1
|
Elkhanoufi S, Rakhshan S, Nespeca MJ, Alberti D, Boudries D, Pokong-Touyam J, Stefania R, Parzy E, Massot P, Mellet P, Franconi JM, Thiaudiere E, Geninatti Crich S. A radical containing micellar probe for assessing esterase enzymatic activity with ultra-low field Overhauser-enhanced magnetic resonance imaging. J Mater Chem B 2024; 12:10923-10933. [PMID: 39331028 DOI: 10.1039/d4tb00639a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The ability to track altered enzyme activity using a non-invasive imaging protocol is crucial for the early diagnosis of many diseases but is often challenging. Herein, we show that Overhauser magnetic resonance imaging (OMRI) can be used to monitor enzymatic conversion at an ultra-low field (206 μT) using a highly sensitive "off/on" probe with a nitroxide stable radical containing ester, named T2C12-T80. This TEMPO derivative containing probe forms stable electron paramagnetic resonance (EPR) silent micelles in water that are hydrolysed by esterases, thus yielding narrow EPR signals whose intensities correlate directly with specific enzymatic activity. The responsiveness of the probe to tumours, facilitated by increased esterase activity, was initially determined by comparing EPR signals measured upon incubation with 3T3 (healthy fibroblasts used as control), HepG2 (human hepatoma) and Hs766T (human pancreatic cancer cells) cell lysates and then with Hs766T and 3T3 living cells. Next, Overhauser MR images were detected on a phantom containing the probe and the esterases to show that the approach is well suited for being translated to the in vivo detection at the earth's magnetic field. Regarding detection sensitivity, ultra-low field OMRI (ULF-OMRI) is beneficial over OMRI at higher fields (e.g. 0.2 T) since Overhauser enhancements are significantly higher and the technique is safe in terms of the specific absorption rate.
Collapse
Affiliation(s)
- Sabrina Elkhanoufi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy.
| | - Sahar Rakhshan
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy.
| | - Martin J Nespeca
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy.
| | - Diego Alberti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy.
| | - Dahmane Boudries
- Magnetic Resonance Center UMR, Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Case 93 146, rue Leo Saignat, F-33000 Bordeaux, France.
| | - Joyce Pokong-Touyam
- Magnetic Resonance Center UMR, Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Case 93 146, rue Leo Saignat, F-33000 Bordeaux, France.
| | - Rachele Stefania
- Department of Science and Technological Innovation, University of Eastern Piedmont "Amedeo Avogadro", Alessandria, Italy
| | - Elodie Parzy
- Magnetic Resonance Center UMR, Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Case 93 146, rue Leo Saignat, F-33000 Bordeaux, France.
| | - Philippe Massot
- Magnetic Resonance Center UMR, Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Case 93 146, rue Leo Saignat, F-33000 Bordeaux, France.
| | - Philippe Mellet
- Magnetic Resonance Center UMR, Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Case 93 146, rue Leo Saignat, F-33000 Bordeaux, France.
- INSERM, Bordeaux, France
| | | | - Eric Thiaudiere
- Magnetic Resonance Center UMR, Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Case 93 146, rue Leo Saignat, F-33000 Bordeaux, France.
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy.
| |
Collapse
|
2
|
Hu C, Zhang W, Jia Y, Zhao J, Chen Q, Hao C, Yu Y. USP4 promotes PTC progression by stabilizing LDHA and activating the MAPK and AKT signaling pathway. Aging (Albany NY) 2024; 16:12850-12865. [PMID: 39393052 PMCID: PMC11501377 DOI: 10.18632/aging.206108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/29/2024] [Indexed: 10/13/2024]
Abstract
Ubiquitin-specific protease 4 (USP4) has been identified as a promising oncogenic factor implicated in various human malignancies. However, the exact biological functions and underlying mechanisms of USP4 in the progression of papillary thyroid carcinoma (PTC) remain elusive. In this study, we observed a marked upregulation of USP4 expression in PTC tumor tissues. Elevated levels of USP4 were significantly correlated with aggressive clinicopathological features and poor prognosis. Functional assays for loss-of-function demonstrated that silencing USP4 hindered the proliferation of PTC cells. Furthermore, our investigation revealed a specific interaction between USP4 and lactate dehydrogenase A (LDHA), wherein USP4 played a crucial role in stabilizing LDHA protein levels via deubiquitination in PTC cells. Notably, this study demonstrated that USP4 promotes PTC proliferation by modulating the MAPK and AKT signaling pathways. In summary, our findings elucidate the critical involvement of the USP4/LDHA axis in driving PTC progression through the modulation of MAPK and AKT pathways, thereby identifying USP4 as a potential therapeutic target for the treatment of PTC.
Collapse
Affiliation(s)
- Chuanxiang Hu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wei Zhang
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yongsheng Jia
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jimin Zhao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Qian Chen
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Chengfei Hao
- Department of Hepatopancreatobiliary Surgery, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Yang Yu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
3
|
Gao H, Huang X, Chen W, Feng Z, Zhao Z, Li P, Tan C, Wang J, Zhuang Q, Gao Y, Min S, Yao Q, Qian M, Ma X, Wu F, Yan W, Sheng W, Huang G. Association of copy number variation in X chromosome-linked PNPLA4 with heterotaxy and congenital heart disease. Chin Med J (Engl) 2024; 137:1823-1834. [PMID: 38973237 DOI: 10.1097/cm9.0000000000003192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Heterotaxy (HTX) is a thoracoabdominal organ anomaly syndrome and commonly accompanied by congenital heart disease (CHD). The aim of this study was to analyze rare copy number variations (CNVs) in a HTX/CHD cohort and to examine the potential mechanisms contributing to HTX/CHD. METHODS Chromosome microarray analysis was used to identify rare CNVs in a cohort of 120 unrelated HTX/CHD patients, and available samples from parents were used to confirm the inheritance pattern. Potential candidate genes in CNVs region were prioritized via the DECIPHER database, and PNPLA4 was identified as the leading candidate gene. To validate, we generated PNPLA4 -overexpressing human induced pluripotent stem cell lines as well as pnpla4 -overexpressing zebrafish model, followed by a series of transcriptomic, biochemical and cellular analyses. RESULTS Seventeen rare CNVs were identified in 15 of the 120 HTX/CHD patients (12.5%). Xp22.31 duplication was one of the inherited CNVs identified in this HTX/CHD cohort, and PNPLA4 in the Xp22.31 was a candidate gene associated with HTX/CHD. PNPLA4 is expressed in the lateral plate mesoderm, which is known to be critical for left/right embryonic patterning as well as cardiomyocyte differentiation, and in the neural crest cell lineage. Through a series of in vivo and in vitro analyses at the molecular and cellular levels, we revealed that the biological function of PNPLA4 is importantly involved in the primary cilia formation and function via its regulation of energy metabolism and mitochondria-mediated ATP production. CONCLUSIONS Our findings demonstrated a significant association between CNVs and HTX/CHD. Our data strongly suggested that an increased genetic dose of PNPLA4 due to Xp22.31 duplication is a disease-causing risk factor for HTX/CHD.
