1
|
Han X, Zhang C, Lei Q, Xu J, Zhou Y. Stiffness regulates extracellular matrix synthesis in fibroblasts by DDR1-TGF-β/STAT3 mechanotransduction axis. BIOMATERIALS ADVANCES 2025; 172:214240. [PMID: 40023083 DOI: 10.1016/j.bioadv.2025.214240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
For a long time, research on atherosclerosis (AS) has mainly focused on endothelial cells (ECs) and smooth muscle cells (SMCs) in blood vessels. Fibroblasts, however, being the major component in adventitia, little is known about their role. Fibroblasts are highly plastic cells, capable of undergoing phenotypic changes in response to various extracellular signals. Once activated, fibroblasts can promote fibrosis by altering the secretion of extracellular matrix (ECM). In this study, the effect of ECM stiffness on fibroblasts was investigated. Polyacrylamide (PA) gels with varying elastic moduli (1 kPa, 20 kPa and 100 kPa) were used as models for matrix stiffness. Human fibroblasts were cultured on these substrates, and their phenotypic and functional changes were examined. The data revealed that a collagen-binding receptor, Discoidin Domain Receptor 1 (DDR1), plays a central role in sensing mechanical stimuli from ECM. Matrix stiffness-induced phosphorylation of DDR1 suppresses the synthesis of ECM proteins in fibroblasts. The expression of ECM proteins on the 1 kPa substrate was significantly higher than that on the 20 kPa and 100 kPa substrates, while the phosphorylation level of DDR1 was notably reduced. After knocking out DDR1, the difference in ECM proteins expression among the three substrates with different stiffness levels disappeared. The signal transduction from DDR1 to ECM synthesis is mediated by the TGF-β/STAT3 signaling axis. Our study reveals how matrix stiffness regulates the synthesis of ECM in fibroblasts and paves the way for understanding the regulation of fibrotic process in the pathogenesis of AS.
Collapse
Affiliation(s)
- Xiaomei Han
- Department of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, PR China
| | - Chao Zhang
- Department of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, PR China
| | - Qian Lei
- Department of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, PR China
| | - Jin Xu
- Department of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, PR China
| | - Yue Zhou
- Department of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, PR China.
| |
Collapse
|
2
|
Yu H, Zhang G, Xu J, Wang X, Wang Y, Yang J, Li Z. Pharmacokinetic and tissue distribution analysis of sporoderm-removed Ganoderma lucidum spore powder in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1259:124626. [PMID: 40315696 DOI: 10.1016/j.jchromb.2025.124626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/04/2025]
Abstract
Ganoderma lucidum (Lingzhi), a medicinal mushroom, is recognized for its broad pharmacological activities, including potential health and longevity benefits. Notably, several triterpenoids derived from its spores and fruiting body have demonstrated anti-inflammatory, anti-tumor, and immunomodulatory effects. Despite their therapeutic promise, pharmacokinetic parameters and tissue distribution profiles of these bioactive components are not well characterized, representing a significant knowledge gap. This study aims to elucidate the pharmacokinetic characteristics and tissue distribution patterns of major triterpenoids in sporoderm-removed Ganoderma lucidum spore powder (RGLSP) in rats, thereby laying the groundwork for further optimization of these natural products. We established an ultra-performance liquid chromatography-multiple reaction monitoring-mass spectrometry (UPLC-MRM-MS) method to quantify 12 triterpenoids in rat plasma and tissues following oral administration of RGLSP. The method was validated according to US Food and Drug Administration bioanalytical guidelines and demonstrated good performance. Pharmacokinetic analysis revealed that the mean time to peak concentration for the 12 triterpenoids ranged from 0.25 to 2.33 h, with maximum concentrations varying from 42.52 to 643.13 ng/mL and the area under the concentration-time curve spanning 72.74 to 943.00 ng·h/mL. Tissue distribution results indicated rapid and extensive distribution of the triterpenoids in rat liver, lung, spleen, kidney, heart, and gastrointestinal tract, followed by gradual metabolism. After oral administration, major triterpenoids in RGLSP were rapidly absorbed into the plasma and widely distributed across five major viscera and the gastrointestinal tract, undergoing hepatic and intestinal circulation through metabolic pathways. These findings provide a valuable reference for the clinical application of RGLSP, as well as lead optimization of the triterpenoids.
Collapse
Affiliation(s)
- Huanhuan Yu
- Zhejiang ShouXianGu Botanical Drug Institute, Hangzhou, Zhejiang, China
| | - Guoliang Zhang
- Zhejiang ShouXianGu Botanical Drug Institute, Hangzhou, Zhejiang, China
| | - Jing Xu
- Zhejiang Key Laboratory of Biological Breeding and Exploitation of Edible and Medicinal Mushrooms, Wuyi, Zhejiang, China
| | - Xiaotong Wang
- Zhejiang ShouXianGu Pharmaceutical Co., Ltd, Wuyi, Zhejiang, China
| | - Ying Wang
- Zhejiang ShouXianGu Pharmaceutical Co., Ltd, Wuyi, Zhejiang, China
| | - Jihong Yang
- Zhejiang ShouXianGu Botanical Drug Institute, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Biological Breeding and Exploitation of Edible and Medicinal Mushrooms, Wuyi, Zhejiang, China; BoYu Intelligent Health Innovation Laboratory, Hangzhou, Zhejiang, China.
| | - Zhenhao Li
- Zhejiang ShouXianGu Botanical Drug Institute, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Biological Breeding and Exploitation of Edible and Medicinal Mushrooms, Wuyi, Zhejiang, China; Zhejiang ShouXianGu Pharmaceutical Co., Ltd, Wuyi, Zhejiang, China.
| |
Collapse
|
3
|
Sun B, Lin J. Kv1.3 expression on CD4 (+) T cells promotes interleukin-17A-associated airway inflammation and airway remodeling in asthma. Transl Res 2025; 279:40-54. [PMID: 40221022 DOI: 10.1016/j.trsl.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/24/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Different types of T helper cells play an important role in disease severity and treatment response in patients with asthma. The potassium channel Kv1.3 is a type of potentially therapeutic target in T-cell-mediated inflammatory diseases. OBJECTIVE This study aimed to explore the potential of Kv1.3 as a therapeutic target for asthma and to assess the efficacy of the Kv1.3 inhibitor PAP-1 in the treatment of asthma. METHODS Kv1.3 expression on CD4+T cells was determined using data from public databases. CD4+T cells were isolated from peripheral blood samples obtained from healthy individuals and patients with asthma. The mouse models of OVA-induced asthma and Kv1.3 knockout were established. The underlying mechanism was investigated using mouse splenic CD4+T cells and BEAS-2B cells. OVA-induced asthmatic mice were treated with the Kv1.3 selective blocker PAP-1. RESULTS Based on public data, we determined the distribution of Kv1.3 on CD4+T cells, its up-regulation in asthma, and its correlation with Th17/Treg balance. Upregulation of Kv1.3 in CD4+T cells was associated with enhanced activation of these cells and airway inflammation in patients and mice with asthma, accompanied by increased IL-17A levels in alveolar lavage fluid. Conversely, Kv1.3 deficiency significantly attenuated airway inflammation, lowered IL-17A levels in bronchoalveolar lavage fluid, and inhibited airway epithelial-mesenchymal transition in asthmatic mice. Furthermore, treatment with the Kv1.3 selective blocker PAP-1 attenuated inflammation in lung tissues and prevented airway remodeling in OVA-induced asthmatic mice. CONCLUSIONS Kv1.3 expression on CD4+ T cells was correlated with IL-17A-associated airway inflammation and remodeling in asthma, which may be regarded as a potential diagnostic marker and therapeutic target for asthma. TRANSLATIONAL SIGNIFICANCE Based on our study, Kv1.3 expression on CD4+T cells was correlated with IL-17A-associated airway inflammation and remodeling in asthma, which may be regarded as a potential diagnostic marker and therapeutic target for asthma. The treatment with the Kv1.3 selective blocker PAP-1 attenuated inflammation in lung tissues and prevented airway remodeling in OVA-induced asthmatic mice. Our discoveries offer novel perspectives for a better understanding of IL-17A-associated airway remodeling in asthma. The development of drugs targeting Kv1.3 holds application value for IL-17A-associated asthma.
Collapse
Affiliation(s)
- Bingqing Sun
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiangtao Lin
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Wang S, Cui Y, Wang L, Feng C, Sun Y, Huo B, Jiang H, Zhao M, Tu Y, Wang Q, Yang Y, Zhang Q. Aregs-IGFBP3-mediated SMC-like cells apoptosis impairs beige adipocytes formation in aged mice. Mol Metab 2025; 95:102125. [PMID: 40118146 PMCID: PMC11985090 DOI: 10.1016/j.molmet.2025.102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025] Open
Abstract
Aging is associated with a decline in the browning capacity of white adipose tissue (WAT), contributing to metabolic dysfunction. Beige adipocytes, which dissipate excess energy as heat, are a key feature of this process. In this study, we investigate the role of adipose stem and progenitor cells (ASPCs), specifically the Aregs (CD142+) subpopulation, in regulating beige adipocyte formation in aged mice under cold stimulation. Our findings reveal that Aregs significantly increase in the subcutaneous WAT (sWAT) of aged mice following cold exposure. We further demonstrate that Aregs secrete insulin-like growth factor binding protein 3 (IGFBP3), which appears to play a pivotal role in the cross-talk between adipogenesis-regulatory cells (Aregs) and smooth muscle cell-like (SMC-like) cells, thereby leading to the inhibition of beige adipocytes formation. Functional enrichment analysis highlighted the activation of TGFβ, MAPK and p53 signaling pathways in SMC-like cells, all of which are known to induce cell apoptosis and fibrosis. Moreover, IGFBP3 was found to interact with receptors and signaling molecules, including Egfr, Irf1 and Cdkn1a, in SMC-like cells, enhancing their apoptosis. Co-culture experiments confirmed that IGFBP3 significantly suppressed the formation of beige adipocytes, further corroborating its role in impairing browning. Overall, our study provides novel insights into the molecular mechanisms by which Aregs and IGFBP3 contribute to the age-related decline in WAT browning. These findings suggest potential therapeutic targets for reversing impaired WAT browning in aging and related metabolic disorders.
Collapse
Affiliation(s)
- Shifeng Wang
- Animal Zoology Department, Kunming Medical University, Kunming, 650000, China; School of Anesthesiology, Zunyi Medical University, Zunyi, 563000, China
| | - Yuanxu Cui
- Animal Zoology Department, Kunming Medical University, Kunming, 650000, China; Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Science and Technology Achievement Transformation Center, Kunming Medical University, Kunming, 635000, China
| | - Limei Wang
- Animal Zoology Department, Kunming Medical University, Kunming, 650000, China
| | - Chun Feng
- Department of Otolaryngology, The First People's Hospital of Yunnan Province, Kunming, 650000, China
| | - Yifei Sun
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Bangyun Huo
- Department of Otolaryngology, The First People's Hospital of Yunnan Province, Kunming, 650000, China
| | - Honglu Jiang
- Department of Otolaryngology, The First People's Hospital of Yunnan Province, Kunming, 650000, China
| | - Mingyu Zhao
- The First School of Clinical Medicine, Kunming Medical University, Kunming, 650000, China
| | - Yingying Tu
- The First School of Clinical Medicine, Kunming Medical University, Kunming, 650000, China
| | - Qiyue Wang
- The First School of Clinical Medicine, Kunming Medical University, Kunming, 650000, China
| | - Yutao Yang
- The First School of Clinical Medicine, Kunming Medical University, Kunming, 650000, China
| | - Qiang Zhang
- Animal Zoology Department, Kunming Medical University, Kunming, 650000, China.
| |
Collapse
|
5
|
Zhang J, Cheng L, Jiang S, Zhu D. Machine learning based identification of anoikis related gene classification patterns and immunoinfiltration characteristics in diabetic nephropathy. Sci Rep 2025; 15:15271. [PMID: 40312440 PMCID: PMC12046048 DOI: 10.1038/s41598-025-99395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 04/21/2025] [Indexed: 05/03/2025] Open
Abstract
Anoikis and immune cell infiltration are pivotal factors in the pathophysiological mechanism of diabetic nephropathy (DN), yet a comprehensive understanding of the mechanism is lacking. This work aimed to pinpoint distinctive anoikis-related genes (ARGs) in DN and delve into their impact on the immune landscape. Three datasets (GSE30528, GSE47184, and GSE96804) were downloaded from the gene expression omnibus (GEO) dataset. Differentially expressed genes (DEGs) were identified using the "limma" package, while ARGs were obtained from GSEA, GeneCard, and Harmonizome datasets. The intersection of DEGs and ARGs was analyzed for Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The CIBERSORT algorithm was employed to estimate the infiltration percentage of 22 immune cell types in DN renal tissue. Subsequently, the least absolute shrinkage and selection operator (LASSO), support vector machine recursive feature elimination (SVM-RFE), and random forest (RF) algorithms were adopted to screen key ARGs related to DN. After that, receiver operating characteristic (ROC) analysis was employed to assess the diagnostic accuracy of each gene and the real-time quantitative polymerase chain reaction (RT-qPCR) was adopted to quantitatively detect the expression of biomarkers in DN cell models. Finally, correlations between key genes and immune cell infiltration were analyzed, and a competitive endogenous ribonucleic acid (RNA) (ceRNA) network based on key genes was constructed. A total of 59 DEARGs were identified. GO functional annotation enrichment analysis revealed their involvement in kidney development, extracellular matrix (ECM), cytoplasmic vesicle cavity, immunoinflammatory response, and cytokine effect. KEGG pathway analysis indicated that MAPK, PI3K -Akt, IL -17, TNF, and HIF- 1 signaling pathways are critical for DN. In addition, seven key genes, including PDK4, S100A8, HTRA1, CHI3L1, WT1, CDKN1B, and EGF, were screened by machine learning algorithm. Most of these genes exhibited low expression in renal tissue of DN patients and positive correlation with neutrophils, and their expressions were verified in an external dataset cell model. The ceRNA analysis suggested potential regulatory pathways (H19/miR-15b-5p/PDK4 and KCNQ1T1/miR-1207-3p/WT1) influencing early DN progression. This work provided a comprehensive analysis of the role of DEARGs in DN for the first time, offering valuable insights for further understanding the disease mechanism and guiding clinical diagnosis, treatment, and research of DN.
