10.1038/s41380-022-01700-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
Schizophrenia is associated with alterations of sensory integration, cognitive processing and both sleep architecture and sleep oscillations in mouse models and human subjects, possibly through changes in thalamocortical dynamics. Oxidative stress (OxS) damage, including inflammation and the impairment of fast-spiking gamma-aminobutyric acid neurons have been hypothesized as a potential mechanism responsible for the onset and development of schizophrenia. Yet, the link between OxS and perturbation of thalamocortical dynamics and sleep remains unclear. Here, we sought to investigate the effects of OxS on sleep regulation by characterizing the dynamics of thalamocortical networks across sleep-wake states in a mouse model with a genetic deletion of the modifier subunit of glutamate-cysteine ligase (Gclm knockout, KO) using high-density electrophysiology in freely-moving mice. We found that Gcml KO mice exhibited a fragmented sleep architecture and impaired sleep homeostasis responses as revealed by the increased NREM sleep latencies, decreased slow-wave activities and spindle rate after sleep deprivation. These changes were associated with altered bursting activity and firing dynamics of neurons from the thalamic reticularis nucleus, anterior cingulate and anterodorsal thalamus. Administration of N-acetylcysteine (NAC), a clinically relevant antioxidant, rescued the sleep fragmentation and spindle rate through a renormalization of local neuronal dynamics in Gclm KO mice. Collectively, these findings provide novel evidence for a link between OxS and the deficits of frontal TC network dynamics as a possible mechanism underlying sleep abnormalities and impaired homeostatic responses observed in schizophrenia.
Collapse
Affiliation(s)
- Christina Czekus
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Site de Cery, CH-1008, Prilly-Lausanne, Switzerland
| | - Albert Orero López
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
| | - Ivan Bozic
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Thomas Rusterholz
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
| | - Mojtaba Bandarabadi
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Site de Cery, CH-1008, Prilly-Lausanne, Switzerland
| | - Carolina Gutierrez Herrera
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland.
- Department for Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
12
|
Ismail V, Zachariassen LG, Godwin A, Sahakian M, Ellard S, Stals KL, Baple E, Brown KT, Foulds N, Wheway G, Parker MO, Lyngby SM, Pedersen MG, Desir J, Bayat A, Musgaard M, Guille M, Kristensen AS, Baralle D. Identification and functional evaluation of GRIA1 missense and truncation variants in individuals with ID: An emerging neurodevelopmental syndrome. Am J Hum Genet 2022; 109:1217-1241. [PMID: 35675825 PMCID: PMC9300760 DOI: 10.1016/j.ajhg.2022.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
GRIA1 encodes the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors, which are ligand-gated ion channels that act as excitatory receptors for the neurotransmitter L-glutamate (Glu). AMPA receptors (AMPARs) are homo- or heteromeric protein complexes with four subunits, each encoded by different genes, GRIA1 to GRIA4. Although GluA1-containing AMPARs have a crucial role in brain function, the human phenotype associated with deleterious GRIA1 sequence variants has not been established. Subjects with de novo missense and nonsense GRIA1 variants were identified through international collaboration. Detailed phenotypic and genetic assessments of the subjects were carried out and the pathogenicity of the variants was evaluated in vitro to characterize changes in AMPAR function and expression. In addition, two Xenopus gria1 CRISPR-Cas9 F0 models were established to characterize the in vivo consequences. Seven unrelated individuals with rare GRIA1 variants were identified. One individual carried a homozygous nonsense variant (p.Arg377Ter), and six had heterozygous missense variations (p.Arg345Gln, p.Ala636Thr, p.Ile627Thr, and p.Gly745Asp), of which the p.Ala636Thr variant was recurrent in three individuals. The cohort revealed subjects to have a recurrent neurodevelopmental disorder mostly affecting cognition and speech. Functional evaluation of major GluA1-containing AMPAR subtypes carrying the GRIA1 variant mutations showed that three of the four missense variants profoundly perturb receptor function. The homozygous stop-gain variant completely destroys the expression of GluA1-containing AMPARs. The Xenopus gria1 models show transient motor deficits, an intermittent seizure phenotype, and a significant impairment to working memory in mutants. These data support a developmental disorder caused by both heterozygous and homozygous variants in GRIA1 affecting AMPAR function.
