1
|
Hesham HM, Dokla EME, Elrazaz EZ, Lasheen DS, Abou El Ella DA. FLT3-PROTACs for combating AML resistance: Analytical overview on chimeric agents developed, challenges, and future perspectives. Eur J Med Chem 2024; 277:116717. [PMID: 39094274 DOI: 10.1016/j.ejmech.2024.116717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/13/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
The urgent and unmet medical demand of acute myeloid leukemia (AML) patients has driven the drug discovery process for expansion of the landscape of AML treatment. Despite the several agents developed for treatment of AML, more than 60 % of treated patients undergo relapse again after re-emission, thus, no complete cure for this complex disease has been reached yet. Targeted oncoprotein degradation is a new paradigm that can be employed to solve drug resistance, disease relapse, and treatment failure in complex diseases as AML, the most lethal hematological malignancy. AML is an aggressive blood cancer form and the most common type of acute leukemia, with bad outcomes and a very poor 5-year survival rate. FLT3 mutations occur in about 30 % of AML cases and FLT3-ITD is associated with poor prognosis of this disease. Prevalent FLT3 mutations include internal tandem duplication and point mutations (e.g., D835) in the tyrosine kinase domain, which induce FLT3 kinase activation and result in survival and proliferation of AML cells again. Currently approved FLT3 inhibitors suffer from limited clinical efficacy due to FLT3 reactivation by mutations, therefore, alternative new treatments are highly needed. Proteolysis-targeting chimera (PROTAC) is a bi-functional molecule that consists of a ligand of the protein of interest, FLT3 inhibitor in our case, that is covalently linked to an E3 ubiquitin ligase ligand. Upon FLT3-specific PROTAC binding to FLT3, the PROTAC can recruit E3 for FLT3 ubiquitination, which is subsequently subjected to proteasome-mediated degradation. In this review we tried to address the question if PROTAC technology has succeeded in tackling the disease relapse and treatment failure of AML. Next, we explored the latest FLT3-targeting PROTACs developed in the past few years such as quizartinib-based PROTACs, dovitinib-based PROTACs, gilteritinib-based PROTACs, and others. Then, we followed with a deep analysis of their advantages regarding potency improvement and overcoming AML drug resistance. Finally, we discussed the challenges facing these chimeric molecules with proposed future solutions to circumvent them.
Collapse
Affiliation(s)
- Heba M Hesham
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Eman Z Elrazaz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Deena S Lasheen
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Dalal A Abou El Ella
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
2
|
Hoff FW, Blum WG, Huang Y, Welkie RL, Swords RT, Traer E, Stein EM, Lin TL, Archer KJ, Patel PA, Collins RH, Baer MR, Duong VH, Arellano ML, Stock W, Odenike O, Redner RL, Kovacsovics T, Deininger MW, Zeidner JF, Olin RL, Smith CC, Foran JM, Schiller GJ, Curran EK, Koenig KL, Heerema NA, Chen T, Martycz M, Stefanos M, Marcus SG, Rosenberg L, Druker BJ, Levine RL, Burd A, Yocum AO, Borate UM, Mims AS, Byrd JC, Madanat YF. Beat-AML 2024 ELN-refined risk stratification for older adults with newly diagnosed AML given lower-intensity therapy. Blood Adv 2024; 8:5297-5305. [PMID: 39110987 PMCID: PMC11497398 DOI: 10.1182/bloodadvances.2024013685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/16/2024] [Indexed: 10/12/2024] Open
Abstract
ABSTRACT Although the 2022 European LeukemiaNet (ELN) acute myeloid leukemia (AML) risk classification reliably predicts outcomes in younger patients treated with intensive chemotherapy, it is unclear whether it applies to adults ≥60 years treated with lower-intensity treatment (LIT). We aimed to test the prognostic impact of ELN risk in patients with newly diagnosed (ND) AML aged ≥60 years given LIT and to further refine risk stratification for these patients. A total of 595 patients were included: 11% had favorable-, 11% intermediate-, and 78% had adverse-risk AML. ELN risk was prognostic for overall survival (OS) (P < .001) but did not stratify favorable- from intermediate-risk (P = .71). Within adverse-risk AML, the impact of additional molecular abnormalities was further evaluated. Multivariable analysis was performed on a training set (n = 316) and identified IDH2 mutation as an independent favorable prognostic factor, and KRAS, MLL2, and TP53 mutations as unfavorable (P < .05). A "mutation score" was calculated for each combination of these mutations, assigning adverse-risk patients to 2 risk groups: -1 to 0 points ("Beat-AML intermediate") vs 1+ points ("Beat-AML adverse"). In the final refined risk classification, ELN favorable- and intermediate-risk were combined into a newly defined "Beat-AML favorable-risk" group, in addition to mutation scoring within the ELN adverse-risk group. This approach redefines risk for older patients with ND AML and proposes refined Beat-AML risk groups with improved discrimination for OS (2-year OS, 48% vs 33% vs 11%, respectively; P < .001), providing patients and providers additional information for treatment decision-making.
Collapse
Affiliation(s)
- Fieke W. Hoff
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - William G. Blum
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Ying Huang
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, OH
| | - Rina Li Welkie
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, OH
| | - Ronan T. Swords
- Division of Hematology/Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Elie Traer
- Division of Hematology/Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Eytan M. Stein
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tara L. Lin
- Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, KS
| | - Kellie J. Archer
- Division of Biostatistics, The Ohio State University, Columbus, OH
| | - Prapti A. Patel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Robert H. Collins
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Maria R. Baer
- Department of Medicine, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Vu H. Duong
- Department of Medicine, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Martha L. Arellano
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Wendy Stock
- Department of Medicine, The University of Chicago, Chicago, IL
| | | | - Robert L. Redner
- Department of Medicine, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA
| | - Tibor Kovacsovics
- Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, UT
| | - Michael W. Deininger
- Department of Internal Medicine, Versiti Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI
| | - Joshua F. Zeidner
- Division of Hematology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rebecca L. Olin
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Catherine C. Smith
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - James M. Foran
- Department of Internal Medicine, Mayo Clinic, Jacksonville, FL
| | - Gary J. Schiller
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | - Emily K. Curran
- Deparrtment of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Kristin L. Koenig
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, OH
| | - Nyla A. Heerema
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Timothy Chen
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, OH
| | - Molly Martycz
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, OH
| | - Mona Stefanos
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, OH
| | | | | | - Brian J. Druker
- Division of Hematology/Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Ross L. Levine
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Amy Burd
- Leukemia & Lymphoma Society, Rye Brook, NY
| | | | - Uma M. Borate
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, OH
| | - Alice S. Mims
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, OH
| | - John C. Byrd
- Deparrtment of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Yazan F. Madanat
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
3
|
Ponomarova O, Starbard AN, Belfi A, Anderson AV, Sundaram MV, Walhout AJ. idh-1 neomorphic mutation confers sensitivity to vitamin B12 in Caenorhabditis elegans. Life Sci Alliance 2024; 7:e202402924. [PMID: 39009411 PMCID: PMC11249921 DOI: 10.26508/lsa.202402924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
In humans, a neomorphic isocitrate dehydrogenase mutation (idh-1neo) causes increased levels of cellular D-2-hydroxyglutarate (D-2HG), a proposed oncometabolite. However, the physiological effects of increased D-2HG and whether additional metabolic changes occur in the presence of an idh-1neo mutation are not well understood. We created a Caenorhabditis elegans model to study the effects of the idh-1neo mutation in a whole animal. Comparing the phenotypes exhibited by the idh-1neo to ∆dhgd-1 (D-2HG dehydrogenase) mutant animals, which also accumulate D-2HG, we identified a specific vitamin B12 diet-dependent vulnerability in idh-1neo mutant animals that leads to increased embryonic lethality. Through a genetic screen, we found that impairment of the glycine cleavage system, which generates one-carbon donor units, exacerbates this phenotype. In addition, supplementation with alternate sources of one-carbon donors suppresses the lethal phenotype. Our results indicate that the idh-1neo mutation imposes a heightened dependency on the one-carbon pool and provides a further understanding of how this oncogenic mutation rewires cellular metabolism.
Collapse
Affiliation(s)
- Olga Ponomarova
- https://ror.org/0464eyp60 Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- https://ror.org/05fs6jp91 Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Alyxandra N Starbard
- https://ror.org/0464eyp60 Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alexandra Belfi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amanda V Anderson
- https://ror.org/05fs6jp91 Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Albertha Jm Walhout
- https://ror.org/0464eyp60 Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
4
|
Qiu B, Boudker O. Structural basis of the excitatory amino acid transporter 3 substrate recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611541. [PMID: 39282329 PMCID: PMC11398500 DOI: 10.1101/2024.09.05.611541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Excitatory amino acid transporters (EAATs) reside on cell surfaces and uptake substrates, including L-glutamate, L-aspartate, and D-aspartate, using ion gradients. Among five EAATs, EAAT3 is the only isoform that can efficiently transport L-cysteine, a substrate for glutathione synthesis. Recent work suggests that EAAT3 also transports the oncometabolite R-2-hydroxyglutarate (R-2HG). Here, we examined the structural basis of substrate promiscuity by determining the cryo-EM structures of EAAT3 bound to different substrates. We found that L-cysteine binds to EAAT3 in thiolate form, and EAAT3 recognizes different substrates by fine-tuning local conformations of the coordinating residues. However, using purified human EAAT3, we could not observe R-2HG binding or transport. Imaging of EAAT3 bound to L-cysteine revealed several conformational states, including an outward-facing state with a semi-open gate and a disrupted sodium-binding site. These structures illustrate that the full gate closure, coupled with the binding of the last sodium ion, occurs after substrate binding. Furthermore, we observed that different substrates affect how the transporter distributes between a fully outward-facing conformation and intermediate occluded states on a path to the inward-facing conformation, suggesting that translocation rates are substrate-dependent.
Collapse
Affiliation(s)
- Biao Qiu
- Department of Physiology & Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
- Howard Hughes Medical Institute, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
| | - Olga Boudker
- Department of Physiology & Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
- Howard Hughes Medical Institute, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
| |
Collapse
|
5
|
Bello RO, Okunlola ST, Kumar N, Victor O, Jimoh TO, Abdulsalam ZN, Kehinde IO, Umar HI. An integrative computational approach for the identification of dual inhibitors of isocitrate dehydrogenase 1 and 2 from phytocompounds of Phyllantus amarus. J Biomol Struct Dyn 2024; 42:7272-7288. [PMID: 37559488 DOI: 10.1080/07391102.2023.2245494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/16/2023] [Indexed: 08/11/2023]
Abstract
Genetic alterations of the genes encoding the isocitrate dehydrogenase (IDH) enzymes have been identified in about 20% of acute myeloid leukemia (AML) cases as well as many other forms of cancers. Notable among these alterations are the neomorphic IDH1_R132H and IDH2_R140Q mutations which lead to the production of an oncometabolite. Hence, their inhibition is widely considered a therapeutic strategy in the treatment of many cancers. While many inhibitors of the mutant enzymes have been developed, an inhibitor that is capable of co-inhibiting both enzymes are currently lacking while drug resistance has also limited the clinical usage of previously identified mono inhibitors. Consequently, this study employed molecular modeling approaches, such as molecular docking, molecular mechanics generalized Born Surface area (MM/GBSA), molecular dynamics (MD) simulation, and density functional theory (DFT) analysis to identify potential dual inhibitors of the previously mentioned mutant IDH1/2 from the phytocompounds of Phyllantus amarus. Of the 31 phytocompounds identified, 20 showed good binding affinities for both IDH1 _R132H and IDH2 _R140Q (ranging from -5.2 Kca/mol to -9.6 Kcal/mol) and had desirable pharmacokinetic properties. However, ellagic acid and pinoresinol possessed better pharmacokinetic properties, rendering suitable hits. Investigation of the behavior of the IDH1_R132H and IDH2_R140Q complexes with ellagic acid and pinoresinol via the RMSD, RMSF, and contact map analyses showed that all the complexes-maintained stability throughout the simulation time. Ultimately, ellagic acid and pinoresinol were identified as promising hits for the development of IDH1_R132H and IDH2_R140Q dual inhibitors. However, further experimental studies are needed to confirm their potential as therapies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ridwan Opeyemi Bello
- Department of Biotechnology, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, Ondo State, Nigeria
- Computer-Aided Therapeutic Discovery and Design Platform (CAT2D), School of Life Sciences (SLS), Federal University of Technology Akure, Akure, Ondo State, Nigeria
| | - Salihaat Toyin Okunlola
- Computer-Aided Therapeutic Discovery and Design Platform (CAT2D), School of Life Sciences (SLS), Federal University of Technology Akure, Akure, Ondo State, Nigeria
- Department of Physiology, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Ondo State, Nigeria
| | - Neeraj Kumar
- Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy, Udaipur, Rajasthan, India
| | - Omoboyede Victor
- Computer-Aided Therapeutic Discovery and Design Platform (CAT2D), School of Life Sciences (SLS), Federal University of Technology Akure, Akure, Ondo State, Nigeria
- Department of Biochemistry, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, Ondo State, Nigeria
| | - Tajudeen O Jimoh
- Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Islamic University in Uganda, Kampala, Uganda
| | - Zainab Naeem Abdulsalam
- Computer-Aided Therapeutic Discovery and Design Platform (CAT2D), School of Life Sciences (SLS), Federal University of Technology Akure, Akure, Ondo State, Nigeria
| | - Idayat Oyinkansola Kehinde
- Computer-Aided Therapeutic Discovery and Design Platform (CAT2D), School of Life Sciences (SLS), Federal University of Technology Akure, Akure, Ondo State, Nigeria
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Haruna Isiyaku Umar
- Computer-Aided Therapeutic Discovery and Design Platform (CAT2D), School of Life Sciences (SLS), Federal University of Technology Akure, Akure, Ondo State, Nigeria
- Department of Biochemistry, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, Ondo State, Nigeria
| |
Collapse
|
6
|
Getz TM, Bewersdorf JP, Kewan T, Stempel JM, Bidikian A, Shallis RM, Stahl M, Zeidan AM. Beyond HMAs: Novel Targets and Therapeutic Approaches. Semin Hematol 2024:S0037-1963(24)00087-8. [PMID: 39389839 DOI: 10.1053/j.seminhematol.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/19/2024] [Indexed: 10/12/2024]
Abstract
Myelodysplastic syndromes/neoplasms (MDS) constitute a heterogeneous group of clonal hematopoietic disorders with extremely variable clinical features and outcomes. Management of MDS is largely based on risk stratification of patients into either lower-risk or higher-risk categories using the International Prognostic Scoring System-Revised and, more recently, on the Molecular International Prognostic Scoring System. Lower-risk MDS is often managed with the goal of ameliorating cytopenias and improving quality of life, while higher-risk MDS is treated with therapies aimed at extending survival and delaying progression to acute myeloid leukemia (AML). Therapeutic strategies in lower-risk MDS patients may consist of erythropoiesis stimulating agents, luspatercept, and lenalidomide for selected patients. Furthermore, imetelstat has recently been added to the FDA-approved therapeutic armamentarium for lower-risk MDS. In higher-risk MDS, monotherapy with hypomethylating agents continues to be the standard of care. While several novel hypomethylating agent combinations have and are being studied in large randomized phase 3 clinical trials, including the combination of azacitidine and venetoclax, no combination to date have improved overall survival to azacitidine monotherapy. Moreover, biomarker-directed therapies as well as immonotherapeutic approaches are currently being evaluated in early phase trials. Despite recent advancements, the lack of therapeutic agents, particularly after the failure of first line therapy in higher risk MDS, continues to be a major hurdle in the management of MDS. In this review, we discuss the current treatment landscape of MDS and provide an overview of novel agents currently in clinical development that have the potential to alter our current treatment paradigms.