Collapse
Affiliation(s)
- Jing Zhang
- The Third Department of Jiaozhou City Traditional Chinese Medicine Hospital, Jiaozhou, 266300, Shandong, China
| | - Lulu Cheng
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, China
| | - Shan Jiang
- Traditional Chinese Medicine Department of Linyi People's Hospital, Linyi, 276000, Shandong, China
| | - Duosheng Zhu
- The Third Department of Jiaozhou City Traditional Chinese Medicine Hospital, Jiaozhou, 266300, Shandong, China.
| |
Collapse
|
6
|
Sui Q, Zhu C, Shi S, Xu J, Zhang J, Wang A, Chen P, Liang G, Zhang Y. Ganoderic acid A: an in-depth review of pharmacological effects and molecular docking analysis. JOURNAL OF ETHNOPHARMACOLOGY 2025:119868. [PMID: 40316150 DOI: 10.1016/j.jep.2025.119868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/24/2025] [Accepted: 04/22/2025] [Indexed: 05/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderic acid A (GAA, C30H44O7) is one of the most abundant and active components of Ganoderic acids (GAs). GAs are highly oxidized tetracyclic triterpenoid compounds mainly derived from Ganoderma lucidum (Curtis) P. Karst (Chinese: ). GAA is primarily isolated from the fruiting body of Ganoderma lucidum. Modern pharmacological investigations have established the broad pharmacological effects of GAA, highlighting its notable influence on managing various conditions, including inflammatory diseases, neurodegenerative diseases, and cancer. This review provides a comprehensive summary of GAA's pharmacological activities. MATERIAL AND METHODS The literature in this review were searched in PubMed and China National Knowledge Infrastructure (CNKI) using the keywords "Ganoderic acid A", "Pharmacology" and "Pharmacokinetics". The literature cited in this review dates from 2000 to 2024. RESULTS According to the data, GAA exerts anti-inflammatory, antioxidant, antitumor, neuropsychopharmacological, hepatoprotective, cardiovascular, renoprotective, and lung protective effects by regulating a variety of signal transduction pathways, such as nuclear factor kappa-B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), Toll-like receptor 4 (TLR4), nuclear factor erythroid 2-related factor-2 (Nrf2), phosphoinositide-3-kinase (PI3K)/AKT, mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK), and Notch. Given its promising pharmacological activity, GAA holds excellent potential for treating human diseases. The pharmacokinetic properties of GAA have also been reviewed, revealing low bioavailability but high absorption and elimination rates. In addition, network pharmacology and molecular docking analyses verified that GAA plays a role in multiple diseases through MAPK3, tumor necrosis factor (TNF), caspase-3 (CASP3), peroxisome proliferator-activated receptor gamma (PPARG), and β-catenin (CTNNB1) signaling pathways. CONCLUSION GAA plays a pivotal role in various pathological and physiological processes, boasting broad application prospects. Furthermore, the network pharmacological results reveal the mechanisms of GAA in the treatment of multiple diseases. In the future, it is necessary to conduct further experiments to elucidate its specific mechanism of action, thus laying the foundation for the scientific utilization of GAA.
Collapse
Affiliation(s)
- Qi Sui
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China
| | - Chengkai Zhu
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China
| | - Sha Shi
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China
| | - Jiaqi Xu
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China
| | - Jingnan Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China
| | - Ao Wang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China; Department of Pharmacy, School of Medicine, Hangzhou City University, 50 Huzhou Rd, Hangzhou, Zhejiang, 310015, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peng Chen
- Department of Pharmacy, School of Medicine, Hangzhou City University, 50 Huzhou Rd, Hangzhou, Zhejiang, 310015, China.
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yi Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China.
| |
Collapse
|
7
|
Li Z, Yin S, Liu Y, Jiang M, Lin L. Effect of Porphyromonas gingivalis outer membrane vesicles on renal tubule epithelial-mesenchymal transition. J Periodontol 2025. [PMID: 40298282 DOI: 10.1002/jper.24-0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Studies have shown that Porphyromonas gingivalis (P. gingivalis) can promote the development of chronic kidney disease (CKD). In this study, we explored the epithelial-mesenchymal transition (EMT) process promoted by P. gingivalis outer membrane vesicles (OMVs) in renal interstitial fibrosis (RIF), thereby providing new ideas for the study of the relationship between periodontitis and CKD. METHODS For in vivo experiments, RIF models induced by unilateral ureteral obstruction (UUO) were constructed in 6-week-old C57BL/6 mice, followed by administration of P. gingivalis OMVs (100 µg) through the tail vein once every other day for 2 weeks. For in vitro experiments, the RIF model was established by transforming growth factor-beta (TGF-β)1-induced mouse renal tubular epithelial cells (RTECs), followed by the administration of 100 µg P. gingivalis OMVs. In vivo imaging system (IVIS) imaging and immunofluorescence were used to detect whether peripheral injection of P. gingivalis OMVs through the tail vein could enter mouse kidney tissue. Serum biochemical assays were performed to detect the renal function of the injected mice. Hematoxylin-eosin (HE) staining and Masson's trichrome staining were used to assess tubulointerstitial lesions and fibrosis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to detect gene expression levels of cytokines related to renal inflammation and fibrosis. The expression levels of EMT-related proteins in kidney tissue and RTECs were evaluated by immunofluorescence and Western blotting. The expression levels of EMT-related regulatory factors Snail1 and β-catenin in the renal tissues of mice in each group were detected by qRT-PCR and Western blotting. RESULTS P. gingivalis OMVs successfully entered the kidney tissue of the mice via circulation. P. gingivalis OMVs aggravated renal dysfunction, renal tubulointerstitial lesions, and fibrosis in UUO mice. P. gingivalis OMVs upregulated the gene expression of inflammatory and fibrosis-related factors. P. gingivalis OMVs induced renal tubular EMT exacerbation both in vivo and in vitro. P. gingivalis OMVs upregulated gene and protein expression levels of EMT-related regulatory factors such as β-catenin and Snail1. CONCLUSION P. gingivalis OMVs can aggravate renal dysfunction, tubulointerstitial disease, and RIF and may further aggravate EMT by regulating the expression of β-catenin and Snail1. PLAIN LANGUAGE SUMMARY Porphyromonas gingivalis is the main pathogenic factor of periodontitis. Chronic kidney disease (CKD) is a global epidemic that affects about 10% of the world's population. Renal interstitial fibrosis (RIF) is the common pathway of progression from CKD to end-stage kidney disease (ESKD). During the development of RIF, renal tubular epithelial cells (RTECs), as the most vulnerable intrinsic cells of the kidney, can be transformed into myofibroblasts through epithelial-mesenchymal transition (EMT). P. gingivalis outer membrane vesicles (OMVs) can reach deep tissues and activate host inflammatory response. Several studies have shown that P. gingivalis can increase kidney inflammation and immunosuppression through complex mechanisms, induce renal insufficiency, and affect CKD development. However, there are few reports about P. gingivalis OMVs and EMT. Our study found that P. gingivalis OMVs can aggravate renal dysfunction, tubulointerstitial disease, and RIF and may further aggravate EMT by regulating the expression of β-catenin and Snail1. Therefore, this finding provides a new strategy for preventing CKD/EMT from the perspective of treating periodontitis.
Collapse
Affiliation(s)
- Zhaorong Li
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Shoucheng Yin
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Yanqing Liu
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Muzhou Jiang
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Li Lin
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Wang J, Li ZL, Zhou Y, Li ZT, Tu Y, Hu XH, Zhu JH, Liu BC, Liu H. The Roxadustat (FG-4592) ameliorates tubulointerstitial fibrosis by promoting intact FGF23 cleavage. Cell Commun Signal 2025; 23:200. [PMID: 40281613 PMCID: PMC12032739 DOI: 10.1186/s12964-025-02175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHI) represents a novel therapeutic approach for renal anemia, a prevalent complication of chronic kidney disease (CKD). However, the effects of HIF-PHI on renal functional outcomes remain poorly characterized. Here, the potential effects of FG-4592, an orally administered HIF-PHI, on renal fibrosis were explored systematically. METHODS In this study, a CKD rat model was established through subtotal 5/6 nephrectomy. Rats were administered either FG-4592 or vehicle control via oral gavage three times weekly for 12 consecutive weeks. Additionally, recombinant FGF23 was continuously delivered via subcutaneously implanted Alzet osmotic minipumps for 28 days. RESULTS Interestingly, we found that CKD-induced anemia was significantly ameliorated in CKD rats with FG-4592 treatment. Meanwhile, markedly alleviated histopathological changes and renal tubulointerstitial fibrosis (TIF) were observed in rats with FG-4592 administration. Notably, serum levels of intact FGF23 (iFGF23) were significantly reduced following FG-4592 administration in CKD rats. This finding was subsequently validated in CKD patients receiving Roxadustat therapy. Mechanistically, we illustrated that inhibition of the iFGF23-WNT5A pathway was the exact mechanism by which FG-4592 ameliorated TIF. Further, we also demonstrated that transcriptional activation of Furin enzyme was the exact molecular mechanism for FG-4592-mediated iFGF23 cleavage. CONCLUSIONS FG-4592 attenuates TIF through Furin-mediated proteolytic cleavage of iFGF23. These findings provide novel mechanistic insights into HIF-PHI-mediated renal protection and establish a theoretical framework for clinical translation.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, 210009, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, 210009, China
| | - Yan Zhou
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, 210009, China
| | - Zhong-Tang Li
- Department of Paediatrics, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yan Tu
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, 210009, China
| | - Xin-Hui Hu
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, 210009, China
| | - Jin-Hua Zhu
- Department of Nephrology, People's Hospital of Yangzhong City, Zhenjiang, Jiangsu, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, 210009, China.
| | - Hong Liu
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
9
|
Zhang R, Li N, Fan Y, Qing D, Zhao S, Ren X, Wang A, Gao Z, Fan Y. A multi-omics study reveals molecular characteristics and therapeutic targets of salidroside in reducing TGF-β2-induced ECM expression. Exp Eye Res 2025; 256:110386. [PMID: 40216062 DOI: 10.1016/j.exer.2025.110386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Primary open-angle glaucoma (POAG) is a leading cause of irreversible blindness worldwide, driven by elevated intraocular pressure (IOP) due to trabecular meshwork (TM) fibrosis, extracellular matrix (ECM) accumulation, and increased aqueous humor outflow resistance. Transforming growth factor-beta 2 (TGF-β2) promotes the expression of fibrosis-related genes, exacerbating these effects. Salidroside, a bioactive compound, has been shown to inhibit TGF-β2-induced ECM expression and alleviate ocular hypertension. However, its underlying molecular mechanisms remain unclear. This study explores the transcriptional, proteomic, and metabolic changes in human TM cells treated with TGF-β2 and salidroside. Human TM cells were treated with TGF-β2 (5 ng/mL) for 48 h, followed by salidroside (30 μM) for 24 h. Multi-omics analyses, including transcriptomics, label-free proteomics, and non-targeted metabolomics, were performed to identify differentially expressed genes (DEGs), proteins (DEPs), and metabolites. The results revealed that TGF-β2 inhibited HTM cell metabolism, affecting pathways like the TCA cycle. Salidroside restores balance by regulating 15 key biomolecules, including MELTF and SLC25A10, through dual-level and post-translation mechanisms. ROC and docking analyses highlight salidroside's role in enhancing metabolic transport and energy activity, with SLC25A10 also linked to RNA processing, showcasing its therapeutic potential. These findings provide valuable insights into POAG pathogenesis and the therapeutic potential of salidroside, offering a foundation for the future development of novel treatment strategies targeting transcriptional, translational, and metabolic dysregulation in POAG.
Collapse
Affiliation(s)
- Rong Zhang
- The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Ning Li
- The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yuanfu Fan
- Department of Ophthalmology, Huaiyuan Hospital of Traditional Chinese Medicine, Huaiyuan, Anhui, China
| | - Dai Qing
- The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Sijie Zhao
- The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xiaohui Ren
- The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Aiqin Wang
- The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Ziqing Gao
- The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China.
| | - Yuchen Fan
- The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, Bengbu, Anhui, China.
| |
Collapse
|
10
|
Lei L, Xiang YX, Luo ML, Zhang ZY, Wu HW, Tang C, Cui TJ, Zhang XM, Wang XH, Delic D, Klein T, Liu Y, Krämer BK, Zheng ZH, Lu YP, Hocher B, Zhu T. Intercellular Communication Network of CellChat Uncovers Mechanisms of Kidney Fibrosis Based on Single-Cell RNA Sequencing. Kidney Blood Press Res 2025; 50:276-299. [PMID: 40112793 DOI: 10.1159/000545209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a global health concern, with renal fibrosis being a major pathological feature. Empagliflozin (Empa), a sodium-glucose co-transporter-2 inhibitor, has shown promise in protecting the kidney. This study aimed to investigate the effects of Empa on renal fibrosis in a nondiabetic CKD model and to elucidate the underlying mechanisms. METHODS We established a CKD model using 5/6 nephrectomy (5/6 Nx) rats and divided them into three groups: placebo-treated sham surgery rats, placebo-treated 5/6 Nx rats, and Empa-treated 5/6 Nx rats. Kidney function was assessed by measuring blood urea nitrogen, serum creatinine, and urinary albumin-to-creatinine ratio. Renal fibrosis was evaluated histologically. Single-cell RNA sequencing (scRNA-seq) was performed to analyze intercellular communication networks and identify alterations in ligand-receptor pairs and signaling pathways involved in fibrosis. RESULTS Empa treatment significantly improved kidney function and reduced renal interstitial fibrosis in 5/6 Nx rats. scRNA-seq revealed that Empa modulated the TGF-β signaling pathway, inhibited intercellular communication, and reduced the expression of fibrotic genes such as COLLAGEN, FN1, THBS, and LAMININ. Furthermore, Empa downregulated GRN gene expression, weakened signal transmission in the MIF pathway, consequently reduced the interaction between M2 macrophages and other cell types, such as endothelial cells, fibroblasts, and mesangial cells. CONCLUSION This study elucidates the potential mechanisms by which Empa slows the progression of renal fibrosis in nondiabetic CKD. By reducing the number of M2 macrophages and inhibiting signal transduction in both pro-inflammatory and fibrotic pathways, Empa modulates the intercellular communication network in renal cells, offering a promising therapeutic strategy for CKD management.
Collapse
Affiliation(s)
- Lei Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yun-Xiu Xiang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Mao-Lin Luo
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Endocrinology and Metabolism, People's Hospital of Liwan District, Guangzhou, China
| | - Ze-Yu Zhang
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Hong-Wei Wu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Tian-Jiao Cui
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xue-Mei Zhang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiao-Hua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Denis Delic
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Thomas Klein
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Yvonne Liu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany,
- Medical Faculty, Charité Universitätsmedizin Berlin, Berlin, Germany,
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Zhi-Hua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yong-Ping Lu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Institute of Medical Diagnostics, IMD, Berlin, Germany
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- School of Medicine, Central South University, Changsha, China
| | - Ting Zhu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
11
|
Huang Q, Shi Z, Zheng D, Chen H, Huang Q. Seabuckthorn polysaccharide alleviates renal fibrosis in a mouse model of diabetic nephropathy via p311/TGFβ1/Fstl1 signaling pathway. Pathol Res Pract 2025; 267:155808. [PMID: 39951942 DOI: 10.1016/j.prp.2024.155808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 02/17/2025]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a primary microvascular complication of diabetes with characteristics of renal fibrosis. Seabuckthorn polysaccharide (SP) is an extract from Seabuckthron berries (Hippophae rhamnoides L.) with antioxidant, anti-fatigue, anti-inflammation, and hepatoprotective properties. This current work aimed to investigate the effect of SP on DN-induced kidney fibrosis. METHODS STZ-induced DN mouse model was constructed by intraperitoneally injecting 50 mg/kg STZ for five days. Various doses of SP were orally administered to mice. Biochemical analysis was performed to measure blood biochemical parameters. Masson's trichrome staining of renal tissues was conducted to analyze fibrotic area. Immunofluorescence staining was performed to assess E-cadherin and α-SMA expressions in kidney samples. Serum MMP2 level was evaluated by corresponding ELISA kit, and Timp2 level was subjected to RT-qPCR analysis. PCR and western blot were conducted to quantify p311, TGFβ1, and Fstl1 levels in renal samples. RESULTS SP reversed the changes in body weight, fasting blood glucose and renal function indicators in diabetic mice. SP lessened renal fibrotic areas in diabetic mice and inhibited epithelial-mesenchymal transition (EMT) by increasing E-cadherin level and reducing α-SMA expression. Fibrotic genes MMP2 and TIMP2 were highly expressed in mice with DN, and their dysregulated expressions were reversed by SP administration. Additionally, SP suppressed the activation of p311/TGFβ1/Fstl1 signaling pathway in renal tissues of diabetic mice. CONCLUSIONS SP alleviates diabetic nephropathy by improving renal functions, alleviating renal fibrosis, and hampering EMT process via downregulation of fibrotic genes and inactivation of the p311/TGFβ1/Fstl1 pathway.