Collapse
Affiliation(s)
- Han Gao
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Xianghui Huang
- Fujian Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital, Xiamen, Fujian 361006, China
| | - Weicheng Chen
- Children's Hospital of Fudan University, Shanghai 201102, China
| | - Zhiyu Feng
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Zhengshan Zhao
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Ping Li
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Chaozhong Tan
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Jinxin Wang
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Quannan Zhuang
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Yuan Gao
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Shaojie Min
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Qinyu Yao
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Maoxiang Qian
- Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiaojing Ma
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Feizhen Wu
- Children's Hospital of Fudan University, Shanghai 201102, China
| | - Weili Yan
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai 201102, China
| | - Wei Sheng
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
- Fujian Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital, Xiamen, Fujian 361006, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai 201102, China
| | - Guoying Huang
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
- Fujian Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital, Xiamen, Fujian 361006, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai 201102, China
| |
Collapse
|
4
|
Sürmeli Y, Durmuş N, Şanlı-Mohamed G. Exploring the Structural Insights of Thermostable Geobacillus esterases by Computational Characterization. ACS OMEGA 2024; 9:32931-32941. [PMID: 39100300 PMCID: PMC11292637 DOI: 10.1021/acsomega.4c03818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
This study conducted an in silico analysis of two biochemically characterized thermostable esterases, Est2 and Est3, from Geobacillus strains. To achieve this, the amino acid sequences of Est2 and Est3 were examined to assess their biophysicochemical properties, evolutionary connections, and sequence similarities. Three-dimensional models were constructed and validated through diverse bioinformatics tools. Molecular dynamics (MD) simulation was employed on a pNP-C2 ligand to explore interactions between enzymes and ligand. Biophysicochemical property analysis indicated that aliphatic indices and theoretical T m values of enzymes were between 82-83 and 55-65 °C, respectively. Molecular phylogeny placed Est2 and Est3 within Family XIII, alongside other Geobacillus esterases. DeepMSA2 revealed that Est2, Est3, and homologous sequences shared 12 conserved residues in their core domain (L39, D50, G53, G55, S57, G92, S94, G96, P108, P184, D193, and H223). BANΔIT analysis indicated that Est2 and Est3 had a significantly more rigid cap domain compared to Est30. Salt bridge analysis revealed that E150-R136, E124-K165, E137-R141, and E154-K157 salt bridges made Est2 and Est3 more stable compared to Est30. MD simulation indicated that Est3 exhibited greater fluctuations in the N-terminal region including conserved F25, cap domain, and C-terminal region, notably including H223, suggesting that these regions might influence esterase catalysis. The common residues in the ligand-binding sites of Est2-Est3 were determined as F25 and L167. The analysis of root mean square fluctuation (RMSF) revealed that region 1, encompassing F25 within the β2-α1 loop of Est3, exhibited higher fluctuations compared to those of Est2. Overall, this study might provide valuable insights for future investigations aimed at improving esterase thermostability and catalytic efficiency, critical industrial traits, through targeted amino acid modifications within the N-terminal region, cap domain, and C-terminal region using rational protein engineering techniques.
Collapse
Affiliation(s)
- Yusuf Sürmeli
- Department
of Agricultural Biotechnology, Tekirdağ
Namık Kemal University, 59030 Tekirdağ, Turkey
| | - Naciye Durmuş
- Department
of Molecular Biology and Genetics, İstanbul
Technical University, 34485 İstanbul, Turkey
| | | |
Collapse
|
5
|
Guerassimoff L, Ferrere M, Bossion A, Nicolas J. Stimuli-sensitive polymer prodrug nanocarriers by reversible-deactivation radical polymerization. Chem Soc Rev 2024; 53:6511-6567. [PMID: 38775004 PMCID: PMC11181997 DOI: 10.1039/d2cs01060g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Indexed: 06/18/2024]
Abstract
Polymer prodrugs are based on the covalent linkage of therapeutic molecules to a polymer structure which avoids the problems and limitations commonly encountered with traditional drug-loaded nanocarriers in which drugs are just physically entrapped (e.g., burst release, poor drug loadings). In the past few years, reversible-deactivation radical polymerization (RDRP) techniques have been extensively used to design tailor-made polymer prodrug nanocarriers. This synthesis strategy has received a lot of attention due to the possibility of fine tuning their structural parameters (e.g., polymer nature and macromolecular characteristics, linker nature, physico-chemical properties, functionalization, etc.), to achieve optimized drug delivery and therapeutic efficacy. In particular, adjusting the nature of the drug-polymer linker has enabled the easy synthesis of stimuli-responsive polymer prodrugs for efficient spatiotemporal drug release. In this context, this review article will give an overview of the different stimuli-sensitive polymer prodrug structures designed by RDRP techniques, with a strong focus on the synthesis strategies, the macromolecular architectures and in particular the drug-polymer linker, which governs the drug release kinetics and eventually the therapeutic effect. Their biological evaluations will also be discussed.