Collapse
Affiliation(s)
- Ted M Getz
- Department of Internal Medicine, Section of Hematology, Yale University and Yale Comprehensive Cancer Center, New Haven, Connecticut.
| | - Jan P Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale University and Yale Comprehensive Cancer Center, New Haven, Connecticut; Department of Medicine, Memorial Sloan Kettering Cancer Center, Leukemia Service, New York, New York
| | - Tariq Kewan
- Department of Internal Medicine, Section of Hematology, Yale University and Yale Comprehensive Cancer Center, New Haven, Connecticut
| | - Jessica M Stempel
- Department of Internal Medicine, Section of Hematology, Yale University and Yale Comprehensive Cancer Center, New Haven, Connecticut
| | - Aram Bidikian
- Department of Internal Medicine, Section of Hematology, Yale University and Yale Comprehensive Cancer Center, New Haven, Connecticut
| | - Rory M Shallis
- Department of Internal Medicine, Section of Hematology, Yale University and Yale Comprehensive Cancer Center, New Haven, Connecticut
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University and Yale Comprehensive Cancer Center, New Haven, Connecticut
| |
Collapse
|
7
|
Prajapati SK, Kumari N, Bhowmik D, Gupta R. Recent advancements in biomarkers, therapeutics, and associated challenges in acute myeloid leukemia. Ann Hematol 2024:10.1007/s00277-024-05963-x. [PMID: 39198271 DOI: 10.1007/s00277-024-05963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Acute myeloid leukemia (AML) is a common type of leukemia that has a high mortality rate. The reasons for high mortality in patients with AML are therapeutic resistance, limited ability to predict duration of response, and likelihood of cancer relapse. Biomarkers, such as leukemic stem cell biomarkers, circulatory biomarkers, measurable residual disease biomarkers, and molecular biomarkers, are used for prognosis, diagnosis, and targeted killing to selectively eliminate AML cells. They also play an indispensable role in providing therapeutic resistance to patients with AML. Therefore, targeting these biomarkers will improve the outcome of AML patients. However, identifying biomarkers that can differentiate between treatment-responsive and non-responsive AML patients remains a challenge. This review discusses recent advancements in AML biomarkers, promising therapeutics, and associated challenges in the treatment of AML.
Collapse
Affiliation(s)
- Suresh Kumar Prajapati
- Research and Development Cell, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Neha Kumari
- Parul Institute of Applied Sciences, Parul University, Vadodara, 380060, India
| | - Doulat Bhowmik
- Parul Institute of Applied Sciences, Parul University, Vadodara, 380060, India
| | - Reeshu Gupta
- Research and Development Cell, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India.
- Parul Institute of Applied Sciences, Parul University, Vadodara, 380060, India.
| |
Collapse
|
8
|
Salman H. Comparative Analysis of AML Classification Systems: Evaluating the WHO, ICC, and ELN Frameworks and Their Distinctions. Cancers (Basel) 2024; 16:2915. [PMID: 39199685 PMCID: PMC11352995 DOI: 10.3390/cancers16162915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Comprehensive analyses of the molecular heterogeneity of acute myelogenous leukemia, AML, particularly when malignant cells retain normal karyotype, has significantly evolved. In 2022, significant revisions were introduced in the World Health Organization (WHO) classification and the European LeukemiaNet (ELN) 2022 guidelines of acute myeloid leukemia (AML). These revisions coincided with the inception of the first version of the International Consensus Classification (ICC) for AML. These modifications aim to improve diagnosis and treatment outcomes via a comprehensive incorporation of sophisticated genetic and clinical parameters as well as facilitate accruals to innovative clinical trials. Key updates include modifications to the blast count criteria for AML diagnosis, with WHO 2022 eliminating the ≥20% blast requirement in the presence of AML-defining abnormalities and ICC 2022 setting a 10% cutoff for recurrent genetic abnormalities. Additionally, new categories, such as AML with mutated TP53 and MDS/AML, were introduced. ELN 2022 guidelines retained risk stratification approach and emphasized the critical role of measurable residual disease (MRD) that increased the use of next-generation sequencing (NGS) and flow cytometry testing. These revisions underscore the importance of precise classification for targeted treatment strategies and improved patient outcomes. How much difference versus concordance these classifications present and the impact of those on clinical practice is a continuing discussion.
Collapse
Affiliation(s)
- Huda Salman
- Brown Center for Immunotherapy, Melvin and Bren Simon Comprehensive Cancer Center, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Mohty R, Bazarbachi AH, Labopin M, Esteve J, Kröger N, Cornelissen JJ, Blaise D, Socié G, Maury S, Ganser A, Gedde-Dahl T, von dem Borne P, Bourhis JH, Bulabois CE, Yakoub-Agha I, Pabst C, Nguyen S, Chevallier P, Huynh A, Bazarbachi A, Nagler A, Ciceri F, Mohty M. Isocitrate dehydrogenase (IDH) 1 and 2 mutations predict better outcome in patients with acute myeloid leukemia undergoing allogeneic hematopoietic cell transplantation: a study of the ALWP of the EBMT. Bone Marrow Transplant 2024:10.1038/s41409-024-02384-2. [PMID: 39143183 DOI: 10.1038/s41409-024-02384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024]
Abstract
Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) mutations have uncertain prognostic implications in AML. We investigate the impact IDH1 and IDH2 mutations in AML patients undergoing allogeneic hematopoietic cell transplantation (allo-HCT) in first complete remission (CR1). In total, 1515 adult patients were included, 15.91% (n = 241) carried IDH1 mutation (mIDH1), and 26.27% (n = 398) IDH2 mutation (mIDH2) and 57.82% (n = 876) had no-IDH mutation. NPM1 was frequently encountered with IDH1 mutation (no-IDH group, n = 217, 24.8%, mIDH1, n = 103, 42.7%, mIDH2, n = 111, 27.9%, p < 0.0001). At day 180, the cumulative incidence (CI) of grade II-IV acute graft-versus-host disease (GVHD) was significantly lower in mIDH1 and mIDH2 compared to no-IDH groups (Hazard ratio [HR] = 0.66 (95% CI 0.47-0.91), p = 0.011; HR = 0.73 (95% CI 0.56-0.96), p = 0.025, respectively). In the mIDH1 group, overall survival (OS) was improved compared to no-IDH (HR = 0.68 (95% CI 0.48-0.94), p = 0.021), whereas mIDH2 was associated with lower incidence of relapse (HR = 0.49 (95% CI 0.34-0.7), p < 0.001), improved leukemia free survival (LFS) (HR = 0.7 (95% CI 0.55-0.9), p = 0.004) and OS (HR = 0.74 (95% CI 0.56-0.97), p = 0.027). In the subgroup of NPM1 wild type, only IDH2 was associated with improved outcomes. In conclusion, our data suggest that IDH1 and IDH2 mutations are associated with improved outcomes in patients with AML undergoing allo-HCT in CR1.
Collapse
Affiliation(s)
- Razan Mohty
- Division of Hematology and Oncology and Blood and Marrow Transplantation and Cellular Therapy Program, University of Alabama at Birmingham, Birmingham, AL, USA.
- Service d'Hematologie Clinique, Hopital Saint-Antoine, and INSERM UMRs 938, Paris, France.
| | - Abdul Hamid Bazarbachi
- Service d'Hematologie Clinique, Hopital Saint-Antoine, and INSERM UMRs 938, Paris, France
- Division of Hematology/Oncology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA
| | - Myriam Labopin
- Service d'Hematologie Clinique, Hopital Saint-Antoine, and INSERM UMRs 938, Paris, France
- EBMT Paris Study Office, Saint Antoine Hospital, Paris, France
- Sorbonne University, Paris, France
| | - Jordi Esteve
- Institute of Hematology and Oncology, Hospital Clinic Barcelona, Barcelona, Spain
| | - Nicolaus Kröger
- University Hospital Eppendorf, Bone Marrow Transplantation Centre, Hamburg, Germany
| | - Jan J Cornelissen
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Hematology, Rotterdam, The Netherlands
| | - Didier Blaise
- Transplantation and Cellular Immunotherapy Program, Department of Hematology, Instititut Paoli Calmettes, MSC Lab, Aix Marseille University, Marseille, France
| | - Gerard Socié
- Hopital St. Louis, Dept.of Hematology-BMT, Paris, France
| | - Sébastien Maury
- Hôpital Henri Mondor, Service d'Hematologie, Creteil, France
| | - Arnold Ganser
- Hannover Medical School Department of Haematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover, Germany
| | - Tobias Gedde-Dahl
- Oslo University Hospital, Hematology and Institute of Clinical Medicine University of Oslo, Oslo, Norway
| | - Peter von dem Borne
- Dept. of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean Henri Bourhis
- Gustave Roussy Cancer Campus BMT Service, Department of Hematology, Villejuif, France
| | - Claude Eric Bulabois
- CHU Grenoble Alpes - Université Grenoble Alpes, Service d'Hématologie, Grenoble, France
| | | | - Caroline Pabst
- Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Stéphanie Nguyen
- Universite Paris IV, Hopital la Pitié-Salpêtrière, Hématologie Clinique, Paris, France
| | | | - Anne Huynh
- Clinical Hematology Unit, Oncopôle, Toulouse, France
| | - Ali Bazarbachi
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Arnon Nagler
- Tel Aviv University, BMT and Cord Blood Bank, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Fabio Ciceri
- Hematology & Bone Marrow Transplant, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mohamad Mohty
- Service d'Hematologie Clinique, Hopital Saint-Antoine, and INSERM UMRs 938, Paris, France
- EBMT Paris Study Office, Saint Antoine Hospital, Paris, France
- Sorbonne University, Paris, France
| |
Collapse
|
10
|
Stengel A, Hörst K, Kühn C, Meggendorfer M, Kern W, Haferlach T, Haferlach C. Characterization of cases with the rare cytogenetic abnormality i(7)(p10) reveals an association with IDH2-mutated AML. Blood Adv 2024; 8:4125-4128. [PMID: 38980314 PMCID: PMC11345384 DOI: 10.1182/bloodadvances.2024013225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 06/01/2024] [Indexed: 07/10/2024] Open
|
11
|
Chakraborty S, Morganti C, Pena BR, Zhang H, Verma D, Zaldana K, Gitego N, Ma F, Aluri S, Pradhan K, Gordon S, Mantzaris I, Goldfinger M, Feldman E, Gritsman K, Shi Y, Hubner S, Qiu YH, Brown BD, Skwarska A, Verma A, Konopleva M, Tabe Y, Gavathiotis E, Colla S, Gollob J, Dey J, Kornblau SM, Koralov SB, Ito K, Shastri A. A STAT3 Degrader Demonstrates Pre-clinical Efficacy in Venetoclax resistant Acute Myeloid Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.599788. [PMID: 39211137 PMCID: PMC11361003 DOI: 10.1101/2024.08.05.599788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy that continues to have poor prognosis despite recent therapeutic advances. Venetoclax (Ven), a BCL2-inhibitor has shown a high response rate in AML; however, relapse is invariable due to mitochondrial dysregulation that includes upregulation of the antiapoptotic protein MCL1, a central mechanism of Ven resistance (Ven-res). We have previously demonstrated that the transcription factor STAT3 is upregulated in AML hematopoietic stem and progenitor cells (HSPCs) and can be effectively targeted to induce apoptosis of these aberrant cells. We now show that overexpression of STAT3 alone is sufficient to initiate a strong AML phenotype in a transgenic murine model. Phospho-proteomic data from Ven treated AML patients show a strong correlation of high total STAT3 and phospho-STAT3 [both p-STAT3(Y705) and p-STAT3(S727)] expression with worse survival and reduced remission duration. Additionally, significant upregulation of STAT3 was observed in Ven-res cell lines, in vivo models and primary patient samples. A novel and specific degrader of STAT3 demonstrated targeted reduction of total STAT3 and resulting inhibition of its active p-STAT3(Y705) and p-STAT3(S727) forms. Treatment with the STAT3 degrader induced apoptosis in parental and Ven-res AML cell lines and decreased mitochondrial depolarisation, and thereby dependency on MCL1 in Ven-res AML cell line, as observed by BH3 profiling assay. STAT3 degrader treatment also enhanced differentiation of myeloid and erythroid colonies in Ven-res peripheral blood mononuclear cells (PBMNCs). Upregulation of p-STAT3(S727) was also associated with pronounced mitochondrial structural and functional dysfunction in Ven-res cell lines, that were restored by STAT3 degradation. Treatment with a clinical-stage STAT3 degrader, KT-333 resulted in a significant reduction in STAT3 and MCL1 protein levels within two weeks of treatment in a cell derived xenograft model of Ven-res AML. Additionally, this treatment significant improvement in the survival of a Ven-res patient-derived xenograft in-vivo study. Degradation of STAT3 resulting in downregulation of MCL1 and improvements in global mitochondrial dysfunction suggests a novel mechanism of overcoming Ven-res in AML. Statement of Purpose Five-year survival from AML is dismal at 30%. Our prior research demonstrated STAT3 over-expression in AML HSPC's to be associated with inferior survival. We now explore STAT3 over-expression in Ven-res AML, explain STAT3 mediated mitochondrial perturbations and describe a novel therapeutic strategy, STAT3 degradation to overcome Ven-res.