Collapse
Affiliation(s)
- Qian Huang
- Department of Teaching and Research Section of Physiology, Basic Medicine Department, Quanzhou Medical College, Quanzhou 362011, China
| | - Zilu Shi
- Department of Nephrology, First Hospital of Quanzhou Affiliated to Fujian Medical College, Quanzhou 362000, China.
| | - Dandan Zheng
- Department of Teaching and Research Section of Physiology, Basic Medicine Department, Quanzhou Medical College, Quanzhou 362011, China
| | - Huiqin Chen
- Department of Teaching and Research Section of Physiology, Basic Medicine Department, Quanzhou Medical College, Quanzhou 362011, China
| | - Qiuhong Huang
- Department of Teaching and Research Section of Physiology, Basic Medicine Department, Quanzhou Medical College, Quanzhou 362011, China
| |
Collapse
|
12
|
Cao W, Huang L, Yu H, Qian Y, Liu L, Xu M, Li S, Zhou H, Li F. Calycosin extracted from Astragali Radix reduces NETs formation to improve renal fibrosis via TLR4/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119391. [PMID: 39855434 DOI: 10.1016/j.jep.2025.119391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/20/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragali Radix (A. Radix) is the dry root of the leguminous plants Astragalus membranaceus (Fisch) Beg. var. mongholicus (Beg) Hsiao, and Astragalus membranaceus (Fisch) Bge., being used as a medicinal and edible resource. AR is used in traditional Chinese medicine prescriptions to treat chronic nephritis. Calycosin (CA), the primary active compound derived from Astragali Radix, shows significant antifibrotic effects in multiple organs, but the anti-renal fibrosis effect of CA is rarely reported, and the associated mechanism of action is still need to be elucidated. AIM OF THE STUDY The objective of this study was to investigate the protective effects of CA on the kidney against renal fibrosis and the underlying molecular mechanisms. Evaluation of the effects of CA on renal fibrosis using unilateral ureteral obstruction (UUO) mice and transforming growth factor β1 (TGF β1)-induced cell fibrosis. The mechanism of action supporting the investigated anti-renal fibrosis effects were studied by a series of biochemical experiments. RESULTS Our research demonstrated that CA reduced kidney cell fibrosis in mice with UUO and in TGF-β1-stimulated NRK-52E cells. Additionally, CA mitigated renal fibrosis via toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) and had a synergistic effect with resatorvid (TAK-242). Our findings revealed an unobserved impact of CA in inhibiting neutrophil extracellular traps (NETs) formation in UUO mice and neutrophils activated by phorbol 12-myristate 13-acetate. CONCLUSIONS Our findings revealed that calycosin reduces NETs production to alleviate renal fibrosis via TLR4 and NF-κB, supporting its potential as a strategy for treating renal fibrosis.
Collapse
Affiliation(s)
- Wenjie Cao
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Linsheng Huang
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Shiyan, 442000, China
| | - Huifan Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, China; Institute of Biomedicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Yongshuai Qian
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Li Liu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Mao Xu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Siyi Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Fei Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
13
|
Cao Y, Wen Y, Zhou Z, Xi R, Shuai W, Zhang J, Suksamrarn A, Zhang G, Lu XX, Wang F. Discovery of novel capsaicin analogs as TRPV1 inhibitors for the treatment of idiopathic pulmonary fibrosis. Eur J Med Chem 2025; 284:117229. [PMID: 39826937 DOI: 10.1016/j.ejmech.2024.117229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease for which few drugs are available in clinical practice. Here, we identified novel capsaicin analogs by combining in-house chemical library screening and further structural optimization. (E)-1-(3,4-dihydroxyphenyl)-7-phenylhept-1-en-3-one (Compound 14) was found to be the most potent in inhibiting TGF-β-induced collagen accumulation, proliferation and migration in fibroblast cells. Furthermore, compound 14 (IC50 = 0.51 ± 0.06 μM) showed over 100-fold increasing antifibrotic activity compared to capsaicin (IC50 = 53.71 ± 4.78 μM). Notably, compound 14 could target TRPV1, thereby affecting the expression of the fibrosis markers Collagen Ⅰ and α-SMA by inhibiting the TGF-β/Smads and MAPK pathways to exert antifibrotic activity in vitro. Compound 14 significantly inhibited collagen deposition in lung tissues, ameliorated alveolar structures, and increased survival rates in mice with bleomycin-induced pulmonary fibrosis. In addition, compound 14 possessed lower cytotoxicity (compared to nitedanib) and no toxicity in mice. Overall, compound 14 promise as a potential drug candidate for the treatment of IPF.
Collapse
Affiliation(s)
- Yu Cao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yongju Wen
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; College of Chemistry and Bioengineering Yichun University, Yichun, 336000, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zongyuan Zhou
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ruiying Xi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, 610041, PR China
| | - Jichao Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Xiao-Xia Lu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| |
Collapse
|
14
|
Tan K, Deng J, Liu Y, Zhang Y, Xiong Y, Yuan S, Liu J, Chen Z, Liu Y, Cao W. Yiqi Juanshen decoction alleviates renal interstitial fibrosis by targeting the LOXL2/PI3K/AKT pathway to suppress EMT and inflammation. Sci Rep 2025; 15:4248. [PMID: 39905060 PMCID: PMC11794949 DOI: 10.1038/s41598-025-86622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
Chronic kidney disease (CKD) is a major health concern, with renal interstitial fibrosis (RIF) as a key feature. Effective management of RIF is crucial for treating CKD. Yiqi Juanshen decoction (YQJSD), as traditional Chinese medicine, has shown promising results in CKD treatment. This study evaluates YQJSD's effectiveness in ameliorating RIF and explores the underlying molecular mechanisms using the unilateral ureteral obstruction (UUO) model. YQJSD has been shown to effectively reduce serum creatinine and blood urea nitrogen levels, decrease extracellular matrix deposition, and down-regulate the expression of α-SMA, COL4α1, Fibronectin (FN). Mechanistically, YQJSD exerts its effects by modulating multiple pathways: it inhibits the NF-κB signaling pathway, inhibiting the expression of pro-inflammatory cytokines like NF-κB1, IL-1β, TNF-α, and CCR1. Simultaneously, YQJSD suppresses the epithelial-mesenchymal transition (EMT) by downregulating the expression of Snail1, Vimentin, Twist1, and FSP1, while increasing E-cadherin expression. Moreover, YQJSD can regulate the PI3K/AKT signaling pathway by decreasing the expression of LOXL2 and PIK3R1, along with p-AKT1/2/3. This modulation of the LOXL2/PI3K/AKT pathway contributes to the inhibition of both EMT and inflammation, highlighting a critical role in the therapeutic intervention against RIF. These findings suggest that YQJSD may serve as a promising therapeutic management of RIF in CKD patients.
Collapse
Affiliation(s)
- Kaiyue Tan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jingwei Deng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yi Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yudi Zhang
- College of Combination of Chinese and Western Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Yu Xiong
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Su Yuan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jun Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zhiwei Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yuanyuan Liu
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Wenfu Cao
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
15
|
Elshamy AM, El Tantawy AF, Basha EH, Eltabaa EF, Arakeeb HM, Ahmed AS, Abdelsattar AM, Ibrahim RR, El Deeb OS, Eid AM, Mashal SS, Safa MA, Shalaby AM, Ibrahim HA. Ganoderic acid a potential protective impact on bleomycin (BLM) -induced lung fibrosis in albino mice: Targeting caveolin 1/TGF-β/ Smad and P38MAPK signaling pathway. Arch Biochem Biophys 2025; 764:110284. [PMID: 39740698 DOI: 10.1016/j.abb.2024.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/25/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Bleomycin (BLM), an anticancer medication, can exacerbate pulmonary fibrosis by inducing oxidative stress and inflammation. Anti-inflammatory, anti-fibrotic, and antioxidant properties are exhibited by ganoderic acid A (GAA). AIM So, we aim to assess GAA's protective impact on lung fibrosis induced via BLM. METHOD Forty mice were randomly classified into four groups. Lung fibrosis was induced by injection of BLM intraperitoneally (15 mg/kg body weight). GAA was given by oral gavage (25 mg/kg body weight). Lung tissue MDA, TAC, and GSH were assessed spectrophotometrically. As well, TGFβ, p38 MAPK, TNF-α, IL-1β, and CAV1 levels were measured by enzyme-linked immunosorbent assay. Gene expression of tumor growth factor beta (TGF-β), Smad2, Smad3, and glutamate-cysteine ligase (GCL) were also evaluated. RESULTS GAA had significantly improved biochemical biomarkers as well as histopathology of the lung. The protective impact of GAA may be linked to the upregulation of GCL gene expression and subsequent GSH levels. In addition, the GAA-treated group showed a significant decrement in the levels of TGF-β, Smad2&3, P38 MAPK, TNF-α, IL1β, and MDA compared to BLM induced lung fibrosis group. GAA has a protective impact on lung fibrosis induced by BLM via downregulation of TGF-β and upregulation of CAV1 level and GCL expression which may play a critical role in the improvement of the pathogenesis of lung fibrosis induced via BLM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hoda A Ibrahim
- Medical Biochemistry & Molecular Biology Department, Egypt
| |
Collapse
|
16
|
Qing J, Zhang L, Fan R, Zhi H, Li C, Li Y, Wu J, Han C, Li Y. GPX4 expression changes in proximal tubule cells highlight the role of ferroptosis in IgAN. Sci Rep 2025; 15:3886. [PMID: 39890853 PMCID: PMC11785777 DOI: 10.1038/s41598-025-87228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 01/17/2025] [Indexed: 02/03/2025] Open
Abstract
As an important mechanism of renal injury, oxidative stress (OS) is inseparable from the occurrence of renal fibrosis and the rapid progression of renal failure. However, the contribution of OS to IgA nephropathy (IgAN), the primary driver of chronic kidney disease remains uncertain. To investigate the effects of OS in IgAN, and identify the mechanisms of cell and tissue injury and protection, single-cell RNA sequencing (scRNA-seq) data and microarray data of IgAN were collected and analyzed. Through gene set variation analysis (GSVA), we identified significant alterations in the activity of multiple OS pathways within the proximal tubule cells (PTCs) of IgAN patients. Subsequent enrichment analysis revealed that the differentially expressed genes associated with OS in PTCs were primarily linked to the process of ferroptosis. Therefore, regulators of ferroptosis were collected to define the ferroptosis activity of PTCs in IgAN, and we found that the activity of suppressing ferroptosis was significantly enhanced. Moreover, being the central controller of ferroptosis, the expression of GPX4 in the PTCs of IgAN is extremely significant, which has been further verified by immunohistochemistry in kidney tissues of IgAN patients. Additionally, the GSVA of microarray data of IgAN indicated that the activity of driving ferroptosis and suppressing ferroptosis in tubulointerstitium were markedly decreased, however, the inhibition of ferroptosis in the tubulointerstitium of IgAN is relatively stronger. These findings demonstrate that ferroptosis inhibition may be a potential mechanism to alleviate OS injury in IgAN, and GPX4 could not only function as a specific marker for PTCs in IgAN but also represent a potential therapeutic target to halt the progression of the disease.
Collapse
Affiliation(s)
- Jianbo Qing
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan, 030001, China
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Lijuan Zhang
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan, 030001, China
| | - Ru Fan
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan, 030001, China
| | - Huiwen Zhi
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan, 030001, China
| | - Changqun Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan, 030001, China
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yaheng Li
- Laboratory for Molecular Diagnosis and Treatment of Kidney Disease, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan, 030001, China
| | - Junnan Wu
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Chongyang Han
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan, 030001, China.
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
17
|
Guo Z, Xie Y, Liu H, Xiao J, Chen R, Wu M, Peng J, Shen A. [Wogonoside Attenuates Hypertension-Induced Renal Injury Through Modulation of the MAPK Signaling Pathway: A Mechanism Study]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2025; 56:41-50. [PMID: 40109455 PMCID: PMC11914008 DOI: 10.12182/20250160103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Indexed: 03/22/2025]
Abstract
Objective To investigate the potential therapeutic effects, targets, and pathways of wogonoside in hypertension-induced renal injury using the Gene Expression Omnibus (GEO) database and network pharmacology, and to validate the effects of wogonoside intervention on the renal tissues of spontaneously hypertensive rats (SHR), angiotensin Ⅱ (Ang Ⅱ)-stimulated NRK-52E cell apoptosis, and the regulation of relevant pathways through in vivo and in vitro experiments. Methods GEO dataset and network pharmacology analyses were performed to investigate the key therapeutic targets of wogonoside for hypertensive nephropathy. The STRING database was used to analyze protein-protein interactions. Biological functions were annotated via Gene Ontology (GO), and the potential signaling pathways were enriched using the Kyoto Encyclopedia of Genes and Genomes (KEGG). SHR were randomly divided into groups and given low, medium, or high doses of wogonoside (0.075, 0.75, and 7.5 mg/kg) via gastric gavage for 10 weeks. Morphological changes in the kidney tissue were assessed by hematoxylin-eosin (HE) staining. Serum levels of inflammatory cytokines, including tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and IL-6, were measured using ELISA. Apoptosis rates were evaluated by TUNEL staining, and Western blot was performed to determine the expression of Bax, Bcl-2, cleaved caspase-3, and caspase-3, and the expression of phosphorylated and total extracellular signal-regulated kinases (ERK) and p38 mitogen-activated protein kinase (MAPK) proteins. An in vitro model of Ang Ⅱ-stimulated NRK-52E cells was constructed and was treated with wogonoside at different concentrations (25, 50, or 100 μmol/L) for 24 h. The apoptosis rates were then assessed by Annexin V staining, and Western blot was performed to validate the expression of apoptosis-related and pathway-associated proteins. Results Analysis of dataset GSE41453 revealed 11673 upregulated and 5902 downregulated genes in the renal tissues of SHR compared to the Wistar Kyoto (WKY) rats, or the WKY control group. Through the analysis of multiple databases, 371 potential targets of wogonoside were identified, resulting in 98 overlapping targets. From these, 45 core therapeutic targets were identified through further analysis, including TNF, CASP3, etc. GO analysis significantly enriched processes such as the negative regulation of apoptosis. KEGG pathway enrichment analysis highlighted the apoptosis pathway, IL-17 signaling pathway, and MAPK signaling pathway as being significantly enriched. Wogonoside treatment effectively mitigated pathological damage in SHR kidney tissues and significantly inhibited the expression of inflammatory cytokines, including TNF-α, IL-1β, and IL-6 (P < 0.05). It also decreased cell apoptosis rates in SHR kidney tissues and Ang Ⅱ-stimulated NRK-52E cells, downregulated the expression of Bax and cleaved caspase-3, and upregulated Bcl-2 expression (P < 0.05). Furthermore, wogonoside treatment inhibited the phosphorylation of ERK and p38 MAPK in SHR kidney tissues and Ang Ⅱ-stimulated NRK-52E cells (P < 0.05). Conclusion Wogonoside may exert its protective effects against hypertension-induced renal injury by suppressing the inflammatory response and cell apoptosis, potentially through the regulation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Zhi Guo
- ( 350122) Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- ( 350122) College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- ( 350122) Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou 350122, China
| | - Yi Xie
- ( 350122) Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- ( 350122) College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- ( 350122) Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou 350122, China
| | - Hongshu Liu
- ( 350122) Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- ( 350122) College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- ( 350122) Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou 350122, China
| | - Jundan Xiao
- ( 350122) Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- ( 350122) College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- ( 350122) Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou 350122, China
| | - Rongji Chen
- ( 350122) Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- ( 350122) College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- ( 350122) Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou 350122, China
| | - Meizhu Wu
- ( 350122) Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- ( 350122) College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- ( 350122) Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou 350122, China
| | - Jun Peng
- ( 350122) Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- ( 350122) College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- ( 350122) Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou 350122, China
| | - Aling Shen
- ( 350122) Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- ( 350122) College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- ( 350122) Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou 350122, China
| |
Collapse
|
18
|
Xie G, Cao S, Wang G, Zhang X, Zhang Y, Wu H, Shen S, Le J, Li K, Huang Z. Vitamin A and its influence on tumour extracellular matrix. Discov Oncol 2025; 16:16. [PMID: 39775988 PMCID: PMC11707171 DOI: 10.1007/s12672-025-01751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Vitamin A is a crucial nutrient renowned for its role in visual health and cellular regulation. Its derivatives influence cell differentiation, proliferation, and tissue homeostasis, making them significant in cancer research due to their effects on both normal and tumour cells. This review explores the intricate relationship between vitamin A metabolism and the extracellular matrix (ECM) in cancer. The ECM profoundly affects tumour behaviour, including proliferation, invasion, and metastasis. Alterations in the ECM can facilitate tumour progression, and vitamin A derivatives have shown potential in modulating these changes. Through transcriptional regulation, vitamin A impacts ECM components and matrix metalloproteinases, influencing tumour dynamics. The review highlights the potential of vitamin A and its derivatives as adjunctive agents in cancer therapy. Despite promising laboratory findings, their clinical application remains limited due to challenges in translating these effects into therapeutic outcomes. Future research should focus on the modulation of retinol metabolism within tumours and the development of targeted therapies to enhance treatment efficacy and improve patient prognosis.