Collapse
Affiliation(s)
- Vardha Ismail
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Coxford Rd, Southampton SO165YA, UK
| | - Linda G Zachariassen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Annie Godwin
- European Xenopus Resource Centre, School of Biological Sciences, King Henry Building, King Henry I Street, Portsmouth PO1 2DY, UK
| | - Mane Sahakian
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK; University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK
| | - Karen L Stals
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK
| | - Emma Baple
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK; University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK
| | - Kate Tatton Brown
- South-West Thames Clinical Genetics Service, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Nicola Foulds
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Coxford Rd, Southampton SO165YA, UK
| | - Gabrielle Wheway
- Faculty of Medicine, University of Southampton, Duthie Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Matthew O Parker
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK
| | - Signe M Lyngby
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Miriam G Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Julie Desir
- Département de Génétique Clinique - Institut de Pathologie et de Génétique, Institut de Pathologie et de Génétique, Avenue Georges Lemaître, 25 6041 Gosselies, Belgium
| | - Allan Bayat
- Danish Epilepsy Centre, Department of Epilepsy Genetics and Personalized Medicine, 4293 Dianalund, Denmark; Department of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Maria Musgaard
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 75 Laurier Ave E, Ottawa, ON K1N 6N5, Canada
| | - Matthew Guille
- European Xenopus Resource Centre, School of Biological Sciences, King Henry Building, King Henry I Street, Portsmouth PO1 2DY, UK
| | - Anders S Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Diana Baralle
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Coxford Rd, Southampton SO165YA, UK; Faculty of Medicine, University of Southampton, Duthie Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
13
|
Adlan LG, Csordás-Nagy M, Bodosi B, Kalmár G, Nyúl LG, Nagy A, Kekesi G, Büki A, Horvath G. Sleep-Wake Rhythm and Oscillatory Pattern Analysis in a Multiple Hit Schizophrenia Rat Model (Wisket). Front Behav Neurosci 2022; 15:799271. [PMID: 35153694 PMCID: PMC8831724 DOI: 10.3389/fnbeh.2021.799271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Electroencephalography studies in schizophrenia reported impairments in circadian rhythm and oscillatory activity, which may reflect the deficits in cognitive and sensory processing. The current study evaluated the circadian rhythm and the state-dependent oscillatory pattern in control Wistar and a multiple hit schizophrenia rat model (Wisket) using custom-made software for identification of the artifacts and the classification of sleep-wake stages and the active and quiet awake substages. The Wisket animals have a clear light-dark cycle similar to controls, and their sleep-wake rhythm showed only a tendency to spend more time in non-rapid eye movement (NREM) and less in rapid eye movement (REM) stages. In spite of the weak diurnal variation in oscillation in both groups, the Wisket rats had higher power in the low-frequency delta, alpha, and beta bands and lower power in the high-frequency theta and gamma bands in most stages. Furthermore, the significant differences between the two groups were pronounced in the active waking substage. These data suggest that the special changes in the oscillatory pattern of this schizophrenia rat model may have a significant role in the impaired cognitive functions observed in previous studies.
Collapse
Affiliation(s)
- Leatitia Gabriella Adlan
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Mátyás Csordás-Nagy
- Department of Technical Informatics, Faculty of Science and Informatics, Institute of Informatics, University of Szeged, Szeged, Hungary
| | - Balázs Bodosi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - György Kalmár
- Department of Technical Informatics, Faculty of Science and Informatics, Institute of Informatics, University of Szeged, Szeged, Hungary
| | - László G. Nyúl
- Department of Image Processing and Computer Graphics, Faculty of Science and Informatics, Institute of Informatics, University of Szeged, Szeged, Hungary
| | - Attila Nagy
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Kekesi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Alexandra Büki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gyongyi Horvath
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- *Correspondence: Gyongyi Horvath,
| |
Collapse
|
14
|
Association of polygenic risk for schizophrenia with fast sleep spindle density depends on pro-cognitive variants. Eur Arch Psychiatry Clin Neurosci 2022; 272:1193-1203. [PMID: 35723738 PMCID: PMC9508216 DOI: 10.1007/s00406-022-01435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/15/2022] [Indexed: 11/14/2022]
Abstract
Cognitive impairment is a common feature in schizophrenia and the strongest prognostic factor for long-term outcome. Identifying a trait associated with the genetic background for cognitive outcome in schizophrenia may aid in a deeper understanding of clinical disease subtypes. Fast sleep spindles may represent such a biomarker as they are strongly genetically determined, associated with cognitive functioning and impaired in schizophrenia and unaffected relatives. We measured fast sleep spindle density in 150 healthy adults and investigated its association with a genome-wide polygenic score for schizophrenia (SCZ-PGS). The association between SCZ-PGS and fast spindle density was further characterized by stratifying it to the genetic background of intelligence. SCZ-PGS was positively associated with fast spindle density. This association mainly depended on pro-cognitive genetic variants. Our results strengthen the evidence for a genetic background of spindle abnormalities in schizophrenia. Spindle density might represent an easily accessible marker for a favourable cognitive outcome which should be further investigated in clinical samples.