Collapse
|
12
|
Shukla M, Abdul-Hay M, Choi JH. Molecular Features and Treatment Paradigms of Acute Myeloid Leukemia. Biomedicines 2024; 12:1768. [PMID: 39200232 PMCID: PMC11351617 DOI: 10.3390/biomedicines12081768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Acute myeloid leukemia (AML) is a common hematologic malignancy that is considered to be a disease of aging, and traditionally has been treated with induction chemotherapy, followed by consolidation chemotherapy and/or allogenic hematopoietic stem cell transplantation. More recently, with the use of next-generation sequencing and access to molecular information, targeted molecular approaches to the treatment of AML have been adopted. Molecular targeting is gaining prominence, as AML mostly afflicts the elderly population, who often cannot tolerate traditional chemotherapy. Understanding molecular changes at the gene level is also important for accurate disease classification, risk stratification, and prognosis, allowing for more personalized medicine. Some mutations are well studied and have an established gene-specific therapy, including FLT3 and IDH1/2, while others are being investigated in clinical trials. However, data on most known mutations in AML are still minimal and therapeutic studies are in pre-clinical stages, highlighting the importance of further research and elucidation of the pathophysiology involving these genes. In this review, we aim to highlight the key molecular alterations and chromosomal changes that characterize AML, with a focus on pathophysiology, presently available treatment approaches, and future therapeutic options.
Collapse
Affiliation(s)
| | | | - Jun H. Choi
- Department of Hematology and Medical Oncology, NYU Langone Health, Perlmutter Cancer Center, New York, NY 10016, USA; (M.S.)
| |
Collapse
|
13
|
Dinghuan W, Yi K, Jianzhi T, Wenfei W, Chunlin W, Anling H, Zhixu H, Ben-David Y, Sheng L, Xiaoyan Y, Xiao X. A novel iheyamine A derivative L42 suppresses acute myeloid leukemia via dual regulation of the PI3K/AKT/FOXO3a axis and TNF signaling pathway. Biomed Pharmacother 2024; 177:117071. [PMID: 38981243 DOI: 10.1016/j.biopha.2024.117071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/22/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematopoietic malignancies and the development of new drugs is crucial for the treatment of this lethal disease. Iheyamine A is a nonmonoterpenoid azepinoindole alkaloid from the ascidian Polycitorella sp., and its anticancer mechanism has not been investigated in leukemias. Herein, we showed the significant antileukemic activity of L42 in AML cell lines HEL, HL-60 and THP-1. The IC50 values were 0.466±0.099 µM, 0.356±0.023 µM, 0.475±0.084 µM in the HEL, HL-60 and THP-1 cell lines, respectively, which were lower than the IC50 (2.594±0.271 µM) in the normal liver cell line HL-7702. Furthermore, L42 significantly inhibited the growth of peripheral blood mononuclear cells (PBMCs) from an AML patient. In vivo, L42 effectively suppressed leukemia progression in a mouse model induced by Friend murine leukemia virus (F-MuLV). Mechanistically, we showed that L42 induced cell cycle arrest and apoptosis in leukemia cell lines. RNA sequencing analysis of L42-treated THP-1 cells revealed that the differentially expressed genes (DEGs) were enriched in the cell cycle and apoptosis and predominantly enriched in the PI3K/AKT pathway. Accordingly, L42 decreased the expression of the phospho-PI3K (p85), phospho-AKT and phospho-FOXO3a. Docking and CETSA analysis indicated that L42 bound to the PI3K isoform p110α (PIK3CA), which was implicated in the suppression of the PI3K/AKT pathway. L42 was also shown to initiate the TNF signaling-mediated apoptosis. Moreover, L42 exhibited stronger anti-leukemia activity and sensitivity in IDH2-mutant HEL cells than in IDH2-wild-type control. In conclusion, L42 effectively suppresses cell proliferation and triggers apoptosis in AML cell lines in part through inhibition of the PI3K/AKT signaling pathway to restore FOXO3a expression and activation of the TNF signaling pathway. Thus, the iheyamine A derivative L42 represents a novel candidate for AML therapy.
Collapse
Affiliation(s)
- Wang Dinghuan
- Department of Pediatrics, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, PR China; State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, PR China
| | - Kuang Yi
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, PR China
| | - Tian Jianzhi
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, PR China
| | - Wei Wenfei
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, PR China
| | - Wang Chunlin
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, PR China
| | - Hu Anling
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, PR China
| | - He Zhixu
- Department of Pediatrics, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, PR China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, PR China.
| | - Liu Sheng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, PR China.
| | - Yang Xiaoyan
- Department of Pediatrics, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, PR China.
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, PR China.
| |
Collapse
|
14
|
Tawfik HO, Mousa MHA, Zaky MY, El-Dessouki AM, Sharaky M, Abdullah O, El-Hamamsy MH, Al-Karmalawy AA. Rationale design of novel substituted 1,3,5-triazine candidates as dual IDH1(R132H)/ IDH2(R140Q) inhibitors with high selectivity against acute myeloid leukemia: In vitro and in vivo preclinical investigations. Bioorg Chem 2024; 149:107483. [PMID: 38805913 DOI: 10.1016/j.bioorg.2024.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
In this study, novel substituted 1,3,5-triazine candidates (4a-d, 5a-j, and 6a-d) were designed as second-generation small molecules to act as dual IDH1 and IDH2 inhibitors according to the pharmacophoric features of both vorasidenib and enasidenib. Compounds 6a and 6b for leukemia cell lines showed from low to sub-micromolar GI50. Moreover, compounds 4c, 5f, and 6b described the frontier antitumor activity against THP1 and Kasumi Leukemia cancer cells with IC50 values of (10 and 12), (10.5 and 7), and (6.2 and 5.9) µg/mL, which were superior to those of cisplatin (25 and 28) µg/mL, respectively. Interestingly, compounds 4c, 6b, and 6d represented the best dual IDH1(R132H)/IDH2(R140Q) inhibitory potentials with IC50 values of (0.72 and 1.22), (0.12 and 0.93), and (0.50 and 1.28) µg/mL, respectively, compared to vorasidenib (0.02 and 0.08) µg/mL and enasidenib (0.33 and 1.80) µg/mL. Furthermore, the most active candidate (6b) has very promising inhibitory potentials towards HIF-1α, VEGF, and SDH, besides, a marked increase of ROS was observed as well. Besides, compound 6b induced the upregulation of P53, BAX, Caspases 3, 6, 8, and 9 proteins by 3.70, 1.99, 2.06, 1.73, 1.75, and 1.85-fold changes, respectively, and the downregulation for the BCL-2 protein by 0.55-fold change compared to the control. Besides, the in vivo behavior of compound 6b as an antitumor agent was evaluated in female mice bearing solid Ehrlich carcinoma tumors. Notably, compound 6b administration resulted in a prominent decrease in the weight and volume of the tumors, accompanied by improvements in biochemical, hematological, and histological parameters.
Collapse
Affiliation(s)
- Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Mai H A Mousa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Omeima Abdullah
- Pharmaceutical Sciences Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mervat H El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| |
Collapse
|
15
|
Espelage L, Wagner N, Placke JM, Ugurel S, Tasdogan A. The Interplay between Metabolic Adaptations and Diet in Cancer Immunotherapy. Clin Cancer Res 2024; 30:3117-3127. [PMID: 38771898 DOI: 10.1158/1078-0432.ccr-22-3468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/07/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024]
Abstract
Over the past decade, cancer immunotherapy has significantly advanced through the introduction of immune checkpoint inhibitors and the augmentation of adoptive cell transfer to enhance the innate cancer defense mechanisms. Despite these remarkable achievements, some cancers exhibit resistance to immunotherapy, with limited patient responsiveness and development of therapy resistance. Metabolic adaptations in both immune cells and cancer cells have emerged as central contributors to immunotherapy resistance. In the last few years, new insights emphasized the critical role of cancer and immune cell metabolism in animal models and patients. During therapy, immune cells undergo important metabolic shifts crucial for their acquired effector function against cancer cells. However, cancer cell metabolic rewiring and nutrient competition within tumor microenvironment (TME) alters many immune functions, affecting their fitness, polarization, recruitment, and survival. These interactions have initiated the development of novel therapies targeting tumor cell metabolism and favoring antitumor immunity within the TME. Furthermore, there has been increasing interest in comprehending how diet impacts the response to immunotherapy, given the demonstrated immunomodulatory and antitumor activity of various nutrients. In conclusion, recent advances in preclinical and clinical studies have highlighted the capacity of immune-based cancer therapies. Therefore, further exploration into the metabolic requirements of immune cells within the TME holds significant promise for the development of innovative therapeutic approaches that can effectively combat cancer in patients.
Collapse
Affiliation(s)
- Lena Espelage
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Natalie Wagner
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Jan-Malte Placke
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| |
Collapse
|
16
|
Jen WY, Kantarjian H, Kadia TM, DiNardo CD, Issa GC, Short NJ, Yilmaz M, Borthakur G, Ravandi F, Daver NG. Combination therapy with novel agents for acute myeloid leukaemia: Insights into treatment of a heterogenous disease. Br J Haematol 2024; 205:30-47. [PMID: 38724457 DOI: 10.1111/bjh.19519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/27/2024] [Indexed: 07/13/2024]
Abstract
The treatment landscape of acute myeloid leukaemia (AML) is evolving rapidly. Venetoclax in combination with intensive chemotherapy or doublets or triplets with targeted or immune therapies is the focus of numerous ongoing trials. The development of mutation-targeted therapies has greatly enhanced the treatment armamentarium, with FLT3 inhibitors and isocitrate dehydrogenase inhibitors improving outcomes in frontline and relapsed/refractory (RR) AML, and menin inhibitors showing efficacy in RR NPM1mut and KMT2A-rearranged AML. With so many new drugs approved, the number of potential combinatorial approaches to leverage the maximal benefit of these agents has increased dramatically, while at the same time introducing clinical challenges, such as key preclinical and clinical data supporting the development of combinatorial therapy, how to optimally combine or sequence these novel agents, how to optimise dose and duration to maintain safety while enhancing efficacy, the optimal duration of therapy and the role of measurable residual disease in decision-making in both intensive and low-intensity therapy settings. In this review, we will outline the evidence leading to the approval of key agents in AML, their on-label current approvals and how they may be optimally combined in a safe and deliverable fashion to further improve outcomes in AML.
Collapse
Affiliation(s)
- Wei-Ying Jen
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Musa Yilmaz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
17
|
Patel RV, Ali F, Chiad Z, Chojecki AL, Webb JA, Rosa WE, LeBlanc TW. Top Ten Tips Palliative Care Clinicians Should Know About Acute Myeloid Leukemia. J Palliat Med 2024; 27:794-801. [PMID: 38064538 PMCID: PMC11339551 DOI: 10.1089/jpm.2023.0638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 01/03/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults. Rapidly proliferating leukemic cells cause symptoms and increase the risk of infection. While individuals may initially benefit from supportive measures, disease-directed therapy may ultimately be required for symptom management, even at the end of life, although this may also inadvertently increase symptom burden. This unpredictable illness trajectory complicates prognostic uncertainty and the timing of hospice referral, which may prohibit access to palliative therapies and lead to recurrent hospitalizations. However, emerging evidence demonstrates that early palliative care (PC) integration with standard leukemia care results in improved quality of life, psychological outcomes, and greater participation in advance care planning. To orient PC clinicians asked to care for patients with AML, this article highlights 10 salient considerations.