Collapse
Affiliation(s)
- Guoqing Xie
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shun Cao
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Guangchun Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xianzhong Zhang
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Urology, the First Affiliated Hospital of Peking University, Beijing, China
| | - Haofan Wu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuxian Shen
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- School of Medicine, Cancer Institute, Tongji University, Shanghai, China
| | - Jiandong Le
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Keqiang Li
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- School of Medicine, Cancer Institute, Tongji University, Shanghai, China.
| | - Zhenlin Huang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
19
|
Kakde B, An SW, Jebaraj YS, Neelam S, Wolf MTF, Tambar UK. Chemical Synthesis and Antifibrotic Properties of (±)-Cochlearol T, (±)-Ganocochlearin A, and (±)-Cochlearol Y. ACS Med Chem Lett 2024; 15:2220-2224. [PMID: 39691537 PMCID: PMC11647713 DOI: 10.1021/acsmedchemlett.4c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Abstract
The cochlearols and ganocochlearins are natural products with unique antifibrotic and renoprotective activities in models of kidney disease. They represent compelling lead compounds for pharmacological intervention against kidney disease, often characterized by renal fibrosis. We report a four-step synthesis of (±)-cochlearol T (1) and the first reported syntheses of (±)-ganocochlearin A (2) and (±)-cochlearol Y (3) through a strategy that includes a Robinson annulation and unexpected oxidative aromatization. We also access tricyclic intermediate 12 that represents a formal synthesis of ganocins A-C and ganocochlearins C-D. We investigated the activity of these synthesized compounds in vitro by inducing fibrosis in a human kidney cell line with TGF-β1. The effect on fibrosis was assessed by qPCR and Western blot studies. We detected significantly lower mRNA gene and protein expression of fibrosis markers for all three natural products.
Collapse
Affiliation(s)
- Badrinath
N. Kakde
- Department
of Biochemistry, The University of Texas
Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Sung Wan An
- Department
of Pediatrics, The University of Texas Southwestern
Medical Center, 5323
Harry Hines Boulevard, Dallas, Texas 75390-9063, United States
- Department
of Pediatrics, The University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, Michigan 48109, United States
| | - Yaashmin Shiny Jebaraj
- Department
of Pediatrics, The University of Texas Southwestern
Medical Center, 5323
Harry Hines Boulevard, Dallas, Texas 75390-9063, United States
| | - Sudha Neelam
- Department
of Pediatrics, The University of Texas Southwestern
Medical Center, 5323
Harry Hines Boulevard, Dallas, Texas 75390-9063, United States
| | - Matthias T. F. Wolf
- Department
of Pediatrics, The University of Texas Southwestern
Medical Center, 5323
Harry Hines Boulevard, Dallas, Texas 75390-9063, United States
- Department
of Pediatrics, The University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, Michigan 48109, United States
| | - Uttam K. Tambar
- Department
of Biochemistry, The University of Texas
Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| |
Collapse
|
20
|
Wei X, Long M, Fan Z, Hou Y, Yang L, Du Y. Ulinastatin attenuates renal fibrosis by regulating AMPK/HIF-1α signaling pathway-mediated glycolysis. Sci Rep 2024; 14:28032. [PMID: 39543285 PMCID: PMC11564816 DOI: 10.1038/s41598-024-78092-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Renal fibrosis is a common outcome of chronic kidney diseases and glycolysis drives the development of renal fibrosis in damaged kidneys. Ulinastatin (UTI) is a broad-spectrum protease inhibitor with anti-inflammatory and antioxidant properties with anti-fibrosis effects. In this study, we aimed to verify whether UTI could exert anti-renal fibrosis effects by inhibiting glycolysis and explored the potential mechanisms. Renal fibrosis was induced in mice via unilateral ureteral obstruction (UUO). Transforming growth factor-β1 stimulates human kidney proximal tubular epithelial cells to undergo fibrotic changes. Histopathological staining was used to observe the pathological changes in the kidneys. The levels of fibrosis biomarkers, glycolytic enzymes, and key signaling molecules were determined using gene and protein assays. Cellular energy metabolism was measured using Seahorse XF24 analyzer. Modulated the activity of adenylate-activated protein kinase (AMPK) and hypoxia-inducible factor-1α (HIF-1α) to confirm that AMPK can regulate HIF-1α-mediated glycolysis. Furthermore, UTI and AMPK knockdown were combined to verify whether UTI could attenuate glycolysis via the AMPK pathway. UTI pretreatment improved UUO-induced renal injury and fibrosis. The expression of fibrosis biomarkers and glycolytic enzymes was reduced by UTI at both mRNA and protein levels. UTI treatment decreased the rate of glycolysis and the production of glycolytic intermediates in fibrotic cells and tissues. Furthermore, AMPK can regulate HIF-1α-mediated glycolysis in renal tubular epithelial cells. Finally, the attenuation of glycolysis by UTI was related to AMPK/HIF-1α pathway, and this effect was inhibited by knockdown AMPK. UTI can effectively alleviate renal fibrosis, which may be partly attributed to the reduction of glycolysis by regulating AMPK/HIF-1α pathway.
Collapse
Affiliation(s)
- Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, No.1 Xinmin Street, Chaoyang District, Changchun, Jilin, China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, No.1 Xinmin Street, Chaoyang District, Changchun, Jilin, China
| | - Zhongyu Fan
- Department of Nephrology, The First Hospital of Jilin University, No.1 Xinmin Street, Chaoyang District, Changchun, Jilin, China
| | - Yue Hou
- Department of Nephrology, The First Hospital of Jilin University, No.1 Xinmin Street, Chaoyang District, Changchun, Jilin, China
| | - Liming Yang
- Department of Nephrology, The First Hospital of Jilin University, No.1 Xinmin Street, Chaoyang District, Changchun, Jilin, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, No.1 Xinmin Street, Chaoyang District, Changchun, Jilin, China.
| |
Collapse
|
21
|
Wang S, Wang L, Shangguan J, Jiang A, Ren A. Research Progress on the Biological Activity of Ganoderic Acids in Ganoderma lucidum over the Last Five Years. Life (Basel) 2024; 14:1339. [PMID: 39459639 PMCID: PMC11509451 DOI: 10.3390/life14101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Ganoderma lucidum (G. lucidum) is a traditional edible and medicinal mushroom in China. The main bioactive components in G. lucidum include triterpenoids, polysaccharides, steroids, and sterols. Ganoderic acids (GAs) are one of the most abundant triterpenoids found in G. lucidum, garnering significant attention from researchers in the fields of medicine and health care. We summarize the extensive studies on the physiological function of GAs in anti-cancer, anti-inflammatory, radiation protection, anti-aging, liver protection, anti-microbial, and neuroprotection areas, among others. This review provides a comprehensive overview of the recent advances in the bioactivities and pharmacological mechanisms of GAs, aiming to delineate the current research directions and the state of the art in this field. This analysis helps to rapidly identify new bioactivities of GAs and understand their mechanisms, leading to more effective treatments for various diseases.
Collapse
Affiliation(s)
| | | | | | - Ailiang Jiang
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (L.W.); (J.S.)
| | - Ang Ren
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (L.W.); (J.S.)
| |
Collapse
|
22
|
Zhao Y, Song JY, Feng R, Hu JC, Xu H, Ye ML, Jiang JD, Chen LM, Wang Y. Renal Health Through Medicine-Food Homology: A Comprehensive Review of Botanical Micronutrients and Their Mechanisms. Nutrients 2024; 16:3530. [PMID: 39458524 PMCID: PMC11510533 DOI: 10.3390/nu16203530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/18/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND As an ancient concept and practice, "food as medicine" or "medicine-food homology" is receiving more and more attention these days. It is a tradition in many regions to intake medicinal herbal food for potential health benefits to various organs and systems including the kidney. Kidney diseases usually lack targeted therapy and face irreversible loss of function, leading to dialysis dependence. As the most important organ for endogenous metabolite and exogenous nutrient excretion, the status of the kidney could be closely related to daily diet. Therefore, medicinal herbal food rich in antioxidative, anti-inflammation micronutrients are ideal supplements for kidney protection. Recent studies have also discovered its impact on the "gut-kidney" axis. METHODS Here, we review and highlight the kidney-protective effects of botanicals with medicine-food homology including the most frequently used Astragalus membranaceus and Angelica sinensis (Oliv.) Diels, concerning their micronutrients and mechanism, offering a basis and perspective for utilizing and exploring the key substances in medicinal herbal food to protect the kidney. RESULTS The index for medicine-food homology in China contains mostly botanicals while many of them are also consumed by people in other regions. Micronutrients including flavonoids, polysaccharides and others present powerful activities towards renal diseases. CONCLUSIONS Botanicals with medicine-food homology are widely speeded over multiple regions and incorporating these natural compounds into dietary habits or as supplements shows promising future for renal health.
Collapse
Affiliation(s)
- Yi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Ye Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ru Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meng-Liang Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li-Meng Chen
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
23
|
Huang PY, Juan YH, Hung TW, Tsai YP, Ting YH, Lee CC, Tsai JP, Hsieh YH. β-Mangostin Alleviates Renal Tubulointerstitial Fibrosis via the TGF-β1/JNK Signaling Pathway. Cells 2024; 13:1701. [PMID: 39451219 PMCID: PMC11505648 DOI: 10.3390/cells13201701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) plays a key role in the pathogenesis of kidney fibrosis, and kidney fibrosis is associated with an adverse renal prognosis. Beta-mangostin (β-Mag) is a xanthone derivative obtained from mangosteens that is involved in the generation of antifibrotic and anti-oxidation effects. The purpose of this study was to examine the effects of β-Mag on renal tubulointerstitial fibrosis both in vivo and in vitro and the corresponding mechanisms involved. As shown through an in vivo study conducted on a unilateral ureteral obstruction mouse model, oral β-Mag administration, in a dose-dependent manner, caused a lesser degree of tubulointerstitial damage, diminished collagen I fiber deposition, and the depressed expression of fibrotic markers (collagen I, α-SMA) and EMT markers (N-cadherin, Vimentin, Snail, and Slug) in the UUO kidney tissues. The in vitro part of this research revealed that β-Mag, when co-treated with transforming growth factor-β1 (TGF-β1), decreased cell motility and downregulated the EMT (in relation to Vimentin, Snail, and N-cadherin) and phosphoryl-JNK1/2/Smad2/Smad3 expression. Furthermore, β-Mag co-treated with SB (Smad2/3 kinase inhibitor) or SP600125 (JNK kinase inhibitor) significantly inhibited the TGF-β1-associated downstream phosphorylation and activation of JNK1/2-mediated Smad2 targeting the Snail/Vimentin axis. To conclude, β-Mag protects against EMT and kidney fibrotic processes by mediating the TGF-β1/JNK/Smad2 targeting Snail-mediated Vimentin expression and may have therapeutic implications for renal tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Po-Yu Huang
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Ying-Hsu Juan
- Department of Chinese Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan;
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Tung-Wei Hung
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yuan-Pei Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-P.T.); (Y.-H.T.)
| | - Yi-Hsuan Ting
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-P.T.); (Y.-H.T.)
| | - Chu-Che Lee
- Department of Medicine Research, Buddhist Dalin Tzu Chi Hospital, Chiayi 62247, Taiwan;
| | - Jen-Pi Tsai
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-P.T.); (Y.-H.T.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
24
|
Yao Z, Lu Y, Wang P, Chen Z, Zhou L, Sang X, Yang Q, Wang K, Hao M, Cao G. The role of JNK signaling pathway in organ fibrosis. J Adv Res 2024:S2090-1232(24)00431-4. [PMID: 39366483 DOI: 10.1016/j.jare.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Fibrosis is a tissue damage repair response caused by multiple pathogenic factors which could occur in almost every apparatus and leading to the tissue structure damage, physiological abnormality, and even organ failure until death. Up to now, there is still no specific drugs or strategies can effectively block or changeover tissue fibrosis. JNKs, a subset of mitogen-activated protein kinases (MAPK), have been reported that participates in various biological processes, such as genetic expression, DNA damage, and cell activation/proliferation/death pathways. Increasing studies indicated that abnormal regulation of JNK signal pathway has strongly associated with tissue fibrosis. AIM OF REVIEW This review designed to sum up the molecular mechanism progresses in the role of JNK signal pathway in organ fibrosis, hoping to provide a novel therapy strategy to tackle tissue fibrosis. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent evidence shows that JNK signaling pathway could modulates inflammation, immunoreaction, oxidative stress and Multiple cell biological functions in organ fibrosis. Therefore, targeting the JNK pathway may be a useful strategy in cure fibrosis.
Collapse
Affiliation(s)
- Zhouhui Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yandan Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Pingping Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ziyan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Licheng Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xianan Sang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiao Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Kuilong Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Min Hao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Songyang Research Institute of Zhejiang Chinese Medical University, Songyang, 323400, China.