Collapse
|
15
|
Ang G, Brown LA, Tam SKE, Davies KE, Foster RG, Harrison PJ, Sprengel R, Vyazovskiy VV, Oliver PL, Bannerman DM, Peirson SN. Deletion of AMPA receptor GluA1 subunit gene (Gria1) causes circadian rhythm disruption and aberrant responses to environmental cues. Transl Psychiatry 2021; 11:588. [PMID: 34782594 PMCID: PMC8593011 DOI: 10.1038/s41398-021-01690-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Dysfunction of the glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluA1 subunit and deficits in synaptic plasticity are implicated in schizophrenia and sleep and circadian rhythm disruption. To investigate the role of GluA1 in circadian and sleep behaviour, we used wheel-running, passive-infrared, and video-based home-cage activity monitoring to assess daily rest-activity profiles of GluA1-knockout mice (Gria1-/-). We showed that these mice displayed various circadian abnormalities, including misaligned, fragmented, and more variable rest-activity patterns. In addition, they showed heightened, but transient, behavioural arousal to light→dark and dark→light transitions, as well as attenuated nocturnal-light-induced activity suppression (negative masking). In the hypothalamic suprachiasmatic nuclei (SCN), nocturnal-light-induced cFos signals (a molecular marker of neuronal activity in the preceding ~1-2 h) were attenuated, indicating reduced light sensitivity in the SCN. However, there was no change in the neuroanatomical distribution of expression levels of two neuropeptides-vasoactive intestinal peptide (VIP) and arginine vasopressin (AVP)-differentially expressed in the core (ventromedial) vs. shell (dorsolateral) SCN subregions and both are known to be important for neuronal synchronisation within the SCN and circadian rhythmicity. In the motor cortex (area M1/M2), there was increased inter-individual variability in cFos levels during the evening period, mirroring the increased inter-individual variability in locomotor activity under nocturnal light. Finally, in the spontaneous odour recognition task GluA1 knockouts' short-term memory was impaired due to enhanced attention to the recently encountered familiar odour. These abnormalities due to altered AMPA-receptor-mediated signalling resemble and may contribute to sleep and circadian rhythm disruption and attentional deficits in different modalities in schizophrenia.
Collapse
Affiliation(s)
- Gauri Ang
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laurence A Brown
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- IT Services, University of Oxford, Oxford, UK
| | - Shu K E Tam
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kay E Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Rolf Sprengel
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, UK.
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Milinski L, Fisher SP, Cui N, McKillop LE, Blanco-Duque C, Ang G, Yamagata T, Bannerman DM, Vyazovskiy VV. Waking experience modulates sleep need in mice. BMC Biol 2021; 19:65. [PMID: 33823872 PMCID: PMC8025572 DOI: 10.1186/s12915-021-00982-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/14/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Homeostatic regulation of sleep is reflected in the maintenance of a daily balance between sleep and wakefulness. Although numerous internal and external factors can influence sleep, it is unclear whether and to what extent the process that keeps track of time spent awake is determined by the content of the waking experience. We hypothesised that alterations in environmental conditions may elicit different types of wakefulness, which will in turn influence both the capacity to sustain continuous wakefulness as well as the rates of accumulating sleep pressure. To address this, we compared the effects of repetitive behaviours such as voluntary wheel running or performing a simple touchscreen task, with wakefulness dominated by novel object exploration, on sleep timing and EEG slow-wave activity (SWA) during subsequent NREM sleep. RESULTS We find that voluntary wheel running is associated with higher wake EEG theta-frequency activity and results in longer wake episodes, as compared with exploratory behaviour; yet, it does not lead to higher levels of EEG SWA during subsequent NREM sleep in either the frontal or occipital derivation. Furthermore, engagement in a touchscreen task, motivated by food reward, results in lower SWA during subsequent NREM sleep in both derivations, as compared to exploratory wakefulness, even though the total duration of wakefulness is similar. CONCLUSION Overall, our study suggests that sleep-wake behaviour is highly flexible within an individual and that the homeostatic processes that keep track of time spent awake are sensitive to the nature of the waking experience. We therefore conclude that sleep dynamics are determined, to a large degree, by the interaction between the organism and the environment.