Collapse
Affiliation(s)
- Léa Guerassimoff
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| | - Marianne Ferrere
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| | - Amaury Bossion
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
6
|
Xu L, Xie Z, Jiang H, Wang E, Hu M, Huang Q, Hao X. Identification and evaluation of a six-lncRNA prognostic signature for multiple myeloma. Discov Oncol 2024; 15:204. [PMID: 38831187 PMCID: PMC11147969 DOI: 10.1007/s12672-024-01064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
PURPOSE Multiple myeloma (MM) is the second most common hematologic malignancy, and there is no cure for this disease. This study aimed to explore the prognostic value of long noncoding RNAs (lncRNAs) in MM and to reveal related immune and chemotherapy resistance mechanisms. METHODS In this study, lncRNA profiles from the Multiple Myeloma Research Foundation (MMRF) and Gene Expression Omnibus (GEO) databases were analyzed to identify lncRNAs linked to MM patient survival. A risk assessment model stratified patients into high- and low-risk groups, and survival was evaluated. Additionally, a triple-ceRNA (lncRNA-miRNA-mRNA) network was constructed, and functional analysis was performed. The research also involved immune function analysis and chemotherapy drug sensitivity assessment using oncoPredict and the GDSC dataset. RESULTS We identified 422 lncRNAs significantly associated with overall survival in MM patients and ultimately focused on the 6 with the highest prognostic value. These lncRNAs were used to develop a risk score formula that stratified patients into high- and low-risk groups. Kaplan-Meier analysis revealed shorter survival in high-risk patients. We integrated this lncRNA signature with clinical parameters to construct a nomogram for predicting MM prognosis. Additionally, a triple-ceRNA network was constructed to reveal potential miRNA targets, coding genes related to these lncRNAs and significantly enriched pathways. Immune checkpoint gene expression and immune cell composition were also analyzed in relation to the lncRNA risk score. Finally, using the oncoPredict tool, we observed that high-risk patients exhibited decreased sensitivity to key MM chemotherapeutics, suggesting that lncRNA profiles are linked to chemotherapy resistance.
Collapse
Affiliation(s)
- Lu Xu
- Department of Hematology, The First Affiliated Hospital of Hainan Medical College, Haikou, 570102, China.
- Tsinghua University, School of Medicine, Beijing, 100084, China.
- Department of Hematology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| | - Zhihao Xie
- Department of Hematology, The First Affiliated Hospital of Hainan Medical College, Haikou, 570102, China
| | | | - Erpeng Wang
- Nanfang Medical University, Guangzhou, 510515, China
| | - Min Hu
- Department of Hematology, The First Affiliated Hospital of Hainan Medical College, Haikou, 570102, China
| | - Qianlei Huang
- Department of Hematology, The First Affiliated Hospital of Hainan Medical College, Haikou, 570102, China
| | - Xinbao Hao
- Department of Hematology, The First Affiliated Hospital of Hainan Medical College, Haikou, 570102, China.
- Tsinghua University, School of Medicine, Beijing, 100084, China.
| |
Collapse
|
7
|
Dong C, Yao J, Wu Z, Hu J, Sun L, Wu Z, Yan J, Yin X. PAFAH1B3 is a KLF9 target gene that promotes proliferation and metastasis in pancreatic cancer. Sci Rep 2024; 14:9196. [PMID: 38649699 PMCID: PMC11035664 DOI: 10.1038/s41598-024-59427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human malignancies. Uncontrolled cell proliferation, invasion and migration of pancreatic cancer cells are the fundamental causes of death in PDAC patients. Our previous studies showed that KLF9 inhibits the proliferation, invasion and migration of pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In this study, we found that platelet-activating factor acetylhydrolase IB3 (PAFAH1B3) is highly expressed in pancreatic cancer tissues and cells. In vitro and in vivo studies showed that overexpression of PAFAH1B3 promoted the proliferation and invasion of pancreatic cancer cells, while downregulation of PAFAH1B3 inhibited these processes. We found that KLF9 expression is negatively correlated with PAFAH1B3 expression in pancreatic cancer tissues and cells. Western blotting revealed that KLF9 negatively regulates the expression of PAFAH1B3 in pancreatic cancer tissues and cells. Rescue experiments showed that overexpression of PAFAH1B3 could partially attenuate the suppression of pancreatic cancer cell proliferation, invasion and migration induced by KLF9 overexpression. Finally, chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were carried out, and the results showed that KLF9 directly binds to the promoter of PAFAH1B3 and inhibits its transcriptional activity. In conclusion, our study indicated that KLF9 can inhibit the proliferation, invasion, migration and metastasis of pancreatic cancer cells by inhibiting PAFAH1B3.
Collapse
Affiliation(s)
- Cairong Dong
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Jinping Yao
- Department of Endocrinology Department, The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Zhipeng Wu
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Junwen Hu
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Liang Sun
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Zhengyi Wu
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Jinlong Yan
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China.
| | - Xiangbao Yin
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China.
| |
Collapse
|
8
|
Wang Q, Shi Q, Wang Z, Lu J, Hou J. Integrating plasma proteomes with genome-wide association data for causal protein identification in multiple myeloma. BMC Med 2023; 21:377. [PMID: 37775746 PMCID: PMC10542236 DOI: 10.1186/s12916-023-03086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a severely debilitating and fatal B-cell neoplastic disease. The discovery of disease-associated proteins with causal genetic evidence offers a chance to uncover novel therapeutic targets. METHODS First, we comprehensively investigated the causal association between 2994 proteins and MM through two-sample mendelian randomization (MR) analysis using summary-level data from public genome-wide association studies of plasma proteome (N = 3301 healthy individuals) and MM (598 cases and 180,756 controls). Sensitivity analyses were performed for these identified causal proteins. Furthermore, we pursued the exploration of enriched biological pathways, prioritized the therapeutic proteins, and evaluated their druggability using the KEGG pathway analysis, MR-Bayesian model averaging analysis, and cross-reference with current databases, respectively. RESULTS We identified 13 proteins causally associated with MM risk (false discovery rate corrected P < 0.05). Six proteins were positively associated with the risk of MM, including nicotinamide phosphoribosyl transferase (NAMPT; OR [95% CI]: 1.35 [1.18, 1.55]), tyrosine kinase with immunoglobulin-like and EGF-like domains 1 (TIE1; 1.14 [1.06, 1.22]), neutrophil cytosol factor 2 (NCF2; 1.27 [1.12, 1.44]), carbonyl reductase 1, cAMP-specific 3',5'-cyclic phosphodiesterase 4D (PDE4D), platelet-activating factor acetylhydrolase IB subunit beta (PAFAH1B2). Seven proteins were inversely associated with MM, which referred to suppressor of cytokine signaling 3 (SOCS3; 0.90 [0.86, 0.94]), Fc-gamma receptor III-B (FCGR3B; 0.75 [0.65,0.86]), glypican-1 (GPC1; 0.69 [0.58,0.83]), follistatin-related protein 1, protein tyrosine phosphatase non-receptor type 4 (PTPN4), granzyme B, complement C1q subcomponent subunit C (C1QC). Three of the causal proteins, SOCS3, FCGR3B, and NCF2, were enriched in the osteoclast differentiation pathway in KEGG enrichment analyses while GPC1 (marginal inclusion probability (MIP):0.993; model averaged causal effects (MACE): - 0.349), NAMPT (MIP:0.433; MACE: - 0.113), and NCF2 (MIP:0.324; MACE:0.066) ranked among the top three MM-associated proteins according to MR-BMA analyses. Furthermore, therapeutics targeting four proteins are currently under evaluation, five are druggable and four are future breakthrough points. CONCLUSIONS Our analysis revealed a set of 13 novel proteins, including six risk and seven protective proteins, causally linked to MM risk. The discovery of these MM-associated proteins opens up the possibility for identifying novel therapeutic targets, further advancing the integration of genome and proteome data for drug development.