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
25
|
Lei ZN, Teng QX, Koya J, Liu Y, Chen Z, Zeng L, Chen ZS, Fang S, Wang J, Liu Y, Pan Y. The correlation between cancer stem cells and epithelial-mesenchymal transition: molecular mechanisms and significance in cancer theragnosis. Front Immunol 2024; 15:1417201. [PMID: 39403386 PMCID: PMC11471544 DOI: 10.3389/fimmu.2024.1417201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/06/2024] [Indexed: 01/03/2025] Open
Abstract
The connections between cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) is critical in cancer initiation, progression, metastasis, and therapy resistance, making it a focal point in cancer theragnosis. This review provides a panorama of associations and regulation pathways between CSCs and EMT, highlighting their significance in cancer. The molecular mechanisms underlined EMT are thoroughly explored, including the involvement of key transcription factors and signaling pathways. In addition, the roles of CSCs and EMT in tumor biology and therapy resistance, is further examined in this review. The clinical implications of CSCs-EMT interplay are explored, including identifying mesenchymal-state CSC subpopulations using advanced research methods and developing targeted therapies such as inhibitors and combination treatments. Overall, understanding the reciprocal relationship between EMT and CSCs holds excellent potential for informing the development of personalized therapies and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Jagadish Koya
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Yangruiyu Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zizhou Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Leli Zeng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Shuo Fang
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jinxiang Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuchen Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
26
|
Song J, Ke B, Fang X. APC and ZBTB2 May Mediate M2 Macrophage Infiltration to Promote the Development of Renal Fibrosis: A Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2024; 2024:5674711. [PMID: 39328595 PMCID: PMC11424844 DOI: 10.1155/2024/5674711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/25/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024]
Abstract
Background and Purpose: The continuous accumulation of M2 macrophages may potentially contribute to the development of kidney fibrosis in chronic kidney disease (CKD). The purpose of this study was to analyze the infiltration of M2 macrophages in uremic patients and to seek new strategies to slow down the progression of renal fibrosis. Methods: We conducted a comprehensive search for expression data pertaining to uremic samples within the Gene Expression Omnibus (GEO) database, encompassing the time frame from 2010 to 2022. Control and uremic differentially expressed genes (DEGs) were identified. Immune cell infiltration was investigated by CIBERSORT and modules associated with M2 macrophage infiltration were identified by weighted gene coexpression network analysis (WGCNA). Consistent genes were identified using the least absolute shrinkage and selection operator (LASSO) and selection and visualization of the most relevant features (SVM-RFE) methods to search for overlapping genes. Receiver operating characteristic (ROC) curves were examined for the diagnostic value of candidate genes. Quantitative real-time PCR (qPCR) examined the expression levels of candidate genes obtained from uremic patients in M2 macrophage. Results: A total of 1298 DEGs were identified within the GSE37171 dataset. Significant enrichment of DEGs was observed in 20 biological processes (BP), 19 cellular components (CC), 6 molecular functions (MF), and 70 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. CIBERSORT analysis observed a significant increase in B-cell memory, dendritic cell activation, M0, M1, M2, and plasma cell numbers in uremic samples. We identified the 10 most interrelated genes. In particular, adenomatous polyposis coli (APC) and zinc finger and BTB structural domain 2 (ZBTB2) were adversely associated with the infiltration of M2 macrophages. Importantly, the expression levels of APC and ZBTB2 were far lower in M2 macrophages from uremic patients than those in healthy individuals. Conclusion: The development of renal fibrosis may be the result of M2 macrophage infiltration promoted by APC and ZBTB2.
Collapse
Affiliation(s)
- Jianling Song
- Department of NephrologyThe Second Affiliated HospitalJiangxi Medical CollegeNanchang University, Nanchang, Jiangxi 330006, China
| | - Ben Ke
- Department of NephrologyThe Second Affiliated HospitalJiangxi Medical CollegeNanchang University, Nanchang, Jiangxi 330006, China
| | - Xiangdong Fang
- Department of NephrologyThe Second Affiliated HospitalJiangxi Medical CollegeNanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
27
|
Zhao S, Song C, Chen F, Li M. LncRNA XIST/miR-455-3p/HOXC4 axis promotes breast cancer development by activating TGF-β/SMAD signaling pathway. Funct Integr Genomics 2024; 24:159. [PMID: 39261346 DOI: 10.1007/s10142-024-01442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Breast cancer is the second primary cause of cancer death among women. Long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) is a central regulator for X chromosome inactivation, and its abnormal expression is a primary feature of breast cancer. So far, the mechanism of XIST in breast cancer has not been fully elucidated. We attempted to illustrate the mechanism of XIST in breast cancer. The expressions of XIST, microRNA-455-3p (miR-455-3p) in breast cancer were measured using quantitative real-time PCR. The expressions of homeobox C4 (HOXC4) were assessed with immunohistochemical and Western blot. Also, the functions of XIST in breast cancer were assessed by Cell Counting Kit-8 analysis, colony formation assay, flow cytometry, Western blot, Transwell, and cell scratch assays. Meanwhile, the mechanism of XIST in breast cancer was validated using database analysis and dual-luciferase reporter assay. Furthermore, the function of XIST in breast cancer in vivo was estimated by tumor xenograft model, immunohistochemical assay, and hematoxylin-eosin staining. XIST and HOXC4 expressions were increased, but miR-455-3p expressions were decreased in breast cancer tissues and cells. Knocking down XIST restrained breast cancer cell proliferation, invasion, migration, epithelial-mesenchymal transformation (EMT), and induced cell cycle arrest at G0/G1. Meanwhile, XIST interacted with miR-455-3p, while miR-455-3p interacted with HOXC4. XIST knockdown repressed breast cancer cell proliferation, invasion, and EMT, while miR-455-3p inhibitor or HOXC4 overexpression abolished those impacts. HOXC4 overexpression also blocked the impacts of miR-455-3p mimic on breast cancer cell malignant behavior. In vivo experimental data further indicated that XIST knockdown repressed breast cancer cell tumorigenic ability, and decreased HOXC4 and p-SMAD3 (TGF-β/SMAD-related protein) expressions.XIST/miR-455-3p/HOXC4 facilitated breast cancer development by activating the TGF-β/SMAD pathway.
Collapse
Affiliation(s)
- Shanshan Zhao
- Department of Oncology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, China
| | - Chen Song
- Department of Oncology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, China
| | - Fengxi Chen
- Department of Oncology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, China
| | - Man Li
- Department of Oncology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, China.
| |
Collapse
|
28
|
Pang S, Xie B, Feng B, Xu G, Ye Q, Chen X, Ruan L, Chen H, Pan SL, Xue C, Li W. miR-542-5p targets GREM1 to affect the progression of renal fibrosis. J Biochem Mol Toxicol 2024; 38:e23818. [PMID: 39180371 DOI: 10.1002/jbt.23818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/11/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
Renal fibrosis (RF) is a typical pathological presentation of end-stage chronic kidney disease (CKD) and autosomal dominant polycystic kidney disease (ADPKD). However, the precise regulatory mechanisms governing this re-expression process remain unclear. Differentially expressed microRNAs (miRNAs) associated with RF were screened by microarray analysis using the Gene Expression Omnibus (GEO) database. The miRNAs upstream of the genes in question were predicted using the miRWalk database. The miRNAs involved in the two GEO data sets were intersected to identify key miRNAs; their regulatory pathways were investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Subsequently, the effects and the underlying mechanisms of target miRNA on RF were examined in a unilateral ureteral obstruction (UUO)-induced mice renal fibrotic model and a transforming growth factor-β1 (TGF-β1)-induced tubular epithelium (HK-2) fibrotic cell model. In total, 109 and 32 differentially expressed miRNAs were identified in the GSE133530 and GSE80247 data sets, respectively. GREM1 was identified as a hub gene, where its 2196 upstream miRNAs were predicted; miR-574-5p was found to be downregulated and closely related to fibrosis after data set intersection and enrichment analyses, thus was selected for further investigation. A differential expression heatmap (GSE162794) showed that miR-542-5p was downregulated. The expression of GREM1 mRNA was upregulated, whereas that of miR-542-5p was downregulated in UUO mice and fibrotic HK-2 cells as compared with the relevant controls. The binding site of miR-542-5p was predicted at the 3'UTR region of GREM1 and was confirmed by subsequent dual luciferase reporter gene assay. Western blot analysis showed that Gremlin-1 and Fibronectin were significantly upregulated after induction of TGF-β1; when miR-542-5p was overexpressed or GREM1 mRNA was interfered, the upregulations of Gremlin-1 and Fibronectin were significantly reduced. Our research demonstrates that miR-542-5p plays a critical role in the progression of RF, and thus may be a promising therapeutic target for CKD and ADPKD.
Collapse
Affiliation(s)
- Shuting Pang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Boji Xie
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Bingmei Feng
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Guiling Xu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qinglin Ye
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xuesong Chen
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Liangping Ruan
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hong Chen
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Preclinical Medicine, Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China
| | - Chao Xue
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wei Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
29
|
Yu X, Pu X, Xi Y, Li X, Jiang W, Chen X, Xu Y, Xie J, Li H, Zheng D. Integrating network analysis and experimental validation to reveal the mechanism of si-jun-zi decoction in the treatment of renal fibrosis. Heliyon 2024; 10:e35489. [PMID: 39220912 PMCID: PMC11365329 DOI: 10.1016/j.heliyon.2024.e35489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Treating kidney diseases from the perspective of spleen is an important clinical method in traditional Chinese medicine (TCM) for anti-renal fibrosis (RF). Si-jun-zi decoction (SJZD), a classic formula for qi-invigorating and spleen-invigorating, has been reported to alleviate RF. This study aims to investigate the potential mechanism by which SJZD attenuates RF. The results demonstrated notable improvements in renal function levels, inflammation and fibrosis indices in UUO-mice following SJZD intervention. The main active ingredients identified were Quercetin, Kaempferol, Naringenin and 7-Methoxy-2-methyl isoflavone. Furthermore, STAT3, MAPK3, MYC were confirmed as key targets. Additionally, GO enrichment analysis demonstrated that SJZD delayed RF primarily by regulating oxidative stress and other biological mechanisms. KEGG enrichment analysis revealed the involvement of pathways such as Lipid and atherosclerosis signaling pathway, MAPK signaling pathway and other pathways in the reno-protective effects of SJZD. The molecular docking results revealed that the active ingredients of SJZD were well-bound and stable to the core targets. The experiments results revealed that Quercetin, Kaempferol, and Naringenin not only improved the morphology of TGF-β-induced HK-2 cells but also reversed the expression of α-SMA, COL1A1 and MAPK, thereby delaying the progression of RF. The anti-RF effects of SJZD were exerted through multi-components, multi-targets and multi-pathways.
Collapse
Affiliation(s)
| | | | | | - Xiang Li
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223002, PR China
| | - Wei Jiang
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223002, PR China
| | - Xiaoling Chen
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223002, PR China
| | - Yong Xu
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223002, PR China
| | - Juan Xie
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223002, PR China
| | - Hailun Li
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223002, PR China
| | - Donghui Zheng
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223002, PR China
| |
Collapse
|
30
|
Wang X, Liu X, Xu L, Li Y, Zheng B, Xia C, Wang J, Liu H. Targeted delivery of type I TGF-β receptor-mimicking peptide to fibrotic kidney for improving kidney fibrosis therapy via enhancing the inhibition of TGF-β1/Smad and p38 MAPK pathways. Int Immunopharmacol 2024; 137:112483. [PMID: 38880023 DOI: 10.1016/j.intimp.2024.112483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Renal fibrosis is a representative pathological feature of various chronic kidney diseases, and efficient treatment is needed. Interstitial myofibroblasts are a key driver of kidney fibrosis, which is dependent on the binding of TGF-β1 to type I TGF-β receptor (TβRI) and TGF-β1-related signaling pathways. Therefore, attenuating TGF-β1 activity by competing with TGF-β1 in myofibroblasts is an ideal strategy for treating kidney fibrosis. Recently, a novel TβRI-mimicking peptide RIPΔ demonstrated a high affinity for TGF-β1. Thus, it could be speculated that RIPΔ may be used for anti-fibrosis therapy. Platelet-derived growth factor β receptor (PDGFβR) is highly expressed in fibrotic kidney. In this study, we found that target peptide Z-RIPΔ, which is RIPΔ modified with PDGFβR-specific affibody ZPDGFβR, was specifically and highly taken up by TGF-β1-activated NIH3T3 fibroblasts. Moreover, Z-RIPΔ effectively inhibited the myofibroblast proliferation, migration and fibrosis response in vitro. In vivo and ex vivo experiments showed that Z-RIPΔ specifically targeted fibrotic kidney, improved the damaged renal function, and ameliorated kidney histopathology and renal fibrosis in UUO mice. Mechanistic studies showed that Z-RIPΔ hold the stronger inhibition of the TGF-β1/Smad and TGF-β1/p38 pathways than unmodified RIPΔ in vitro and in vivo. Furthermore, systemic administration of Z-RIPΔ to UUO mice led to minimal toxicity to major organs. Taken together, RIPΔ modified with ZPDGFβR increased its therapeutic efficacy and reduced its systemic toxicity, making it a potential candidate for targeted therapy for kidney fibrosis.
Collapse
Affiliation(s)
- Xiaohua Wang
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157011, PR China; Laboratory of Pathogenic Microbiology and Immunology, Mudanjiang Medical University, Mudanjiang 157011, PR China; Department of Cell Biology, Mudanjiang Medical University, Mudanjiang 157011, PR China
| | - Xiaohui Liu
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157011, PR China
| | - Liming Xu
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157011, PR China
| | - Yuting Li
- Laboratory of Pathogenic Microbiology and Immunology, Mudanjiang Medical University, Mudanjiang 157011, PR China
| | - Bowen Zheng
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157011, PR China
| | - Caiyun Xia
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157011, PR China
| | - Jingru Wang
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157011, PR China
| | - Haifeng Liu
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157011, PR China; Laboratory of Pathogenic Microbiology and Immunology, Mudanjiang Medical University, Mudanjiang 157011, PR China.
| |
Collapse
|
31
|
Liu X, Wang X, Xu L, Fan J, Yuan Q, Zhang F, Liu J, Qiu X, Li Y, Xia C, Liu H. Targeting delivery of a novel TGF-β type I receptor-mimicking peptide to activated hepatic stellate cells for liver fibrosis therapy via inhibiting the TGF-β1/Smad and p38 MAPK signaling pathways. Eur J Pharmacol 2024; 977:176708. [PMID: 38843945 DOI: 10.1016/j.ejphar.2024.176708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/23/2024]
Abstract
Excessive transforming growth factor β1 (TGF-β1) secreted by activated hepatic stellate cells (aHSCs) aggravates liver fibrosis via over-activation of TGF-β1-mediated signaling pathways in a TGF-β type I receptor (TβRI) dependent manner. TβRI with the C-terminal valine truncated (RIPΔ), as a novel TβRI-mimicking peptide, is an appealing anti-fibrotic candidate by competitive binding of TGF-β1 to block TGF-β1 signal transduction. Platelet-derived growth factor receptor β (PDGFβR) is highly expressed on the surface of aHSCs in liver fibrosis. Herein, we designed a novel RIPΔ variant Z-RIPΔ (PDGFβR-specific affibody ZPDGFβR fused to the N-terminus of RIPΔ) for liver fibrosis therapy, and expect to improve the anti-liver fibrosis efficacy by specifically inhibiting the TGF-β1 activity in aHSCs. Target peptide Z-RIPΔ was prepared in Escherichia coli by SUMO fusion system. Moreover, Z-RIPΔ specifically bound to TGF-β1-activated aHSCs, inhibited cell proliferation and migration, and reduced the expression of fibrosis markers (α-SMA and FN) and TGF-β1 pathway-related effectors (p-Smad2/3 and p-p38) in vitro. Furthermore, Z-RIPΔ specifically targeted the fibrotic liver, alleviated the liver histopathology, mitigated the fibrosis responses, and blocked TGF-β1-mediated Smad and p38 MAPK cascades. More importantly, Z-RIPΔ exhibited a higher fibrotic liver-targeting capacity and stronger anti-fibrotic effects than its parent RIPΔ. Besides, Z-RIPΔ showed no obvious toxicity effects in treating both an in vitro cell model and an in vivo mouse model of liver fibrosis. In conclusion, Z-RIPΔ represents a promising targeted candidate for liver fibrosis therapy.