Collapse
Affiliation(s)
- Linus Milinski
- Department of Physiology, Anatomy and Genetics, University of Oxford/Sleep and Circadian Neuroscience Institute, Oxford, UK
| | - Simon P Fisher
- Department of Physiology, Anatomy and Genetics, University of Oxford/Sleep and Circadian Neuroscience Institute, Oxford, UK
| | - Nanyi Cui
- Department of Physiology, Anatomy and Genetics, University of Oxford/Sleep and Circadian Neuroscience Institute, Oxford, UK
| | - Laura E McKillop
- Department of Physiology, Anatomy and Genetics, University of Oxford/Sleep and Circadian Neuroscience Institute, Oxford, UK
| | - Cristina Blanco-Duque
- Department of Physiology, Anatomy and Genetics, University of Oxford/Sleep and Circadian Neuroscience Institute, Oxford, UK
| | - Gauri Ang
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Tomoko Yamagata
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford/Sleep and Circadian Neuroscience Institute, Oxford, UK.
| |
Collapse
|
17
|
Zhang Y, Geyfman A, Coffman B, Gill K, Ferrarelli F. Distinct alterations in resting-state electroencephalogram during eyes closed and eyes open and between morning and evening are present in first-episode psychosis patients. Schizophr Res 2021; 228:36-42. [PMID: 33434730 PMCID: PMC7987764 DOI: 10.1016/j.schres.2020.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 12/05/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022]
Abstract
Abnormalities in resting-state electroencephalogram (rs-EEG) activity have been previously reported in schizophrenia. While most rs-EEG recordings were performed in patients with chronic schizophrenia during eyes closed (EC), only a handful of studies have investigated rs-EEG activity during both EC and eyes open (EO) conditions. It is also unknown whether EC and EO rs-EEG alterations are present at illness onset, and whether they change during the day. Here, we performed EC and EO rs-EEG recordings in the morning (AM) and evening (PM) in twenty-six first-episode psychosis (FEP) patients and seventeen matched healthy controls (HC). In AM/EC rs-EEG, a widespread reduction was found in low alpha power in FEP relative to HC. In PM/EC, the FEP group demonstrated a trend toward decreased theta power in parietal regions, while decreased high alpha power in frontal and left parietal regions was present during PM/EO. Moreover, reduced low alpha power during AM/EC was associated with worse positive symptoms. Altogether, those findings indicate that rs-EEG alterations are present in FEP patients at illness onset, that they are linked to the severity of their psychosis, and that distinct RS abnormalities can be detected in different conditions of visual alertness and time of the day. Future work should therefore account for those factors, which will help reduce variability of rs-EEG findings across studies and may serve as monitoring biomarkers of illness severity in schizophrenia and related psychotic disorders.
Collapse
Affiliation(s)
- Yingyi Zhang
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA
| | - Alexandra Geyfman
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA
| | - Brian Coffman
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA
| | - Kathryn Gill
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA.
| |
Collapse
|
18
|
Imbalanced post- and extrasynaptic SHANK2A functions during development affect social behavior in SHANK2-mediated neuropsychiatric disorders. Mol Psychiatry 2021; 26:6482-6504. [PMID: 34021263 PMCID: PMC8760046 DOI: 10.1038/s41380-021-01140-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 02/04/2023]
Abstract
Mutations in SHANK genes play an undisputed role in neuropsychiatric disorders. Until now, research has focused on the postsynaptic function of SHANKs, and prominent postsynaptic alterations in glutamatergic signal transmission have been reported in Shank KO mouse models. Recent studies have also suggested a possible presynaptic function of SHANK proteins, but these remain poorly defined. In this study, we examined how SHANK2 can mediate electrophysiological, molecular, and behavioral effects by conditionally overexpressing either wild-type SHANK2A or the extrasynaptic SHANK2A(R462X) variant. SHANK2A overexpression affected pre- and postsynaptic targets and revealed a reversible, development-dependent autism spectrum disorder-like behavior. SHANK2A also mediated redistribution of Ca2+-permeable AMPA receptors between apical and basal hippocampal CA1 dendrites, leading to impaired synaptic plasticity in the basal dendrites. Moreover, SHANK2A overexpression reduced social interaction and increased the excitatory noise in the olfactory cortex during odor processing. In contrast, overexpression of the extrasynaptic SHANK2A(R462X) variant did not impair hippocampal synaptic plasticity, but still altered the expression of presynaptic/axonal signaling proteins. We also observed an attention-deficit/hyperactivity-like behavior and improved social interaction along with enhanced signal-to-noise ratio in cortical odor processing. Our results suggest that the disruption of pre- and postsynaptic SHANK2 functions caused by SHANK2 mutations has a strong impact on social behavior. These findings indicate that pre- and postsynaptic SHANK2 actions cooperate for normal neuronal function, and that an imbalance between these functions may lead to different neuropsychiatric disorders.