Collapse
Affiliation(s)
- Rushil V. Patel
- Division of Hematology and Oncology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Fatima Ali
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Zane Chiad
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | | | - Jason A. Webb
- Section of Palliative Care, Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - William E. Rosa
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
18
|
Ser MH, Webb M, Thomsen A, Sener U. Isocitrate Dehydrogenase Inhibitors in Glioma: From Bench to Bedside. Pharmaceuticals (Basel) 2024; 17:682. [PMID: 38931350 PMCID: PMC11207016 DOI: 10.3390/ph17060682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Isocitrate dehydrogenase (IDH) mutant gliomas are a primary malignancy of the central nervous system (CNS) malignancies, most commonly affecting adults under the age of 55. Standard of care therapy for IDH-mutant gliomas involves maximal safe resection, radiotherapy, and chemotherapy. However, despite good initial responses to multimodality treatment, recurrence is virtually universal. IDH-mutant gliomas represent a life-limiting prognosis. For this reason, there is a great need for novel treatments that can prolong survival. Uniquely for IDH-mutant gliomas, the IDH mutation is the direct driver of oncogenesis through its oncometabolite 2-hydroxygluterate. Inhibition of this mutated IDH with a corresponding reduction in 2-hydroxygluterate offers an attractive treatment target. Researchers have tested several IDH inhibitors in glioma through preclinical and early clinical trials. A phase III clinical trial of an IDH1 and IDH2 inhibitor vorasidenib yielded promising results among patients with low-grade IDH-mutant gliomas who had undergone initial surgery and no radiation or chemotherapy. However, many questions remain regarding optimal use of IDH inhibitors in clinical practice. In this review, we discuss the importance of IDH mutations in oncogenesis of adult-type diffuse gliomas and current evidence supporting the use of IDH inhibitors as therapeutic agents for glioma treatment. We also examine unresolved questions and propose potential directions for future research.
Collapse
Affiliation(s)
- Merve Hazal Ser
- Department of Neurology, SBU Istanbul Research and Training Hospital, Istanbul 34098, Turkey
| | - Mason Webb
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA; (M.W.); (U.S.)
| | - Anna Thomsen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ugur Sener
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA; (M.W.); (U.S.)
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
19
|
Risueño A, See WL, Bluemmert I, de Botton S, DiNardo CD, Fathi AT, Schuh AC, Montesinos P, Vyas P, Prebet T, Gandhi A, Hasan M. Somatic gene mutation patterns and burden influence outcomes with enasidenib in relapsed/refractory IDH2-mutated AML. Leuk Res 2024; 140:107497. [PMID: 38564986 DOI: 10.1016/j.leukres.2024.107497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Limited treatment options are available for patients with relapsed/refractory acute myeloid leukemia (R/R AML). We recently reported results from the phase 3 IDHENTIFY trial (NCT02577406) showing improved response rates and event-free survival with enasidenib monotherapy compared with conventional care regimens (CCR) in heavily pretreated, older patients with late-stage R/R AML bearing IDH2 mutations. Here we investigated the prognostic impact of mutational burden and different co-mutation patterns at study entry within the predominant IDH2 variant subclasses, IDH2-R140 and IDH2-R172. The prognostic relevance of these variants is well documented in newly diagnosed AML, but data are lacking in R/R AML. In this large R/R AML patient cohort, targeted next-generation sequencing at baseline (screening) revealed distinct co-mutation patterns and mutational burden between subgroups bearing different IDH2 variants: variant IDH2-R140 was associated with greater mutational burden and was enriched predominantly with poor-risk mutations, including FLT3, RUNX1, and NRAS, while variant IDH2-R172 was associated with lower mutational burden and was preferentially co-mutated with DNMT3A. In multivariable analyses, RAS and RTK pathway mutations were significantly associated with decreased overall survival, after adjusting for treatment arm, IDH2 variant, and mutational burden. Importantly, enasidenib-mediated survival benefit was more pronounced in patients with IDH2-R172 variants.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Female
- Humans
- Male
- Middle Aged
- Aminopyridines/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Isocitrate Dehydrogenase/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Mutation
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Prognosis
- Triazines/therapeutic use
Collapse
Affiliation(s)
- Alberto Risueño
- Bristol Myers Squibb, Lawrenceville, 3401 Princeton Pike, Lawrence Township, NJ 08648, United States
| | - Wendy L See
- Bristol Myers Squibb, Summit, 86 Morris Avenue, Summit, NJ 07901, United States
| | - Iryna Bluemmert
- Celgene International Sàrl, a Bristol-Myers Squibb Company, Route de Perreux 1, Boudry 2017, Switzerland
| | - Stéphane de Botton
- Institut Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94805, France
| | - Courtney D DiNardo
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, United States
| | - Amir T Fathi
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA 02114, United States
| | - Andre C Schuh
- Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON M5G 2C4, Canada
| | - Pau Montesinos
- Hospital Universitario y Politécnico La Fe, Avinguda de Fernando Abril Martorell, 106, Valencia 46026, Spain
| | - Paresh Vyas
- MRC Molecular Haematology Unit and Oxford Biomedical Research Centre, University of Oxford and Oxford University Hospitals, Headley Way, Headington, Oxford OX3 9DS, United Kingdom
| | - Thomas Prebet
- Bristol Myers Squibb, Summit, 86 Morris Avenue, Summit, NJ 07901, United States
| | - Anita Gandhi
- Bristol Myers Squibb, Summit, 86 Morris Avenue, Summit, NJ 07901, United States
| | - Maroof Hasan
- Bristol Myers Squibb, Summit, 86 Morris Avenue, Summit, NJ 07901, United States.
| |
Collapse
|
20
|
Leung WK, Torres Chavez AG, French-Kim M, Shafer P, Mamonkin M, Hill LC, Kuvalekar M, Velazquez Y, Watanabe A, Watanabe N, Hoyos V, Lulla P, Leen AM. Targeting IDH2R140Q and other neoantigens in acute myeloid leukemia. Blood 2024; 143:1726-1737. [PMID: 38241630 PMCID: PMC11103096 DOI: 10.1182/blood.2023021979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024] Open
Abstract
ABSTRACT For patients with high-risk or relapsed/refractory acute myeloid leukemia (AML), allogeneic stem cell transplantation (allo-HSCT) and the graft-versus-leukemia effect mediated by donor T cells, offer the best chance of long-term remission. However, the concurrent transfer of alloreactive T cells can lead to graft-versus-host disease that is associated with transplant-related morbidity and mortality. Furthermore, ∼60% of patients will ultimately relapse after allo-HSCT, thus, underscoring the need for novel therapeutic strategies that are safe and effective. In this study, we explored the feasibility of immunotherapeutically targeting neoantigens, which arise from recurrent nonsynonymous mutations in AML and thus represent attractive targets because they are exclusively present on the tumor. Focusing on 14 recurrent driver mutations across 8 genes found in AML, we investigated their immunogenicity in 23 individuals with diverse HLA profiles. We demonstrate the immunogenicity of AML neoantigens, with 17 of 23 (74%) reactive donors screened mounting a response. The most immunodominant neoantigens were IDH2R140Q (n = 11 of 17 responders), IDH1R132H (n = 7 of 17), and FLT3D835Y (n = 6 of 17). In-depth studies of IDH2R140Q-specific T cells revealed the presence of reactive CD4+ and CD8+ T cells capable of recognizing distinct mutant-specific epitopes restricted to different HLA alleles. These neo-T cells could selectively recognize and kill HLA-matched AML targets endogenously expressing IDH2R140Q both in vitro and in vivo. Overall, our findings support the clinical translation of neoantigen-specific T cells to treat relapsed/refractory AML.
Collapse
Affiliation(s)
- Wingchi K. Leung
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Alejandro G. Torres Chavez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Matthew French-Kim
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Paul Shafer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - LaQuisa C. Hill
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Manik Kuvalekar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Yovana Velazquez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Ayumi Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Premal Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Ann M. Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| |
Collapse
|
21
|
Teng CLJ, Cheng PT, Cheng YC, Tsai JR, Chen MC, Lin H. Dinaciclib inhibits the growth of acute myeloid leukemia cells through either cell cycle-related or ERK1/STAT3/MYC pathways. Toxicol In Vitro 2024; 96:105768. [PMID: 38135130 DOI: 10.1016/j.tiv.2023.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Although immature differentiation and uncontrolled proliferation of hematopoietic stem cells are thought to be the primary mechanisms of acute myeloid leukemia (AML), the pathophysiology in most cases remains unclear. Dinaciclib, a selective small molecule targeting multiple cyclin-dependent kinases (CDKs), is currently being evaluated in oncological clinical trials. Despite the proven anticancer potential of dinaciclib, the differential molecular mechanisms by which it inhibits the growth of different AML cell lines remain unclear. In the current study, we treated HL-60 and KG-1 AML cell lines with dinaciclib and investigated the potential mechanisms of dinaciclib-induced AML cell growth inhibition using flow cytometry and western blotting assays. Data from HL-60 and KG-1 AML cells were validated using human primary AML cells. The results showed that the growth inhibitory effect of dinaciclib was more sensitive in HL-60 cells (IC50: 8.46 nM) than in KG-1 cells (IC50: 14.37 nM). The protein decline in Cyclin A/B and CDK1 and cell cycle arrest in the G2/M phase were more profound in HL-60 cells, corresponding to its growth inhibition. Although the growth inhibition of KG-1 cells by dinaciclib was still pronounced, the cell cycle-associated proteins were relatively insensitive. In addition to cell cycle regulation, the activation/expression of ERK1/STAT3/MYC signaling was significantly reduced by dinaciclib in KG-1 cells compared with that in HL-60 cells. Regarding the results of primary AML cells, we observed ERK1/STAT3/MYC inhibition and cell cycle regulation in different patients. These findings suggest that the cell cycle-associated and ERK1/STAT3/MYC signaling pathways might be two distinct mechanisms by which dinaciclib inhibits AML cells, which could facilitate the development of combination therapy for AML in the future.
Collapse
Affiliation(s)
- Chieh-Lin Jerry Teng
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan; Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Life Science, Tunghai University, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pang-Ting Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Chiao Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jia-Rung Tsai
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Mei-Chih Chen
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
22
|
Wysota M, Konopleva M, Mitchell S. Novel Therapeutic Targets in Acute Myeloid Leukemia (AML). Curr Oncol Rep 2024; 26:409-420. [PMID: 38502417 PMCID: PMC11021231 DOI: 10.1007/s11912-024-01503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE OF REVIEW This review seeks to identify and describe novel genetic and protein targets and their associated therapeutics currently being used or studied in the treatment of acute myeloid leukemia (AML). RECENT FINDINGS Over the course of the last 5-6 years, several targeted therapies have been approved by the FDA, for the treatment of both newly diagnosed as well as relapsed/refractory AML. These novel therapeutics, as well as several others currently under investigation, have demonstrated activity in AML and have improved outcomes for many patients. Patient outcomes in AML have slowly improved over time, though for many patients, particularly elderly patients or those with relapsed/refractory disease, mortality remains very high. With the identification of several molecular/genetic drivers and protein targets and development of therapeutics which leverage those mechanisms to target leukemic cells, outcomes for patients with AML have improved and continue to improve significantly.
Collapse
Affiliation(s)
- Michael Wysota
- Department of Oncology, Montefiore Medical Center, 111 East 210 Street, Bronx, NY, 10467, USA.
| | - Marina Konopleva
- Montefiore Medical Center/Albert Einstein College of Medicine, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Ullmann Building, 1300 Morris Park AvenueRoom 915, Bronx, NY, 10461, USA.
| | | |
Collapse
|
23
|
Ponomarova O, Starbard AN, Belfi A, Anderson AV, Sundaram MV, Walhout AJM. idh-1 neomorphic mutation confers sensitivity to vitamin B12 via increased dependency on one-carbon metabolism in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584865. [PMID: 38559246 PMCID: PMC10979948 DOI: 10.1101/2024.03.13.584865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The isocitrate dehydrogenase neomorphic mutation ( idh-1neo ) generates increased levels of cellular D-2-hydroxyglutarate (D-2HG), a proposed oncometabolite. However, the physiological effects of increased D-2HG and whether additional metabolic changes occur in the presence of an idh-1neo mutation are not well understood. We created a C. elegans model to study the effects of the idh-1neo mutation in a whole animal. Comparing the phenotypes exhibited by the idh-1neo to Δdhgd-1 (D-2HG dehydrogenase) mutant animals, which also accumulate D-2HG, we identified a specific vitamin B12 diet-dependent vulnerability in idh-1neo mutant animals that leads to increased embryonic lethality. Through a genetic screen we found that impairment of the glycine cleavage system, which generates one-carbon donor units, exacerbates this phenotype. Additionally, supplementation with an alternate source of one-carbon donors suppresses the lethal phenotype. Our results indicate that the idh-1neo mutation imposes a heightened dependency on the one-carbon pool and provides a further understanding how this oncogenic mutation rewires cellular metabolism.
Collapse
|
24
|
Snaith O, Poveda-Rogers C, Laczko D, Yang G, Morrissette JJD. Cytogenetics and genomics of acute myeloid leukemia. Best Pract Res Clin Haematol 2024; 37:101533. [PMID: 38490763 DOI: 10.1016/j.beha.2023.101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/14/2023] [Accepted: 12/03/2023] [Indexed: 03/17/2024]
Abstract
The diversity of genetic and genomic abnormalities observed in acute myeloid leukemia (AML) reflects the complexity of these hematologic neoplasms. The detection of cytogenetic and molecular alterations is fundamental to diagnosis, risk stratification and treatment of AML. Chromosome rearrangements are well established in the diagnostic classification of AML, as are some gene mutations, in several international classification systems. Additionally, the detection of new mutational profiles at relapse and identification of mutations in the pre- and post-transplant settings are illuminating in understanding disease evolution and are relevant to the risk assessment of AML patients. In this review, we discuss recurrent cytogenetic abnormalities, as well as the detection of recurrent mutations, within the context of a normal karyotype, and in the setting of chromosome abnormalities. Two new classification schemes from the WHO and ICC are described, comparing these classifications in terms of diagnostic criteria and entity definition in AML. Finally, we discuss ways in which genomic sequencing can condense the detection of gene mutations and chromosome abnormalities into a single assay.