Collapse
Affiliation(s)
- Qiangsheng Wang
- Department of Hematology, Ningbo Hangzhou Bay Hospital, Ningbo, 315000, Zhejiang, China
| | - Qiqin Shi
- Department of Ophthalmology, Ningbo Hangzhou Bay Hospital, Ningbo, 315000, Zhejiang, China
| | - Zhenqian Wang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Jiawen Lu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Jian Hou
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
9
|
Zhang W, Wang H, Wang H, Xu C, Zhao R, Yao J, Zhai C, Han W, Pan H, Sheng J. Integrated Analysis Identifies DPP7 as a Prognostic Biomarker in Colorectal Cancer. Cancers (Basel) 2023; 15:3954. [PMID: 37568770 PMCID: PMC10416901 DOI: 10.3390/cancers15153954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer has a poor prognosis and is prone to recurrence and metastasis. DPP7, a prolyl peptidase, is reported to regulate lymphocyte quiescence. However, the correlation of DPP7 with prognosis in CRC remains unclear. With publicly available cohorts, the Wilcoxon rank-sum test and logistic regression were employed to analyze the relationship between DPP7 expression and the clinicopathological features of CRC patients. Specific pathways of differentially expressed genes were determined through biofunctional analysis and gene set enrichment analysis (GSEA). qPCR and immunohistochemical staining were used to determine DPP7 expression levels in surgical specimens. The public dataset and analysis of the biospecimens of CRC patients revealed that DPP7, in the CRC samples, was expressed significantly higher than in non-tumor tissues. Moreover, increased DPP7 was significantly associated with a higher N stage, lymphatic invasion, and shorter overall survival. Functionally, DPP7 is involved in neuroactive ligand-receptor interaction and olfactory transduction signaling. We identified a series of targeted drugs and small-molecule drugs with responses to DPP7. To conclude, DPP7 is a valuable diagnostic and prognostic biomarker for CRC and considered as a new therapeutic target.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (W.Z.); (H.W.); (H.W.); (R.Z.); (J.Y.); (C.Z.); (W.H.); (H.P.)
| | - Haidong Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (W.Z.); (H.W.); (H.W.); (R.Z.); (J.Y.); (C.Z.); (W.H.); (H.P.)
| | - Huadi Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (W.Z.); (H.W.); (H.W.); (R.Z.); (J.Y.); (C.Z.); (W.H.); (H.P.)
| | - Chuchu Xu
- Department of Gastrointestinal Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, China;
| | - Rongjie Zhao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (W.Z.); (H.W.); (H.W.); (R.Z.); (J.Y.); (C.Z.); (W.H.); (H.P.)
| | - Junlin Yao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (W.Z.); (H.W.); (H.W.); (R.Z.); (J.Y.); (C.Z.); (W.H.); (H.P.)
| | - Chongya Zhai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (W.Z.); (H.W.); (H.W.); (R.Z.); (J.Y.); (C.Z.); (W.H.); (H.P.)
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (W.Z.); (H.W.); (H.W.); (R.Z.); (J.Y.); (C.Z.); (W.H.); (H.P.)
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (W.Z.); (H.W.); (H.W.); (R.Z.); (J.Y.); (C.Z.); (W.H.); (H.P.)
| | - Jin Sheng
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (W.Z.); (H.W.); (H.W.); (R.Z.); (J.Y.); (C.Z.); (W.H.); (H.P.)