Collapse
|
19
|
Sleep disorders in autoimmune encephalitis. Lancet Neurol 2020; 19:1010-1022. [PMID: 33212053 DOI: 10.1016/s1474-4422(20)30341-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022]
Abstract
Sleep disorders in people with autoimmune encephalitis have received little attention, probably overshadowed by the presence of other neurological and psychiatric symptoms in this group of conditions. However, sleep disorders are frequent, often severe, and usually persist beyond the acute disease stage, interfering with patients' recovery and quality of life. Because autoimmune encephalitis can affect any brain network involved in sleep initiation and regulation, all types of sleep disorders can occur, with varying distinct associations, frequency, and intensity. Anti-IgLON5 and anti-NMDA receptor encephalitis exemplify two diseases in which sleep disorders are prominent. In anti-IgLON5 disease, sleep disorders were the core symptoms that led to the description of this disease, whereas in anti-NMDA receptor encephalitis, sleep disorders vary according to the disease stage along with other neuropsychiatric symptoms. Comprehensive, systematic, multicentre studies are needed to characterise sleep disorders and their mechanisms in autoimmune encephalitis.
Collapse
|
20
|
Frederick A, Yang JH, Guido-Estrada N, Soria-Lopez J, Sattar S. Electroencephalographic Findings in Pediatric Patients with Anti-N-Methyl-D-Aspartate Receptor Encephalitis: The San Diego Experience. JOURNAL OF PEDIATRIC EPILEPSY 2020. [DOI: 10.1055/s-0040-1718723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractDiagnosing anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis clinically can be challenging. There is a growing interest in identifying specific electroencephalographic features to help guide early management. A retrospective chart review was conducted of pediatric patients admitted to Rady Children's Hospital between January 1, 2010 and April 1, 2017. We included patients with the diagnosis of encephalitis who underwent continuous video electroencephalogram (VEEG) for at least 12 hours, and presented with less than 14 days of symptoms. We compared the electroencephalographic features of non-rapid eye movement (NREM) sleep between patients with antibody confirmed anti-NMDAR encephalitis and patients with encephalitis from other etiologies. We identified seven patients who met our inclusion criteria, five of whom were diagnosed with anti-NMDAR encephalitis. Four of the five patients had a significant reduction in NREM sleep, while one patient had increased NREM sleep associated with clinical catatonia and hypersomnolence. Sleep was preserved in the two cases of nonimmune mediated encephalitis. Our results suggest that a prolonged VEEG to capture sleep coupled with clinical features can aid in early diagnosis and treatment of anti-NMDAR encephalitis, often before confirmatory antibody testing is available.
Collapse
Affiliation(s)
- Aliya Frederick
- Division of Child Neurology, University of California San Diego and Rady Children's Hospital, San Diego, California, United States
- Department of Neurology, University of California San Diego, San Diego, California, United States
| | - Jennifer H. Yang
- Division of Child Neurology, University of California San Diego and Rady Children's Hospital, San Diego, California, United States
- Department of Neurology, University of California San Diego, San Diego, California, United States
| | - Natalie Guido-Estrada
- Division of Child Neurology, University of California San Diego and Rady Children's Hospital, San Diego, California, United States
- Department of Neurology, University of California San Diego, San Diego, California, United States
| | - Jose Soria-Lopez
- Department of Neurology, University of California San Diego, San Diego, California, United States
| | - Shifteh Sattar
- Division of Child Neurology, University of California San Diego and Rady Children's Hospital, San Diego, California, United States
- Department of Neurology, University of California San Diego, San Diego, California, United States
| |
Collapse
|
21
|
Bandarabadi M, Herrera CG, Gent TC, Bassetti C, Schindler K, Adamantidis AR. A role for spindles in the onset of rapid eye movement sleep. Nat Commun 2020; 11:5247. [PMID: 33067436 PMCID: PMC7567828 DOI: 10.1038/s41467-020-19076-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Sleep spindle generation classically relies on an interplay between the thalamic reticular nucleus (TRN), thalamo-cortical (TC) relay cells and cortico-thalamic (CT) feedback during non-rapid eye movement (NREM) sleep. Spindles are hypothesized to stabilize sleep, gate sensory processing and consolidate memory. However, the contribution of non-sensory thalamic nuclei in spindle generation and the role of spindles in sleep-state regulation remain unclear. Using multisite thalamic and cortical LFP/unit recordings in freely behaving mice, we show that spike-field coupling within centromedial and anterodorsal (AD) thalamic nuclei is as strong as for TRN during detected spindles. We found that spindle rate significantly increases before the onset of rapid eye movement (REM) sleep, but not wakefulness. The latter observation is consistent with our finding that enhancing spontaneous activity of TRN cells or TRN-AD projections using optogenetics increase spindle rate and transitions to REM sleep. Together, our results extend the classical TRN-TC-CT spindle pathway to include non-sensory thalamic nuclei and implicate spindles in the onset of REM sleep. During NREM sleep, spindles emerge from thalamocortical interactions. Here the authors carry out multisite thalamic and cortical recordings in freely behaving mice, to investigate the role of other non-classical thalamic sites in sleep spindle generation.