Collapse
Affiliation(s)
- Xiaohui Liu
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, PR China
| | - Xiaohua Wang
- Laboratory of Pathogenic Microbiology and Immunology, Mudanjiang Medical University, Mudanjiang, 157011, PR China; Department of Cell Biology, Mudanjiang Medical University, Mudanjiang, 157011, PR China
| | - Liming Xu
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, PR China
| | - Junjie Fan
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, PR China
| | - Qi Yuan
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, PR China
| | - Fan Zhang
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, PR China
| | - Jieting Liu
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, PR China
| | - Xiaowen Qiu
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, PR China
| | - Yanqiu Li
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, PR China
| | - Caiyun Xia
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, PR China
| | - Haifeng Liu
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, PR China; Laboratory of Pathogenic Microbiology and Immunology, Mudanjiang Medical University, Mudanjiang, 157011, PR China.
| |
Collapse
|
32
|
Cao F, Li Y, Peng T, Li Y, Yang L, Hu L, Zhang H, Wang J. PTEN in kidney diseases: a potential therapeutic target in preventing AKI-to-CKD transition. Front Med (Lausanne) 2024; 11:1428995. [PMID: 39165377 PMCID: PMC11333338 DOI: 10.3389/fmed.2024.1428995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Renal fibrosis, a critical factor in the development of chronic kidney disease (CKD), is predominantly initiated by acute kidney injury (AKI) and subsequent maladaptive repair resulting from pharmacological or pathological stimuli. Phosphatase and tensin homolog (PTEN), also known as phosphatase and tensin-associated phosphatase, plays a pivotal role in regulating the physiological behavior of renal tubular epithelial cells, glomeruli, and renal interstitial cells, thereby preserving the homeostasis of renal structure and function. It significantly impacts cell proliferation, apoptosis, fibrosis, and mitochondrial energy metabolism during AKI-to-CKD transition. Despite gradual elucidation of PTEN's involvement in various kidney injuries, its specific role in AKI and maladaptive repair after injury remains unclear. This review endeavors to delineate the multifaceted role of PTEN in renal pathology during AKI and CKD progression along with its underlying mechanisms, emphasizing its influence on oxidative stress, autophagy, non-coding RNA-mediated recruitment and activation of immune cells as well as renal fibrosis. Furthermore, we summarize prospective therapeutic targeting strategies for AKI and CKD-treatment related diseases through modulation of PTEN.
Collapse
Affiliation(s)
- Fangfang Cao
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
| | - Yuanyuan Li
- Division of Science and Education, Mianyang Central Hospital, Mianyang, China
| | - Ting Peng
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
| | - Yuanmei Li
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
| | - Lihua Yang
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
| | - Lanping Hu
- Hemodialysis Center, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Han Zhang
- Hemodialysis Center, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Jiali Wang
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, China
| |
Collapse
|
33
|
Mounieb F, Abdel-Sattar SA, Balah A, Akool ES. P2 X 7 receptor is a critical regulator of extracellular ATP-induced profibrotic genes expression in rat kidney: implication of transforming growth factor-β/Smad signaling pathway. Purinergic Signal 2024; 20:421-430. [PMID: 37934321 PMCID: PMC11303607 DOI: 10.1007/s11302-023-09977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
This study was designed to investigate the potential of extracellular adenosine 5'-triphosphate (ATP) via the P2 X 7 receptor to activate the renal fibrotic processes in rats. The present study demonstrates that administration of ATP rapidly activated transforming growth factor-β (TGF-β) to induce phosphorylation of Smad-2/3. Renal connective tissue growth factor (CTGF) and tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA and protein expressions were also increased following ATP administration. A decrease in TGF-β amount in serum as well as renal Smad-2/3 phosphorylation was noticed in animals pre-treated with the specific antagonist of P2 X 7 receptor, A 438,079. In addition, a significant reduction in mRNA and protein expression of CTGF and TIMP-1were also observed in the kidneys of those animals. Collectively, the current findings demonstrate that ATP has the ability to augment TGF-β-mediated Smad-2/3 phosphorylation and enhance the expression of the pro-fibrotic genes, CTGF and TIMP-1, an effect that is largely mediated via P2 X 7 receptor.
Collapse
Affiliation(s)
- Fatma Mounieb
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, 11751 El Nasr St, Nasr City, Cairo, Egypt
| | - Somaia A Abdel-Sattar
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, 11751 El Nasr St, Nasr City, Cairo, Egypt
| | - Amany Balah
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, 11751 El Nasr St, Nasr City, Cairo, Egypt.
| | - El-Sayed Akool
- Pharmacology and Toxicology Department, Faculty of Pharmacy (boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
34
|
Deng LE, Guo M, Deng Y, Pan Y, Wang X, Maduraiveeran G, Liu J, Lu C. MOF-Based Platform for Kidney Diseases: Advances, Challenges, and Prospects. Pharmaceutics 2024; 16:793. [PMID: 38931914 PMCID: PMC11207304 DOI: 10.3390/pharmaceutics16060793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney diseases are important diseases that affect human health worldwide. According to the 2020 World Health Organization (WHO) report, kidney diseases have become the top 10 causes of death. Strengthening the prevention, primary diagnosis, and action of kidney-related diseases is of great significance in maintaining human health and improving the quality of life. It is increasingly challenging to address clinical needs with the present technologies for diagnosing and treating renal illness. Fortunately, metal-organic frameworks (MOFs) have shown great promise in the diagnosis and treatment of kidney diseases. This review summarizes the research progress of MOFs in the diagnosis and treatment of renal disease in recent years. Firstly, we introduce the basic structure and properties of MOFs. Secondly, we focus on the utilization of MOFs in the diagnosis and treatment of kidney diseases. In the diagnosis of kidney disease, MOFs are usually designed as biosensors to detect biomarkers related to kidney disease. In the treatment of kidney disease, MOFs can not only be used as an effective adsorbent for uremic toxins during hemodialysis but also as a precise treatment of intelligent drug delivery carriers. They can also be combined with nano-chelation technology to solve the problem of the imbalance of trace elements in kidney disease. Finally, we describe the current challenges and prospects of MOFs in the diagnosis and treatment of kidney diseases.
Collapse
Affiliation(s)
- Li-Er Deng
- Department of Nephrology, Dongguan Traditional Chinese Medicine Hospital, Dongguan 523000, China
| | - Manli Guo
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Yijun Deng
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Ying Pan
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoxiong Wang
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India;
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Chengyu Lu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
35
|
Lin J, Li B, Xu Q, Liu YS, Kang YL, Wang X, Wang Y, Lei Y, Bai YL, Li XM, Zhou J. DACH1 attenuated PA-induced renal tubular injury through TLR4/MyD88/NF-κB and TGF-β/Smad signalling pathway. J Endocrinol Invest 2024; 47:1531-1544. [PMID: 38147289 DOI: 10.1007/s40618-023-02253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Palmitic acid (PA), the major saturated fatty acid in the blood, often induces the initiation and progression of diabetic kidney disease (DKD). However, the underlying mechanism remains unclear. DACH1 is an important regulator of kidney functions. Herein, we investigated the roles of DACH1 in PA-induced kidney injury. METHODS Clinical data from the NHANES database were subjected to analyse the association between serum PA (sPA), blood glucose and kidney function. Molecular docking of PA was performed with DACH1. Immunohistochemistry, cell viability, annexin V/7-AAD double staining, TUNEL assay, immunofluorescent staining, autophagic flux analysis, qRT-PCR and western blot were performed. RESULTS Clinical data confirmed that sPA was increased significantly in the pathoglycemia individuals compared with controls and correlated negatively with renal function. Our findings suggested that PA could dock with DACH1. DACH1 enhances cell viability by inhibiting apoptosis and attenuating autophagy blockage induced by PA. Furthermore, the results demonstrated that DACH1 ameliorated inflammation and fibrosis through TLR4/MyD88/NF-κB and TGF-β/Smad signalling pathway in PA-treated renal tubular epithelial cell line (HK-2). CONCLUSIONS This study proved that sPA presents a risk factor for kidney injuries and DACH1 might serve as a protective target against renal function deterioration in diabetic patients.
Collapse
Affiliation(s)
- J Lin
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xi'an, 710032, China
| | - B Li
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xi'an, 710032, China
| | - Q Xu
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xi'an, 710032, China
| | - Y S Liu
- Department of Pharmacology, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Y L Kang
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi'an, 710032, China
| | - X Wang
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xi'an, 710032, China
| | - Y Wang
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xi'an, 710032, China
| | - Y Lei
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712099, China
| | - Y L Bai
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi'an, 710032, China.
| | - X M Li
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xi'an, 710032, China.
| | - J Zhou
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
36
|
Kuang L, You Y, Qi J, Chen J, Zhou X, Ji S, Cheng J, Kwan HY, Jiang P, Sun X, Su M, Wang M, Chen W, Luo R, Zhao X, Zhou L. Qi-dan-dihuang decoction ameliorates renal fibrosis in diabetic rats via p38MAPK/AKT/mTOR signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:3481-3499. [PMID: 38456329 DOI: 10.1002/tox.24179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 03/09/2024]
Abstract
CONTEXT Qi-dan-dihuang decoction (QDD) has been used to treat diabetic kidney disease (DKD), but the underlying mechanisms are poorly understood. OBJECTIVE This study reveals the mechanism by which QDD ameliorates DKD. MATERIALS AND METHODS The compounds in QDD were identified by high-performance liquid chromatography and quadrupole-time-of-flight tandem mass spectrometry (HPLC-Q-TOF-MS). Key targets and signaling pathways were screened through bioinformatics. Nondiabetic Lepr db/m mice were used as control group, while Lepr db/db mice were divided into model group, dapagliflozin group, 1% QDD-low (QDD-L), and 2% QDD-high (QDD-H) group. After 12 weeks of administration, 24 h urinary protein, serum creatinine, and blood urea nitrogen levels were detected. Kidney tissues damage and fibrosis were evaluated by pathological staining. In addition, 30 mmol/L glucose-treated HK-2 and NRK-52E cells to induce DKD model. Cell activity and migration capacity as well as protein expression levels were evaluated. RESULTS A total of 46 key target genes were identified. Functional enrichment analyses showed that key target genes were significantly enriched in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and mitogen-activated protein kinase (MAPK) signaling pathways. In addition, in vivo and in vitro experiments confirmed that QDD ameliorated renal fibrosis in diabetic mice by resolving inflammation and inhibiting the epithelial-mesenchymal transition (EMT) via the p38MAPK and AKT-mammalian target of rapamycin (mTOR) pathways. DISCUSSION AND CONCLUSION QDD inhibits EMT and the inflammatory response through the p38MAPK and AKT/mTOR signaling pathways, thereby playing a protective role in renal fibrosis in DKD.
Collapse
Affiliation(s)
- Liuyan Kuang
- Endocrinology Department, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanting You
- Endocrinology Department, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Taishan People's Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Taishan, Guangdong, China
| | - Jieying Qi
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jieyu Chen
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinghong Zhou
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuai Ji
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingru Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Pingping Jiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaomin Sun
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengting Su
- Cellular and Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Wenxiao Chen
- Taishan People's Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Taishan, Guangdong, China
| | - Ren Luo
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoshan Zhao
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Lin Zhou
- Endocrinology Department, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
37
|
Li M, Jia D, Li J, Li Y, Wang Y, Wang Y, Xie W, Chen S. Scutellarin Alleviates Ovalbumin-Induced Airway Remodeling in Mice and TGF-β-Induced Pro-fibrotic Phenotype in Human Bronchial Epithelial Cells via MAPK and Smad2/3 Signaling Pathways. Inflammation 2024; 47:853-873. [PMID: 38168709 PMCID: PMC11147947 DOI: 10.1007/s10753-023-01947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness (AHR), inflammation, and remodeling. Epithelial-mesenchymal transition (EMT) is an essential player in these alterations. Scutellarin is isolated from Erigeron breviscapus. Its vascular relaxative, myocardial protective, and anti-inflammatory effects have been well established. This study was designed to detect the biological roles of scutellarin in asthma and its related mechanisms. The asthma-like conditions were induced by ovalbumin challenges. The airway resistance and dynamic compliance were recorded as the results of AHR. Bronchoalveolar lavage fluid (BALF) was collected and processed for differential cell counting. Hematoxylin and eosin staining, periodic acid-Schiff staining, and Masson staining were conducted to examine histopathological changes. The levels of asthma-related cytokines were measured by enzyme-linked immunosorbent assay. For in vitro analysis, the 16HBE cells were stimulated with 10 ng/mL transforming growth beta-1 (TGF-β1). Cell migration was estimated by Transwell assays and wound healing assays. E-cadherin, N-cadherin, and α-smooth muscle actin (α-SMA) were analyzed by western blotting, real-time quantitative polymerase chain reaction, immunofluorescence staining, and immunohistochemistry staining. The underlying mechanisms of the mitogen-activated protein kinase (MAPK) and Smad pathways were investigated by western blotting. In an ovalbumin-induced asthmatic mouse model, scutellarin suppressed inflammation and inflammatory cell infiltration into the lungs and attenuated AHR and airway remodeling. Additionally, scutellarin inhibited airway EMT (upregulated E-cadherin level and downregulated N-cadherin and α-SMA) in ovalbumin-challenged asthmatic mice. For in vitro analysis, scutellarin prevented the TGF-β1-induced migration and EMT in 16HBE cells. Mechanistically, scutellarin inhibits the phosphorylation of Smad2, Smad3, ERK, JNK, and p38 in vitro and in vivo. In conclusion, scutellarin can inactivate the Smad/MAPK pathways to suppress the TGF-β1-stimulated epithelial fibrosis and EMT and relieve airway inflammation and remodeling in asthma. This study provides a potential therapeutic strategy for asthma.
Collapse
Affiliation(s)
- Minfang Li
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Dan Jia
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Jinshuai Li
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Yaqing Li
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Yaqiong Wang
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Yuting Wang
- Department of Respiratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, China.
| | - Wei Xie
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| | - Sheng Chen
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| |
Collapse
|
38
|
Wang Y, Ping Z, Gao H, Liu Z, Xv Q, Jiang X, Yu W. LYC inhibits the AKT signaling pathway to activate autophagy and ameliorate TGFB-induced renal fibrosis. Autophagy 2024; 20:1114-1133. [PMID: 38037248 PMCID: PMC11135866 DOI: 10.1080/15548627.2023.2287930] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
Renal fibrosis is a typical pathological change in chronic kidney disease (CKD). Epithelial-mesenchymal transition (EMT) is the predominant stage. Activation of macroautophagy/autophagy plays a crucial role in the process of EMT. Lycopene (LYC) is a highly antioxidant carotenoid with pharmacological effects such as anti-inflammation, anti-apoptosis and mediation of autophagy. In this study, we demonstrated the specific mechanism of LYC in activating mitophagy and improving renal fibrosis. The enrichment analysis results of GO and KEGG showed that LYC had high enrichment values with autophagy. In this study, we showed that LYC alleviated aristolochic acid I (AAI)-induced intracellular expression of PINK1, TGFB/TGF-β, p-SMAD2, p-SMAD3, and PRKN/Parkin, recruited expression of MAP1LC3/LC3-II and SQSTM1/p62, decreased mitochondrial membrane potential (MMP), and ameliorated renal fibrosis in mice. When we simultaneously intervened NRK52E cells using bafilomycin A1 (Baf-A1), AAI, and LYC, intracellular MAP1LC3-II and SQSTM1 expression was significantly increased. A similar result was seen in renal tissue and cells when treated in vitro and in vivo with CQ, AAI, and LYC, and the inhibitory effect of LYC on the AAI-activated SMAD2-SMAD3 signaling pathway was attenuated. Molecular docking simulation experiments showed that LYC stably bound to the AKT active site. After intervention of cells with AAI and GSK-690693, the expression of PINK1, PRKN, MAP1LC3-II, BECN1, p-SMAD2 and p-SMAD3 was increased, and the expression of SQSTM1 was decreased. However, SC79 inhibited autophagy and reversed the inhibitory effect of LYC on EMT. The results showed that LYC could inhibit the AKT signaling pathway to activate mitophagy and reduce renal fibrosis.Abbreviation: AA: aristolochic acid; ACTA2/α-SMA: actin alpha 2, smooth muscle, aorta; ACTB: actin beta; AKT/protein kinase B: thymoma viral proto-oncogene; BAF-A1: bafilomycin A1; BECN1: beclin 1, autophagy related; CCN2/CTGF: cellular communication network factor 2; CDH1/E-Cadherin: cadherin 1; CKD: chronic kidney disease; COL1: collagen, type I; COL3: collagen, type III; CQ: chloroquine; ECM: extracellular matrix; EMT: epithelial-mesenchymal transition; FN1: fibronectin 1; LYC: lycopene; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MMP: mitochondrial membrane potential; MTOR: mechanistic target of rapamycin kinase ; PI3K: phosphoinositide 3-kinase; PINK1: PTEN induced putative kinase 1; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; PPI: protein-protein interaction; SMAD2: SMAD family member 2; SMAD3: SMAD family member 3; SQSTM1/p62: sequestosome 1; TGFB/TGFβ: transforming growth factor, beta; VIM: vimentin.
