1
|
Whitman MA, Mantri M, Spanos E, Estroff LA, De Vlaminck I, Fischbach C. Bone mineral density affects tumor growth by shaping microenvironmental heterogeneity. Biomaterials 2025; 315:122916. [PMID: 39490060 DOI: 10.1016/j.biomaterials.2024.122916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Breast cancer bone metastasis is a major cause of mortality in patients with advanced breast cancer. Although decreased mineral density is a known risk factor for bone metastasis, the underlying mechanisms remain poorly understood because studying the isolated effect of bone mineral density on tumor heterogeneity is challenging with conventional approaches. Moreover, mineralized biomaterials are commonly utilized for clinical bone defect repair, but how mineralized biomaterials affect the foreign body response and wound healing is unclear. Here, we investigate how bone mineral affects tumor growth and microenvironmental complexity in vivo by combining single-cell RNA-sequencing with mineral-containing or mineral-free decellularized bone matrices. We discover that the absence of bone mineral significantly influences fibroblast and immune cell heterogeneity, promoting phenotypes that increase tumor growth and alter the response to injury or disease. Importantly, we observe that the stromal response to bone mineral content depends on the murine tumor model used. While lack of bone mineral induces tumor-promoting microenvironments in both immunocompromised and immunocompetent animals, these changes are mediated by altered fibroblast phenotype in immunocompromised mice and macrophage polarization in immunocompetent mice. Collectively, our findings suggest that bone mineral density affects tumor growth by impacting microenvironmental complexity in an organism-dependent manner.
Collapse
Affiliation(s)
- Matthew A Whitman
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Emmanuel Spanos
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14850, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14850, USA
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA.
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
2
|
Matsuzaka T, Matsugaki A, Ishihara K, Nakano T. Osteogenic tailoring of oriented bone matrix organization using on/off micropatterning for osteoblast adhesion on titanium surfaces. Acta Biomater 2025; 192:487-500. [PMID: 39644943 DOI: 10.1016/j.actbio.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024]
Abstract
Titanium (Ti) implants are well known for their mechanical reliability and chemical stability, crucial for successful bone regeneration. Various shape control and surface modification techniques to enhance biological activity have been developed. Despite the crucial importance of the collagen/apatite bone microstructure for mechanical function, antimicrobial properties, and biocompatibility, precise and versatile pattern control for regenerating the microstructure remains challenging. Here, we developed a novel osteogenic tailoring stripe-micropatterned MPC-Ti substrate that induces genetic-level control of oriented bone matrix organization. This biomaterial was created by micropatterning 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer onto a titanium (Ti) surface through a selective photoreaction. The stripe-micropatterned MPC-Ti substrate establishes a distinct interface for cell adhesion, robustly inducing osteoblast cytoskeleton alignment through actin cytoskeletal alignment, and facilitating the formation of a bone-mimicking-oriented collagen/apatite tissue. Moreover, our study revealed that this bone alignment process is promoted through the activation of the Wnt/β-catenin signaling pathway, which is triggered by nuclear deformation induced by strong cellular alignment guidance. This innovative material is essential for personalized next-generation medical devices, offering high customizability and active restoration of the bone microstructure. STATEMENT OF SIGNIFICANCE: This study demonstrates a novel osteogenic tailoring stripe-micropatterned MPC-Ti substrate that induces osteoblast alignment and bone matrix orientation based on genetic mechanism. By employing a light-reactive MPC polymer, we successfully micropatterned the titanium surface, creating a biomaterial that stimulates unidirectional osteoblast alignment and enhances the formation of natural bone-mimetic anisotropic microstructures. The innovative approach of regulating cell adhesion and cytoskeletal alignment activates the Wnt/β-catenin signaling pathway, crucial for both bone differentiation and orientation. This study presents the first biomaterial that artificially induces the construction of mechanically superior anisotropic bone tissue, and it is expected to promote functional bone regeneration by enhancing bone differentiation and orientation-targeting both the quantity and quality of bone tissue.
Collapse
Affiliation(s)
- Tadaaki Matsuzaka
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kazuhiko Ishihara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Shibahara K, Hayashi K, Nakashima Y, Ishikawa K. Controlling the pore size of carbonate apatite honeycomb scaffolds enhances orientation and strength of regenerated bone. BIOMATERIALS ADVANCES 2025; 166:214026. [PMID: 39299056 DOI: 10.1016/j.bioadv.2024.214026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
To restore functions of long bones and avoid reconstruction failure, segmental defects should be quickly repaired using abundant amounts of regenerated bone with high mechanical strength and orientation along the bone axis. Although both bone volume and bone matrix orientation are important for faster restoration of long bones with segmental defects, researchers have primarily focused on the former. Artificial bone scaffolds with uniaxial channels, (e.g., honeycomb (HC) scaffolds), are considered adequate for regenerating bone oriented along the bone axis. The channel size may affect the orientation, amount, and strength of the regenerated bone. In this study, we investigated the effects of channel size in carbonate apatite HC scaffolds on the orientation of bones regenerated in segmental bone defects and determined the adequate channel size. Carbonate apatite HC scaffolds, with different channel sizes (350, 550, 730, and 890 μm in length on the side of the square aperture), were fabricated by extrusion molding of a mixture of calcium carbonate and organic binder, debinding, and subsequent phosphatization to convert the composition from calcium carbonate to carbonate apatite. No significant difference in the amounts of regenerated bones was observed for different channel sizes. However, bone along the bone axis was formed in the channels ≤550 μm in size but not in channels ≥730 μm. The HC scaffolds with a channel size of 350 μm regenerated bone with higher bending strength than those with a channel size of 890 μm. However, bone regenerated with the HC scaffolds having channel sizes of 350, 550, and 730 μm showed equal bending strength. Thus, the adequate channel size for fast regeneration of high-strength bone, oriented to the bone axis, is ≤730 μm. To the best of our knowledge, this is the first study to report the effect of channel size on bone orientation and strength. The findings of this study are relevant to the fast repair of segmental bone defects.
Collapse
Affiliation(s)
- Keigo Shibahara
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
4
|
Wang J, Zhang Y, Wang S, Wang X, Jing Y, Su J. Bone aging and extracellular vesicles. Sci Bull (Beijing) 2024; 69:3978-3999. [PMID: 39455324 DOI: 10.1016/j.scib.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Bone aging, a major global health concern, is the natural decline in bone mass and strength. Concurrently, extracellular vesicles (EVs), tiny membrane-bound particles produced by cells, have gained recognition for their roles in various physiological processes and age-related diseases. The interaction between EVs and bone aging is of growing interest, particularly their effects on bone metabolism, which become increasingly critical with advancing age. In this review, we explored the biology, types, and functions of EVs and emphasized their regulatory roles in bone aging. We examined the effects of EVs on bone metabolism and highlighted their potential as biomarkers for monitoring bone aging progression. Furthermore, we discussed the therapeutic applications of EVs, including targeted drug delivery and bone regeneration, and addressed the challenges associated with EV-based therapies, including the technical complexities and regulatory issues. We summarized the current research and clinical trials investigating the role of EVs in bone aging and suggested future research directions. These include the potential for personalized medicine using EVs and the integration of EV research with advanced technologies to enhance the management of age-related bone health. This analysis emphasized the transformative potential of EVs in understanding and managing bone aging, thereby marking a significant advancement in skeletal health research.
Collapse
Affiliation(s)
- Jian Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China
| | - Yuanwei Zhang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Xinglong Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA.
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
5
|
Yang Z, Yin G, Sun S, Xu P. Medical applications and prospects of polylactic acid materials. iScience 2024; 27:111512. [PMID: 39759018 PMCID: PMC11699620 DOI: 10.1016/j.isci.2024.111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Polylactic acid (PLA) is a biodegradable and bio-based polymer that has gained significant attention as an environmentally friendly alternative to traditional petroleum-based plastics. In clinical treatment, biocompatible and non-toxic PLA materials enhance safety and reduce tissue reactions, while the biodegradability allows it to breakdown over time naturally, avoiding a second surgery. With the emergence of nanotechnology and three-dimensional (3D) printing, medical utilized-PLA has been produced with more structural and biological properties at both micro and macro scales for clinical therapy. This review summarizes current applications of the PLA-based biomaterials in drug delivery systems, orthopedic treatment, tissue regenerative engineering, and surgery and medical devices, providing viewpoints regarding the prospective medical utilization.
Collapse
Affiliation(s)
- Zhenqi Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shuyang Sun
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Asia Pacific Graduate Institute of Shanghai Jiao Tong University, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| |
Collapse
|
6
|
Sousa AC, Mcdermott G, Shields F, Alvites R, Lopes B, Sousa P, Moreira A, Coelho A, Santos JD, Atayde L, Alves N, Richardson SM, Domingos M, Maurício AC. Innovative Ink-Based 3D Hydrogel Bioprinted Formulations for Tissue Engineering Applications. Gels 2024; 10:831. [PMID: 39727588 DOI: 10.3390/gels10120831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Three-dimensional (3D) models with improved biomimicry are essential to reduce animal experimentation and drive innovation in tissue engineering. In this study, we investigate the use of alginate-based materials as polymeric inks for 3D bioprinting of osteogenic models using human bone marrow stem/stromal cells (hBMSCs). A composite bioink incorporating alginate, nano-hydroxyapatite (nHA), type I collagen (Col) and hBMSCs was developed and for extrusion-based printing. Rheological tests performed on crosslinked hydrogels confirm the formation of solid-like structures, consistently indicating a superior storage modulus in relation to the loss modulus. The swelling behavior analysis showed that the addition of Col and nHA into an alginate matrix can enhance the swelling rate of the resulting composite hydrogels, which maximizes cell proliferation within the structure. The LIVE/DEAD assay outcomes demonstrate that the inclusion of nHA and Col did not detrimentally affect the viability of hBMSCs over seven days post-printing. PrestoBlueTM revealed a higher hBMSCs viability in the alginate-nHA-Col hydrogel compared to the remaining groups. Gene expression analysis revealed that alginate-nHA-col bioink favored a higher expression of osteogenic markers, including secreted phosphoprotein-1 (SPP1) and collagen type 1 alpha 2 chain (COL1A2) in hBMSCs after 14 days, indicating the pro-osteogenic differentiation potential of the hydrogel. This study demonstrates that the incorporation of nHA and Col into alginate enhances osteogenic potential and therefore provides a bioprinted model to systematically study osteogenesis and the early stages of tissue maturation in vitro.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Grace Mcdermott
- Department of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, UK
| | - Fraser Shields
- Department of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, UK
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Department of Animal and Veterinary Sciences, University Institute of Health Sciences (IUCS), Cooperative of Polytechnic and University Higher Education, CRL (CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alícia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - José Domingos Santos
- Associated Laboratory for Green Chemistry (REQUIMTE-LAQV), Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal
| | - Stephen M Richardson
- Department of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, UK
| | - Marco Domingos
- Department of Mechanical and Aerospace Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
7
|
Wang J, Zhen C, Zhang G, Yang Z, Shang P. A 0.2 T-0.4 T Static Magnetic Field Improves the Bone Quality of Mice Subjected to Hindlimb Unloading and Reloading Through the Dual Regulation of BMSCs via Iron Metabolism. Int J Mol Sci 2024; 25:13136. [PMID: 39684847 DOI: 10.3390/ijms252313136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Osteoporosis is the most prevalent metabolic bone disease, especially when aggravated by aging and long-term bed rest of various causes and also when coupled with astronauts' longer missions in space. Research on the use of static magnetic fields (SMFs) has been progressing as a noninvasive method for osteoporosis due to the complexity of the disease, the inconsistency of the effects of SMFs, and the ambiguity of the mechanism. This paper studied the effects of mice subjected to hindlimb unloading (UL, HLU) and reloading by the 0.2 T-0.4 T static magnetic field (MMF). Primary bone marrow mesenchymal stem cells (BMSCs) were extracted to explore the mechanism. Eight-week-old male C57BL/6 mice were used as an osteoporosis model by HLU for four weeks. The HLU recovery period (reloading, RL) was carried out on all FVEs and recovered in the geomagnetic field (45-64 μT, GMF) and MMF, respectively, for 12 h/d for another 4 weeks. The tibia and femur of mice were taken; also, the primary BMSCs were extracted. MMF promoted the recovery of mechanical properties after HLU, increased the number of osteoblasts, and decreased the number of adipocytes in the bone marrow. MMF decreased the total iron content and promoted the total calcium content in the tibia. In vitro experiments showed that MMF promoted the osteogenic differentiation of BMSCs and inhibited adipogenic differentiation, which is related to iron metabolism, the Wnt/β-catenin pathway, and the PPARγ pathway. MMF accelerated the improvement in bone metabolism and iron metabolism in RL mice to a certain extent, which improved the bone quality of mice. MMF mainly promoted osteogenic differentiation and reduced the adipogenic differentiation of BMSCs, which provides a reliable research direction and transformation basis for the osteoporosis of elderly, bedridden patients and astronauts.