| |
Collapse
|
10
|
Chen CJ, Huang JY, Huang JQ, Deng JY, Shangguan XH, Chen AZ, Chen LT, Wu WH. Metformin attenuates multiple myeloma cell proliferation and encourages apoptosis by suppressing METTL3-mediated m6A methylation of THRAP3, RBM25, and USP4. Cell Cycle 2023; 22:986-1004. [PMID: 36762777 PMCID: PMC10054227 DOI: 10.1080/15384101.2023.2170521] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/15/2023] [Indexed: 02/11/2023] Open
Abstract
Based on the results of epidemiological and preclinical studies, metformin can improve the prognosis of patients with malignant tumors. Studies have confirmed that metformin inhibits multiple myeloma (MM) cell proliferation and promotes apoptosis. Nevertheless, the specific mechanism remains to be elucidated. MM cells were intervened with different doses of metformin to detect cell proliferation and apoptosis. Western blotting and RT-qPCR were employed to assess the expression of METTL3, METTL14, WTAP, FTO, and ALKBH5 after metformin intervention. The microarray dataset GSE29023 was retrieved from the Gene Expression Omnibus (GEO) database and calculated using the R language (limma package) to authenticate differentially expressed genes (DEGs). The database for annotation, visualization, and integrated discovery (David) was applied for GO annotation analysis of DEGs. Subsequently, the string database and Cytoscape software were applied to construct protein-protein interaction (PPI) and DEM hub gene networks. Bioinformatics analysis and MeRIP were applied to predict and test METTL3-mediated m6A levels on mRNA of THRAP3, RBM25, and USP4 in METTL3 knocked-down cells. Then rescue experiments were performed to explore effects of METTL3 and THRAP3, RBM25, or USP4 on cell proliferation and apoptosis. The effect on MM cell xenograft tumor growth was observed by injection of metformin or/and overexpression of METTL3 in in vivo experiments. Metformin decreased cell proliferation and encouraged cell apoptosis in a dose-dependent manner. Global m6A modification was elevated in MM cells compared to normal cells, which was counteracted by metformin treatment. Furthermore, THRAP3, RBM25, and USP4 were identified as possible candidate genes for metformin treatment by GSE29023 data mining. METTL3 interference impaired m6A modification on mRNA of THRAP3, RBM25, and USP4 as well as expression levels. The mRNA stability and expression of THRAP3, RBM25, and USP4 was decreased after metformin treatment, which was reversed by METTL3 overexpression. THRAP3, RBM25 or USP4 knockdown reversed the assistance of METTL3 overexpression on the malignant behavior of MM cells. Finally, upregulation of METTL3 was shown to exert facilitative effects on xenograft tumor growth by blocking metformin injection. The present study demonstrates that metformin can repress the expression of THRAP3, RBM25, and USP4 by inhibiting METTL3-mediated m6A modification, which in turn hamper cell proliferation and promotes cell apoptosis.Abbreviations: multiple myeloma (MM), Gene Expression Omnibus (GEO), differentially expressed genes (DEGs), database for annotation, visualization and integrated discovery (David), protein-protein interaction (PPI), epithelial‑mesenchymal transition (EMT), methyltransferase like 3 (METTL3), methyltransferase like 14 (METTL14), wilms tumor 1-associated protein (WTAP), methyltransferase like 16 (METTL16), acute myeloid leukemia (AML), non-small lung cancer (NSCLC), glioma stem cells (GSCs), normal bone marrow-derived plasma cells (nPCs), false discovery rate (FDR), biological process (BP), optical density (OD), horseradish peroxidase (HRP), M6A RNA immunoprecipitation assay (MeRIP).
Collapse
Affiliation(s)
- Cong-Jie Chen
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Jie-Yun Huang
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Jian-Qing Huang
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Jia-Yi Deng
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Xiao-Hui Shangguan
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Ai-Zhen Chen
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Long-Tian Chen
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Wei-Hao Wu
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| |
Collapse
|
11
|
Westermark U, Diao Y, Fasth KJ, Färnegårdh M, Färnegårdh K, Hammer K, Lehmann F, Acs K, Svensson Gelius S. A rapid intracellular enrichment of alkylating payload is essential for melphalan flufenamide potency and mechanism of action. Biochem Biophys Res Commun 2023; 656:122-130. [PMID: 37032581 DOI: 10.1016/j.bbrc.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/23/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
Despite decades of development of treatments and the successful application of targeted therapies for multiple myeloma, clinical challenges remain for patients with relapsed/refractory disease. A drug designed for efficient delivery of an alkylating payload into tumor cells that yields a favorable therapeutic window can be an attractive choice. Herein we describe melphalan flufenamide (melflufen), a drug with a peptide carrier component conjugated to an alkylating payload, and its cellular metabolism. We further underline the fundamental role of enzymatic hydrolysis in the rapid and robust accumulation of alkylating metabolites in cancer cells and their importance for downstream effects. The formed alkylating metabolites were shown to cause DNA damage, both on purified DNA and on chromatin in cells, with both nuclear and mitochondrial DNA affected in the latter. Furthermore, the rapid intracellular enrichment of alkylating metabolites is shown to be essential for the rapid kinetics of the downstream intracellular effects such as DNA damage signaling and induction of apoptosis. To evaluate the importance of enzymatic hydrolysis for melflufen's efficacy, all four stereoisomers of the compound were studied in a systematic approach and shown to have a different pattern of metabolism. In comparison with melflufen, stereoisomers lacking intracellular accumulation of alkylating payloads showed cytotoxic activity only at significantly higher concentration, slower DNA damage kinetics, and different mechanisms of action to reach cellular apoptosis.
Collapse
|
12
|
Hollstein S, Ali LMA, Coste M, Vogel J, Bettache N, Ulrich S, von Delius M. A Triazolium-Anchored Self-Immolative Linker Enables Self-Assembly-Driven siRNA Binding and Esterase-Induced Release. Chemistry 2023; 29:e202203311. [PMID: 36346344 PMCID: PMC10108132 DOI: 10.1002/chem.202203311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022]
Abstract
The increased importance of RNA-based therapeutics comes with a need to develop next-generation stimuli-responsive systems capable of binding, transporting and releasing RNA oligomers. In this work, we describe triazolium-based amphiphiles capable of siRNA binding and enzyme-responsive release of the nucleic acid payload. In aqueous medium, the amphiphile self-assembles into nanocarriers that can disintegrate upon the addition of esterase. Key to the molecular design is a self-immolative linker that is anchored to the triazolium moiety and acts as a positively-charged polar head group. We demonstrate that addition of esterase leads to a degradation cascade of the linker, leaving the neutral triazole compound unable to form complexes and therefore releasing the negatively-charged siRNA. The reported molecular design and overall approach may have broad utility beyond this proof-of-principle study, because the underlying CuAAC "click" chemistry allows bringing together three groups very efficiently as well as cleaving off one of the three groups under the mild action of an esterase enzyme.