Collapse
Affiliation(s)
- Yu Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhenlei Ping
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hongxin Gao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhihui Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qingyang Xv
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaowen Jiang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenhui Yu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of Animal Pathogenesis and Comparative Medicine in Heilongjiang Province, Northeast Agricultural University, Harbin, China
| |
Collapse
|
39
|
Yan Z, Shi Y, Yang R, Xue J, Fu C. ELABELA-derived peptide ELA13 attenuates kidney fibrosis by inhibiting the Smad and ERK signaling pathways. J Zhejiang Univ Sci B 2024; 25:341-353. [PMID: 38584095 PMCID: PMC11009446 DOI: 10.1631/jzus.b2300033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/13/2023] [Indexed: 04/09/2024]
Abstract
Kidney fibrosis is an inevitable result of various chronic kidney diseases (CKDs) and significantly contributes to end-stage renal failure. Currently, there is no specific treatment available for renal fibrosis. ELA13 (amino acid sequence: RRCMPLHSRVPFP) is a conserved region of ELABELA in all vertebrates; however, its biological activity has been very little studied. In the present study, we evaluated the therapeutic effect of ELA13 on transforming growth factor-β1 (TGF-β1)-treated NRK-52E cells and unilateral ureteral occlusion (UUO) mice. Our results demonstrated that ELA13 could improve renal function by reducing creatinine and urea nitrogen content in serum, and reduce the expression of fibrosis biomarkers confirmed by Masson staining, immunohistochemistry, real-time polymerase chain reaction (RT-PCR), and western blot. Inflammation biomarkers were increased after UUO and decreased by administration of ELA13. Furthermore, we found that the levels of essential molecules in the mothers against decapentaplegic (Smad) and extracellular signal-regulated kinase (ERK) pathways were reduced by ELA13 treatment in vivo and in vitro. In conclusion, ELA13 protected against kidney fibrosis through inhibiting the Smad and ERK signaling pathways and could thus be a promising candidate for anti-renal fibrosis treatment.
Collapse
Affiliation(s)
- Zhibin Yan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ying Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Runling Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Jijun Xue
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Caiyun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
40
|
Quan YZ, Ma A, Ren CQ, An YP, Qiao PS, Gao C, Zhang YK, Li XW, Lin SM, Li NN, Chen DL, Pan Y, Zhou H, Lin DM, Lin SQ, Li M, Yang BX. Ganoderic acids alleviate atherosclerosis by inhibiting macrophage M1 polarization via TLR4/MyD88/NF-κB signaling pathway. Atherosclerosis 2024; 391:117478. [PMID: 38417185 DOI: 10.1016/j.atherosclerosis.2024.117478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND AND AIMS Atherosclerosis (AS) is a chronic inflammatory disease characterized by lipid infiltration and plaque formation in blood vessel walls. Ganoderic acids (GA), a class of major bioactive compounds isolated from the Chinese traditional medicine Ganoderma lucidum, have multiple pharmacological activities. This study aimed to determine the anti-atherosclerotic effect of GA and reveal the pharmacological mechanism. METHODS ApoE-/- mice were fed a high-cholesterol diet and treated with GA for 16 weeks to induce AS and identify the effect of GA. Network pharmacological analysis was performed to predict the anti-atherosclerotic mechanisms. An invitro cell model was used to explore the effect of GA on macrophage polarization and the possible mechanism involved in bone marrow dereived macrophages (BMDMs) and RAW264.7 cells stimulated with lipopolysaccharide or oxidized low-density lipoprotein. RESULTS It was found that GA at 5 and 25 mg/kg/d significantly inhibited the development of AS and increased plaque stability, as evidenced by decreased plaque in the aorta, reduced necrotic core size and increased collagen/lipid ratio in lesions. GA reduced the proportion of M1 macrophages in plaques, but had no effect on M2 macrophages. In vitro experiments showed that GA (1, 5, 25 μg/mL) significantly decreased the proportion of CD86+ macrophages and the mRNA levels of IL-6, IL-1β, and MCP-1 in macrophages. Experimental results showed that GA inhibited M1 macrophage polarization by regulating TLR4/MyD88/NF-κB signaling pathway. CONCLUSIONS This study demonstrated that GA play an important role in plaque stability and macrophage polarization. GA exert the anti-atherosclerotic effect partly by regulating TLR4/MyD88/NF-κB signaling pathways to inhibit M1 polarization of macrophages. Our study provides theoretical basis and experimental data for the pharmacological activity and mechanisms of GA against AS.
Collapse
Affiliation(s)
- Ya-Zhu Quan
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ang Ma
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China
| | - Chao-Qun Ren
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yong-Pan An
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Pan-Shuang Qiao
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Cai Gao
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yu-Kun Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing, 404020, China
| | - Xiao-Wei Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; China Resources Pharmaceutical Group Limited, Beijing, 100000, China
| | - Si-Mei Lin
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Nan-Nan Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Di-Long Chen
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing, 404020, China
| | - Yan Pan
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hong Zhou
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Dong-Mei Lin
- China National Engineering Research Center on JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shu-Qian Lin
- China National Engineering Research Center on JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Min Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Bao-Xue Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
41
|
Gao R, Chen Y, Liu H, Ye M, Chu L, Wang T. CD109 identified in circulating proteomics mitigates postoperative recurrence in chronic rhinosinusitis with nasal polyps by suppressing TGF-β1-induced epithelial-mesenchymal transition. Int Immunopharmacol 2024; 130:111793. [PMID: 38442581 DOI: 10.1016/j.intimp.2024.111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common inflammatory disorder with a high rate of recurrence. This study aimed to explore biomarkers for identifying patients with recurrent CRSwNP (rCRSwNP). METHODS We recruited two independent cohorts. In the discovery cohort, rCRSwNP patients and non-recurrent CRSwNP (non-rCRSwNP) patients were recruited, and the serum proteomic profile was characterized. The top 5 upregulated and downregulated proteins were confirmed in the validation cohort by ELISA, WB, and qRT-PCR, and their predictive values for postoperative recurrence were assessed. In vitro, human nasal epithelial cells (HNEpCs) were employed to assess the ability of candidate proteins to induce epithelial-mesenchymal transition (EMT). RESULTS Serum proteomics identified 53 different proteins, including 30 increased and 23 decreased, between the rCRSwNP and non-rCRSwNP groups. ELISA results revealed that serum levels of CD163 and TGF-β1 were elevated, CD109 and PRDX2 were decreased in the rCRSwNP group compared to the non-rCRSwNP group, and serum CD163, TGF-β1, and CD109 levels were proved to be associated with the risk of postoperative recurrence. In addition, qRT-PCR and WB revealed that tissue CD163, TGF-β1, and CD109 expressions in rCRSwNP patients were enhanced compared to those non-rCRSwNP patients. Kaplan-Meier analysis showed that increased CD163 and TGF-β1 expression and decreased CD109 expression are associated with the risk of recurrence in CRSwNP patients. Receiver operating characteristic curves showed that TGF-β1 and CD109 had superior diagnostic performances for rCRSwNP. In vitro experiments showed that TGF-β1 promoted EMT in HNEpCs, and overexpression of CD109 reversed this effect. Functional recovery experiments confirmed that CD109 could attenuate EMT in HNEpCs by inhibiting the TGF-β1/Smad signaling pathway, attenuating EMT in epithelial cells. CONCLUSION Our data suggested that TGF-β1 and CD109 might serve as promising predictors of rCRSwNP. The TGF-β1/Smad pathway was implicated in fostering EMT in epithelial cells, particularly those exhibiting low expression of CD109. Consequently, the absence of CD109 expression in epithelial cells could be a potential mechanism underlying rCRSwNP.
Collapse
Affiliation(s)
- Ru Gao
- Department of Otolaryngology-Head and Neck Surgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yu Chen
- Department of Otolaryngology-Head and Neck Surgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Huihong Liu
- Department of Otolaryngology-Head and Neck Surgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Maoyu Ye
- Department of Otolaryngology-Head and Neck Surgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Ling Chu
- Department of Pathology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Tiansheng Wang
- Department of Otolaryngology-Head and Neck Surgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
42
|
Cao W, Zhang J, Yu S, Gan X, An R. N-acetylcysteine regulates oxalate induced injury of renal tubular epithelial cells through CDKN2B/TGF-β/SMAD axis. Urolithiasis 2024; 52:46. [PMID: 38520518 DOI: 10.1007/s00240-023-01527-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/26/2023] [Indexed: 03/25/2024]
Abstract
This study was aimed to investigate the preventive effects of N-acetyl-L-cysteine (NAC) against renal tubular cell injury induced by oxalate and stone formation and further explore the related mechanism. Transcriptome sequencing combined with bioinformatics analysis were performed to identify differentially expressed gene (DEG) and related pathways. HK-2 cells were pretreated with or without antioxidant NAC/with or silencing DEG before exposed to sodium oxalate. Then, the cell viability, oxidative biomarkers of superoxidase dismutase (SOD) and malondialdehyde (MDA), apoptosis and cell cycle were measured through CCK8, ELISA and flow cytometry assay, respectively. Male SD rats were separated into control group, hyperoxaluria (HOx) group, NAC intervention group, and TGF-β/SMAD pathway inhibitor group. After treatment, the structure changes and oxidative stress and CaOx crystals deposition were evaluated in renal tissues by H&E staining, immunohistochemical and Pizzolato method. The expression of TGF-β/SMAD pathway related proteins (TGF-β1, SMAD3 and SMAD7) were determined by Western blot in vivo and in vitro. CDKN2B is a DEG screened by transcriptome sequencing combined with bioinformatics analysis, and verified by qRT-PCR. Sodium oxalate induced declined HK-2 cell viability, in parallel with inhibited cellular oxidative stress and apoptosis. The changes induced by oxalate in HK-2 cells were significantly reversed by NAC treatment or the silencing of CDKN2B. The cell structure damage and CaOx crystals deposition were observed in kidney tissues of HOx group. Meanwhile, the expression levels of SOD and 8-OHdG were detected in kidney tissues of HOx group. The changes induced by oxalate in kidney tissues were significantly reversed by NAC treatment. Besides, expression of SMAD7 was significantly down-regulated, while TGF-β1 and SMAD3 were accumulated induced by oxalate in vitro and in vivo. The expression levels of TGF-β/SMAD pathway related proteins induced by oxalate were reversed by NAC. In conclusion, we found that NAC could play an anti-calculus role by mediating CDKN2B/TGF-β/SMAD axis.
Collapse
Affiliation(s)
- Wei Cao
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Jingbo Zhang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shiliang Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, 23 YouZheng Street, HarbinHarbin, Heilongjiang, 150001, China
| | - Xiuguo Gan
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, 23 YouZheng Street, HarbinHarbin, Heilongjiang, 150001, China
| | - Ruihua An
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, 23 YouZheng Street, HarbinHarbin, Heilongjiang, 150001, China.
| |
Collapse
|
43
|
Du Y, Tian L, Wang Y, Li Z, Xu Z. Chemodiversity, pharmacological activity, and biosynthesis of specialized metabolites from medicinal model fungi Ganoderma lucidum. Chin Med 2024; 19:51. [PMID: 38519991 PMCID: PMC10958966 DOI: 10.1186/s13020-024-00922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Ganoderma lucidum is a precious fungus, particularly valued for its dual use as both medicine and food. Ganoderic acids (GAs), the distinctive triterpenoids found in the Ganoderma genus, exhibit a wide range of pharmacological activities. However, the limited resources of GAs restrict their clinic usage and drug discovery. In this review, we presented a comprehensive summary focusing on the diverse structures and pharmacological activity of GAs in G. lucidum. Additionally, we discussed the latest advancements in the elucidation of GA biosynthesis, as well as the progress in heterosynthesis and liquid fermentation methods aimed at further increasing GA production. Furthermore, we summarized the omics data, genetic transformation system, and cultivation techniques of G. lucidum, described as medicinal model fungi. The understanding of Ganoderic acids chemodiversity and biosynthesis in medicinal model fungi Ganoderma lucidum will provide important insights into the exploration and utilization of natural products in medicinal fungi.
Collapse
Affiliation(s)
- Yupeng Du
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Lixia Tian
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Yu Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Zhenhao Li
- ShouXianGu Botanical Drug Institute, Hangzhou, 311100, China.
| | - Zhichao Xu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
44
|
Tao P, Liu H, Hou G, Lu J, Xu Y. Kangxianling formula attenuates renal fibrosis by regulating gut microbiota. Eur J Med Res 2024; 29:183. [PMID: 38500195 PMCID: PMC10949625 DOI: 10.1186/s40001-024-01778-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Renal fibrosis (RF) produced adverse effect on kidney function. Recently, intestinal dysbiosis is a key regulator that promotes the formation of renal fibrosis. This study will focus on exploring the protective mechanism of Kangxianling Formula (KXL) on renal fibrosis from the perspective of intestinal flora. METHODS Unilateral Ureteral Obstruction (UUO) was used to construct rats' model with RF, and receive KXL formula intervention for 1 week. The renal function indicators were measured. Hematoxylin-eosin (HE), Masson and Sirus red staining were employed to detect the pathological changes of renal tissue in each group. The expression of α-SMA, Col-III, TGF-β, FN, ZO-1, and Occuludin was detected by immunofluorescence and immunohistochemistry. Rat feces samples were collected and analyzed for species' diversity using high-throughput sequencing 16S rRNA. RESULTS Rats in UUO groups displayed poor renal function as well as severe RF. The pro-fibrotic protein expression in renal tissues including α-SMA, Col-III, TGF-β and FN was increased in UUO rats, while ZO-1 and Occuludin -1 expression was downregulated in colon tissues. The above changes were attenuated by KXL treatment. 16S rRNA sequencing results revealed that compared with the sham group, the increased abundance of pathogenic bacteria including Acinetobacter, Enterobacter and Proteobacteria and the decreased abundance of beneficial bacteria including Actinobacteriota, Bifidobacteriales, Prevotellaceae, and Lactobacillus were found in UUO group. After the administration of KXL, the growth of potential pathogenic bacteria was reduced and the abundance of beneficial bacteria was enhanced. CONCLUSION KXL displays a therapeutical potential in protecting renal function and inhibiting RF, and its mechanism of action may be associated with regulating intestinal microbiota.