Collapse
Affiliation(s)
- Mojtaba Bandarabadi
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Carolina Gutierrez Herrera
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Thomas C Gent
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Claudio Bassetti
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital University Hospital Bern, Bern, Switzerland
| | - Kaspar Schindler
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital University Hospital Bern, Bern, Switzerland
| | - Antoine R Adamantidis
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland. .,Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital University Hospital Bern, Bern, Switzerland. .,Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
22
|
Sarasso S, Zubler F, Pigorini A, Sartori I, Castana L, Nobili L. Thalamic and neocortical differences in the relationship between the time course of delta and sigma power during NREM sleep in humans. J Sleep Res 2020; 30:e13166. [PMID: 32830381 DOI: 10.1111/jsr.13166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/14/2020] [Accepted: 07/22/2020] [Indexed: 11/28/2022]
Abstract
Sleep spindles and slow waves are the hallmarks of non-rapid eye movement (NREM) sleep and are produced by the dynamic interplay between thalamic and cortical regions. Several studies in both human and animal models have focused their attention on the relationship between electroencephalographic (EEG) spindles and slow waves during NREM, using the power in the sigma and delta bands as a surrogate for the production of spindles and slow waves. A typical report is an overall inverse relationship between the time course of sigma and delta power as measured by a single correlation coefficient both within and across NREM episodes. Here we analysed stereotactically implanted intracerebral electrode (Stereo-EEG [SEEG]) recordings during NREM simultaneously acquired from thalamic and from several neocortical sites in six neurosurgical patients. We investigated the relationship between the time course of delta and sigma power and found that, although at the cortical level it shows the expected inverse relationship, these two frequency bands follow a parallel time course at the thalamic level. Both these observations were consistent across patients and across different cortical as well as thalamic regions. These different temporal dynamics at the neocortical and thalamic level are discussed, considering classical as well as more recent interpretations of the neurophysiological determinants of sleep spindles and slow waves. These findings may also help understanding the regulatory mechanisms of these fundamental sleep EEG graphoelements across different brain compartments.
Collapse
Affiliation(s)
- Simone Sarasso
- Dipartimento di Scienze Biomediche e Cliniche ''L. Sacco'', Università degli Studi di Milano, Milan, Italy
| | - Frederic Zubler
- Sleep-Wake-Epilepsy Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrea Pigorini
- Dipartimento di Scienze Biomediche e Cliniche ''L. Sacco'', Università degli Studi di Milano, Milan, Italy
| | - Ivana Sartori
- Claudio Munari" Centre for Epilepsy Surgery, Niguarda Hospital, Milan, Italy
| | - Laura Castana
- Claudio Munari" Centre for Epilepsy Surgery, Niguarda Hospital, Milan, Italy
| | - Lino Nobili
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,Child Neuropsychiatry Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| |
Collapse
|
23
|
Banks GT, Guillaumin MCC, Heise I, Lau P, Yin M, Bourbia N, Aguilar C, Bowl MR, Esapa C, Brown LA, Hasan S, Tagliatti E, Nicholson E, Bains RS, Wells S, Vyazovskiy VV, Volynski K, Peirson SN, Nolan PM. Forward genetics identifies a novel sleep mutant with sleep state inertia and REM sleep deficits. SCIENCE ADVANCES 2020; 6:eabb3567. [PMID: 32851175 PMCID: PMC7423362 DOI: 10.1126/sciadv.abb3567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/29/2020] [Indexed: 05/17/2023]
Abstract
Switches between global sleep and wakefulness states are believed to be dictated by top-down influences arising from subcortical nuclei. Using forward genetics and in vivo electrophysiology, we identified a recessive mouse mutant line characterized by a substantially reduced propensity to transition between wake and sleep states with an especially pronounced deficit in initiating rapid eye movement (REM) sleep episodes. The causative mutation, an Ile102Asn substitution in the synaptic vesicular protein, VAMP2, was associated with morphological synaptic changes and specific behavioral deficits, while in vitro electrophysiological investigations with fluorescence imaging revealed a markedly diminished probability of vesicular release in mutants. Our data show that global shifts in the synaptic efficiency across brain-wide networks leads to an altered probability of vigilance state transitions, possibly as a result of an altered excitability balance within local circuits controlling sleep-wake architecture.