Collapse
Affiliation(s)
- Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chenxiao Zhen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhouqi Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Peng Shang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute, Northwestern Polytechnical University, Shenzhen 518057, China
| |
Collapse
|
8
|
Li C, Xu W, Li L, Zhou Y, Yao G, Chen G, Xu L, Yang N, Yan Z, Zhu C, Fang S, Qiao Y, Bai J, Li M. Concrete-Inspired Bionic Bone Glue Repairs Osteoporotic Bone Defects by Gluing and Remodeling Aging Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408044. [PMID: 39455287 DOI: 10.1002/advs.202408044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Osteoporotic fractures are characterized by abnormal inflammation, deterioration of the bone microenvironment, weakened mechanical properties, and difficulties in osteogenic differentiation. The chronic inflammatory state characterized by aging macrophages leads to delayed or non-healing of the fracture or even the formation of bone defects. The current bottleneck in clinical treatment is to achieve strong fixation of the comminuted bone fragments and effective regulation of the complex microenvironment of aging macrophages. Inspired by cement and gravel in concrete infrastructure, a biomimetic bone glue with poly(lactic-co-glycolic acid) microspheres is developed and levodopa/oxidized chitosan hydrogel stabilized on an organic-inorganic framework of nanohydroxyapatite, named DOPM. DOPM is characterized via morphological and mechanical characterization techniques, in vitro experiments with bone marrow mesenchymal stromal cells, and in vivo experiments with an aged SD rat model exhibiting osteoporotic bone defects. DOPM exhibited excellent adhesion properties, good biocompatibility, and significant osteogenic differentiation. Transcriptomic analysis revealed that DOPM improved the inflammatory microenvironment by inhibiting the NF-κB signaling pathway and promoting aging macrophage polarization toward M2 macrophages, thus significantly accelerating bone defect repair and regeneration. This biomimetic bone glue, which enhances osteointegration and reestablishes the homeostasis of aging macrophages, has potential applications in the treatment of osteoporotic bone defects.
Collapse
Affiliation(s)
- Chong Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, China
- Department of Orthopedics, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230022, China
| | - Wei Xu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, China
| | - Lei Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, China
| | - Yonghui Zhou
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, China
| | - Gang Yao
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, China
| | - Guang Chen
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, China
| | - Lei Xu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, China
| | - Ning Yang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, China
| | - Zhanjun Yan
- Department of Orthopedics, The Ninth People's Hospital of Suzhou, Suzhou, Jiangsu, 215006, China
| | - Chen Zhu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, China
| | - Shiyuan Fang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, China
- Department of Orthopedics, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230022, China
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, China
| | - Meng Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, China
| |
Collapse
|
9
|
Li M, Wu H, Gao K, Wang Y, Hu J, Guo Z, Hu R, Zhang M, Pang X, Guo M, Liu Y, Zhao L, He W, Ding S, Li W, Cheng W. Smart Implantable Hydrogel for Large Segmental Bone Regeneration. Adv Healthc Mater 2024; 13:e2402916. [PMID: 39344873 DOI: 10.1002/adhm.202402916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Large segmental bone defects often lead to nonunion and dysfunction, posing a significant challenge for clinicians. Inspired by the intrinsic bone defect repair logic of "vascularization and then osteogenesis", this study originally reports a smart implantable hydrogel (PDS-DC) with high mechanical properties, controllable scaffold degradation, and timing drug release that can proactively match different bone healing cycles to efficiently promote bone regeneration. The main scaffold of PDS-DC consists of polyacrylamide, polydopamine, and silk fibroin, which endows it with superior interfacial adhesion, structural toughness, and mechanical stiffness. In particular, the adjustment of scaffold cross-linking agent mixing ratio can effectively regulate the in vivo degradation rate of PDS-DC and intelligently satisfy the requirements of different bone defect healing cycles. Ultimately, PDS hydrogel loaded with free desferrioxamine (DFO) and CaCO3 mineralized ZIF-90 loaded bone morphogenetic protein-2 (BMP-2) to stimulate efficient angiogenesis and osteogenesis. Notably, DFO is released rapidly by free diffusion, whereas BMP-2 is released slowly by pH-dependent layer-by-layer disintegration, resulting in a significant difference in release time, thus matching the intrinsic logic of bone defect repair. In vivo and in vitro results confirm that PDS-DC can effectively realize high-quality bone generation and intelligently regulate to adapt to different demands of bone defects.
Collapse
Affiliation(s)
- Menghan Li
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Haiping Wu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
| | - Ke Gao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yubo Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Jiaqi Hu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Ziling Guo
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing Key Laboratory of Forensic Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Ruiwei Hu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Mengxuan Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xiaoxiao Pang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Minghui Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yuanjie Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Lina Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Wen He
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Wenyang Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| |
Collapse
|
10
|
Ma J, Zhao J, Wu N, Han M, Yang Z, Chen H, Zhao Q. Inverted U-shaped association between total testosterone with bone mineral density in men over 60 years old. BMC Endocr Disord 2024; 24:249. [PMID: 39558326 PMCID: PMC11572123 DOI: 10.1186/s12902-024-01780-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Aging often leads to changes in hormone levels, particularly testosterone, which is thought to significantly affect bone health in older males. OBJECTIVE This study aimed to explore the link between testosterone levels and bone mineral density in men aged 60 and above. METHODS Data from the National Health and Nutrition Examination Survey 2013-2014 were used. Weighted multivariable linear regression models were employed to study the association between testosterone and bone mineral density. Furthermore, a weighted generalized additive model and smooth curve fitting were used to address potential nonlinear patterns in the data. RESULTS The analysis included 621 elderly men. After accounting for various factors, the study uncovered a Inverted U-shaped correlation between testosterone levels and femoral neck density. Notably, a turning point was identified at the testosterone level of 406.4 ng/dL. Further examination, using different models, showed that testosterone levels in the third quartile (group Q3) were positively linked to bone density. However, contrasting trends were observed in the first (group Q1) and fourth quartiles (group Q4), where testosterone levels displayed a negative relationship with bone density. CONCLUSION The results indicate a complex interplay between testosterone levels and bone mineral density in elderly men. The U-shaped trend suggests that both low and high testosterone levels could negatively impact bone health. These findings highlight the importance of maintaining testosterone levels within an optimal range to preserve bone health in aging men.
Collapse
Affiliation(s)
- Ji Ma
- The Orthopaedic Spinal Ward, Shanxi Provincial People's Hospital, 29 Shuangta Temple Street, Taiyuan, Shanxi, 030012, China
| | - Jian Zhao
- School of Nursing, Shanxi Medical University, Yingze District, 56 Xinjian South Road, Taiyuan, Shanxi, 030012, China
- Department of Nursing, Shanxi Provincial People's Hospital, 29 Shuangta Temple Street, Taiyuan, Shanxi, 030012, China
| | - Ning Wu
- Department of Nursing, Shanxi Provincial People's Hospital, 29 Shuangta Temple Street, Taiyuan, Shanxi, 030012, China
| | - Minghua Han
- School of Nursing, Shanxi Medical University, Yingze District, 56 Xinjian South Road, Taiyuan, Shanxi, 030012, China
| | - Zhuojing Yang
- Department of Nursing, Shanxi Provincial People's Hospital, 29 Shuangta Temple Street, Taiyuan, Shanxi, 030012, China
| | - Haoyang Chen
- Department of Nursing, The Rehabilitation Hospital of Nantong, No. 298, Xinhua Road, Nantong, Jiangsu, 226000, China.
| | - Qian Zhao
- Department of Nursing, Shanxi Provincial People's Hospital, 29 Shuangta Temple Street, Taiyuan, Shanxi, 030012, China.
| |
Collapse
|
11
|
Zhang S, Huang L, Bian M, Xiao L, Zhou D, Tao Z, Zhao Z, Zhang J, Jiang LB, Li Y. Multifunctional Bone Regeneration Membrane with Flexibility, Electrical Stimulation Activity and Osteoinductive Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405311. [PMID: 39148189 DOI: 10.1002/smll.202405311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Indexed: 08/17/2024]
Abstract
The use of membrane-based guided bone regeneration techniques has great potential for single-stage reconstruction of critical-sized bone defects. Here, a multifunctional bone regeneration membrane combining flexible elasticity, electrical stimulation (ES) and osteoinductive activity is developed by in situ doping of MXene 2D nanomaterials with conductive functionality and β-TCP particles into a Poly(lactic acid-carbonate (PDT) composite nano-absorbable membrane (P/T/MXene) via electrostatic spinning technique. The composite membrane has good feasibility due to its temperature sensitivity, elastic memory capacity, coordinated degradation profile and easy preparation process. In vitro experiments showed the P/T/MXene membrane effectively promoted the recruitment and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) under ES and enhanced the angiogenic capacity of endothelial cells, which synergistically promoted bone regeneration through neovascularization. In addition, an in vivo rat model of cranial bone defects further confirmed the bone regeneration efficacy of the P/T/MXene membrane. In conclusion, the developed P/T/MXene membrane can effectively promote bone regeneration through their synergistic multifunctional effects, suggesting the membranes have great potential for guiding tissue regeneration and providing guidance for the biomaterials design.