Collapse
Affiliation(s)
- Selina Hollstein
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Lamiaa M. A. Ali
- Institut des Biomolécules Max Mousseron (IBMM)CNRSUniversité de Montpellier, ENSCMMontpellierFrance
- Department of BiochemistryMedical Research InstituteUniversity of Alexandria21561AlexandriaEgypt
| | - Maëva Coste
- Institut des Biomolécules Max Mousseron (IBMM)CNRSUniversité de Montpellier, ENSCMMontpellierFrance
| | - Julian Vogel
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM)CNRSUniversité de Montpellier, ENSCMMontpellierFrance
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)CNRSUniversité de Montpellier, ENSCMMontpellierFrance
| | - Max von Delius
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
13
|
Lai Y, Zhang T, Huang L, Li W, Lin W. Monitoring cell viability in N-nitrosodiethylamine induced acute hepatitis and detection of hydrazine in solution and gas phase with Dual-function fluorescent probes. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130207. [PMID: 36332275 DOI: 10.1016/j.jhazmat.2022.130207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
The highly toxic N-nitrosodiethylamine (NDEA) and hydrazine (N2H4) caused severe environmental contamination and serious health risks. Herein, we designed the two-photon ratiometric fluorescent probe (Nap-2), emission maximum shifted from 466 nm to 571 nm, to monitor cell viability of NDEA induced acute hepatitis via esterase activity detection. Furthermore, the probe Nap-2 evaluate the hydrazine (N2H4) content in the solution and gas phase. It is worth mentioning that we used NDEA induced acute hepatitis in the mice and evaluated the negative correlation of esterase activity in the tissue cells and serum with Nap-2. The probe Nap-2 exhibited that acute hepatitis induced by NDEA decreased cell viability. Furthermore, we made convenient test papers using Nap-2 to detect N2H4 in solution and gas phase. After adding N2H4, the fluorescence color changed from blue to yellow and was visible to the naked eye. This work provides a convenient tool and method for evaluating the toxicity of NDEA induced acute hepatitis and detecting N2H4 in the environment.
Collapse
Affiliation(s)
- Youbo Lai
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Tengteng Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Wenxiu Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
14
|
Kurniansyah N, Wallace DA, Zhang Y, Yu B, Cade B, Wang H, Ochs-Balcom HM, Reiner AP, Ramos AR, Smith JD, Cai J, Daviglus M, Zee PC, Kaplan R, Kooperberg C, Rich SS, Rotter JI, Gharib SA, Redline S, Sofer T. An integrated multi-omics analysis of sleep-disordered breathing traits implicates P2XR4 purinergic signaling. Commun Biol 2023; 6:125. [PMID: 36721044 PMCID: PMC9889381 DOI: 10.1038/s42003-023-04520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Sleep Disordered Breathing (SDB) is a common disease associated with increased risk for cardiometabolic, cardiovascular, and cognitive diseases. How SDB affects the molecular environment is still poorly understood. We study the association of three SDB measures with gene expression measured using RNA-seq in multiple blood tissues from the Multi-Ethnic Study of Atherosclerosis. We develop genetic instrumental variables for the associated transcripts as polygenic risk scores (tPRS), then generalize and validate the tPRS in the Women's Health Initiative. We measure the associations of the validated tPRS with SDB and serum metabolites in Hispanic Community Health Study/Study of Latinos. Here we find differential gene expression by blood cell type in relation to SDB traits and link P2XR4 expression to average oxyhemoglobin saturation during sleep and butyrylcarnitine (C4) levels. These findings can be used to develop interventions to alleviate the effect of SDB on the human molecular environment.
Collapse
Affiliation(s)
- Nuzulul Kurniansyah
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Danielle A Wallace
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Ying Zhang
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Brian Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Heather M Ochs-Balcom
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Alexander P Reiner
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Alberto R Ramos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua D Smith
- Northwest Genomic Center, University of Washington, Seattle, WA, USA
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina, at Chapel Hill, NC, USA
| | - Martha Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Phyllis C Zee
- Division of Sleep Medicine, Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Robert Kaplan
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology & Population Health, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
- Departments of Medicine and of Biostatistics, Harvard University, Boston, MA, USA.
| |
Collapse
|
15
|
Han LN, Wang KQ, Ren ZN, Yang X, Duan X, Krishnan S, Jaisankar A, Park JH, Dashnyam K, Zhang W, Pedraz JL, Ramakrishna S, Kim HW, Li CF, Song LH, Ramalingam M. One-pot synthesis and enzyme-responsiveness of amphiphilic doxorubicin prodrug nanomicelles for cancer therapeutics. RSC Adv 2022; 12:27963-27969. [PMID: 36320274 PMCID: PMC9523663 DOI: 10.1039/d2ra04436f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/25/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, we report a one-pot synthesis and enzyme-responsiveness of polyethylene glycol (PEG) and glutamic acid (Glu)-based amphiphilic doxorubicin (DOX) prodrug nanomicelles for cancer therapeutics. The nanomicelles were accomplished by esterification and amidation reactions. The nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) data confirmed the structure of nanomicelles. The DOX-loaded nanomicelles showed a DLS-measured average size of 107 nm and excellent stability in phosphate-buffered saline (PBS) for 7 days. The drug loading and cumulative release rates were measured by ultraviolet-visible (UV-vis) spectrophotometry at 481 nm. The cumulative release rate could reach 100% in an enzyme-rich environment. Further, the therapeutic efficiency of nanomicelles to cancer cells was determined by cell viability and cellular uptake and distribution using HeLa cells. The cell viability study showed that the DOX-loaded nanomicelles could effectively inhibit the HeLa cell proliferation. The cellular uptake study confirmed that the nanomicelles could be effectively ingested by HeLa cells and distributed into cell nuclei. Based on the collective experimental data, this study demonstrated that the synthesized nanomicellar prodrug of DOX is a potential candidate for cancer therapeutics.