Collapse
Affiliation(s)
- Gareth T. Banks
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Mathilde C. C. Guillaumin
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ines Heise
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Petrina Lau
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Minghui Yin
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Nora Bourbia
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Carlos Aguilar
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Michael R. Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Chris Esapa
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Laurence A. Brown
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sibah Hasan
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Erica Tagliatti
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Elizabeth Nicholson
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rasneer Sonia Bains
- Mary Lyon Centre, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Sara Wells
- Mary Lyon Centre, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Vladyslav V. Vyazovskiy
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Kirill Volynski
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Stuart N. Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Patrick M. Nolan
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| |
Collapse
|
24
|
Zhang S, Xue R, Geng Y, Wang H, Li W. Fisetin Prevents HT22 Cells From High Glucose-Induced Neurotoxicity via PI3K/Akt/CREB Signaling Pathway. Front Neurosci 2020; 14:241. [PMID: 32265642 PMCID: PMC7096699 DOI: 10.3389/fnins.2020.00241] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/03/2020] [Indexed: 01/27/2023] Open
Abstract
Hyperglycemia has been widely considered as a key risk factor for diabetic encephalopathy which can cause neuronal apoptosis and cognitive deficits. The flavonoid compound, fisetin, possesses potential neuroprotective effects and also enhances learning and memory. However, the role of fisetin in hyperglycemia-induced neuronal cytotoxicity has not been fully elucidated. In the present study, HT22 murine hippocampal neuronal cell line was used to establish the injured cell model. Cell proliferation and cytotoxicity assay, Hoechst 33258 staining, qRT-PCR, western blot analysis, and specific inhibitor were used to investigate the effect and molecular mechanisms of fisetin on high glucose (HG)-induced neurotoxicity in HT22 cells. Our results showed that 125 μM and 48 h of treatment was identified as optimal damage parameter of HG. Fisetin significantly improved HG-inhibited cell viability. The levels of LDH, malondialdehyde (MDA), and superoxide dismutase (SOD) were noticeably modulated by fisetin, which alleviated HG-induced HT22 cell oxidative damage. Besides, the apoptosis of HT22 cells was rescued by fisetin pretreatment. In addition, fisetin also prevented HG-induced downregulation of the mRNA expression of Bdnf, Gdnf, synaptophysin (Syp), and glutamate ionotropic receptor AMPA type subunit 1 (Gria1) in cells. More importantly, the decreased phosphorylation of phosphoinositide 3 kinase (PI3K), Akt, and cAMP-response element binding protein (CREB) was rescued by fisetin treatment and that neuroprotective effect of fisetin was partially blocked by PI3K inhibitor, LY294002. These findings indicate that fisetin has potent neuroprotective effect and prevents HG-induced neurotoxicity by activation of PI3K/Akt/CREB pathway.
Collapse
Affiliation(s)
- Shenshen Zhang
- Precision Nutrition Innovation Center, College of Public Health, Zhengzhou University, Zhengzhou, China.,Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ran Xue
- Precision Nutrition Innovation Center, College of Public Health, Zhengzhou University, Zhengzhou, China.,Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yaping Geng
- Precision Nutrition Innovation Center, College of Public Health, Zhengzhou University, Zhengzhou, China.,Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hao Wang
- Precision Nutrition Innovation Center, College of Public Health, Zhengzhou University, Zhengzhou, China.,Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wenjie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Uygun DS, Katsuki F, Bolortuya Y, Aguilar DD, McKenna JT, Thankachan S, McCarley RW, Basheer R, Brown RE, Strecker RE, McNally JM. Validation of an automated sleep spindle detection method for mouse electroencephalography. Sleep 2020; 42:5185635. [PMID: 30476300 DOI: 10.1093/sleep/zsy218] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 11/12/2022] Open
Abstract
Study Objectives Sleep spindles are abnormal in several neuropsychiatric conditions and have been implicated in associated cognitive symptoms. Accordingly, there is growing interest in elucidating the pathophysiology behind spindle abnormalities using rodent models of such disorders. However, whether sleep spindles can reliably be detected in mouse electroencephalography (EEG) is controversial necessitating careful validation of spindle detection and analysis techniques. Methods Manual spindle detection procedures were developed and optimized to generate an algorithm for automated detection of events from mouse cortical EEG. Accuracy and external validity of this algorithm were then assayed via comparison to sigma band (10-15 Hz) power analysis, a proxy for sleep spindles, and pharmacological manipulations. Results We found manual spindle identification in raw mouse EEG unreliable, leading to low agreement between human scorers as determined by F1-score (0.26 ± 0.07). Thus, we concluded it is not possible to reliably score mouse spindles manually using unprocessed EEG data. Manual scoring from processed EEG data (filtered, cubed root-mean-squared), enabled reliable detection between human scorers, and between human scorers and algorithm (F1-score > 0.95). Algorithmically detected spindles correlated with changes in sigma-power and were altered by the following conditions: sleep-wake state changes, transitions between NREM and REM sleep, and application of the hypnotic drug zolpidem (10 mg/kg, intraperitoneal). Conclusions Here we describe and validate an automated paradigm for rapid and reliable detection of spindles from mouse EEG recordings. This technique provides a powerful tool to facilitate investigations of the mechanisms of spindle generation, as well as spindle alterations evident in mouse models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- David S Uygun