Collapse
Affiliation(s)
- Shihao Zhang
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Huang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, Australia, 4222, Australia
| | - Dong Zhou
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ziwei Tao
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zheng Zhao
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li-Bo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
12
|
Zhang S, Qu D, Luo B, Wang L, Li H, Wang H. Regulation of Osteogenic Differentiation of hBMSCs by the Overlay Angles of Bone Lamellae-like Matrices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56801-56814. [PMID: 39389937 DOI: 10.1021/acsami.4c12847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Oriented fibers in bone lamellae are recognized for their contribution to the anisotropic mechanical performance of the cortical bone. While increasing evidence highlights that such oriented fibers also exhibit osteogenic induction to preosteoblasts, little is known about the effect of the overlay angle between lamellae on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). In this study, bone lamellae-like fibrous matrices composed of aligned core-shell [core: polycaprolactone (PCL)/type I collagen (Col I) + shell: Col I] nanofibers were seeded with human BMSCs (hBMSCs) and then laid over on each other layer-by-layer (L-b-L) at selected angles (0 or 45°) to form three-dimensional (3D) constructs. Upon culture for 7 and 14 days, osteogenic differentiation of hBMSCs and mineralization within the lamellae assembly (LA) were characterized by real-time PCR, Western blot, immunofluorescent staining for osteogenic markers, and alizarin red staining for calcium deposition. Compared to those of random nanofibers (LA-RF) or aligned fibers with the overlay angle of 45° (LA-AF-45), the LA of aligned fibers at a 0° overlay angle (LA-AF-0) exhibited a noticeably higher osteogenic differentiation of hBMSCs, i.e., elevated gene expression of OPN, OCN, and RUNX2 and protein levels of ALP and RUNX2, while promoting mineral deposition as indicated by alizarin red staining and mechanical testing. Further analyses of hBMSCs within LA-AF-0 revealed an increase in both total and phosphorylated integrin β1, which subsequently increased total focal adhesion kinase (FAK), phosphorylated FAK (p-FAK), and phosphorylated extracellular signal kinase ERK1/2 (p-ERK1/2). Inhibition of integrin β1 and ERK1/2 activity effectively reduced the LA-AF-0-induced upregulation of p-FAK and osteogenic markers (OPN, OCN, and RUNX2), confirming the involvement of integrin β1-FAK-ERK1/2 signaling. Altogether, the overlay angle of aligned core-shell nanofiber membranes regulates the osteogenic differentiation of hBMSCs via integrin β1-FAK-ERK1/2 signaling, unveiling the effects of anisotropic fibers on bone tissue formation.
Collapse
Affiliation(s)
- Shuyun Zhang
- Guangdong Police College, Guangzhou 510440, Guangdong, China
- College of Chemistry and Materials Science, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, Guangdong, China
- Semcer Center for Healthcare Innovation, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
| | - Dengjian Qu
- College of Chemistry and Materials Science, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, Guangdong, China
| | - Bowen Luo
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
- Semcer Center for Healthcare Innovation, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
| | - Lichen Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
- Semcer Center for Healthcare Innovation, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
| | - Hong Li
- College of Chemistry and Materials Science, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, Guangdong, China
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
- Semcer Center for Healthcare Innovation, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
| |
Collapse
|
13
|
Lee JW, Lee B, Park CH, Heo JH, Lee TY, Lee D, Bae J, Sundharbaabu PR, Yeom WK, Chae S, Lim JH, Lee SW, Choi JS, Bae HB, Choi JY, Lee EH, Yoon DS, Yeom GY, Shin H, Lee JH. Monolithic DNApatite: An Elastic Apatite with Sub-Nanometer Scale Organo-Inorganic Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406179. [PMID: 39003621 DOI: 10.1002/adma.202406179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Indexed: 07/15/2024]
Abstract
Hydroxyapatite (HA) exhibits outstanding biocompatibility, bioactivity, osteoconductivity, and natural anti-inflammatory properties. Pure HA, ion-doped HA, and HA-polymer composites are investigated, but critical limitations such as brittleness remain; numerous efforts are being made to address them. Herein, the novel self-crystallization of a polymeric single-stranded deoxyribonucleic acid (ssDNA) without additional phosphate ions for synthesizing deoxyribonucleic apatite (DNApatite) is presented. The synthesized DNApatite, DNA1Ca2.2(PO4)1.3OH2.1, has a repetitive dual phase of inorganic HA crystals and amorphous organic ssDNA at the sub-nm scale, forming nanorods. Its mechanical properties, including toughness and elasticity, are significantly enhanced compared with those of HA nanorod, with a Young's modulus similar to that of natural bone.
Collapse
Affiliation(s)
- Jin Woong Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Byoungsang Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Cheol Hyun Park
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jun Hyuk Heo
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Research Center for Advanced Materials Technology, SKKU, Suwon, 16419, Republic of Korea
| | - Tae Yoon Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Dongtak Lee
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jina Bae
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | | | - Won Kyun Yeom
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sudong Chae
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jae-Hyuk Lim
- School of Mechanical Engineering, SKKU, Suwon, 16419, Republic of Korea
| | - Seok-Won Lee
- School of Mechanical Engineering, SKKU, Suwon, 16419, Republic of Korea
| | - Jin-Seok Choi
- Analysis Center for Research Advancement, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyung-Bin Bae
- Analysis Center for Research Advancement, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jae-Young Choi
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Eun-Ho Lee
- School of Mechanical Engineering, SKKU, Suwon, 16419, Republic of Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Geun Young Yeom
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hyunjung Shin
- Department of Energy Science, SKKU, Suwon, 16419, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Research Center for Advanced Materials Technology, SKKU, Suwon, 16419, Republic of Korea
- Department of MetaBioHealth, SKKU, Suwon, 16419, Republic of Korea
| |
Collapse
|
14
|
Ge H, Yu Y, Zhang Y, Zhou Z. Changes of bone and articular cartilage in broilers with femoral head necrosis. Poult Sci 2024; 103:104127. [PMID: 39111237 PMCID: PMC11343062 DOI: 10.1016/j.psj.2024.104127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/26/2024] Open
Abstract
Femoral head necrosis (FHN) in broilers is a common leg disorder in intensive poultry farming, giving rise to poor animal health and welfare. Abnormal mechanical stress in the hip joint is a risk factor for FHN, and articular cartilage is attracting increasing attention as a cushion and lubrication structure for the joint. In the present study, broilers aged 3 to 4 wk with FHN were divided into femoral head separation (FHS) and femoral head separation with growth plate lacerations (FHSL) groups, with normal broilers as control. The features of the hip joint, bone, and cartilage were assessed in FHN progression using devices including computed tomography (CT), atomic force microscope (AFM), and transmission electron microscopy (TEM). Broilers with FHN demonstrated decreased bone mechanical properties, narrow joint space, and thickened femoral head stellate structures. Notably, abnormal cartilage morphology was observed in FHN-affected broilers, characterized by increased cartilage thickness and rough cartilage surfaces. In addition, as FHN developed, cartilage surface friction and friction coefficient dramatically increased, while cartilage modulus and stiffness decreased. The ultramicro-damage occurred in chondrocytes and the extracellular matrix (ECM) of cartilage. Cell disintegration, abnormal mitochondrial accumulation, and oxidative stress damage were observed in chondrocytes. A notable decline in cartilage collagen content was observed in ECM during the initial stages of FHN, accompanied by a pronounced reduction in collagen fiber diameter and proteoglycan content as FHN progressed. Furthermore, the noticeable loosening of the collagen fiber structure and the appearance of type I collagen were noted in cartilage. In conclusion, there was a progressive decrease in bone quality and multifaceted damage of cartilage in the femoral head, which was closely linked to the severity of FHN in broilers.
Collapse
Affiliation(s)
- Hongfan Ge
- Department of Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yaling Yu
- Department of Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yanyan Zhang
- Department of Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhenlei Zhou
- Department of Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
15
|
Shuai C, Chen C, Zhao Z, Yang Y. Corrosion Behavior and Biological Properties of ZK60/HA Composites Prepared by Laser Powder Bed Fusion. MICROMACHINES 2024; 15:1156. [PMID: 39337816 PMCID: PMC11434377 DOI: 10.3390/mi15091156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Magnesium alloy ZK60 shows great promise as a medical metal material, but its corrosion resistance in the body is inadequate. Hydroxyapatite (HA), the primary inorganic component of human and animal bones, can form chemical bonds with body tissues at the interface, promoting the deposition of phosphorus products and creating a dense calcium and phosphorus layer. To enhance the properties of ZK60, HA was added to create HA/ZK60 composite materials. These composites, fabricated using the advanced technique of LPBF, demonstrated superior corrosion resistance and enhanced bone inductive capabilities compared to pristine ZK60. Notably, the incorporation of 3 wt% led to a significant reduction in bulk porosity, achieving a value of 0.8%. The Ecorr value increased from -1.38 V to -1.32 V, while the minimum Icorr value recorded at 33.9 μA·cm-2. Nano-HA achieved the lowest volumetric porosity and optimal corrosion resistance. Additionally, these composites significantly promoted osteogenic differentiation in bone marrow stromal cells (BMSCs), as evidenced by increased alkaline phosphatase (ALP) activity and robust calcium nodule formation, highlighting their excellent biocompatibility and osteo-inductive potential. However, when increasing the HA content to 6 wt%, the bulk porosity rose significantly to 3.3%. The Ecorr value was -1.3 V, with the Icorr value being approximately 50 μA·cm-2. This increase in porosity and weaker interfacial bonding, ultimately accelerated electrochemical corrosion. Therefore, a carefully balanced amount of HA significantly enhances the performance of the ZK60 magnesium alloy, while excessive amounts can be detrimental.
Collapse
Affiliation(s)
- Cijun Shuai
- School of Sino-German Robotics, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Cheng Chen
- Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Zhenyu Zhao
- School of Sino-German Robotics, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Youwen Yang
- Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China
- School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
16
|
Álvarez-Blanco M, Infante-García D, Marco M, Giner E, Miguélez MH. Development of bone surrogates by material extrusion-based additive manufacturing to mimic flexural mechanical behaviour and fracture prediction via phase-field approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 254:108287. [PMID: 38908222 DOI: 10.1016/j.cmpb.2024.108287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND AND OBJECTIVE The limited availability of human bone samples for investigation leads to the demand for alternatives. Bone surrogates are crucial in promoting research on the intricate mechanics of osseous tissue. However, solutions are restricted to commercial brands, which frequently fail to faithfully replicate the mechanical response of bone, or oversimplified customised simulants designed for a specific application. The manufacturing and assessment of reliable bone surrogates made of polylactic acid via material extrusion-based additive manufacturing are presented in this work. METHODS An experimental and numerical study with 3D-printed dog-bone and prismatic specimens was carried out to characterise the polymeric feedstock and analyse the influence of process parameters under three-point bending and quasi-static conditions. Besides, three porcine rib samples were considered as a reference for the development of the artificial bones. Bone surrogates were manufactured from the 3D-scanned real bone geometries. In order to reproduce the trabecular and cortical bone, a lattice structure for the infill and a compact shell surrounding the core were employed. Infill density and shell thickness were evaluated through different printing configurations. Additionally, a computational analysis based on the phase-field approach was conducted to simulate the experimental tests and predict fracture. The modelling considered homogenisation of the infill material. RESULTS Outcomes demonstrated the potential of the presented methodology. Maximum force and flexural stiffness were compared to real bone properties to find the optimal printing configuration, replicating the flexural mechanical behaviour of bone tissue. Certain configurations accurately reproduce the studied properties. Regarding the numerical model, strength and stiffness prediction was validated with experimental results. CONCLUSIONS The presented methodology enables the manufacturing of artificial bones with accurate geometries and tailored mechanical properties. Furthermore, the described modelling strategy offers a powerful tool for designing bone surrogates.
Collapse
Affiliation(s)
- Mario Álvarez-Blanco
- Department of Mechanical Engineering. Universidad Carlos III de Madrid, Avenida. de la Universidad 30, 28911 Leganés, Madrid, Spain
| | - Diego Infante-García
- Institute of Mechanical and Biomechanical Engineering - I2MB, Department of Mechanical Engineering and Materials, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Miguel Marco
- Department of Mechanical Engineering. Universidad Carlos III de Madrid, Avenida. de la Universidad 30, 28911 Leganés, Madrid, Spain.
| | - Eugenio Giner
- Institute of Mechanical and Biomechanical Engineering - I2MB, Department of Mechanical Engineering and Materials, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - M Henar Miguélez
- Department of Mechanical Engineering. Universidad Carlos III de Madrid, Avenida. de la Universidad 30, 28911 Leganés, Madrid, Spain
| |
Collapse
|
17
|
Ouyang P, Cheng B, He X, Lou J, Li X, Guo H, Xu F. Navigating the biophysical landscape: how physical cues steer the journey of bone metastatic tumor cells. Trends Cancer 2024; 10:792-808. [PMID: 39127608 DOI: 10.1016/j.trecan.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
Many tumors prefer to metastasize to bone, but the underlying mechanisms remain elusive. The human skeletal system has unique physical properties, that are distinct from other organs, which play a key role in directing the behavior of tumor cells within bone. Understanding the physical journey of tumor cells within bone is crucial. In this review we discuss bone metastasis in the context of how physical cues in the bone vasculature and bone marrow niche regulate the fate of tumor cells. Our objective is to inspire innovative diagnostic and therapeutic approaches for bone metastasis from a mechanobiological perspective.