Collapse
Affiliation(s)
- Ling-Na Han
- Department of Pharmacy, Changzhi Medical College Changzhi 046000 Shanxi People's Republic of China
- Department of Physiology, Changzhi Medical College Changzhi 046000 Shanxi People's Republic of China
| | - Kai-Qiang Wang
- Department of Pharmacy, Changzhi Medical College Changzhi 046000 Shanxi People's Republic of China
| | - Zi-Ning Ren
- Department of Pharmacy, Changzhi Medical College Changzhi 046000 Shanxi People's Republic of China
| | - Xue Yang
- Department of Pharmacy, Changzhi Medical College Changzhi 046000 Shanxi People's Republic of China
| | - Xiao Duan
- Department of Pharmacy, Changzhi Medical College Changzhi 046000 Shanxi People's Republic of China
| | - Sasirekha Krishnan
- Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology Vellore 632014 India
| | - Abinaya Jaisankar
- Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology Vellore 632014 India
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering, Dankook University Cheonan 31116 Republic of Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University Cheonan 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University Cheonan 31116 Republic of Korea
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering, Dankook University Cheonan 31116 Republic of Korea
| | - Wujie Zhang
- BioMolecular Engineering Program, Physics and Chemistry Department, Milwaukee School of Engineering Milwaukee WI 53202 USA
| | - José Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) 01006 Vitoria-Gasteiz Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III 28029 Madrid Spain
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University Singapore Singapore 119260 Singapore
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University Cheonan 31116 Republic of Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University Cheonan 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University Cheonan 31116 Republic of Korea
| | - Chang-Feng Li
- Department of Pharmacy, Changzhi Medical College Changzhi 046000 Shanxi People's Republic of China
| | - Li-Hua Song
- Department of Pharmacy, Changzhi Medical College Changzhi 046000 Shanxi People's Republic of China
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Dankook University Cheonan 31116 Republic of Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University Cheonan 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University Cheonan 31116 Republic of Korea
- School of Basic Medical Sciences, Chengdu University Chengdu 610106 People's Republic of China
| |
Collapse
|
16
|
Zhang G. Platelet-Related Molecular Subtype to Predict Prognosis in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2022; 9:423-436. [PMID: 35615530 PMCID: PMC9126232 DOI: 10.2147/jhc.s363200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 12/31/2022] Open
Abstract
Purpose Complex crosstalk between tumor cells and platelets is closely related to the development, relapse, and drug resistance of hepatocellular carcinoma (HCC). Therefore, an intensive analysis of the relationship between platelet-related genes and the effectiveness of immunotherapy is necessary for improving the poor prognosis of HCC patients. Methods Genes associated with platelets in the GeneCards database were collected and were used to identify molecular subtypes using a non-negative matrix decomposition algorithm (NMF) and constructed a platelet-related genes-based prognostic stratification model by the LASSO-Cox regression and stepwise Cox regression analysis. The effect of this feature on the immune microenvironment of HCC and the response to immune checkpoint inhibitors was also explored. Results After identifying two molecular subtypes, we constructed a platelet-related genes-based prognostic stratification model that can be effectively used for immune checkpoint inhibitor (PD1, PD-L1, PD-L2, and CTLA4) efficacy and prognosis prediction in HCC patients, which was subsequently validated using patient samples from ICGC, GSE14520 and a small sample size clinical cohort. We also found downregulation of PAFAH1B3 remarkably inhibited the proliferation and migration ability of Hep3B cells by cytological experiments. Conclusion We constructed a prognostic classifier based on platelet-related genes that could effectively classify HCC patients for prognostic prediction and provide new light on the selection of optimal individualized antiplatelet therapy for HCC patients in future clinical practice.
Collapse
Affiliation(s)
- Genhao Zhang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Correspondence: Genhao Zhang, Email
| |
Collapse
|
17
|
Markowicz J, Wołowiec S, Rode W, Uram Ł. Synthesis and Properties of α-Mangostin and Vadimezan Conjugates with Glucoheptoamidated and Biotinylated 3rd Generation Poly(amidoamine) Dendrimer, and Conjugation Effect on Their Anticancer and Anti-Nematode Activities. Pharmaceutics 2022; 14:606. [PMID: 35335982 PMCID: PMC8951109 DOI: 10.3390/pharmaceutics14030606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/28/2022] Open
Abstract
α-Mangostin and vadimezan are widely studied potential anticancer agents. Their biological activities may be improved by covalent bonding by amide or ester bonds with the third generation poly(amidoamine) (PAMAM) dendrimer, substituted with α-D-glucoheptono-1,4-lactone and biotin. Thus, conjugates of either ester- (G3gh4B5V) or amide-linked (G32B12gh5V) vadimezan, and equivalents of α-mangostin (G3gh2B5M and G32B12gh5M, respectively), were synthesized, characterized and tested in vitro against cancer cells: U-118 MG glioma, SCC-15 squamous carcinoma, and BJ normal human fibroblasts growth, as well as against C. elegans development. α-Mangostin cytotoxicity, stronger than that of Vadimezan, was increased (by 2.5-9-fold) by conjugation with the PAMAM dendrimer (with the amide-linking being slightly more effective), and the strongest effect was observed with SCC-15 cells. Similar enhancement of toxicity resulting from the drug conjugation was observed with C. elegans. Vadimezan (up to 200 µM), as well as both its dendrimer conjugates, was not toxic against both the studied cells and nematodes. It showed an antiproliferative effect against cancer cells at concentrations ≥100 µM. This effect was significantly enhanced after conjugation of the drug with the dendrimer via the amide, but not the ester bond, with G32B12gh5V inhibiting the proliferation of SCC-15 and U-118 MG cells at concentrations ≥4 and ≥12 μM, respectively, without a visible effect in normal BJ cells. Thus, the drug delivery system based on the PAMAM G3 dendrimer containing amide bonds, partially-blocked amino groups on the surface, larger particle diameter and higher zeta potential can be a useful tool to improve the biological properties of transported drug molecules.
Collapse
Affiliation(s)
- Joanna Markowicz
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstancow Warszawy Ave, 35-959 Rzeszów, Poland;
| | - Stanisław Wołowiec
- Medical College, Rzeszów University, 1a Warzywna Street, 35-310 Rzeszów, Poland;
| | - Wojciech Rode
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland;
| | - Łukasz Uram
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstancow Warszawy Ave, 35-959 Rzeszów, Poland;
| |
Collapse
|
18
|
Affiliation(s)
- Divya Sharma
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| | | | - Reena Gupta
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| |
Collapse
|
19
|
Visser EA, Moons SJ, Timmermans SBPE, de Jong H, Boltje TJ, Büll C. Sialic acid O-acetylation: From biosynthesis to roles in health and disease. J Biol Chem 2021; 297:100906. [PMID: 34157283 PMCID: PMC8319020 DOI: 10.1016/j.jbc.2021.100906] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Sialic acids are nine-carbon sugars that frequently cap glycans at the cell surface in cells of vertebrates as well as cells of certain types of invertebrates and bacteria. The nine-carbon backbone of sialic acids can undergo extensive enzymatic modification in nature and O-acetylation at the C-4/7/8/9 position in particular is widely observed. In recent years, the detection and analysis of O-acetylated sialic acids have advanced, and sialic acid-specific O-acetyltransferases (SOATs) and O-acetylesterases (SIAEs) that add and remove O-acetyl groups, respectively, have been identified and characterized in mammalian cells, invertebrates, bacteria, and viruses. These advances now allow us to draw a more complete picture of the biosynthetic pathway of the diverse O-acetylated sialic acids to drive the generation of genetically and biochemically engineered model cell lines and organisms with altered expression of O-acetylated sialic acids for dissection of their roles in glycoprotein stability, development, and immune recognition, as well as discovery of novel functions. Furthermore, a growing number of studies associate sialic acid O-acetylation with cancer, autoimmunity, and infection, providing rationale for the development of selective probes and inhibitors of SOATs and SIAEs. Here, we discuss the current insights into the biosynthesis and biological functions of O-acetylated sialic acids and review the evidence linking this modification to disease. Furthermore, we discuss emerging strategies for the design, synthesis, and potential application of unnatural O-acetylated sialic acids and inhibitors of SOATs and SIAEs that may enable therapeutic targeting of this versatile sialic acid modification.