Collapse
Affiliation(s)
- Oraine Snaith
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Corey Poveda-Rogers
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Dorottya Laczko
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Guang Yang
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer J D Morrissette
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Zhang C, Zhou Y, Chen T, Bhushan S, Sun S, Zhang P, Yang Y. Isocitrate dehydrogenase 2 regulates the proliferation of triple-negative breast cancer through the ferroptosis pathway. Sci Rep 2024; 14:4732. [PMID: 38413708 PMCID: PMC10899212 DOI: 10.1038/s41598-024-55561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/25/2024] [Indexed: 02/29/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is currently the type of breast cancer with the worst prognosis; it lacks specific treatments, such as ER/PR antagonistic endocrine and anti-HER2 targeted therapies. Although immunotherapy with immune checkpoints has shown some efficacy in many solid tumors, clinical data in TNBC suggest significant limitations. The essence of ferroptosis is the impaired metabolism of intracellular lipid oxides, which in turn causes the activation and abnormalities of the immune system, including ROS, and not only plays an important role in liver injury and organ aging but also a large amount of data points to the close correlation between the ferroptosis process and tumor development. In this study, through the analysis of large-throughput biological data of breast tumors, combined with the characteristics of the biological process of ferroptosis, the specific gene IDH2 was found to be significantly highly expressed in TNBC and functionally correlated with ferroptosis. Through clinical specimens validated at the gene and protein levels, in vitro tumor cell line validation, and in vivo mouse models, we found that the high expression of IDH2 in TNBC has a role in inhibiting the ferroptosis process in TNBC, thus promoting the proliferation of TNBC cells and other malignant features.
Collapse
Affiliation(s)
- Chengwu Zhang
- Department of Thyroid and Breast Surgery, Hubei General Hospital, Renmin Hospital of Wuhan University, Wuhan, 430000, China
- Department of Thyroid and Breast Surgery, Yichang Central People's Hospital, The First Clinical College of Three Gorges University, Yichang, 443000, China
- The First Clinical College of Three Gorges University, Yichang, 443000, China
| | - Yuanhong Zhou
- Department of Thyroid and Breast Surgery, Yichang Central People's Hospital, The First Clinical College of Three Gorges University, Yichang, 443000, China
- The First Clinical College of Three Gorges University, Yichang, 443000, China
- Yichang Central People's Hospital, The First Clinical College of Three Gorges University, Yichang, 443000, China
| | - Tao Chen
- Department of Thyroid and Breast Surgery, Yichang Central People's Hospital, The First Clinical College of Three Gorges University, Yichang, 443000, China
- The First Clinical College of Three Gorges University, Yichang, 443000, China
| | - Sudhanshu Bhushan
- Department of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, 35390, Giessen, Germany
| | - Shengrong Sun
- Department of Thyroid and Breast Surgery, Hubei General Hospital, Renmin Hospital of Wuhan University, Wuhan, 430000, China.
| | - Panshi Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430000, China.
| | - Yalong Yang
- Department of Breast Surgery, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
26
|
Wang X, Sun H, Dong Y, Huang J, Bai L, Tang Z, Liu S, Chen S. Development and validation of a cuproptosis-related prognostic model for acute myeloid leukemia patients using machine learning with stacking. Sci Rep 2024; 14:2802. [PMID: 38307903 PMCID: PMC10837443 DOI: 10.1038/s41598-024-53306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Our objective is to develop a prognostic model focused on cuproptosis, aimed at predicting overall survival (OS) outcomes among Acute myeloid leukemia (AML) patients. The model utilized machine learning algorithms incorporating stacking. The GSE37642 dataset was used as the training data, and the GSE12417 and TCGA-LAML cohorts were used as the validation data. Stacking was used to merge the three prediction models, subsequently using a random survival forests algorithm to refit the final model using the stacking linear predictor and clinical factors. The prediction model, featuring stacking linear predictor and clinical factors, achieved AUC values of 0.840, 0.876 and 0.892 at 1, 2 and 3 years within the GSE37642 dataset. In external validation dataset, the corresponding AUCs were 0.741, 0.754 and 0.783. The predictive performance of the model in the external dataset surpasses that of the model simply incorporates all predictors. Additionally, the final model exhibited good calibration accuracy. In conclusion, our findings indicate that the novel prediction model refines the prognostic prediction for AML patients, while the stacking strategy displays potential for model integration.
Collapse
Affiliation(s)
- Xichao Wang
- Department of Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Hao Sun
- Department of Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yongfei Dong
- Department of Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jie Huang
- Department of Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Lu Bai
- Department of Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zaixiang Tang
- Department of Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| | - Songbai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, 215009, Jiangsu, China.
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
27
|
Nardozza AM, Guarnera L, Travaglini S, Ottone T, Divona M, De Bellis E, Savi A, Banella C, Noguera NI, Di Fusco D, Monteleone I, Voso MT. Characterization of a novel IDH2-R159H mutation in acute myeloid leukaemia: Effects on cell metabolism and differentiation. Br J Haematol 2024; 204:719-723. [PMID: 38009542 DOI: 10.1111/bjh.19216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Affiliation(s)
- Anna Maria Nardozza
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Luca Guarnera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Mariadomenica Divona
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Eleonora De Bellis
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
- SC Ematologia, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Arianna Savi
- Department of clinical and biological sciences, University of Turin, Turin, Italy
| | - Cristina Banella
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Nelida Ines Noguera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
28
|
Orlacchio A, Muzyka S, Gonda TA. Epigenetic therapeutic strategies in pancreatic cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 383:1-40. [PMID: 38359967 DOI: 10.1016/bs.ircmb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies, characterized by its aggressiveness and metastatic potential, with a 5-year survival rate of only 8-11%. Despite significant improvements in PDAC treatment and management, therapeutic alternatives are still limited. One of the main reasons is its high degree of intra- and inter-individual tumor heterogeneity which is established and maintained through a complex network of transcription factors and epigenetic regulators. Epigenetic drugs, have shown promising preclinical results in PDAC and are currently being evaluated in clinical trials both for their ability to sensitize cancer cells to cytotoxic drugs and to counteract the immunosuppressive characteristic of PDAC tumor microenvironment. In this review, we discuss the current status of epigenetic treatment strategies to overcome molecular and cellular PDAC heterogeneity in order to improve response to therapy.
Collapse
Affiliation(s)
- Arturo Orlacchio
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States
| | - Stephen Muzyka
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States
| | - Tamas A Gonda
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States.
| |
Collapse
|
29
|
Ali T, Usman R, Shah SA, Parvez A, Anwar S, Muneer Z, Saeed M. Aberrant HIF1- α and SIX-1 Expression is Associated with Poor Prognosis in Acute Myeloid Leukemia Patients with Isocitrate Dehydrogenase 1 Mutations. Cancer Control 2024; 31:10732748241271714. [PMID: 39110525 PMCID: PMC11307363 DOI: 10.1177/10732748241271714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND IDH1 mutations are common in many cancers, however, their role in promoting the Warburg effect remains elusive. This study elucidates the putative involvement of mutant-IDH1 in regulating hypoxia-inducible factor (HIF1-α) and Sine-Oculis Homeobox-1 (SIX-1) expression. METHODOLOGY Genetic screening was performed using the ARMS-PCR in acute myeloid leukemia (AML), brain, and breast cancer (BC) cohorts, while transcript expression was determined using qPCR. Further, a meta-analysis of risk factors associated with the R132 mutation was performed. RESULTS Approximately 32% of AML and ∼60% of glioma cases were mutants, while no mutation was found in the BC cohort. 'AA' and TT' were associated with higher disease risk (OR = 12.18 & 4.68) in AML and had significantly upregulated IDH1 expression. Moreover, downregulated HIF1-α and upregulated SIX-1 expression was also observed in these patients, suggesting that mutant-IDH1 may alter glucose metabolism. Perturbed IDH1 and HIF-α levels exhibited poor prognosis in univariate and multivariate analysis, while age and gender were found to be contributory factors as well. Based on the ROC model, these had a good potential to be used as prognostic markers. A significant variation in frequencies of R132 mutations in AML among different populations was observed. Cytogenesis (R2 = 12.2%), NMP1 mutation status (R2 = 18.5%), and ethnic contributions (R2 = 73.21%) were critical moderators underlying these mutations. Women had a higher risk of R132 mutation (HR = 1.3, P < 0.04). The pooled prevalence was calculated to be 0.29 (95% CI 0.26-0.33, P < 0.01), indicating that IDH1 mutations are a significant prognostic factor in AML. CONCLUSION IDH1 and HIF1-α profiles are linked to poor survival and prognosis, while high SIX-1 expression in IDH1 mutants suggests a role in leukemic transformation and therapy response in AML.
Collapse
Affiliation(s)
- Tariq Ali
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Rohma Usman
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Syed Alasar Shah
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Aamir Parvez
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Summayya Anwar
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Zahid Muneer
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Muhammad Saeed
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| |
Collapse
|
30
|
Gangat N, McCullough K, Abdelmagid M, Karrar O, Powell M, Al-Kali A, Alkhateeb H, Begna K, Mangaonkar A, Saliba A, Torghabeh MH, Litzow M, Hogan W, Shah M, Patnaik M, Pardanani A, Badar T, Foran J, Palmer J, Sproat L, Yi CA, Tefferi A. Molecular predictors of response and survival following IDH1/2 inhibitor monotherapy in acute myeloid leukemia. Haematologica 2024; 109:187-292. [PMID: 37534525 PMCID: PMC10772527 DOI: 10.3324/haematol.2023.283732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023] Open
Abstract
Not available.
Collapse
Affiliation(s)
| | | | | | - Omer Karrar
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | - Kebede Begna
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | | | | | - Mark Litzow
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | - Mithun Shah
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | | | - Talha Badar
- Division of Hematology, Mayo Clinic, Jacksonville, FL
| | - James Foran
- Division of Hematology, Mayo Clinic, Jacksonville, FL
| | | | - Lisa Sproat
- Division of Hematology, Mayo Clinic, Scottsdale, AZ
| | | | | |
Collapse
|
31
|
Guo Y, Niu Y, Liang H, Yang X, Jian J, Tang X, Liu B. A nomogram based on clinical features and molecular abnormalities for predicting the prognosis of patients with acute myeloid leukemia. Transl Cancer Res 2023; 12:3432-3442. [PMID: 38192982 PMCID: PMC10774028 DOI: 10.21037/tcr-23-1192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/29/2023] [Indexed: 01/10/2024]
Abstract
Background The high clinical and molecular heterogeneity of acute myeloid leukemia (AML) has led to an unsatisfactory clinical prognosis, thus we sought to incorporate both clinical features and molecular abnormalities to construct a new prognostic model. Methods A database search of the Gene Expression Omnibus (GEO) revealed 238 cases of adult AML. The independent risk factors were assessed using both univariate and multivariate Cox regression, as well as least absolute shrinkage and selection operator (LASSO) regression. The predictive accuracy, discriminatory power and clinical applicability of the nomogram were determined by the consistency index (C-index), calibration curves and decision curve analysis (DCA). In addition, a single-centre cohort of 135 cases was used for external validation. Results Multivariate Cox regression analysis showed that the independent influences on overall survival (OS) were age, type of disease, DNMT3A, IDH2 and TP53 mutations. The area under the curve (AUC) values for the training set were 0.755, 0.745 and 0.757 at 1, 2 and 3 years respectively; the AUC for the validation set were 0.648, 0.648 and 0.654 at 1, 2 and 3 years; and the AUC for the northwest China set were 0.692, 0.724 and 0.689 at 1, 2 and 3 years. The calibration and DCA indicated good consistency and clinical utility of the nomogram. Finally, younger (age <60 years) and elderly (age ≥60 years) patients were each divided into two risk groups with significantly different survival rates. Conclusions A nomogram consisting of five risk factors was developed for forecasting the prognosis of AML with guaranteed reliability.
Collapse
Affiliation(s)
- Yuancheng Guo
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yujie Niu
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Haiping Liang
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xiaoxiao Yang
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jinli Jian
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xiao Tang
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Bei Liu
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of hematology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
32
|
Ceolin V, Ishimaru S, Karol SE, Bautista F, Goemans BF, Gueguen G, Willemse M, Di Laurenzio L, Lukin J, van Tinteren H, Locatelli F, Petit A, Tomizawa D, Norton A, Kaspers G, Reinhardt D, Tasian SK, Nichols G, Kolb EA, Zwaan CM, Cooper TM. The PedAL/EuPAL Project: A Global Initiative to Address the Unmet Medical Needs of Pediatric Patients with Relapsed or Refractory Acute Myeloid Leukemia. Cancers (Basel) 2023; 16:78. [PMID: 38201506 PMCID: PMC10778551 DOI: 10.3390/cancers16010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The prognosis of children with acute myeloid leukemia (AML) has improved incrementally over the last few decades. However, at relapse, overall survival (OS) is approximately 40-50% and is even lower for patients with chemo-refractory disease. Effective and less toxic therapies are urgently needed for these children. The Pediatric Acute Leukemia (PedAL) program is a strategic global initiative that aims to overcome the obstacles in treating children with relapsed/refractory acute leukemia and is supported by the Leukemia and Lymphoma Society in collaboration with the Children's Oncology Group, the Innovative Therapies for Children with Cancer consortium, and the European Pediatric Acute Leukemia (EuPAL) foundation, amongst others. In Europe, the study is set up as a complex clinical trial with a stratification approach to allocate patients to sub-trials of targeted inhibitors at relapse and employing harmonized response and safety definitions across sub-trials. The PedAL/EuPAL international collaboration aims to determine new standards of care for AML in a first and second relapse, using biology-based selection markers for treatment stratification, and deliver essential data to move drugs to front-line pediatric AML studies. An overview of potential treatment targets in pediatric AML, focused on drugs that are planned to be included in the PedAL/EuPAL project, is provided in this manuscript.