Collapse
Affiliation(s)
- Pengrong Ouyang
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Bo Cheng
- Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China; TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, P.R. China
| | - Xijing He
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China; Xi'an International Medical Center Hospital, Xi'an 710061, P.R. China.
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China.
| | - Xiaokang Li
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, P.R. China.
| | - Hui Guo
- Department of Medical Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China.
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China.
| |
Collapse
|
18
|
Burgess S. Universal optimal design in the vertebrate limb pattern and lessons for bioinspired design. BIOINSPIRATION & BIOMIMETICS 2024; 19:051004. [PMID: 39042109 DOI: 10.1088/1748-3190/ad66a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/23/2024] [Indexed: 07/24/2024]
Abstract
This paper broadly summarizes the variation of design features found in vertebrate limbs and analyses the resultant versatility and multifunctionality in order to make recommendations for bioinspired robotics. The vertebrate limb pattern (e.g. shoulder, elbow, wrist and digits) has been proven to be very successful in many different applications in the animal kingdom. However, the actual level of optimality of the limb for each animal application is not clear because for some cases (e.g. whale flippers and bird wings), the basic skeletal layout is assumed to be highly constrained by evolutionary ancestry. This paper addresses this important and fundamental question of optimality by analysing six limbs with contrasting functions: human arm, whale flipper, bird wing, human leg, feline hindlimb and frog hindlimb. A central finding of this study is that the vertebrate limb pattern is highly versatile and optimal not just for arms and legs but also for flippers and wings. One key design feature of the vertebrate limb pattern is that of networks of segmented bones that enable smooth morphing of shapes as well as multifunctioning structures. Another key design feature is that of linkage mechanisms that fine-tune motions and mechanical advantage. A total of 52 biomechanical design features of the vertebrate limb are identified and tabulated for these applications. These tables can be a helpful reference for designers of bioinspired robotic and prosthetic limbs. The vertebrate limb has significant potential for the bioinspired design of robotic and prosthetic limbs, especially because of progress in the development of soft actuators.
Collapse
Affiliation(s)
- Stuart Burgess
- School of Electrical, Electronic and Mechanical Engineering, Bristol University, Bristol, United Kingdom
| |
Collapse
|
19
|
Taskozhina G, Batyrova G, Umarova G, Issanguzhina Z, Kereyeva N. The Manganese-Bone Connection: Investigating the Role of Manganese in Bone Health. J Clin Med 2024; 13:4679. [PMID: 39200820 PMCID: PMC11355939 DOI: 10.3390/jcm13164679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The complex relationship between trace elements and skeletal health has received increasing attention in the scientific community. Among these minerals, manganese (Mn) has emerged as a key element affecting bone metabolism and integrity. This review examines the multifaceted role of Mn in bone health, including its effects on bone regeneration, mineralization, and overall skeletal strength. This review article is based on a synthesis of experimental models, epidemiologic studies, and clinical trials of the mechanisms of the effect of Mn on bone metabolism. Current research data show that Mn is actively involved in the processes of bone remodeling by modulating the activity of osteoblasts and osteoclasts, as well as the main cells that regulate bone formation and resorption. Mn ions have a profound effect on bone mineralization and density by intricately regulating signaling pathways and enzymatic reactions in these cells. Additionally, Mn superoxide dismutase (MnSOD), located in bone mitochondria, plays a crucial role in osteoclast differentiation and function, protecting osteoclasts from oxidative damage. Understanding the nuances of Mn's interaction with bone is essential for optimizing bone strategies, potentially preventing and managing skeletal diseases. Key findings include the stimulation of osteoblast proliferation and differentiation, the inhibition of osteoclastogenesis, and the preservation of bone mass through the RANK/RANKL/OPG pathway. These results underscore the importance of Mn in maintaining bone health and highlight the need for further research into its therapeutic potential.
Collapse
Affiliation(s)
- Gulaim Taskozhina
- Department of Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan
| | - Gulnara Batyrova
- Department of Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan
| | - Gulmira Umarova
- Department of Evidence-Based Medicine and Scientific Management, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| | - Zhamilya Issanguzhina
- Department of Children Disease No. 2, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| | - Nurgul Kereyeva
- Department of Oncology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| |
Collapse
|
20
|
Yuan X, Zhu W, Yang Z, He N, Chen F, Han X, Zhou K. Recent Advances in 3D Printing of Smart Scaffolds for Bone Tissue Engineering and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403641. [PMID: 38861754 DOI: 10.1002/adma.202403641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Indexed: 06/13/2024]
Abstract
The repair and functional reconstruction of bone defects resulting from severe trauma, surgical resection, degenerative disease, and congenital malformation pose significant clinical challenges. Bone tissue engineering (BTE) holds immense potential in treating these severe bone defects, without incurring prevalent complications associated with conventional autologous or allogeneic bone grafts. 3D printing technology enables control over architectural structures at multiple length scales and has been extensively employed to process biomimetic scaffolds for BTE. In contrast to inert and functional bone grafts, next-generation smart scaffolds possess a remarkable ability to mimic the dynamic nature of native extracellular matrix (ECM), thereby facilitating bone repair and regeneration. Additionally, they can generate tailored and controllable therapeutic effects, such as antibacterial or antitumor properties, in response to exogenous and/or endogenous stimuli. This review provides a comprehensive assessment of the progress of 3D-printed smart scaffolds for BTE applications. It begins with an introduction to bone physiology, followed by an overview of 3D printing technologies utilized for smart scaffolds. Notable advances in various stimuli-responsive strategies, therapeutic efficacy, and applications of 3D-printed smart scaffolds are discussed. Finally, the review highlights the existing challenges in the development and clinical implementation of smart scaffolds, as well as emerging technologies in this field.
Collapse
Affiliation(s)
- Xun Yuan
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Wei Zhu
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyuan Yang
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Ning He
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Feng Chen
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Xiaoxiao Han
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
21
|
Yang Q, Zheng W, Zhao Y, Shi Y, Wang Y, Sun H, Xu X. Advancing dentin remineralization: Exploring amorphous calcium phosphate and its stabilizers in biomimetic approaches. Dent Mater 2024; 40:1282-1295. [PMID: 38871525 DOI: 10.1016/j.dental.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE This review elucidates the mechanisms underpinning intrafibrillar mineralization, examines various amorphous calcium phosphate (ACP) stabilizers employed in dentin's intrafibrillar mineralization, and addresses the challenges encountered in clinical applications of ACP-based bioactive materials. METHODS The literature search for this review was conducted using three electronic databases: PubMed, Web of Science, and Google Scholar, with specific keywords. Articles were selected based on inclusion and exclusion criteria, allowing for a detailed examination and summary of current research on dentin remineralization facilitated by ACP under the influence of various types of stabilizers. RESULTS This review underscores the latest advancements in the role of ACP in promoting dentin remineralization, particularly intrafibrillar mineralization, under the regulation of various stabilizers. These stabilizers predominantly comprise non-collagenous proteins, their analogs, and polymers. Despite the diversity of stabilizers, the mechanisms they employ to enhance intrafibrillar remineralization are found to be interrelated, indicating multiple driving forces behind this process. However, challenges remain in effectively designing clinically viable products using stabilized ACP and maximizing intrafibrillar mineralization with limited materials in practical applications. SIGNIFICANCE The role of ACP in remineralization has gained significant attention in dental research, with substantial progress made in the study of dentin biomimetic mineralization. Given ACP's instability without additives, the presence of ACP stabilizers is crucial for achieving in vitro intrafibrillar mineralization. However, there is a lack of comprehensive and exhaustive reviews on ACP bioactive materials under the regulation of stabilizers. A detailed summary of these stabilizers is also instrumental in better understanding the complex process of intrafibrillar mineralization. Compared to traditional remineralization methods, bioactive materials capable of regulating ACP stability and controlling release demonstrate immense potential in enhancing clinical treatment standards.
Collapse
Affiliation(s)
- Qingyi Yang
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Wenqian Zheng
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Yuping Zhao
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Yaru Shi
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Yi Wang
- Graduate Program in Applied Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Xiaowei Xu
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
22
|
Šístková J, Fialová T, Svoboda E, Varmužová K, Uher M, Číhalová K, Přibyl J, Dlouhý A, Pávková Goldbergová M. Insight into antibacterial effect of titanium nanotubular surfaces with focus on Staphylococcus aureus and Pseudomonas aeruginosa. Sci Rep 2024; 14:17303. [PMID: 39068252 PMCID: PMC11283573 DOI: 10.1038/s41598-024-68266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Materials used for orthopedic implants should not only have physical properties close to those of bones, durability and biocompatibility, but should also exhibit a sufficient degree of antibacterial functionality. Due to its excellent properties, titanium is still a widely used material for production of orthopedic implants, but the unmodified material exhibits poor antibacterial activity. In this work, the physicochemical characteristics, such as chemical composition, crystallinity, wettability, roughness, and release of Ti ions of the titanium surface modified with nanotubular layers were analyzed and its antibacterial activity against two biofilm-forming bacterial strains responsible for prosthetic joint infection (Staphylococcus aureus and Pseudomonas aeruginosa) was investigated. Electrochemical anodization (anodic oxidation) was used to prepare two types of nanotubular arrays with nanotubes differing in dimensions (with diameters of 73 and 118 nm and lengths of 572 and 343 nm, respectively). These two surface types showed similar chemistry, crystallinity, and surface energy. The surface with smaller nanotube diameter (TNT-73) but larger values of roughness parameters was more effective against S. aureus. For P. aeruginosa the sample with a larger nanotube diameter (TNT-118) had better antibacterial effect with proven cell lysis. Antibacterial properties of titanium nanotubular surfaces with potential in implantology, which in our previous work demonstrated a positive effect on the behavior of human gingival fibroblasts, were investigated in terms of surface parameters. The interplay between nanotube diameter and roughness appeared critical for the bacterial fate on nanotubular surfaces. The relationship of nanotube diameter, values of roughness parameters, and other surface properties to bacterial behavior is discussed in detail. The study is believed to shed more light on how nanotubular surface parameters and their interplay affect antibacterial activity.
Collapse
Affiliation(s)
- Jana Šístková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tatiana Fialová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Emil Svoboda
- Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Kounicova 65, Brno, 662 10, Czech Republic
| | - Kateřina Varmužová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Martin Uher
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kristýna Číhalová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Jan Přibyl
- Central European Institute for Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Antonín Dlouhý
- Institute of Physics of Materials, Czech Academy of Sciences, v. v. i., Žižkova 513/22, Brno, 616 62, Czech Republic
| | - Monika Pávková Goldbergová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|
23
|
Whitman MA, Mantri M, Spanos E, Estroff LA, De Vlaminck I, Fischbach C. Bone mineral density affects tumor growth by shaping microenvironmental heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604333. [PMID: 39091735 PMCID: PMC11291034 DOI: 10.1101/2024.07.19.604333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Breast cancer bone metastasis is the leading cause of mortality in patients with advanced breast cancer. Although decreased mineral density is a known risk factor for bone metastasis, the underlying mechanisms remain poorly understood because studying the isolated effect of bone mineral density on tumor heterogeneity is challenging with conventional approaches. Here, we investigate how bone mineral content affects tumor growth and microenvironmental complexity in vivo by combining single-cell RNA-sequencing with mineral-containing or mineral-free decellularized bone matrices. We discover that the absence of bone mineral significantly influences fibroblast and immune cell heterogeneity, promoting phenotypes that increase tumor growth and alter the response to injury or disease. Importantly, we observe that the stromal response to matrix mineral content depends on host immunocompetence and the murine tumor model used. Collectively, our findings suggest that bone mineral density affects tumor growth by altering microenvironmental complexity in an organism-dependent manner.