Collapse
Affiliation(s)
- Eline A Visser
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Sam J Moons
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Suzanne B P E Timmermans
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Heleen de Jong
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Thomas J Boltje
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands.
| | - Christian Büll
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Hubrecht Institute, Utrecht, the Netherlands.
| |
Collapse
|
20
|
Morabito F, Tripepi G, Martino EA, Vigna E, Mendicino F, Morabito L, Todoerti K, Al-Janazreh H, D'Arrigo G, Canale FA, Cutrona G, Neri A, Martino M, Gentile M. Spotlight on Melphalan Flufenamide: An Up-and-Coming Therapy for the Treatment of Myeloma. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2969-2978. [PMID: 34262262 PMCID: PMC8275138 DOI: 10.2147/dddt.s295215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/22/2021] [Indexed: 01/08/2023]
Abstract
Despite recent therapeutic advances, multiple myeloma (MM) patients experience relapses as they become resistant to various classes and combinations of treatment. Melphalan (L-PAM) is an ageless drug. However, its use in the autologous stem cell transplantation (ASCT) setting and the innovative quadruplet regimen as well as daratumumab, bortezomib, and prednisone make this old drug current yet. Melflufen is a peptide-conjugated alkylator belonging to a novel class of compounds, representing an overcoming of L-PAM in terms of mechanism of action and effectiveness. The improved melflufen cytotoxicity is related to aminopeptidase activity, notably present in normal and neoplastic cells and remarkably heavily overexpressed in MM cells. Upon entering a cell, melflufen is cleaved by aminopeptidases, ultimately releasing the L-PAM payload and eliciting further the inflow and cleavage of the conjugated peptide. This virtuous loop persists until all extracellular melflufen has been utilized. The aminopeptidase-driven accumulation results in a 50-fold increase in L-PAM cell enrichment as compared with free alkylator. This condition produces selective cytotoxicity, increased on-target cell potency, and decreased off-target cell toxicity, ultimately overcoming resistance pathways triggered by previous treatments, including alkylators. Due to its distinct mechanism of action, melflufen plus dexamethasone as a doublet, and in combination with other novel drugs, has the potential to be beneficial for a broad range of patients with relapsed/refractory (RR) MM in third- or even in second-line therapy. The safety profile of melflufen has been consistent across studies, and no new safety concerns have been identified when melflufen was administered in doublet and triplet combinations. Based on growing clinical evidence, melflufen could be not only a good addition in the fight against RRMM but also a drug with a very favorable tolerability profile.
Collapse
Affiliation(s)
- Fortunato Morabito
- Biotechnology Research Unit, AO of Cosenza, Cosenza, Italy.,Hematology and Bone Marrow Transplant Unit, Hemato-Oncology Department, Augusta Victoria Hospital, East Jerusalem, Israel
| | - Giovanni Tripepi
- HCNR-IBIM, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension of Reggio Calabria, Reggio, Calabria, Italy
| | | | | | | | - Lucio Morabito
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Katia Todoerti
- Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
| | - Hamdi Al-Janazreh
- Hematology and Bone Marrow Transplant Unit, Hemato-Oncology Department, Augusta Victoria Hospital, East Jerusalem, Israel
| | - Graziella D'Arrigo
- HCNR-IBIM, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension of Reggio Calabria, Reggio, Calabria, Italy
| | - Filippo Antonio Canale
- Stem Cell Transplant Program, Clinical Section, Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | | | - Antonino Neri
- Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Massimo Martino
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | | |
Collapse
|
21
|
Bhardwaj KK, Kishen S, Mehta A, Sharma A, Gupta R. Purification of high molecular weight thermotolerant esterase from Serratia sp. and its characterization. 3 Biotech 2021; 11:308. [PMID: 34194900 DOI: 10.1007/s13205-021-02852-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/19/2021] [Indexed: 01/06/2023] Open
Abstract
In the present study, an extracellular esterase from Serratia sp. was purified 24.46 fold using an initial ammonium sulphate precipitation step (optimized concentration of 30-40%), followed by Diethylaminoethyl cellulose (DEAE-cellulose) chromatography and size exclusion Sephadex G-200 column chromatography steps. The molecular weight of the esterase using native polyacrylamide gel electrophoresis (PAGE) was determined to be 236 kDa and by using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was found to be 60 kDa suggesting that the enzyme was a tetramer of 4 subunits. The purified esterase was able to catalyze the hydrolysis of p-nitrophenyl esters, especially p-nitrophenyl acetate. Maximum esterase activity was achieved in 0.15 M Tris-HCl buffer of pH 8.5 at 50 °C after 10 min. The enzyme was stable for at least 8 h at 4 and 35 °C but the half-life was determined to be 4.5 h at 50 °C and 3 h at 60 °C. The esterase activity was inhibited by detergents (1 mM) (Triton X-100, Tween 60, Tween 80, ethylenediamine tetraacetic acid and SDS) except Tween 20. The esterase activity was inhibited by organic solvents (1 mM) such as ethanol, methanol, acetone, acetonitrile and was stable in the presence of glycerol, isopropanol but the organic solvent dimethyl sulfoxide (DMSO) significantly (p < 0.05) enhanced esterase activity. The matrix-assisted laser desorption ionization-time of flight mass spectrometry showed that the enzyme exhibited similarity with the pimeloyl-[acyl carrier protein] methyl ester esterase of Serratia marcescens.
Collapse
|