Collapse
Affiliation(s)
- Pengyu Tao
- Department of Nephrology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Liu
- Department of Ultrasound, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Guangjian Hou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianrao Lu
- Department of Nephrology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yukun Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
45
|
Wang Q, Liu X, Zhai A, Xu H, Ma S, Liu Y. Expression of apelin‑13 and its negative correlation with TGF‑β1 in patients with diabetic kidney disease. Exp Ther Med 2024; 27:110. [PMID: 38361517 PMCID: PMC10867729 DOI: 10.3892/etm.2024.12398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/15/2023] [Indexed: 02/17/2024] Open
Abstract
Diabetic kidney disease (DKD) is a severe microvascular complication of diabetes, one key feature of which includes renal fibrosis. As apelin is an adipokine closely related to diabetes, the present study aimed to evaluate apelin-13 expression levels and the relationship between apelin-13 and disease indicators in patients with diabetic kidney disease (DKD). The present case-control study enrolled 70 patients with diabetes, including 31 with diabetic kidney disease (DKD group), 39 without DKD (non-DKD group) and 30 healthy controls. The levels of serum apelin-13 and TGF-β1, the key driver of renal fibrosis, were determined by ELISA. Additionally, age, mean disease duration, weight, blood pressure, fasting blood glucose, triglyceride, low-density lipoprotein cholesterol, high-density lipoprotein, cholesterol, urea nitrogen, blood creatinine and 24-hour urinary total protein (24-h UTP) were recorded. The results demonstrated that apelin-13 and TGF-β1 expression levels, age, blood pressure, fasting blood glucose, cholesterol and blood urea nitrogen levels were significantly higher in patients with diabetes compared with the healthy controls (P<0.05). Moreover, apelin-13 and TGF-β1 expression levels, mean disease duration, systolic pressure, blood creatinine, blood urea nitrogen and 24-h UTP were significantly higher in the DKD group compared with the non-DKD group (P<0.05). The estimated glomerular filtration rate (eGFR) was significantly reduced in the DKD group compared with the non-DKD group (P<0.05). Correlation analysis demonstrated a negative correlation between apelin-13 and eGFR expression and a positive correlation between apelin-13 expression and 24-h UTP in both the DKD and non-DKD groups (P<0.05). A negative correlation was also demonstrated between apelin-13 and TGF-β1 expression levels in the DKD group and non-DKD groups (both P<0.05). In conclusion, apelin-13 and TGF-β1 expression levels were significantly higher in the DKD group compared with those in the non-DKD group. Additionally, apelin-13 expression was negatively correlated with TGF-β1 expression in the DKD and non-DKD groups. Therefore, apelin-13 could potentially be used in the future as an indicator of renal fibrosis or destruction in patients with DKD. The present trial was retrospectively registered in the Chinese Clinical Trial Registry (trial registration no. ChiCTR2200060945) on 14.06.2022.
Collapse
Affiliation(s)
- Qi Wang
- Department of Pharmacy, The Fifth People's Hospital of Jinan, Jinan, Shandong 250022, P.R. China
| | - Xujing Liu
- Department of Clinical Laboratory, The Fifth People's Hospital of Jinan, Jinan, Shandong 250022, P.R. China
| | - Aihua Zhai
- Department of Pharmacy, The Fifth People's Hospital of Jinan, Jinan, Shandong 250022, P.R. China
| | - Hua Xu
- Department of Endocrinology, The Fifth People's Hospital of Jinan, Jinan, Shandong 250022, P.R. China
| | - Shizhan Ma
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250022, P.R. China
| | - Yulin Liu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250013, P.R. China
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
46
|
Luo HJ, Zhang YK, Wang SZ, Lin SQ, Wang LF, Lin ZX, Lu GD, Lin DM. Structural characterization and anti-oxidative activity for a glycopeptide from Ganoderma lucidum fruiting body. Int J Biol Macromol 2024; 261:129793. [PMID: 38290627 DOI: 10.1016/j.ijbiomac.2024.129793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
A water-soluble glycopeptide (named GL-PWQ3) with a molecular weight (Mw) of 2.40 × 104 g/mol was isolated from Ganoderma lucidum fruiting body by hot water extraction, membrane ultrafiltration, and gel column chromatography, which mainly consisted of glucose and galactose. Based on the methylation, FT-IR, 1D, and 2D NMR analysis, the polysaccharide portion of GL-PWQ3 was identified as a glucogalactan, which was comprised of unsubstituted (1,6-α-Galp, 1,6-β-Glcp, 1,4-β-Glcp) and monosubstituted (1,2,6-α-Galp and 1,3,6-β-Glcp) in the backbone and possible branches that at the O-3 position of 1,3-Glcp and T-Glcp, and the O-2 position of T-Fucp, T-Manp or T-Glcp. The chain conformational study by SEC-MALLS-RI and AFM revealed that GL-PWQ3 was identified as a highly branched polysaccharide with a polydispersity index of 1.25, and might have compact sphere structures caused by stacked multiple chains. Moreover, the GL-PWQ3 shows strong anti-oxidative activity in NRK-52E cells. This study provides a theoretical basis for further elucidating the structure-functionality relationships of GL-PWQ3 and its potential application as a natural antioxidant in pharmacotherapy as well as functional food additives.
Collapse
Affiliation(s)
- Hong-Jian Luo
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China; College of Life Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Yu-Kun Zhang
- Chongqing Key Laboratory for the Development and Utilization of Genuine Medicinal Materials in the Three Gorges Reservoir Area, Chongqing Three Gorge Medical College, Chongqing 404120, China
| | - Sai-Zhen Wang
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China
| | - Shu-Qian Lin
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China
| | - Lian-Fu Wang
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China
| | - Zhan-Xi Lin
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China
| | - Guo-Dong Lu
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China.
| | - Dong-Mei Lin
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China.
| |
Collapse
|
47
|
Thipboonchoo N, Fongsupa S, Sureram S, Sa-nguansak S, Kesornpun C, Kittakoop P, Soodvilai S. Altenusin, a fungal metabolite, alleviates TGF-β1-induced EMT in renal proximal tubular cells and renal fibrosis in unilateral ureteral obstruction. Heliyon 2024; 10:e24983. [PMID: 38318047 PMCID: PMC10839986 DOI: 10.1016/j.heliyon.2024.e24983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Renal fibrosis is a pathological feature of chronic kidney disease (CKD), progressing toward end-stage kidney disease (ESKD). The aim of this study is to investigate the therapeutic potential of altenusin, a farnesoid X receptor (FXR) agonist derived from fungi, on renal fibrosis. The effect of altenusin was determined (i) in vitro using the transforming growth factor β1 (TGF-β1)-induced epithelial to mesenchymal transition (EMT) of human renal proximal tubular cells and (ii) in vivo using mouse unilateral ureteral obstruction (UUO). The findings revealed that incubation of 10 ng/ml TGF-β1 promotes morphological change in RPTEC/TERT1 cells, a human renal proximal tubular cell line, from epithelial to fibroblast-like cells. TGF-β1 markedly increased EMT markers namely α-smooth muscle actin (α-SMA), fibronectin, and matrix metalloproteinase 9 (MMP-9), while decreased the epithelial marker E-cadherin. Co-incubation TGF-β1 with altenusin preserved the epithelial characteristics of the renal epithelial cells by antagonizing TGF-β/Smad signaling pathway, specifically a decreased phosphorylation of Smad2/3 with an increased level of Smad7. Interestingly, the antagonizing effect of altenusin does not require FXR activation. Moreover, altenusin could reverse TGF-β1-induced fibroblast-like cells to epithelial-like cells. Treatment on UUO mice with 30 mg/kg altenusin significantly reduced the expression of α-SMA, fibronectin, and collagen type 1A1 (COL1A1). The reduction in the renal fibrosis markers is correlated with the decreased phosphorylation of Smad2/3 levels but does not improve E-cadherin protein expression. Collectively, altenusin reduces EMT in human renal proximal tubular cells and renal fibrosis by antagonizing the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Natechanok Thipboonchoo
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Somsak Fongsupa
- Department of Medical Technology, Faculty of Allied Health Science, Thammasat University Rangsit Campus, Thailand
| | - Sanya Sureram
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Suliporn Sa-nguansak
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Chatchai Kesornpun
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Prasat Kittakoop
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Laksi, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Sunhapas Soodvilai
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
- Excellent Center for Drug Discovery, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
48
|
Comella F, Lama A, Pirozzi C, Annunziata C, Piegari G, Sodano F, Melini S, Paciello O, Lago Paz F, Meli R, Mattace Raso G. Oleoylethanolamide attenuates acute-to-chronic kidney injury: in vivo and in vitro evidence of PPAR-α involvement. Biomed Pharmacother 2024; 171:116094. [PMID: 38183745 DOI: 10.1016/j.biopha.2023.116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024] Open
Abstract
Chronic kidney disease (CKD) development after acute kidney injury (AKI) involves multiple mechanisms, including inflammation, epithelial-mesenchymal transition (EMT), and extracellular matrix deposition, leading to progressive tubulointerstitial fibrosis. Recently, a central role for peroxisome-proliferator activated receptor (PPAR)-α has been addressed in preserving kidney function during AKI. Among endogenous lipid mediators, oleoylethanolamide (OEA), a PPAR-α agonist, has been studied for its metabolic and anti-inflammatory effects. Here, we have investigated OEA effects on folic acid (FA)-induced kidney injury in mice and the underlying mechanisms. OEA improved kidney function, normalized urine output, and reduced serum BUN, creatinine, and albuminuria. Moreover, OEA attenuated tubular epithelial injury, as shown by histological analysis, and decreased expression of neutrophil gelatinase-associated lipocalin and kidney injury molecule-1. Gene expression analysis of kidney tissue indicated that OEA limited immune cell infiltration and inflammation. Moreover, OEA significantly inhibited Wnt7b and Catnb1 gene transcription and α-smooth muscle actin expression, indicating suppression of EMT. Accordingly, OEA exhibited an anti-fibrotic effect, as shown by Masson staining and the reduced levels of transforming growth factor (TGF)-β1, fibronectin, and collagen IV. Mechanistically, the nephroprotective effect of OEA was related to PPAR-α activation since OEA failed to exert its beneficial activity in FA-insulted PPAR-α-/- mice. PPAR-α involvement was also confirmed in HK2 cells where GW6471, a PPAR-α antagonist, blunted OEA activity on the TGF-β1 signalling pathway and associated pro-inflammatory and fibrotic patterns. Our findings revealed that OEA counteracts kidney injury by controlling inflammation and fibrosis, making it an effective therapeutic tool for limiting AKI to CKD progression.
Collapse
Affiliation(s)
- Federica Comella
- Department of Pharmacy, School of Medicine, University of Naples "Federico II, 80131 Naples, Italy
| | - Adriano Lama
- Department of Pharmacy, School of Medicine, University of Naples "Federico II, 80131 Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples "Federico II, 80131 Naples, Italy
| | - Chiara Annunziata
- Department of Pharmacy, School of Medicine, University of Naples "Federico II, 80131 Naples, Italy
| | - Giuseppe Piegari
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", 80137 Naples, Italy
| | - Federica Sodano
- Department of Pharmacy, School of Medicine, University of Naples "Federico II, 80131 Naples, Italy
| | - Stefania Melini
- Department of Pharmacy, School of Medicine, University of Naples "Federico II, 80131 Naples, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", 80137 Naples, Italy
| | - Francisca Lago Paz
- University Clinic Hospital of Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - Rosaria Meli
- Department of Pharmacy, School of Medicine, University of Naples "Federico II, 80131 Naples, Italy
| | - Giuseppina Mattace Raso
- Department of Pharmacy, School of Medicine, University of Naples "Federico II, 80131 Naples, Italy.
| |
Collapse
|
49
|
Hadpech S, Thongboonkerd V. Epithelial-mesenchymal plasticity in kidney fibrosis. Genesis 2024; 62:e23529. [PMID: 37345818 DOI: 10.1002/dvg.23529] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is an important biological process contributing to kidney fibrosis and chronic kidney disease. This process is characterized by decreased epithelial phenotypes/markers and increased mesenchymal phenotypes/markers. Tubular epithelial cells (TECs) are commonly susceptible to EMT by various stimuli, for example, transforming growth factor-β (TGF-β), cellular communication network factor 2, angiotensin-II, fibroblast growth factor-2, oncostatin M, matrix metalloproteinase-2, tissue plasminogen activator (t-PA), plasmin, interleukin-1β, and reactive oxygen species. Similarly, glomerular podocytes can undergo EMT via these stimuli and by high glucose condition in diabetic kidney disease. EMT of TECs and podocytes leads to tubulointerstitial fibrosis and glomerulosclerosis, respectively. Signaling pathways involved in EMT-mediated kidney fibrosis are diverse and complex. TGF-β1/Smad and Wnt/β-catenin pathways are the major venues triggering EMT in TECs and podocytes. These two pathways thus serve as the major therapeutic targets against EMT-mediated kidney fibrosis. To date, a number of EMT inhibitors have been identified and characterized. As expected, the majority of these EMT inhibitors affect TGF-β1/Smad and Wnt/β-catenin pathways. In addition to kidney fibrosis, these EMT-targeted antifibrotic inhibitors are expected to be effective for treatment against fibrosis in other organs/tissues.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
50
|
Zhu JH, Wang L, Ma ZX, Duan JA, Tao JH. Rehmannia glutinosa Libosch and Cornus officinalis Sieb herb couple ameliorates renal interstitial fibrosis in CKD rats by inhibiting the TGF-β1/MAPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117039. [PMID: 37579922 DOI: 10.1016/j.jep.2023.117039] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/09/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herb couple Rehmannia glutinosa Libosch and Cornus officinalis Sieb (RC), originated from "Liuwei Dihuang Pill" which recorded in Key to Therapeutics of Children's Diseases. Traditionally, they have been used widely for their ability to nourish yin and energize the kidneys. Our previous study indicated that the RC could protect against adenine induced Chronic kidney disease (CKD) rats. Nevertheless, there is still no clear explanation of the mechanisms by which RC affects renal interstitial fibrosis in CKD rats. AIM OF THE STUDY Current Work aims to explore the amelioration and potential mechanism of RC on renal interstitial fibrosis in CKD rats. MATERIALS AND METHODS CKD rats were induced by adenine. Two weeks after administration, blood, urine, and kidney tissue were collected for biochemical analysis. Observing the physiological state of rats through the changes of rat body weight and renal index. The pro-inflammatory cytokines were measured by enzyme linked immunosorbent assay (ELISA), while renal tissue damage and fibrosis were assessed with Hematoxylin-eosin staining (H&E) and Masson's trichrome staining. In order to determine the levels of indicators and proteins associated with fibrosis signaling pathways, real time PCR (Rt-PCR), Western blot (WB), and immunofluorescence were employed. RESULTS The renal interstitial fibrosis led to impaired cellular functions with increased the levels of Blood Urea Nitrogen (BUN), Urine protein (UP), Interleukin-1β (IL-1β), Interleukin-6 (IL-6), and Tumor Necrosis Factor alpha (TNF-α). and simultaneous up-regulated collagenⅠ(COL-1), fibronection (FN), α-smooth muscle actin (a-SMA), transforming growth factor-β1 (TGF-β1), c-Jun N-terminal kinase (JNK), p38 and extracellular regulated protein kinases (ERK), down-regulated the expression of the E-cadherin proteins. RC notably improved renal dysfunction in CKD rats as indicated by decreases in BUN, UP, and renal index. In addition, consistent with the morphological changes of renal tissue, renal interstitial fibrosis in CKD rats after RC intervention was significantly improved, mainly manifested by a decrease in the positive expression of COL-1, FN, and a-SMA, and increased levels of E-cadherin protein. Meanwhile, RC reduced the classical pro-inflammatory cytokines IL-1β, IL-6, and TNF-α in adenine-induced CKD rats. Additionally, RC administration also down-regulated TGF-β1, JNK, p38 and ERK. CONCLUSION In conclusion, RC may reduce inflammation in adenine induced CKD rats, improve extracellular matrix (ECM) components deposition, and diminish epithelial-mesenchymal transition (EMT) marker protein levels. Furthermore, RC intervention significantly reduces the release of inflammatory cytokines and inhibits the TGF-β1/MAPK signaling pathway. Based on the results, RC might be useful in the treatment of adenine induced renal fibrosis.
Collapse
Affiliation(s)
- Jin-Hui Zhu
- School of Public Health, Nantong University, 19 Qixiu Road, Nantong, China; School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, China
| | - Ling Wang
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, China
| | - Zhen-Xiang Ma
- School of Public Health, Nantong University, 19 Qixiu Road, Nantong, China
| | - Jin-Ao Duan
- Collaborative Innovation Center of Chinese Medicine Resources, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, China
| | - Jin-Hua Tao
- School of Public Health, Nantong University, 19 Qixiu Road, Nantong, China; School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, China.
| |
Collapse
|