Collapse
Affiliation(s)
- Matthew A. Whitman
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850
| | - Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850
| | - Emmanuel Spanos
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14850
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14850
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14850
| |
Collapse
|
24
|
Chen X, Huang Z, Zhang S, Li H. Assembled collagen films modified using polyacrylic acid with improved mechanical properties via mineralization. J Mater Chem B 2024; 12:6643-6653. [PMID: 38873745 DOI: 10.1039/d4tb00828f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The imperative task of enforcing collagen materials holds paramount significance in the field of hard tissue repair. We hereby present mineralized collagen fiber films via mineralization with improved mechanical properties. Self-extracted collagen was assembled into an array with an aligned fibrous pattern and then modified with polyacrylic acid (PAA) followed by mineralization in cationic polyacrylamide (CPAM)-SBF. Biomineralization occurred at the inner and outer surface of the assembled collagen fiber films. A tensile strength of up to 40.38 ± 3.08 MPa of mineralized collagen was obtained, for the first time, which may be attributed to the synergistic effect of polyanion and polycation on the mineralization process of assembled intrafibrillar collagen fibers. It was argued that PAA may facilitate the intra-fiber interaction of collagen, which extends the elongation at break of collagen fibers. This study introduces a pioneering approach for the preparation of mineralized collagen materials with superior mechanical properties, which would be beneficial for hard tissue repair.
Collapse
Affiliation(s)
- Xiaohui Chen
- College of Chemistry and Materials Science, Jinan University, Guangdong, 511443, P.R. China.
- Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangdong, 510632, P.R. China
| | - Zhilin Huang
- College of Chemistry and Materials Science, Jinan University, Guangdong, 511443, P.R. China.
- Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangdong, 510632, P.R. China
| | - Shuyun Zhang
- Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Basic Medicine, School of Medicine, Jinan University, Guangdong, 510220, P.R. China.
| | - Hong Li
- College of Chemistry and Materials Science, Jinan University, Guangdong, 511443, P.R. China.
- Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangdong, 510632, P.R. China
| |
Collapse
|
25
|
Wang J, Wu Y, Li G, Zhou F, Wu X, Wang M, Liu X, Tang H, Bai L, Geng Z, Song P, Shi Z, Ren X, Su J. Engineering Large-Scale Self-Mineralizing Bone Organoids with Bone Matrix-Inspired Hydroxyapatite Hybrid Bioinks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309875. [PMID: 38642033 DOI: 10.1002/adma.202309875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/02/2024] [Indexed: 04/22/2024]
Abstract
Addressing large bone defects remains a significant challenge owing to the inherent limitations in self-healing capabilities, resulting in prolonged recovery and suboptimal regeneration. Although current clinical solutions are available, they have notable shortcomings, necessitating more efficacious approaches to bone regeneration. Organoids derived from stem cells show great potential in this field; however, the development of bone organoids has been hindered by specific demands, including the need for robust mechanical support provided by scaffolds and hybrid extracellular matrices (ECM). In this context, bioprinting technologies have emerged as powerful means of replicating the complex architecture of bone tissue. The research focused on the fabrication of a highly intricate bone ECM analog using a novel bioink composed of gelatin methacrylate/alginate methacrylate/hydroxyapatite (GelMA/AlgMA/HAP). Bioprinted scaffolds facilitate the long-term cultivation and progressive maturation of extensive bioprinted bone organoids, foster multicellular differentiation, and offer valuable insights into the initial stages of bone formation. The intrinsic self-mineralizing quality of the bioink closely emulates the properties of natural bone, empowering organoids with enhanced bone repair for both in vitro and in vivo applications. This trailblazing investigation propels the field of bone tissue engineering and holds significant promise for its translation into practical applications.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Department of Orthopedic, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Yan Wu
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Guangfeng Li
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Department of Trauma Orthopedics, Zhongye Hospital, Shanghai, 200941, P. R. China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, P. R. China
| | - Xiang Wu
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Miaomiao Wang
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinru Liu
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Hua Tang
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Long Bai
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhen Geng
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Peiran Song
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhongmin Shi
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiacan Su
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- Department of Orthopedic, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| |
Collapse
|
26
|
Liu Y, Wang Y, Lin M, Liu H, Pan Y, Wu J, Guo Z, Li J, Yan B, Zhou H, Fan Y, Hu G, Liang H, Zhang S, Siu MFF, Wu Y, Bai J, Liu C. Cellular Scale Curvature in Bioceramic Scaffolds Enhanced Bone Regeneration by Regulating Skeletal Stem Cells and Vascularization. Adv Healthc Mater 2024:e2401667. [PMID: 38923234 DOI: 10.1002/adhm.202401667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Critical-sized segmental bone defects cannot heal spontaneously, leading to disability and significant increase in mortality. However, current treatments utilizing bone grafts face a variety of challenges from donor availability to poor osseointegration. Drugs such as growth factors increase cancer risk and are very costly. Here, a porous bioceramic scaffold that promotes bone regeneration via solely mechanobiological design is reported. Two types of scaffolds with high versus low pore curvatures are created using high-precision 3D printing technology to fabricate pore curvatures radius in the 100s of micrometers. While both are able to support bone formation, the high-curvature pores induce higher ectopic bone formation and increased vessel invasion. Scaffolds with high-curvature pores also promote faster regeneration of critical-sized segmental bone defects by activating mechanosensitive pathways. High-curvature pore recruits skeletal stem cells and type H vessels from both the periosteum and the marrow during the early phase of repair. High-curvature pores have increased survival of transplanted GFP-labeled skeletal stem cells (SSCs) and recruit more host SSCs. Taken together, the bioceramic scaffolds with defined micrometer-scale pore curvatures demonstrate a mechanobiological approach for orthopedic scaffold design.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yue Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Minmin Lin
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hongzhi Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yonghao Pan
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jianqun Wu
- College of Medicine, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Ziyu Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jiawei Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Bingtong Yan
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hang Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yuanhao Fan
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Ganqing Hu
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Haowen Liang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Shibo Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Ming-Fung Francis Siu
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Yongbo Wu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Jiaming Bai
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Chao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| |
Collapse
|
27
|
Bell-Hensley A, Beard DC, Feeney K, Zheng H, Jiang Y, Zhang X, Liu J, Gabel H, McAlinden A. Skeletal abnormalities in mice with Dnmt3a missense mutations. Bone 2024; 183:117085. [PMID: 38522809 PMCID: PMC11057337 DOI: 10.1016/j.bone.2024.117085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Overgrowth and intellectual disability disorders in humans are typified by length/height and/or head circumference ≥ 2 standard deviations above the mean as well as intellectual disability and behavioral comorbidities, including autism and anxiety. Tatton-Brown-Rahman Syndrome is one type of overgrowth and intellectual disability disorder caused by heterozygous missense mutations in the DNA methyltransferase 3A (DNMT3A) gene. Numerous DNMT3A mutations have been identified in Tatton-Brown-Rahman Syndrome patients and may be associated with varying phenotype severities of clinical presentation. Two such mutations are the R882H and P904L mutations which result in severe and mild phenotypes, respectively. Mice with paralogous mutations (Dnmt3aP900L/+ and Dnmt3aR878H/+) exhibit overgrowth in their long bones (e.g., femur, humerus), but the mechanisms responsible for their skeletal overgrowth remain unknown. The goal of this study is to characterize skeletal phenotypes in mouse models of Tatton-Brown-Rahman Syndrome and identify potential cellular mechanisms involved in the skeletal overgrowth phenotype. We report that mature mice with the Dnmt3aP900L/+ or Dnmt3aR878H/+ mutation exhibit tibial overgrowth, cortical bone thinning, and weakened bone mechanical properties. Dnmt3aR878H/+ mutants also contain larger bone marrow adipocytes while Dnmt3aP900L/+ mutants show no adipocyte phenotype compared to control animals. To understand the potential cellular mechanisms regulating these phenotypes, growth plate chondrocytes, osteoblasts, and osteoclasts were assessed in juvenile mutant mice using quantitative static histomorphometry and dynamic histomorphometry. Tibial growth plates appeared thicker in mutant juvenile mice, but no changes were observed in osteoblast activity or osteoclast number in the femoral mid-diaphysis. These studies reveal new skeletal phenotypes associated with Tatton-Brown-Rahman Syndrome in mice and provide a rationale to extend clinical assessments of patients with this condition to include bone density and quality testing. These findings may be also informative for skeletal characterization of other mouse models presenting with overgrowth and intellectual disability phenotypes.
Collapse
Affiliation(s)
- Austin Bell-Hensley
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Diana C Beard
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathryn Feeney
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Hongjun Zheng
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Yunhao Jiang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiyun Zhang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Jin Liu
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Harrison Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA; Department of Cell Biology & Physiology, Washington University in St. Louis, St. Louis, MO, USA; Shriners Hospital for Children - St. Louis, St. Louis, MO, USA.
| |
Collapse
|
28
|
Moghaddam A, Bahrami M, Mirzadeh M, Khatami M, Simorgh S, Chimehrad M, Kruppke B, Bagher Z, Mehrabani D, Khonakdar HA. Recent trends in bone tissue engineering: a review of materials, methods, and structures. Biomed Mater 2024; 19:042007. [PMID: 38636500 DOI: 10.1088/1748-605x/ad407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Bone tissue engineering (BTE) provides the treatment possibility for segmental long bone defects that are currently an orthopedic dilemma. This review explains different strategies, from biological, material, and preparation points of view, such as using different stem cells, ceramics, and metals, and their corresponding properties for BTE applications. In addition, factors such as porosity, surface chemistry, hydrophilicity and degradation behavior that affect scaffold success are introduced. Besides, the most widely used production methods that result in porous materials are discussed. Gene delivery and secretome-based therapies are also introduced as a new generation of therapies. This review outlines the positive results and important limitations remaining in the clinical application of novel BTE materials and methods for segmental defects.
Collapse
Affiliation(s)
| | - Mehran Bahrami
- Department of Mechanical Engineering and Mechanics, Lehigh University, 27 Memorial Dr W, Bethlehem, PA 18015, United States of America
| | | | - Mehrdad Khatami
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Chimehrad
- Department of Mechanical & Aerospace Engineering, College of Engineering & Computer Science, University of Central Florida, Orlando, FL, United States of America
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71345-1744, Iran
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
29
|
Emadi H, Baghani M, Masoudi Rad M, Hoomehr B, Baniassadi M, Lotfian S. 3D-Printed Polycaprolactone-Based Containing Calcium Zirconium Silicate: Bioactive Scaffold for Accelerating Bone Regeneration. Polymers (Basel) 2024; 16:1389. [PMID: 38794582 PMCID: PMC11125223 DOI: 10.3390/polym16101389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
There is an essential clinical need to develop rapid process scaffolds to repair bone defects. The current research presented the development of calcium zirconium silicate/polycaprolactone for bone tissue engineering utilising melt extrusion-based 3D printing. Calcium zirconium silicate (CZS) nanoparticles were added to polycaprolactone (PCL) porous scaffolds to enhance their biological and mechanical properties, while the resulting properties were studied extensively. No significant difference was found in the melting point of the samples, while the crystallisation temperature points of the samples containing bioceramic increased from 36.1 to 40.2 °C. Thermal degradation commenced around 350 °C for all materials. According to our results, increasing the CZS content from 0 to 40 wt.% (PC40) in porous scaffolds (porosity about 55-62%) improved the compressive strength from 2.8 to 10.9 MPa. Furthermore, apatite formation ability in SBF solution increased significantly by enhancing the CZS percentage. According to MTT test results, the viability of MG63 cells improved remarkably (~29%) in PC40 compared to pure PCL. These findings suggest that a 3D-printed PCL/CZS composite scaffold can be fabricated successfully and shows great potential as an implantable material for bone tissue engineering applications.