Collapse
Affiliation(s)
- Valeria Ceolin
- Princess Máxima Center for Pediatric Oncology, 3584 Utrecht, The Netherlands; (V.C.); (S.I.); (F.B.); (B.F.G.); (M.W.); (H.v.T.); (G.K.)
- Department of Pediatric Hematology/Oncology, Regina Margherita Children’s Hospital, University of Turin, 10126 Turin, Italy
| | - Sae Ishimaru
- Princess Máxima Center for Pediatric Oncology, 3584 Utrecht, The Netherlands; (V.C.); (S.I.); (F.B.); (B.F.G.); (M.W.); (H.v.T.); (G.K.)
| | - Seth E. Karol
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Francisco Bautista
- Princess Máxima Center for Pediatric Oncology, 3584 Utrecht, The Netherlands; (V.C.); (S.I.); (F.B.); (B.F.G.); (M.W.); (H.v.T.); (G.K.)
- The Innovative Therapies for Children with Cancer (ITCC) Consortium, 94805 Paris, France
| | - Bianca Frederika Goemans
- Princess Máxima Center for Pediatric Oncology, 3584 Utrecht, The Netherlands; (V.C.); (S.I.); (F.B.); (B.F.G.); (M.W.); (H.v.T.); (G.K.)
| | - Gwenaëlle Gueguen
- Center of Clinical Investigations, INSERM CIC 1426, Robert Debre Hospital, University of Paris, 75019 Paris, France;
| | - Marieke Willemse
- Princess Máxima Center for Pediatric Oncology, 3584 Utrecht, The Netherlands; (V.C.); (S.I.); (F.B.); (B.F.G.); (M.W.); (H.v.T.); (G.K.)
| | - Laura Di Laurenzio
- Leukemia & Lymphoma Society, Rye Brook, NY 10573, USA; (L.D.L.); (J.L.); (G.N.)
| | - Jennifer Lukin
- Leukemia & Lymphoma Society, Rye Brook, NY 10573, USA; (L.D.L.); (J.L.); (G.N.)
| | - Harm van Tinteren
- Princess Máxima Center for Pediatric Oncology, 3584 Utrecht, The Netherlands; (V.C.); (S.I.); (F.B.); (B.F.G.); (M.W.); (H.v.T.); (G.K.)
| | - Franco Locatelli
- Department of Hematology/Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Catholic University of the Sacred Heart, 00163 Rome, Italy;
| | - Arnaud Petit
- Department of Pediatric Hematology and Oncology, Hôpital Armand Trousseau, Assistance Publique Hôpitaux de Paris, APHP Sorbonne Université, 75012 Paris, France;
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children’s Cancer Center, National Center for Child Health and Development, Tokyo 104-0045, Japan;
| | - Alice Norton
- Birmingham Children’s Hospital, Birmingham B4 6NH, UK;
| | - Gertjan Kaspers
- Princess Máxima Center for Pediatric Oncology, 3584 Utrecht, The Netherlands; (V.C.); (S.I.); (F.B.); (B.F.G.); (M.W.); (H.v.T.); (G.K.)
- Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit, 1105 Amsterdam, The Netherlands
| | - Dirk Reinhardt
- Department of Pediatric Hematology/Oncology, Pediatrics III, University Hospital of Essen, 45147 Essen, Germany;
| | - Sarah K. Tasian
- Division of Oncology, Children’s Hospital of Philadelphia, Department of Pediatrics, School of Medicine, Center for Childhood Cancer Research, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Gwen Nichols
- Leukemia & Lymphoma Society, Rye Brook, NY 10573, USA; (L.D.L.); (J.L.); (G.N.)
| | - Edward Anders Kolb
- Leukemia & Lymphoma Society, Rye Brook, NY 10573, USA; (L.D.L.); (J.L.); (G.N.)
| | - Christian Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, 3584 Utrecht, The Netherlands; (V.C.); (S.I.); (F.B.); (B.F.G.); (M.W.); (H.v.T.); (G.K.)
- The Innovative Therapies for Children with Cancer (ITCC) Consortium, 94805 Paris, France
- Department of Pediatric Hematology/Oncology, Erasmus University MC-Sophia Children’s Hospital, 3015 Rotterdam, The Netherlands
| | - Todd Michael Cooper
- Division of Hematology/Oncology, Seattle Children’s Hospital, University of Washington, Seattle, DC 98105, USA;
| |
Collapse
|
33
|
Heuts BMH, Martens JHA. Understanding blood development and leukemia using sequencing-based technologies and human cell systems. Front Mol Biosci 2023; 10:1266697. [PMID: 37886034 PMCID: PMC10598665 DOI: 10.3389/fmolb.2023.1266697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023] Open
Abstract
Our current understanding of human hematopoiesis has undergone significant transformation throughout the years, challenging conventional views. The evolution of high-throughput technologies has enabled the accumulation of diverse data types, offering new avenues for investigating key regulatory processes in blood cell production and disease. In this review, we will explore the opportunities presented by these advancements for unraveling the molecular mechanisms underlying normal and abnormal hematopoiesis. Specifically, we will focus on the importance of enhancer-associated regulatory networks and highlight the crucial role of enhancer-derived transcription regulation. Additionally, we will discuss the unprecedented power of single-cell methods and the progression in using in vitro human blood differentiation system, in particular induced pluripotent stem cell models, in dissecting hematopoietic processes. Furthermore, we will explore the potential of ever more nuanced patient profiling to allow precision medicine approaches. Ultimately, we advocate for a multiparameter, regulatory network-based approach for providing a more holistic understanding of normal hematopoiesis and blood disorders.
Collapse
Affiliation(s)
- Branco M H Heuts
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
34
|
Griazeva ED, Fedoseeva DM, Radion EI, Ershov PV, Meshkov IO, Semyanihina AV, Makarova AS, Makarov VV, Yudin VS, Keskinov AA, Kraevoy SA. Current Approaches to Epigenetic Therapy. EPIGENOMES 2023; 7:23. [PMID: 37873808 PMCID: PMC10594535 DOI: 10.3390/epigenomes7040023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023] Open
Abstract
Epigenetic therapy is a promising tool for the treatment of a wide range of diseases. Several fundamental epigenetic approaches have been proposed. Firstly, the use of small molecules as epigenetic effectors, as the most developed pharmacological method, has contributed to the introduction of a number of drugs into clinical practice. Secondly, various innovative epigenetic approaches based on dCas9 and the use of small non-coding RNAs as therapeutic agents are also under extensive research. In this review, we present the current state of research in the field of epigenetic therapy, considering the prospects for its application and possible limitations.
Collapse
Affiliation(s)
- Ekaterina D. Griazeva
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Daria M. Fedoseeva
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Elizaveta I. Radion
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Pavel V. Ershov
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Ivan O. Meshkov
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Alexandra V. Semyanihina
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
- Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation (N.N. Blokhin NMRCO), Kashirskoe Shosse, 24, Moscow 115478, Russia
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, Moskvorechye, 1, Moscow 115522, Russia
| | - Anna S. Makarova
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Valentin V. Makarov
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Vladimir S. Yudin
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Anton A. Keskinov
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Sergey A. Kraevoy
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| |
Collapse
|
35
|
Tanaka M, Nakamura T. Targeting epigenetic aberrations of sarcoma in CRISPR era. Genes Chromosomes Cancer 2023; 62:510-525. [PMID: 36967299 DOI: 10.1002/gcc.23142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sarcomas are rare malignancies that exhibit diverse biological, genetic, morphological, and clinical characteristics. Genetic alterations, such as gene fusions, mutations in transcriptional machinery components, histones, and DNA methylation regulatory molecules, play an essential role in sarcomagenesis. These mutations induce and/or cooperate with specific epigenetic aberrations required for the growth and maintenance of sarcomas. Appropriate mouse models have been developed to clarify the significance of genetic and epigenetic interactions in sarcomas. Studies using the mouse models for human sarcomas have demonstrated major advances in our understanding the developmental processes as well as tumor microenvironment of sarcomas. Recent technological progresses in epigenome editing will not only improve the studies using animal models but also provide a direct clue for epigenetic therapies. In this manuscript, we review important epigenetic aberrations in sarcomas and their representative mouse models, current methods of epigenetic editing using CRISPR/dCas9 systems, and potential applications in sarcoma studies and therapeutics.
Collapse
Affiliation(s)
- Miwa Tanaka
- Project for Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takuro Nakamura
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
36
|
Sim KM, Kim SY, Hwang S, Park S, Lee BR, Nam K, Oh S, Kim I. A new cyclin-dependent kinase-9 inhibitor A09-003 induces apoptosis in acute myeloid leukemia cells with reduction of myeloid cell leukemia sequence-1 protein. Chem Biol Interact 2023; 382:110554. [PMID: 37271215 DOI: 10.1016/j.cbi.2023.110554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
Acute myeloid leukemia (AML) is the most common type of hematological disease in adults, and has a very poor outcome [1]. Based on its wide range of efficacy in AML models, a small-molecule inhibitor of the anti-apoptotic protein BCL-2, venetoclax (ABT-199/GDC-0199), was developed for clinical trials. However, venetoclax showed limited monotherapy activity [2]. The overexpression of myeloid cell leukemia sequence-1 protein (Mcl-1)-due to mutations in Fms-like tyrosine kinase 3 internal tandem duplication (FLT-3 ITD)-was considered to be the main reason for low efficacy of venetoclax in clinical trials [3-5]. To achieve venetoclax sensitization in AML, targeting CDK-9 with venetoclax is a promising therapeutic strategy. In this study, we developed A09-003 as a potent inhibitor of CDK-9, with an IC50 value of 16 nM. A09-003 inhibited cell proliferation in various leukemia cell lines. In particular, the proliferation inhibitory effect of A09-003 was most potent in MV4-11 and Molm-14 cells, harboring the FLT-3 ITD mutation with a high expression profile of Mcl-1. Marker analysis revealed that A09-003 reduced CDK-9 phosphorylation and reduced RNA polymerase II activity with decreased Mcl-1 expression. Finally, combining A09-003 with venetoclax induced apoptotic cell death in a synergistic manner. In summary, this study shows the potential of A09-003 in AML therapy.
Collapse
Affiliation(s)
- Kyoung Mi Sim
- Biomedical Research Center, ASAN Institute for Life Sciences, ASAN Medical Center, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, Republic of Korea
| | - So Young Kim
- Biomedical Research Center, ASAN Institute for Life Sciences, ASAN Medical Center, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, Republic of Korea
| | - Supyong Hwang
- Convergence Medicine Research Center (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, Republic of Korea
| | - Sojung Park
- Convergence Medicine Research Center (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, Republic of Korea
| | - Bo Ra Lee
- Convergence Medicine Research Center (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, Republic of Korea
| | | | - SeakHee Oh
- Department of Pediatrics, Asan Medical Center Children's Hospital, University Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Inki Kim
- Biomedical Research Center, ASAN Institute for Life Sciences, ASAN Medical Center, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, Republic of Korea; Convergence Medicine Research Center (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, Republic of Korea; Department of Pharmacology, University of Ulsan College of Medicine, 88 Olympicro 43 gil, Songpa-Gu, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Lee TD, Aisner DL, David MP, Eno CC, Gagan J, Gocke CD, Guseva NV, Haley L, Jajosky AN, Jones D, Mansukhani MM, Mroz P, Murray SS, Newsom KJ, Paulson V, Roy S, Rushton C, Segal JP, Senaratne TN, Siddon AJ, Starostik P, Van Ziffle JAG, Wu D, Xian RR, Yohe S, Kim AS. Current clinical practices and challenges in molecular testing: a GOAL Consortium Hematopathology Working Group report. Blood Adv 2023; 7:4599-4607. [PMID: 37236162 PMCID: PMC10425685 DOI: 10.1182/bloodadvances.2023010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
While molecular testing of hematologic malignancies is now standard of care, there is variability in practice and testing capabilities between different academic laboratories, with common questions arising on how to best meet clinical expectations. A survey was sent to hematopathology subgroup members of the Genomics Organization for Academic Laboratories consortium to assess current and future practice and potentially establish a reference for peer institutions. Responses were received from 18 academic tertiary-care laboratories regarding next-generation sequencing (NGS) panel design, sequencing protocols and metrics, assay characteristics, laboratory operations, case reimbursement, and development plans. Differences in NGS panel size, use, and gene content were reported. Gene content for myeloid processes was reported to be generally excellent, while genes for lymphoid processes were less well covered. The turnaround time (TAT) for acute cases, including acute myeloid leukemia, was reported to range from 2 to 7 calendar days to 15 to 21 calendar days, with different approaches to achieving rapid TAT described. To help guide NGS panel design and standardize gene content, consensus gene lists based on current and future NGS panels in development were generated. Most survey respondents expected molecular testing at academic laboratories to continue to be viable in the future, with rapid TAT for acute cases likely to remain an important factor. Molecular testing reimbursement was reported to be a major concern. The results of this survey and subsequent discussions improve the shared understanding of differences in testing practices for hematologic malignancies between institutions and will help provide a more consistent level of patient care.