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| | - Fumi Katsuki
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| | - Yunren Bolortuya
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| | - David D Aguilar
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| | - James T McKenna
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| | - Stephen Thankachan
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| | - Robert W McCarley
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| | - Radhika Basheer
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| | - Ritchie E Brown
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| | - Robert E Strecker
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| | - James M McNally
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| |
Collapse
|
26
|
Ghoshal A, Uygun DS, Yang L, McNally JM, Lopez-Huerta VG, Arias-Garcia MA, Baez-Nieto D, Allen A, Fitzgerald M, Choi S, Zhang Q, Hope JM, Yan K, Mao X, Nicholson TB, Imaizumi K, Fu Z, Feng G, Brown RE, Strecker RE, Purcell SM, Pan JQ. Effects of a patient-derived de novo coding alteration of CACNA1I in mice connect a schizophrenia risk gene with sleep spindle deficits. Transl Psychiatry 2020; 10:29. [PMID: 32066662 PMCID: PMC7026444 DOI: 10.1038/s41398-020-0685-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 11/09/2022] Open
Abstract
CACNA1I, a schizophrenia risk gene, encodes a subtype of voltage-gated T-type calcium channel CaV3.3. We previously reported that a patient-derived missense de novo mutation (R1346H) of CACNA1I impaired CaV3.3 channel function. Here, we generated CaV3.3-RH knock-in animals, along with mice lacking CaV3.3, to investigate the biological impact of R1346H (RH) variation. We found that RH mutation altered cellular excitability in the thalamic reticular nucleus (TRN), where CaV3.3 is abundantly expressed. Moreover, RH mutation produced marked deficits in sleep spindle occurrence and morphology throughout non-rapid eye movement (NREM) sleep, while CaV3.3 haploinsufficiency gave rise to largely normal spindles. Therefore, mice harboring the RH mutation provide a patient derived genetic model not only to dissect the spindle biology but also to evaluate the effects of pharmacological reagents in normalizing sleep spindle deficits. Importantly, our analyses highlighted the significance of characterizing individual spindles and strengthen the inferences we can make across species over sleep spindles. In conclusion, this study established a translational link between a genetic allele and spindle deficits during NREM observed in schizophrenia patients, representing a key step toward testing the hypothesis that normalizing spindles may be beneficial for schizophrenia patients.
Collapse
Affiliation(s)
- Ayan Ghoshal
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA USA
| | - David S. Uygun
- Department of Psychiatry, VA Boston Healthcare System & Harvard Medical School, Boston, MA USA
| | - Lingling Yang
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA USA
| | - James M. McNally
- Department of Psychiatry, VA Boston Healthcare System & Harvard Medical School, Boston, MA USA
| | - Violeta G. Lopez-Huerta
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA USA
- Present Address: Department of Neurodevelopment and Physiology, Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Mario A. Arias-Garcia
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA USA
- Present Address: Department of Neurodevelopment and Physiology, Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| | - David Baez-Nieto
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA USA
| | - Andrew Allen
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA USA
| | - Megan Fitzgerald
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA USA
| | - Soonwook Choi
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA USA
| | - Qiangge Zhang
- McGovern Institute for Brain Research, MIT, Cambridge, MA USA
| | - Jen M. Hope
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA USA
| | - Karena Yan
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA USA
| | - Xiaohong Mao
- Novartis Institutes for BioMedical Research, 181 Mass Ave., Cambridge, MA 02139 USA
| | - Thomas B. Nicholson
- Novartis Institutes for BioMedical Research, 181 Mass Ave., Cambridge, MA 02139 USA
| | | | - Zhanyan Fu
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA USA
| | - Guoping Feng
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA USA
| | - Ritchie E. Brown
- Department of Psychiatry, VA Boston Healthcare System & Harvard Medical School, Boston, MA USA
| | - Robert E. Strecker
- Department of Psychiatry, VA Boston Healthcare System & Harvard Medical School, Boston, MA USA
| | - Shaun M. Purcell
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Jen Q. Pan
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA USA
| |
Collapse
|
27
|
Kompotis K, Hubbard J, Emmenegger Y, Perrault A, Mühlethaler M, Schwartz S, Bayer L, Franken P. Rocking Promotes Sleep in Mice through Rhythmic Stimulation of the Vestibular System. Curr Biol 2019; 29:392-401.e4. [DOI: 10.1016/j.cub.2018.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/29/2018] [Accepted: 12/06/2018] [Indexed: 10/27/2022]
|