Collapse
Affiliation(s)
- Hosein Emadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 14176-14411, Iran;
| | - Mostafa Baghani
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 14176-14411, Iran;
| | - Maryam Masoudi Rad
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Bahareh Hoomehr
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Majid Baniassadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 14176-14411, Iran;
| | - Saeid Lotfian
- Faculty of Engineering, University of Strathclyde, Glasgow G4 0LZ, UK
| |
Collapse
|
30
|
Cheng P, Zhao X, Han M, Zhuang Y, Ning F, Hu Y, Lu W, Miao S, Zhao C, Jia L, Hao X, Sun M, Wang J, Chen F, Yang L, Jie Q. Periodic static compression of micro-strain pattern regulates endochondral bone formation. Front Bioeng Biotechnol 2024; 12:1356135. [PMID: 38600948 PMCID: PMC11004279 DOI: 10.3389/fbioe.2024.1356135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction: Developmental engineering based on endochondral ossification has been proposed as a potential strategy for repairing of critical bone defects. Bone development is driven by growth plate-mediated endochondral ossification. Under physiological conditions, growth plate chondrocytes undergo compressive forces characterized by micro-mechanics, but the regulatory effect of micro-mechanical loading on endochondral bone formation has not been investigated. Methods: In this study, a periodic static compression (PSC) model characterized by micro-strain (with 0.5% strain) was designed to clarify the effects of biochemical/mechanical cues on endochondral bone formation. Hydrogel scaffolds loaded with bone marrow mesenchymal stem cells (BMSCs) were incubated in proliferation medium or chondrogenic medium, and PSC was performed continuously for 14 or 28 days. Subsequently, the scaffold pretreated for 28 days was implanted into rat femoral muscle pouches and femoral condylar defect sites. The chondrogenesis and bone defect repair were evaluated 4 or 10 weeks post-operation. Results: The results showed that PSC stimulation for 14 days significantly increased the number of COL II positive cells in proliferation medium. However, the chondrogenic efficiency of BMSCs was significantly improved in chondrogenic medium, with or without PSC application. The induced chondrocytes (ichondrocytes) spontaneously underwent hypertrophy and maturation, but long-term mechanical stimulation (loading for 28 days) significantly inhibited hypertrophy and mineralization in ichondrocytes. In the heterotopic ossification model, no chondrocytes were found and no significant difference in terms of mineral deposition in each group; However, 4 weeks after implantation into the femoral defect site, all scaffolds that were subjected to biochemical/mechanical cues, either solely or synergistically, showed typical chondrocytes and endochondral bone formation. In addition, simultaneous biochemical induction/mechanical loading significantly accelerated the bone regeneration. Discussion: Our findings suggest that microstrain mechanics, biochemical cues, and in vivo microenvironment synergistically regulate the differentiation fate of BMSCs. Meanwhile, this study shows the potential of micro-strain mechanics in the treatment of critical bone defects.
Collapse
Affiliation(s)
- Pengzhen Cheng
- College of Life Sciences, Northwest University, Xi’an, China
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Xi’an Key Laboratory of Skeletal Developmental Deformity and Injury Repair, Xi’an, China
| | - Xueyi Zhao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Meige Han
- College of Life Sciences, Northwest University, Xi’an, China
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yaping Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fenru Ning
- Department of Neonatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yaqian Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Weiguang Lu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Sheng Miao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chengxiang Zhao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Liyuan Jia
- College of Life Sciences, Northwest University, Xi’an, China
| | - Xue Hao
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- Xi’an Key Laboratory of Skeletal Developmental Deformity and Injury Repair, Xi’an, China
| | - Meng Sun
- College of Life Sciences, Northwest University, Xi’an, China
| | - Junxiang Wang
- College of Life Sciences, Northwest University, Xi’an, China
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Fulin Chen
- College of Life Sciences, Northwest University, Xi’an, China
- Xi’an Key Laboratory of Skeletal Developmental Deformity and Injury Repair, Xi’an, China
- Research Center for Skeletal Developmental Deformity and Injury Repair, School of Life Science and Medicine, Northwest University, Xi’an, China
| | - Liu Yang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qiang Jie
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- Xi’an Key Laboratory of Skeletal Developmental Deformity and Injury Repair, Xi’an, China
- Research Center for Skeletal Developmental Deformity and Injury Repair, School of Life Science and Medicine, Northwest University, Xi’an, China
| |
Collapse
|
31
|
Hussain Z, Ullah I, Liu X, Mehmood S, Wang L, Ma F, Ullah S, Lu Z, Wang Z, Pei R. GelMA-catechol coated FeHAp nanorods functionalized nanofibrous reinforced bio-instructive and mechanically robust composite hydrogel scaffold for bone tissue engineering. BIOMATERIALS ADVANCES 2023; 155:213696. [PMID: 37952462 DOI: 10.1016/j.bioadv.2023.213696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Critical bone defects complicate tissue graft-based surgeries, raising healthcare expenditures and underscoring scaffold-based tissue-engineering strategies to support bone reconstruction. Our study highlighted that the phase-compatible combination of inorganic nanorods, nanofibers, and hydrogels is promising for developing biomimetic and cell-instructive scaffolds since the bone matrix is a porous organic/inorganic composite. In brief, methacrylated gelatin (GelMA) was reacted with dopamine to form catechol-modified GeLMA (GelMA-C). The GelMA-C was nanocoated onto an iron-doped hydroxyapatite (FeHAp) nanorod via metal-catechol network coordination. The modified nanorod (FeHAp@GelMA-C) was loaded onto GelMA-based nanofibers. The nanorods loaded pre-fibers were electrospun onto GelMA solution and photochemically crosslinked to fabricate a fiber-reinforced hydrogel. The structural, mechanical, physicochemical, biocompatibility, swelling properties, osteogenic potential, and bone remodelling potential (using rat femoral defect model) of modified nanorods, simple hydrogel, and nanorod-loaded fiber-reinforced hydrogel were studied. The results supported that the interface interaction between GelMA-C/nanorods, nanorods/nanofibers, nanorods/hydrogels, and nanofiber/hydrogels significantly improved the microstructural and mechanical properties of the scaffold. Compared to pristine hydrogel, the nanorod-loaded fiber-reinforced scaffold better supported cellular responses, osteogenic differentiation, matrix mineralization, and accelerated bone regeneration. The nanorod-loaded fiber-reinforced hydrogel proved more biomimetic and cell-instructive for guided bone reconstruction.
Collapse
Affiliation(s)
- Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Ismat Ullah
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Xingzhu Liu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Shah Mehmood
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Li Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Fanshu Ma
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Salim Ullah
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Zhongzhong Lu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Zixun Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China.
| |
Collapse
|
32
|
Chin SM, Unnold-Cofre C, Naismith T, Jansen S. The actin-bundling protein, PLS3, is part of the mechanoresponsive machinery that regulates osteoblast mineralization. Front Cell Dev Biol 2023; 11:1141738. [PMID: 38089885 PMCID: PMC10711096 DOI: 10.3389/fcell.2023.1141738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 11/07/2023] [Indexed: 02/01/2024] Open
Abstract
Plastin-3 (PLS3) is a calcium-sensitive actin-bundling protein that has recently been linked to the development of childhood-onset osteoporosis. Clinical data suggest that PLS3 mutations lead to a defect in osteoblast function, however the underlying mechanism remains elusive. To investigate the role of PLS3 in bone mineralization, we generated MC3T3-E1 preosteoblast cells that are stably depleted of PLS3. Analysis of osteogenic differentiation of control and PLS3 knockdown (PLS3 KD) cells showed that depletion of PLS3 does not alter the first stage of osteoblast mineralization in which a collagen matrix is deposited, but severely affects the subsequent mineralization of that matrix. During this phase, osteoblasts heavily rely on mechanosensitive signaling pathways to sustain mineral deposition in response to increasing stiffness of the extracellular matrix (ECM). PLS3 prominently localizes to focal adhesions (FAs), which are intricately linked to mechanosensation. In line with this, we observed that depletion of PLS3 rendered osteoblasts unresponsive to changes in ECM stiffness and showed the same cell size, FA lengths and number of FAs when plated on soft (6 kPa) versus stiff (100 kPa) substrates in contrast to control cells, which showed an increased in each of these parameters when plated on 100 kPa substrates. Defective cell spreading of PLS3 KD cells on stiff substrates could be rescued by expression of wildtype PLS3, but not by expression of three PLS3 mutations that were identified in patients with early onset osteoporosis and that have aberrant actin-bundling activity. Altogether, our results show that actin-bundling by PLS3 is part of the mechanosensitive mechanism that promotes osteoblast mineralization and thus begins to elucidate how PLS3 contributes to the development of bone defects such as osteoporosis.
Collapse
Affiliation(s)
| | | | | | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
33
|
De Leon-Oliva D, Boaru DL, Perez-Exposito RE, Fraile-Martinez O, García-Montero C, Diaz R, Bujan J, García-Honduvilla N, Lopez-Gonzalez L, Álvarez-Mon M, Saz JV, de la Torre B, Ortega MA. Advanced Hydrogel-Based Strategies for Enhanced Bone and Cartilage Regeneration: A Comprehensive Review. Gels 2023; 9:885. [PMID: 37998975 PMCID: PMC10670584 DOI: 10.3390/gels9110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Bone and cartilage tissue play multiple roles in the organism, including kinematic support, protection of organs, and hematopoiesis. Bone and, above all, cartilaginous tissues present an inherently limited capacity for self-regeneration. The increasing prevalence of disorders affecting these crucial tissues, such as bone fractures, bone metastases, osteoporosis, or osteoarthritis, underscores the urgent imperative to investigate therapeutic strategies capable of effectively addressing the challenges associated with their degeneration and damage. In this context, the emerging field of tissue engineering and regenerative medicine (TERM) has made important contributions through the development of advanced hydrogels. These crosslinked three-dimensional networks can retain substantial amounts of water, thus mimicking the natural extracellular matrix (ECM). Hydrogels exhibit exceptional biocompatibility, customizable mechanical properties, and the ability to encapsulate bioactive molecules and cells. In addition, they can be meticulously tailored to the specific needs of each patient, providing a promising alternative to conventional surgical procedures and reducing the risk of subsequent adverse reactions. However, some issues need to be addressed, such as lack of mechanical strength, inconsistent properties, and low-cell viability. This review describes the structure and regeneration of bone and cartilage tissue. Then, we present an overview of hydrogels, including their classification, synthesis, and biomedical applications. Following this, we review the most relevant and recent advanced hydrogels in TERM for bone and cartilage tissue regeneration.