Collapse
Affiliation(s)
- Thomas D. Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
| | - Dara L. Aisner
- Department of Pathology, University of Colorado, Aurora, CO
| | - Marjorie P. David
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Celeste C. Eno
- Department of Pathology and Lab Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jeffrey Gagan
- Department of Pathology, University of Texas Southwestern, Dallas, TX
| | - Christopher D. Gocke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Lisa Haley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Audrey N. Jajosky
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Daniel Jones
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Mahesh M. Mansukhani
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Pawel Mroz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Sarah S. Murray
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Kimberly J. Newsom
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Vera Paulson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Somak Roy
- Department of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Chase Rushton
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | | | - T. Niroshini Senaratne
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
| | - Alexa J. Siddon
- Departments of Laboratory Medicine & Pathology, Yale School of Medicine, New Haven, CT
| | - Petr Starostik
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | | | - David Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Rena R. Xian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sophia Yohe
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Annette S. Kim
- Department of Pathology, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA
| |
Collapse
|
38
|
Wu RH, Zhu CY, Yu PH, Ma Y, Hussain L, Naranmandura H, Wang QQ. The landscape of novel strategies for acute myeloid leukemia treatment: Therapeutic trends, challenges, and future directions. Toxicol Appl Pharmacol 2023; 473:116585. [PMID: 37302559 DOI: 10.1016/j.taap.2023.116585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous subtype of hematological malignancies with a wide spectrum of cytogenetic and molecular abnormalities, which makes it difficult to manage and cure. Along with the deeper understanding of the molecular mechanisms underlying AML pathogenesis, a large cohort of novel targeted therapeutic approaches has emerged, which considerably expands the medical options and changes the therapeutic landscape of AML. Despite that, resistant and refractory cases caused by genomic mutations or bypass signalling activation remain a great challenge. Therefore, discovery of novel treatment targets, optimization of combination strategies, and development of efficient therapeutics are urgently required. This review provides a detailed and comprehensive discussion on the advantages and limitations of targeted therapies as a single agent or in combination with others. Furthermore, the innovative therapeutic approaches including hyperthermia, monoclonal antibody-based therapy, and CAR-T cell therapy are also introduced, which may provide safe and viable options for the treatment of patients with AML.
Collapse
Affiliation(s)
- Ri Han Wu
- College of Life Sciences, Changchun Normal University, Changchun 130032, China
| | - Chen Ying Zhu
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Pei Han Yu
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yafang Ma
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liaqat Hussain
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Qian Qian Wang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
39
|
Kayki-Mutlu G, Aksoyalp ZS, Wojnowski L, Michel MC. A year in pharmacology: new drugs approved by the US Food and Drug Administration in 2022. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1619-1632. [PMID: 36951997 PMCID: PMC10034907 DOI: 10.1007/s00210-023-02465-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
While new drug approvals by the U.S. Food and Drug Administration (FDA) had remained stable or even increased in the first 2 years of the COVID-19 pandemic, the 37 newly approved drugs in 2022 are considerably less than the 53 and 50 new drugs approved in 2020 and 2021, respectively, and less than the rolling 10-year average of 43. As in previous years of this annual review, we assign these new drugs to one of three levels of innovation: first drug against a condition ("first-in-indication"), first drug using a novel molecular mechanism ("first-in-class"), and "next-in-class," i.e., a drug using an already exploited molecular mechanism. We identify two "first-in-indication" (ganaxolon and teplizumab), 20 (54%) "first-in-class," and 17 (46%) "next-in-class" drugs. By treatment area, rare diseases and cancer drugs were once again the most prevalent (partly overlapping) therapeutic areas. Other continuing trends were the use of accelerated regulatory approval pathways and the reliance on biopharmaceuticals (biologics).
Collapse
Affiliation(s)
- Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zinnet Sevval Aksoyalp
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Leszek Wojnowski
- Department of Pharmacology, University Medical Center, Universitätsmedizin Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55118 Mainz, Germany
| | - Martin C. Michel
- Department of Pharmacology, University Medical Center, Universitätsmedizin Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55118 Mainz, Germany
| |
Collapse
|
40
|
Tardito S, MacKay C. Rethinking our approach to cancer metabolism to deliver patient benefit. Br J Cancer 2023; 129:406-415. [PMID: 37340094 PMCID: PMC10403540 DOI: 10.1038/s41416-023-02324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Altered cellular metabolism is a major mechanism by which tumours support nutrient consumption associated with increased cellular proliferation. Selective dependency on specific metabolic pathways provides a therapeutic vulnerability that can be targeted in cancer therapy. Anti-metabolites have been used clinically since the 1940s and several agents targeting nucleotide metabolism are now well established as standard of care treatment in a range of indications. However, despite great progress in our understanding of the metabolic requirements of cancer and non-cancer cells within the tumour microenvironment, there has been limited clinical success for novel agents targeting pathways outside of nucleotide metabolism. We believe that there is significant therapeutic potential in targeting metabolic processes within cancer that is yet to be fully realised. However, current approaches to identify novel targets, test novel therapies and select patient populations most likely to benefit are sub-optimal. We highlight recent advances in technologies and understanding that will support the identification and validation of novel targets, re-evaluation of existing targets and design of optimal clinical positioning strategies to deliver patient benefit.
Collapse
Affiliation(s)
- Saverio Tardito
- The Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Craig MacKay
- Cancer Research Horizons, The Cancer Research UK Beatson Institute, Glasgow, UK.
| |
Collapse
|
41
|
Fan H, Wang F, Zeng A, Murison A, Tomczak K, Hao D, Jelloul FZ, Wang B, Barrodia P, Liang S, Chen K, Wang L, Zhao Z, Rai K, Jain AK, Dick J, Daver N, Futreal A, Abbas HA. Single-cell chromatin accessibility profiling of acute myeloid leukemia reveals heterogeneous lineage composition upon therapy-resistance. Commun Biol 2023; 6:765. [PMID: 37479893 PMCID: PMC10362028 DOI: 10.1038/s42003-023-05120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by high rate of therapy resistance. Since the cell of origin can impact response to therapy, it is crucial to understand the lineage composition of AML cells at time of therapy resistance. Here we leverage single-cell chromatin accessibility profiling of 22 AML bone marrow aspirates from eight patients at time of therapy resistance and following subsequent therapy to characterize their lineage landscape. Our findings reveal a complex lineage architecture of therapy-resistant AML cells that are primed for stem and progenitor lineages and spanning quiescent, activated and late stem cell/progenitor states. Remarkably, therapy-resistant AML cells are also composed of cells primed for differentiated myeloid, erythroid and even lymphoid lineages. The heterogeneous lineage composition persists following subsequent therapy, with early progenitor-driven features marking unfavorable prognosis in The Cancer Genome Atlas AML cohort. Pseudotime analysis further confirms the vast degree of heterogeneity driven by the dynamic changes in chromatin accessibility. Our findings suggest that therapy-resistant AML cells are characterized not only by stem and progenitor states, but also by a continuum of differentiated cellular lineages. The heterogeneity in lineages likely contributes to their therapy resistance by harboring different degrees of lineage-specific susceptibilities to therapy.
Collapse
Affiliation(s)
- Huihui Fan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Feng Wang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andy Zeng
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alex Murison
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Katarzyna Tomczak
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dapeng Hao
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fatima Zahra Jelloul
- Department of Hematopathology, University of Texas M D Anderson Cancer Center, Houston, TX, USA
| | - Bofei Wang
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Praveen Barrodia
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaoheng Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kunal Rai
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhinav K Jain
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Dick
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Naval Daver
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andy Futreal
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hussein A Abbas
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
42
|
Yin WJ. A bacterial enzyme may correct 2-HG accumulation in human cancers. Front Oncol 2023; 13:1235191. [PMID: 37546420 PMCID: PMC10399246 DOI: 10.3389/fonc.2023.1235191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
A significant proportion of lower-grade glioma as well as many other types of human cancers are associated with neomorphic mutations in IDH1/2 genes (mIDH1/2). These mutations lead to an aberrant accumulation of 2-hydroxyglutarate (2-HG). Interestingly, even cancers without mIDH1/2 can exhibit increased levels of 2-HG due to factors like hypoxia and extracellular acidity. Mounting evidence demonstrates that 2-HG competitively inhibits α-ketoglutarate dependent enzymes, such as JmjC-domain-containing histone demethylases (JHDMs), ten-eleven translocation enzymes (TETs), and various dioxygenases (e.g., RNA m6A demethylases and prolyl hydroxylases). Consequently, the hypermethylation of DNA, RNA, and histones, and the abnormal activities of hypoxia-inducible factors (HIFs) have profound impacts on the establishment of cancer metabolism and microenvironment, which promote tumor progression. This connection between the oncometabolite 2-HG and glioma holds crucial implications for treatments targeting this disease. Here, I hypothesize that an ectopic introduction of a bacterial 2-hydroxyglutarate synthase (2-HG synthase) enzyme into cancer cells with 2-HG accumulation could serve as a promising enzyme therapy for glioma and other types of cancers. While absent in human metabolism, 2-HG synthase in bacterial species catalyzes the conversion of 2-HG into propionyl-CoA and glyoxylate, two metabolites that potentially possess anti-tumor effects. For a broad spectrum of human cancers with 2-HG accumulation, 2-HG synthase-based enzyme therapy holds the potential to not only correct 2-HG induced cancer metabolism but also transform an oncometabolite into metabolic challenges within cancer cells.
Collapse
Affiliation(s)
- William J. Yin
- Oconee County High School, Watkinsville, GA, United States
- Bio-Imaging Research Center, The University of Georgia, Athens, GA, United States
| |
Collapse
|
43
|
Oyogoa E, Traer E, Tyner J, Lachowiez C. Building on Foundations: Venetoclax-Based Combinations in the Treatment of Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:3589. [PMID: 37509251 PMCID: PMC10377106 DOI: 10.3390/cancers15143589] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Frontline acute myeloid leukemia (AML) treatment is determined by a combination of patient and genetic factors. This includes patient fitness (i.e., comorbidities that increase the risk of treatment-related mortality) and genetic characteristics, including cytogenetic events and gene mutations. In older unfit patients, the standard of care treatment is typically venetoclax (VEN) combined with hypomethylating agents (HMA). Recently, several drugs have been developed targeting specific genomic subgroups of AML patients, enabling individualized therapy. This has resulted in investigations of doublet and triplet combinations incorporating VEN aimed at overcoming known resistance mechanisms and improving outcomes in older patients with AML. These combinations include isocitrate dehydrogenase-1/2 (IDH1/2) inhibitors (i.e., ivosidenib and enasidenib), fms-like tyrosine kinase 3 (FLT3) inhibitors (i.e., gilteritinib), anti-CD47 antibodies (i.e., magrolimab), mouse double minute-2 (MDM2) inhibitors, and p53 reactivators (i.e., eprenetapopt). This review summarizes ongoing trials aimed at overcoming known VEN resistance mechanisms and improving outcomes beyond that observed with HMA + VEN combinations in the treatment of AML.
Collapse
Affiliation(s)
- Emmanuella Oyogoa
- Department of Internal Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elie Traer
- Knight Cancer Institute, Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jeffrey Tyner
- Knight Cancer Institute, Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Curtis Lachowiez
- Knight Cancer Institute, Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
44
|
Chen X, Xing H, Xie X, Kou L, Li J, Li Y. Efficacy and safety of FDA-approved IDH inhibitors in the treatment of IDH mutated acute myeloid leukemia: a systematic review and meta-analysis. Clin Epigenetics 2023; 15:113. [PMID: 37434249 PMCID: PMC10334617 DOI: 10.1186/s13148-023-01529-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023] Open
Abstract
OBJECTIVE To systematically evaluate the efficacy and safety of FDA-approved isocitrate dehydrogenase (IDH) inhibitors in the treatment of IDH-mutated acute myeloid leukemia (AML). METHODS We used R software to conduct a meta-analysis of prospective clinical trials of IDH inhibitors in the treatment of IDH-mutated AML published in PubMed, Embase, Clinical Trials, Cochrane Library and Web of Science from inception to November 15th, 2022. RESULTS A total of 1109 IDH-mutated AML patients from 10 articles (11 cohorts) were included in our meta-analysis. The CR rate, ORR rate, 2-year survival (OS) rate and 2-year event-free survival (EFS) rate of newly diagnosed IDH-mutated AML (715 patients) were 47%, 65%, 45% and 29%, respectively. The CR rate, ORR rate, 2-year OS rate, median OS and median EFS of relapsed or refractory (R/R) IDH-mutated AML (394 patients) were 21%, 40%, 15%, 8.21 months and 4.73 months, respectively. Gastrointestinal adverse events were the most frequently occurring all-grade adverse events and hematologic adverse events were the most frequently occurring ≥ grade 3 adverse events. CONCLUSION IDH inhibitor is a promising treatment for R/R AML patients with IDH mutations. For patients with newly diagnosed IDH-mutated AML, IDH inhibitors may not be optimal therapeutic agents due to low CR rates. The safety of IDH inhibitors is controllable, but physicians should always pay attention to and manage the differentiation syndrome adverse events caused by IDH inhibitors. The above conclusions need more large samples and high-quality RCTs in the future to verify.