Collapse
Affiliation(s)
- Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Roque Emilio Perez-Exposito
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Service of Traumatology of University Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Raul Diaz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Laura Lopez-Gonzalez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Immune System Diseases-Rheumatology Service, Hospital Universitario Principe de Asturias, 28801 Alcala de Henares, Spain
| | - Jose V. Saz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Basilio de la Torre
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Service of Traumatology of University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| |
Collapse
|
34
|
Ren Y, Ma C, Yu Y, Yang D, Zhang L, Wang H, Sun L. Poly(l-lactic acid)-based double-layer composite scaffold for bone tissue repair. Regen Biomater 2023; 11:rbad093. [PMID: 38173766 PMCID: PMC10761204 DOI: 10.1093/rb/rbad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 01/05/2024] Open
Abstract
Bone defect is a serious threat to human health. Osteopractic total flavone (OTF) extracted from Rhizoma Drynariae has the effects of promoting bone formation. Panax notoginseng saponin (PNS) has the function of activating blood circulation and removing blood stasis. Therefore, combining OTF and PNS with poly(l-lactic acid) (PLLA) to prepare scaffolds containing PNS in the outer layer and OTF in the inner layer is a feasible solution to rapidly remove blood stasis and continue to promote bone formation. In addition, degradation rate of the scaffold can affect the release time of two drugs. Adding Mg particles in outer layer can control the degradation rate of the scaffold and the drug release. Therefore, a double-layer drug-loaded PLLA scaffold containing OTF in the inner layer, PNS and Mg particles in the outer layer was prepared and characterized to verify its feasibility. The experimental results showed that the scaffold can realize the rapid release of PNS and the continuous release of OTF. With the increase of Mg content, the drug release rate became faster. Animal experiments showed that the scaffold containing 5% Mg particles could effectively promote the formation of new bone in the bone defect of male New Zealand white rabbits, and the area and density of new bone formed were much better than those in the control group. These results demonstrated that the double-layer drug-loaded scaffold had good ability to promote bone repair.
Collapse
Affiliation(s)
- Yixing Ren
- Department of Joint Surgery, The Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Chunyang Ma
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yao Yu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Dandan Yang
- Department of Science and Education, The Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Lingling Zhang
- Department of Nursing, The Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Huitao Wang
- Department of General Surgery, The Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Lei Sun
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| |
Collapse
|
35
|
Singh S, Yadav SK, Meena VK, Vashisth P, Kalyanasundaram D. Orthopedic Scaffolds: Evaluation of Structural Strength and Permeability of Fluid Flow via an Open Cell Neovius Structure for Bone Tissue Engineering. ACS Biomater Sci Eng 2023; 9:5900-5911. [PMID: 37702616 DOI: 10.1021/acsbiomaterials.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The ability of bone to regenerate itself through mechanobiological responses is its dynamic property. Mechanical cues from a neighboring environment produce the structural strain to promote blood flow and bone marrow mobility that in turn aids the bone regeneration process. Occurrences of these phenomena are crucial for the success of metallic scaffolds implanted in the host bone tissue. Thus, permeability and fluid flow-induced wall shear stress (WSS) are two parameters that directly influence cell bioactivities inside a scaffold and are crucial for effective bone tissue regeneration. Given that the scaffolds shall be implanted in the body, permeability assessment was carried out using non-Newtonian fluid. In this work, the triply periodic minimal surface scaffolds with Neovius architectures were fabricated by using selective laser melting technology. The estimation of fluid flow was carried out using computational fluid dynamics (CFD) analysis with a non-Newtonian blood fluid model. Further, the structural strength of various open cell Neovius lattices was evaluated using a static compression test, and in vitro cell culture using Alamar blue assay was evaluated. Results revealed that the values of intrinsic blood flow permeability of the three-dimensional (3D)-printed open cell porous scaffold with Neovius architecture were of the same order of magnitude as those of human bone, ranging from 0.0025 × 10-9 to 0.0152 × 10-9 m2. The structural elastic modulus and compressive strength of NOCL40, NOCL50, and NOCL60 lattices range from 3.27 to 3.71 GPa and 194 to 205 MPa, respectively. All of the values are comparable to the human bone, thus making these lattices a suitable alternative for orthopedic applications.
Collapse
Affiliation(s)
- Sonu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sunil Kumar Yadav
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Vijay Kumar Meena
- Central Scientific Instruments Organization, Council of Scientific & Industrial Research, Chandigarh 160030, India
| | - Priya Vashisth
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Dinesh Kalyanasundaram
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
36
|
Lukin I, Erezuma I, Garcia-Garcia P, Reyes R, Evora C, Kadumudi FB, Dolatshahi-Pirouz A, Orive G. Sumecton reinforced gelatin-based scaffolds for cell-free bone regeneration. Int J Biol Macromol 2023; 249:126023. [PMID: 37506785 DOI: 10.1016/j.ijbiomac.2023.126023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Bone tissue engineering has risen to tackle the challenges of the current clinical need concerning bone fractures that is already considered a healthcare system problem. Scaffold systems for the repair of this tissue have yielded different combinations including biomaterials with nanotechnology or biological agents. Herein, three-dimensional porous hydrogels were engineered based on gelatin as a natural biomaterial and reinforced with synthetic saponite nanoclays. Scaffolds were biocompatible and shown to enhance the inherent properties of pristine ones, in particular, proved to withstand pressures similar to load-bearing tissues. Studies with murine mesenchymal stem cells found that scaffolds had the potential to proliferate and promote cell differentiation. In vivo experiments were conducted to gain insight about the ability of these cell-free scaffolds to regenerate bone, as well as to determine the role that these nanoparticles in the scaffold could play as a drug delivery system. SDF-1 loaded scaffolds showed the highest percentage of bone formation, which was corroborated by osteogenic markers and new blood vessels. Albeit a first attempt in the field of synthetic nanosilicates, these results suggest that the designed constructs may serve as delivery platforms for biomimetic agents to mend bony defects, circumventing high doses of therapeutics and cell-loading systems.
Collapse
Affiliation(s)
- Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Patricia Garcia-Garcia
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Ricardo Reyes
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Carmen Evora
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Firoz Babu Kadumudi
- Department of Health Technology, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark
| | | | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain.
| |
Collapse
|
37
|
Chen PS, Tsai PH, Li TH, Jang JSC, Huang JCC, Lin CH, Pan CT, Lin HK. Development and Fabrication of Biocompatible Ti-Based Bulk Metallic Glass Matrix Composites for Additive Manufacturing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5935. [PMID: 37687626 PMCID: PMC10488760 DOI: 10.3390/ma16175935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Ti-based metallic glasses have a high potential for implant applications. The feasibility of a new biocompatible Ti-based bulk metallic glass composite for selective laser melting (SLM) had been examined. Therefore, it is necessary to design a high-glass-forming-ability Ti-based metallic glass (∆Tx = 81 K, γ = 0.427, γm = 0.763), to fabricate a partial glass-formable spherical powder (the volume fraction of the amorphous phase in the atomized Ti-based powders being 73% [size < 25 μm], 61% [25-37 μm], and 50% [37-44 μm]), and establish an SLM parameter (a scan rate of 600 mm/s, a power of 120 W, and an overlap of 10%). The Ti42Zr35Si5Co12.5Sn2.5Ta3 bulk metallic glass composite was successfully fabricated through SLM. This study demonstrates that the TiZrSiCoSnTa system constitutes a promising basis for the additive manufacturing process in terms of preparing biocompatible metallic glass composites into complicated graded foam shapes.
Collapse
Affiliation(s)
- Po-Sung Chen
- Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Pei-Hua Tsai
- Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Tsung-Hsiung Li
- Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Jason Shian-Ching Jang
- Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan
- Department of Mechanical Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Jacob Chih-Ching Huang
- Department of Materials and Optoelectronic Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Che-Hsin Lin
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Tang Pan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Hsuan-Kai Lin
- Department of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
38
|
Olevsky LM, Anup A, Jacques M, Keokominh N, Holmgren EP, Hixon KR. Direct Integration of 3D Printing and Cryogel Scaffolds for Bone Tissue Engineering. Bioengineering (Basel) 2023; 10:889. [PMID: 37627774 PMCID: PMC10451777 DOI: 10.3390/bioengineering10080889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Cryogels, known for their biocompatibility and porous structure, lack mechanical strength, while 3D-printed scaffolds have excellent mechanical properties but limited porosity resolution. By combining a 3D-printed plastic gyroid lattice scaffold with a chitosan-gelatin cryogel scaffold, a scaffold can be created that balances the advantages of both fabrication methods. This study compared the pore diameter, swelling potential, mechanical characteristics, and cellular infiltration capability of combined scaffolds and control cryogels. The incorporation of the 3D-printed lattice demonstrated patient-specific geometry capabilities and significantly improved mechanical strength compared to the control cryogel. The combined scaffolds exhibited similar porosity and relative swelling ratio to the control cryogels. However, they had reduced elasticity, reduced absolute swelling capacity, and are potentially cytotoxic, which may affect their performance. This paper presents a novel approach to combine two scaffold types to retain the advantages of each scaffold type while mitigating their shortcomings.
Collapse
Affiliation(s)
- Levi M. Olevsky
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (L.M.O.); (A.A.)
| | - Amritha Anup
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (L.M.O.); (A.A.)
| | - Mason Jacques
- College of Engineering and Physical Sciences, University of New Hampshire, Durham, NH 03824, USA; (M.J.); (N.K.)
| | - Nadia Keokominh
- College of Engineering and Physical Sciences, University of New Hampshire, Durham, NH 03824, USA; (M.J.); (N.K.)
| | - Eric P. Holmgren
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA;
| | - Katherine R. Hixon
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (L.M.O.); (A.A.)
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA;
| |
Collapse
|
39
|
Alvarado-Hernández F, Mihalcea E, Jimenez O, Macías R, Olmos L, López-Baltazar EA, Guevara-Martinez S, Lemus-Ruiz J. Design of Ti64/Ta Hybrid Materials by Powder Metallurgy Mimicking Bone Structure. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4372. [PMID: 37374557 DOI: 10.3390/ma16124372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
This work reports on the fabrication of a novel two-layer material composed of a porous tantalum core and a dense Ti6Al4V (Ti64) shell by powder metallurgy. The porous core was obtained by mixing Ta particles and salt space-holders to create large pores, the green compact was obtained by pressing. The sintering behavior of the two-layer sample was studied by dilatometry. The interface bonding between the Ti64 and Ta layers was analyzed by SEM, and the pore characteristics were analyzed by computed microtomography. Images showed that two distinct layers were obtained with a bonding achieved by the solid-state diffusion of Ta particles into Ti64 during sintering. The formation of β-Ti and α' martensitic phases confirmed the diffusion of Ta. The pore size distribution was in the size range of 80 to 500 µm, and a permeability value of 6 × 10-10 m2 was close to the trabecular bones one. The mechanical properties of the component were dominated mainly by the porous layer, and Young's modulus of 16 GPa was in the range of bones. Additionally, the density of this material (6 g/cm3) was much lower than the one of pure Ta, which helps to reduce the weight for the desired applications. These results indicate that structurally hybridized materials, also known as composites, with specific property profiles can improve the response to osseointegration for bone implant applications.
Collapse
Affiliation(s)
| | - Elena Mihalcea
- Unidad Académica de Ingeniería I, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
| | - Omar Jimenez
- CUCEI, Universidad de Guadalajara, Zapopan 45100, Mexico
| | - Rogelio Macías
- Tecnológico Nacional de México (IT Morelia), DEPI, Morelia 58120, Mexico
| | - Luis Olmos
- INICIT, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58060, Mexico
| | | | | | - José Lemus-Ruiz
- IIMM, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58060, Mexico
| |
Collapse
|
40
|
Zhu X, Wang C, Bai H, Zhang J, Wang Z, Li Z, Zhao X, Wang J, Liu H. Functionalization of biomimetic mineralized collagen for bone tissue engineering. Mater Today Bio 2023; 20:100660. [PMID: 37214545 PMCID: PMC10199226 DOI: 10.1016/j.mtbio.2023.100660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Mineralized collagen (MC) is the basic unit of bone structure and function and is the main component of the extracellular matrix (ECM) in bone tissue. In the biomimetic method, MC with different nanostructures of neo-bone have been constructed. Among these, extra-fibrous MC has been approved by regulatory agencies and applied in clinical practice to play an active role in bone defect repair. However, in the complex microenvironment of bone defects, such as in blood supply disorders and infections, MC is unable to effectively perform its pro-osteogenic activities and needs to be functionalized to include osteogenesis and the enhancement of angiogenesis, anti-infection, and immunomodulation. This article aimed to discuss the preparation and biological performance of MC with different nanostructures in detail, and summarize its functionalization strategy. Then we describe the recent advances in the osteo-inductive properties and multifunctional coordination of MC. Finally, the latest research progress of functionalized biomimetic MC, along with the development challenges and future trends, are discussed. This paper provides a theoretical basis and advanced design philosophy for bone tissue engineering in different bone microenvironments.
Collapse
Affiliation(s)
- Xiujie Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Chenyu Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
| | - Haotian Bai
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Jiaxin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Xin Zhao
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| |
Collapse
|
41
|
Monahan GE, Schiavi-Tritz J, Britton M, Vaughan TJ. Longitudinal alterations in bone morphometry, mechanical integrity and composition in Type-2 diabetes in a Zucker diabetic fatty (ZDF) rat. Bone 2023; 170:116672. [PMID: 36646266 DOI: 10.1016/j.bone.2023.116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Individuals with Type-2 Diabetes (T2D) have an increased risk of bone fracture, without a reduction in bone mineral density. It is hypothesised that the hyperglycaemic state caused by T2D forms an excess of Advanced Glycated End-products (AGEs) in the organic matrix of bone, which are thought to stiffen the collagen network and lead to impaired mechanical properties. However, the mechanisms are not well understood. This study aimed to investigate the geometrical, structural and material properties of diabetic cortical bone during the development and progression of T2D in ZDF (fa/fa) rats at 12-, 26- and 46-weeks of age. Longitudinal bone growth was impaired as early as 12-weeks of age and by 46-weeks bone size was significantly reduced in ZDF (fa/fa) rats versus controls (fa/+). Diabetic rats had significant structural deficits, such as bending rigidity, ultimate moment and energy-to-failure measured via three-point bend testing. Tissue material properties, measured by taking bone geometry into account, were altered as the disease progressed, with significant reductions in yield and ultimate strength for ZDF (fa/fa) rats at 46-weeks. FTIR analysis on cortical bone powder demonstrated that the tissue material deficits coincided with changes in tissue composition, in ZDF (fa/fa) rats with long-term diabetes having a reduced carbonate:phosphate ratio and increased acid phosphate content when compared to age-matched controls, indicative of an altered bone turnover process. AGE accumulation, measured via fluorescent assays, was higher in the skin of ZDF (fa/fa) rats with long-term T2D, bone AGEs did not differ between strains and neither AGEs correlated with bone strength. In conclusion, bone fragility in the diabetic ZDF (fa/fa) rats likely occurs through a multifactorial mechanism influenced initially by impaired bone growth and development and proceeding to an altered bone turnover process that reduces bone quality and impairs biomechanical properties as the disease progresses.
Collapse
Affiliation(s)
- Genna E Monahan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Jessica Schiavi-Tritz
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland; Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR, 7274 Nancy, France
| | - Marissa Britton
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland.
| |
Collapse
|
42
|
Qin L, Chen Z, Yang D, He T, Xu Z, Zhang P, Chen D, Yi W, Xiao G. Osteocyte β3 integrin promotes bone mass accrual and force-induced bone formation in mice. J Orthop Translat 2023; 40:58-71. [PMID: 37457310 PMCID: PMC10338905 DOI: 10.1016/j.jot.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 07/18/2023] Open
Abstract
Background Cell culture studies demonstrate the importance of β3 integrin in osteocyte mechanotransduction. However, the in vivo roles of osteocyte β3 integrin in the regulation of bone homeostasis and mechanotransduction are poorly defined. Materials and methods To study the in vivo role of osteocyte β3 integrin in bone, we utilized the 10-kb Dmp1 (dentin matrix acidic phosphoprotein 1)-Cre to delete β3 integrin expression in osteocyte in mice. Micro-computerized tomography (μCT), bone histomorphometry and in vitro cell culture experiments were performed to determine the effects of osteocyte β3 integrin loss on bone mass accrual and biomechanical properties. In addition, in vivo tibial loading model was applied to study the possible involvement of osteocyte β3 integrin in the mediation of bone mechanotransduction. Results Deletion of β3 integrin in osteocytes resulted in a low bone mass and impaired biomechanical properties in load-bearing long bones in adult mice. The loss of β3 integrin led to abnormal cell morphology with reduced number and length of dentritic processes in osteocytes. Furthermore, osteocyte β3 integrin loss did not impact the osteoclast formation, but significantly reduced the osteoblast-mediated bone formation rate and reduced the osteogenic differentiation of the bone marrow stromal cells in the bone microenvironment. In addition, mechanical loading failed to accelerate the anabolic bone formation in mutant mice. Conclusions Our studies demonstrate the essential roles of osteocyte β3 integrin in regulating bone mass and mechanotransduction.
Collapse
Affiliation(s)
- Lei Qin
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Zecai Chen
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Dazhi Yang
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Zhen Xu
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Peijun Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Weihong Yi
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| |
Collapse
|
43
|
Wang R, Wang J, Gao H, Liao X, Ma C, Niu X. Composite double-layer microneedle loaded with traditional Chinese medicine for the treatment of androgenic alopecia. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023. [DOI: 10.1016/j.medntd.2023.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
|
44
|
Li Z, Ruan C, Niu X. Collagen-based bioinks for regenerative medicine: Fabrication, application and prospective. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023. [DOI: 10.1016/j.medntd.2023.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
45
|
Darshna, Kumar R, Srivastava P, Chandra P. Bioengineering of bone tissues using bioreactors for modulation of mechano-sensitivity in bone. Biotechnol Genet Eng Rev 2023:1-41. [PMID: 36596226 DOI: 10.1080/02648725.2022.2162249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023]
Abstract
Since the last decade, significant developments have been made in the area of bone tissue engineering associated with the emergence of novel biomaterials as well as techniques of scaffold fabrication. Despite all these developments, the translation from research findings to clinical applications is still very limited. Manufacturing the designed tissue constructs in a scalable manner remains the most challenging aspect. This bottleneck could be overcome by using bioreactors for the manufacture of these tissue constructs. In this review, a current scenario of bone injuries/defects and the cause of the translational gap between laboratory research and clinical use has been emphasized. Furthermore, various bioreactors being used in the area of bone tissue regeneration in recent studies have been highlighted along with their advantages and limitations. A vivid literature survey on the ideal attributes of bioreactors has been accounted, viz. dynamic, versatile, automated, reproducible and commercialization aspects. Additionally, the illustration of computational approaches that should be combined with bone tissue engineering experiments using bioreactors to simulate and optimize cellular growth in bone tissue constructs has also been done extensively.
Collapse
Affiliation(s)
- Darshna
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Rahul Kumar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
46
|
Ma Q, Miri Z, Haugen HJ, Moghanian A, Loca D. Significance of mechanical loading in bone fracture healing, bone regeneration, and vascularization. J Tissue Eng 2023; 14:20417314231172573. [PMID: 37251734 PMCID: PMC10214107 DOI: 10.1177/20417314231172573] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
In 1892, J.L. Wolff proposed that bone could respond to mechanical and biophysical stimuli as a dynamic organ. This theory presents a unique opportunity for investigations on bone and its potential to aid in tissue repair. Routine activities such as exercise or machinery application can exert mechanical loads on bone. Previous research has demonstrated that mechanical loading can affect the differentiation and development of mesenchymal tissue. However, the extent to which mechanical stimulation can help repair or generate bone tissue and the related mechanisms remain unclear. Four key cell types in bone tissue, including osteoblasts, osteoclasts, bone lining cells, and osteocytes, play critical roles in responding to mechanical stimuli, while other cell lineages such as myocytes, platelets, fibroblasts, endothelial cells, and chondrocytes also exhibit mechanosensitivity. Mechanical loading can regulate the biological functions of bone tissue through the mechanosensor of bone cells intraosseously, making it a potential target for fracture healing and bone regeneration. This review aims to clarify these issues and explain bone remodeling, structure dynamics, and mechano-transduction processes in response to mechanical loading. Loading of different magnitudes, frequencies, and types, such as dynamic versus static loads, are analyzed to determine the effects of mechanical stimulation on bone tissue structure and cellular function. Finally, the importance of vascularization in nutrient supply for bone healing and regeneration was further discussed.
Collapse
Affiliation(s)
- Qianli Ma
- Department of Biomaterials, Institute
of Clinical Dentistry, University of Oslo, Norway
- Department of Immunology, School of
Basic Medicine, Fourth Military Medical University, Xi’an, PR China
| | - Zahra Miri
- Department of Materials Engineering,
Isfahan University of Technology, Isfahan, Iran
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute
of Clinical Dentistry, University of Oslo, Norway
| | - Amirhossein Moghanian
- Department of Materials Engineering,
Imam Khomeini International University, Qazvin, Iran
| | - Dagnjia Loca
- Rudolfs Cimdins Riga Biomaterials
Innovations and Development Centre, Institute of General Chemical Engineering,
Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga,
Latvia
- Baltic Biomaterials Centre of
Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
47
|
Fluid Shear Stress Regulates Osteogenic Differentiation via AnnexinA6-Mediated Autophagy in MC3T3-E1 Cells. Int J Mol Sci 2022; 23:ijms232415702. [PMID: 36555344 PMCID: PMC9779398 DOI: 10.3390/ijms232415702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Fluid shear stress (FSS) facilitates bone remodeling by regulating osteogenic differentiation, and extracellular matrix maturation and mineralization. However, the underlying molecular mechanisms of how mechanical stimuli from FSS are converted into osteogenesis remain largely unexplored. Here, we exposed MC3T3-E1 cells to FSS with different intensities (1 h FSS with 0, 5, 10, and 20 dyn/cm2 intensities) and treatment durations (10 dyn/cm2 FSS with 0, 0.5, 1, 2 and 4 h treatment). The results demonstrate that the 1 h of 10 dyn/cm2 FSS treatment greatly upregulated the expression of osteogenic markers (Runx2, ALP, Col I), accompanied by AnxA6 activation. The genetic ablation of AnxA6 suppressed the autophagic process, demonstrating lowered autophagy markers (Beclin1, ATG5, ATG7, LC3) and decreased autophagosome formation, and strongly reduced osteogenic differentiation induced by FSS. Furthermore, the addition of autophagic activator rapamycin to AnxA6 knockdown cells stimulated autophagy process, and coincided with more expressions of osteogenic proteins ALP and Col I under both static and FSS conditions. In conclusion, the findings in this study reveal a hitherto unidentified relationship between FSS-induced osteogenic differentiation and autophagy, and point to AnxA6 as a key mediator of autophagy in response to FSS, which may provide a new target for the treatment of osteoporosis and other diseases.
Collapse
|
48
|
Li X, Zhang W, Fan Y, Niu X. MV-mediated biomineralization mechanisms and treatments of biomineralized diseases. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|