Collapse
Affiliation(s)
- Xiu Chen
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hongyun Xing
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaolu Xie
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Liqiu Kou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jun Li
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
45
|
Turkalj S, Radtke FA, Vyas P. An Overview of Targeted Therapies in Acute Myeloid Leukemia. Hemasphere 2023; 7:e914. [PMID: 37304938 PMCID: PMC10256410 DOI: 10.1097/hs9.0000000000000914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 06/13/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most aggressive adult leukemia, characterized by clonal differentiation arrest of progenitor or precursor hematopoietic cells. Intense preclinical and clinical research has led to regulatory approval of several targeted therapeutics, administered either as single agents or as combination therapies. However, the majority of patients still face a poor prognosis and disease relapse frequently occurs due to selection of therapy-resistant clones. Hence, more effective novel therapies, most likely as innovative, rational combination therapies, are urgently needed. Chromosomal aberrations, gene mutations, and epigenetic alterations drive AML pathogenesis but concurrently provide vulnerabilities to specifically target leukemic cells. Other molecules, either aberrantly active and/or overexpressed in leukemic stem cells, may also be leveraged for therapeutic benefit. This concise review of targeted therapies for AML treatment, which are either approved or are being actively investigated in clinical trials or recent preclinical studies, provides a flavor of the direction of travel, but also highlights the current challenges in AML treatment.
Collapse
Affiliation(s)
- Sven Turkalj
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
- Oxford Centre for Hematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Felix A. Radtke
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
- Oxford Centre for Hematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Paresh Vyas
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
- Oxford Centre for Hematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Hematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
46
|
Suo X, Zheng F, Wang D, Zhao L, Liu J, Li L, Zhang Z, Zhang C, Li Y, Yang S, Zhao X, Shi R, Wu Y, Jiao Z, Song J, Zhang L, Lu X, Yuan L, Gao S, Zhang J, Zhao X, Bai G, Liu K, Mi Y. Venetoclax combined with daunorubicin and cytarabine (2 + 6) as induction treatment in adults with newly diagnosed acute myeloid leukemia: a phase 2, multicenter, single-arm trial. Exp Hematol Oncol 2023; 12:45. [PMID: 37173750 PMCID: PMC10176670 DOI: 10.1186/s40164-023-00409-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Venetoclax (Ven) combined with intensive chemotherapy was proven effective in the management of acute myeloid leukemia (AML). However, the severe and prolonged myelosuppression remains a concern to worry about. To explore more appropriate combination regimens, we designed Ven combining daunorubicin and cytarabine (DA 2 + 6) regimen as induction therapy, aimed to evaluate the effectiveness and safety in adults de novo AML. METHODS A phase 2 clinical trial was performed in 10 Chinese hospitals to investigate Ven combined with daunorubicin and cytarabine (DA 2 + 6) in patients with AML. The primary endpoints were overall response rate (ORR), comprising of complete remission (CR), complete remission with incomplete blood cell count recovery (CRi), and partial response (PR). Secondary endpoints included measurable residual disease (MRD) of bone marrow assessed by flow cytometry, overall survival (OS), event-free survival (EFS), disease-free survival (DFS), and the safety of regimens. This study is a currently ongoing trial listed on the Chinese Clinical Trial Registry as ChiCTR2200061524. RESULTS Overall, 42 patients were enrolled from January 2022 to November 2022; 54.8% (23/42) were male, and the median age was 40 (range, 16-60) years. The ORR after one cycle of induction was 92.9% (95% confidence interval [CI], 91.6-94.1; 39/42) with a composite complete response rate (CR + CRi) 90.5% (95% CI, 89.3-91.6, CR 37/42, CRi 1/42). Moreover, 87.9% (29/33) of the CR patients with undetectable MRD (95% CI, 84.9-90.8). Grade 3 or worse adverse effects included neutropenia (100%), thrombocytopenia (100%), febrile neutropenia (90.5%), and one mortality. The median neutrophil and platelet recovery times were 13 (5-26) and 12 (8-26) days, respectively. Until Jan 30, 2023, the estimated 12-month OS, EFS, and DFS rates were 83.1% (95% CI, 78.8-87.4), 82.7% (95% CI, 79.4-86.1), and 92.0% (95% CI, 89.8-94.3), respectively. CONCLUSION Ven with DA (2 + 6) is a highly effective and safe induction therapy for adults with newly diagnosed AML. To the best of our knowledge, this induction therapy has the shortest myelosuppressive period but has similar efficacy to previous studies.
Collapse
Affiliation(s)
- Xiaohui Suo
- Department of Hematology, Handan Central Hospital, Handan, Hebei, China
| | - Fang Zheng
- Department of Hematology, Baiyun Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Dongmei Wang
- Department of Hematology, Harrison International Peace Hospital, Hengshui, Hebei, China
| | - Liyun Zhao
- Department of Hematology, People Hospital of XingTai, Xing Tai, Hebei, China
| | - Jie Liu
- Department of Hematology, Sinopharm Tongmei General Hospital, Datong, Shanxi, China
| | - Ling Li
- Department of Hematology, Inner Mongolia People's Hospital, Huhehaote, Neimenggu, China
| | - Zhihua Zhang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Congcong Zhang
- Department of Hematology, Handan Central Hospital, Handan, Hebei, China
| | - Yinling Li
- Department of Hematology, Handan Central Hospital, Handan, Hebei, China
| | - Sisi Yang
- Department of Hematology, Baiyun Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Xuemei Zhao
- Department of Hematology, Baiyun Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Rui Shi
- Department of Hematology, Harrison International Peace Hospital, Hengshui, Hebei, China
| | - Yan Wu
- Department of Hematology, Harrison International Peace Hospital, Hengshui, Hebei, China
| | - Zongjiu Jiao
- Department of Hematology, People Hospital of XingTai, Xing Tai, Hebei, China
| | - Jiaojie Song
- Department of Hematology, People Hospital of XingTai, Xing Tai, Hebei, China
| | - Ling Zhang
- Department of Hematology, Sinopharm Tongmei General Hospital, Datong, Shanxi, China
| | - Xinxiao Lu
- Department of Hematology, Oncology Center, Tianjin People's Hospital, No. 190 Jieyuan Road, Hongqiao District, Tianjin, China
| | - Linyu Yuan
- Department of Hematology, Oncology Center, Tianjin People's Hospital, No. 190 Jieyuan Road, Hongqiao District, Tianjin, China
| | - Sifeng Gao
- Department of Hematology, The Affiliated Tai'an City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Jilei Zhang
- Department of Hematology, The Affiliated Tai'an City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Xingli Zhao
- Department of Hematology, Oncology Center, Tianjin People's Hospital, No. 190 Jieyuan Road, Hongqiao District, Tianjin, China
| | - Guanchen Bai
- Department of Hematology, The Affiliated Tai'an City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Kaiqi Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin, China.
| | - Yingchang Mi
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
47
|
Ghazaryan A, Wallace JA, Tang WW, Barba C, Lee SH, Bauer KM, Nelson MC, Kim CN, Stubben C, Voth WP, Rao DS, O’Connell RM. miRNA-1 promotes acute myeloid leukemia cell pathogenesis through metabolic regulation. Front Genet 2023; 14:1192799. [PMID: 37229187 PMCID: PMC10203238 DOI: 10.3389/fgene.2023.1192799] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous and deadly disease characterized by uncontrolled expansion of malignant blasts. Altered metabolism and dysregulated microRNA (miRNA) expression profiles are both characteristic of AML. However, there is a paucity of studies exploring how changes in the metabolic state of the leukemic cells regulate miRNA expression leading to altered cellular behavior. Here, we blocked pyruvate entry into mitochondria by deleting the Mitochondria Pyruvate Carrier (MPC1) gene in human AML cell lines, which decreased Oxidative Phosphorylation (OXPHOS). This metabolic shift also led to increased expression of miR-1 in the human AML cell lines tested. AML patient sample datasets showed that higher miR-1 expression correlates with reduced survival. Transcriptional and metabolic profiling of miR-1 overexpressing AML cells revealed that miR-1 increased OXPHOS, along with key metabolites that fuel the TCA cycle such as glutamine and fumaric acid. Inhibition of glutaminolysis decreased OXPHOS in miR-1 overexpressing MV4-11 cells, highlighting that miR-1 promotes OXPHOS through glutaminolysis. Finally, overexpression of miR-1 in AML cells exacerbated disease in a mouse xenograft model. Together, our work expands current knowledge within the field by uncovering novel connections between AML cell metabolism and miRNA expression that facilitates disease progression. Further, our work points to miR-1 as a potential new therapeutic target that may be used to disrupt AML cell metabolism and thus pathogenesis in the clinic.
Collapse
Affiliation(s)
- Arevik Ghazaryan
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Jared A. Wallace
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - William W. Tang
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Cindy Barba
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Soh-Hyun Lee
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Kaylyn M. Bauer
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Morgan C. Nelson
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Carissa N. Kim
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Chris Stubben
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Warren P. Voth
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Dinesh S. Rao
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Ryan M. O’Connell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
48
|
Yang W, Sun X, Liu S, Xu Y, Li Y, Huang X, Liu K, Mao L, Min S, Liu L, Li S, Zhu Y, Zhang Y, Xie X, Xu K, Sun C, Yan J, Li Z. TLR8 agonist Motolimod-induced inflammatory death for treatment of acute myeloid leukemia. Biomed Pharmacother 2023; 163:114759. [PMID: 37105077 DOI: 10.1016/j.biopha.2023.114759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
The clinical treatment of AML is dominated by "7 + 3" therapy, but it often shows great toxicity and limited therapeutic efficacy in application. Therefore, it is urgent to develop novel therapeutic strategies to achieve safe and efficient treatment of AML. Small-molecule inhibitors have the characteristics of high specificity, low off-target toxicity and remarkable therapeutic effect, and are receiving more and more attention in tumor therapy. In this study, we screened a library of 1972 FDA-approved small molecular compounds for those that induced the inflammatory death of AML cells, among which the TLR8 agonist Motolimod (MTL) showed stronger anti-AML activity in the animal model but slight affection on normal lymphocytes in control mice. In terms of mechanism, cellular experiments in AML cell lines proved that TLR8 and LKB1/AMPK are the key distinct mechanisms for MTL triggered caspase-3-dependent cell death and the expression of a large number of inflammatory factors. In conclusion, our findings identified the immunoactivator MTL as a single agent exerting significant anti-AML activity in vitro and in vivo, with strong potential for clinical translation.
Collapse
Affiliation(s)
- Wei Yang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine). Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging. School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.
| | - Xiongfei Sun
- Department of hematopathology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, PR China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, PR China
| | - Shuai Liu
- Department of Laboratory, Shenzhen Samii International Medical Center (Shenzhen Fourth People's Hospital), Shenzhen 518118, PR China
| | - Ying Xu
- Department of hematopathology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, PR China
| | - Yunlei Li
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, PR China
| | - Xiaoru Huang
- Institute of Biomedical Engineering, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, PR China
| | - Kaiqing Liu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine). Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging. School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Longyi Mao
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine). Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging. School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Shasha Min
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine). Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging. School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Linjiang Liu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine). Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging. School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Shi Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine). Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging. School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Yuqi Zhu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine). Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging. School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine). Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging. School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Xina Xie
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine). Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging. School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Kui Xu
- Institute of Biomedical Engineering, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, PR China
| | - Changqing Sun
- Department of Clinical Laboratory, Shenzhen Baoan Pure Traditional Chinese Medicine Hospital, Shenzhen 518126, PR China
| | - Jie Yan
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, PR China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine). Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging. School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
49
|
Komrokji R, Al Ali N, Chan O, Sweet K, Kuykendall A, Lancet J, Padron E, Sallman DA. IDH mutations are enriched in myelodysplastic syndrome patients with severe neutropenia and can be a potential for targeted therapy. Haematologica 2023; 108:1168-1172. [PMID: 36420802 PMCID: PMC10071110 DOI: 10.3324/haematol.2022.281607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Rami Komrokji
- Department of Malignant Hematology, H Lee Moffitt Cancer Center, Tampa, Fl.
| | - Najla Al Ali
- Department of Malignant Hematology, H Lee Moffitt Cancer Center, Tampa, Fl
| | - Onyee Chan
- Department of Malignant Hematology, H Lee Moffitt Cancer Center, Tampa, Fl
| | - Kendra Sweet
- Department of Malignant Hematology, H Lee Moffitt Cancer Center, Tampa, Fl
| | - Andrew Kuykendall
- Department of Malignant Hematology, H Lee Moffitt Cancer Center, Tampa, Fl
| | - Jeffrey Lancet
- Department of Malignant Hematology, H Lee Moffitt Cancer Center, Tampa, Fl
| | - Eric Padron
- Department of Malignant Hematology, H Lee Moffitt Cancer Center, Tampa, Fl
| | - David A Sallman
- Department of Malignant Hematology, H Lee Moffitt Cancer Center, Tampa, Fl
| |
Collapse
|
50
|
Himed S, Chung C, Jones D, Wall S, Kaffenberger BH. IDH2 R140Q mutation associated with palisaded neutrophilic and granulomatous dermatitis with subsequent development of IDH2-mutated acute myeloid leukemia. Int J Dermatol 2023; 62:e217-e219. [PMID: 35122691 DOI: 10.1111/ijd.16089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/16/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Sonia Himed
- University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Catherine Chung
- Division of Dermatology, Department of Internal Medicine, Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Dan Jones
- James Hospital and OSUWMC Department of Pathology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Sarah Wall
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Benjamin H Kaffenberger
- Division of Dermatology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|