1
|
Yin C, Xing Y, Zhao P, Yin Y, Yao H, Xue J, Gu W. Tetradecanol-wrapped, CpG-loaded porous Prussian blue nanoimmunomodulator for photothermal-responsive in situ anti-tumor vaccine-like immunotherapy. BIOMATERIALS ADVANCES 2024; 164:213996. [PMID: 39146604 DOI: 10.1016/j.bioadv.2024.213996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Therapeutic vaccine becomes a promising strategy to fight cancer by enhancing and sustaining specific anti-tumor immune responses. However, its efficacy is often impeded by low immunogenicity, the immunosuppressive tumor microenvironment (TME), and immune-related adverse events. Herein, we introduce 1-tetradecanol (TD)-wrapped, CpG-loaded porous Prussian blue nanoparticles (pPBNPs-CpG@TD) as a nanoimmunomodulator to initiate photothermal-induced immunogenic cell death (ICD) and photothermal-responsive release of CpG for augmenting the ICD effect. It was revealed that the dual-photothermal action significantly potentiated the in situ anti-tumor vaccine-like immunotherapy in terms of enhanced immunogenicity, promoted dendritic cell maturation, and increased T lymphocyte infiltration, consequently eliciting a robust immune response for inhibiting both primary and rechallenge tumors on a subcutaneous 4T1 tumor-bearing mouse model. The development and use of photoactive nanoimmunomodulators represents a novel and effective strategy to boost immunogenicity and counteract immunosuppressive TME, marking a significant advancement in the realm of ICD-driven in situ anti-tumor vaccine-like immunotherapy.
Collapse
Affiliation(s)
- Chenlu Yin
- School of pharmaceutical sciences, Capital medical university, Beijing 100069, PR China
| | - Yixin Xing
- School of pharmaceutical sciences, Capital medical university, Beijing 100069, PR China
| | - Peng Zhao
- School of pharmaceutical sciences, Capital medical university, Beijing 100069, PR China
| | - Yuying Yin
- School of pharmaceutical sciences, Capital medical university, Beijing 100069, PR China
| | - Hanye Yao
- School of pharmaceutical sciences, Capital medical university, Beijing 100069, PR China
| | - Jingqiang Xue
- School of pharmaceutical sciences, Capital medical university, Beijing 100069, PR China
| | - Wei Gu
- School of pharmaceutical sciences, Capital medical university, Beijing 100069, PR China.
| |
Collapse
|
2
|
Gong H, Griffin JD, Groer CE, Wu S, Downes GM, Markum G, Abdelaziz MM, Alhakamy NA, Forrest ML, Berkland CJ. Glatiramer Acetate Complexes CpG Oligodeoxynucleotides into Nanoparticles and Boosts Their TLR9-Driven Immunity. Mol Pharm 2024. [PMID: 39484963 DOI: 10.1021/acs.molpharmaceut.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Unmethylated cytosine-guanine oligodeoxynucleotides (CpG ODNs) have a storied history as agonists for Toll-like receptor 9 (TLR9). CpG ODNs have shown promising antitumor effects in preclinical studies by inducing potent proinflammatory immune responses. However, clinical success has been hindered by inconsistent efficacy and immune-related toxicities caused by systemic exposure to CpG ODNs. We previously identified that glatiramer acetate (GA), an FDA-approved, lysine-rich polypeptide, could complex class B CpG into cationic nanoparticles which persist at the intratumoral injection site while mitigating the induction of systemic proinflammatory cytokines in mouse tumor models. To extend GA applications across subtypes of CpG ODN (class A, B, and C), we evaluated physiochemical properties and identified the immunological signaling of GA and its complexes with different classes of CpG ODNs. We compared the physiochemical characteristics of three types of GA-CpG nanoparticles, followed by assessments of cell uptake efficiency and endolysosomal trafficking. We then performed successive in vitro and in vivo assays to evaluate immunological discrepancies. Complexation with GA preserved the immunological activity of CpG ODN subtypes while encapsulating them into cationic spherical nanoparticles. GA improved the cellular uptake of CpG ODNs, generally increased retention in early endosomes, and amplified immunological responses. A subsequent in vivo experiment confirmed the achievement of potent tumor suppression while mitigating systemic immune-related toxicities. Together, these data help elucidate the noncanonical role of GA to serve as a nucleic acid delivery scaffold that can improve the efficacy and safety of CpG adjuvant for clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Huan Gong
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | | | - Chad E Groer
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Sa Wu
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Grant M Downes
- Bioengineering Graduate Program, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Grace Markum
- Department of Chemical and Petroleum Engineering, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Moustafa M Abdelaziz
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Nabil A Alhakamy
- Kinimmune Inc., Saint Louis, Missouri 63141, United States
- Department of Pharmaceutics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Cory J Berkland
- Kinimmune Inc., Saint Louis, Missouri 63141, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, Missouri 63105, United States
- Department of Chemistry, Washington University, Saint Louis, Missouri 63130, United States
| |
Collapse
|
3
|
Alhajlah S. Participation of TLRs in cancer immunopathogenesis and drug resistance via interacting with immunological and/or non-immunological signaling pathways as well as lncRNAs. Int Immunopharmacol 2024; 140:112764. [PMID: 39079348 DOI: 10.1016/j.intimp.2024.112764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/06/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
Toll-like receptors (TLRs) have a convoluted role in cancer even though they are crucial to the immune system. By bridging the innate immune system and cancer, TLRs have a very complex impact on the formation of tumors and the effectiveness of anti-cancer treatments. TLR signaling links the innate and adaptive immune systems and initiates direct pathogen eradication. In cancer immunopathogenesis and treatment resistance, long non-coding RNAs (lncRNAs) modify TLR signaling linkages with immunological and non-immunological pathways. We identified lncRNAs that positively and negatively control TLR signaling, impacting immunological response and drug sensitivity. These results highlight the complex interactions between long non-coding RNAs and TLRs that influence the start of cancer and its response to treatment. Targeting specific lncRNAs is a practical way to control TLR signaling and perhaps enhance anti-tumor immunity while overcoming medication resistance. We provide a framework for developing novel immunotherapeutic regimens and customized medicine approaches for cancer treatment. The exact mechanisms by which lncRNAs regulate TLR signaling pathways should be defined by further research, and these findings should be validated in clinical situations. This finding makes future research of lncRNA-based drugs in combination with existing cancer treatments feasible.
Collapse
Affiliation(s)
- Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| |
Collapse
|
4
|
Lafleur A, Daffis S, Mowbray C, Arana B. Immunotherapeutic Strategies as Potential Treatment Options for Cutaneous Leishmaniasis. Vaccines (Basel) 2024; 12:1179. [PMID: 39460345 PMCID: PMC11511131 DOI: 10.3390/vaccines12101179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Cutaneous leishmaniasis (CL), caused by protozoan parasites of the Leishmania genus, is prevalent in tropical and subtropical regions, with important morbidity, particularly in low- to middle-income countries. Current systemic treatments, including pentavalent antimonials and miltefosine, are associated with significant toxicity, reduced efficacy, and are frequently ineffective in cases of severe or chronic CL. Immunotherapies leverage the immune system to combat microbial infection and offer a promising adjunct or alternative approach to the current standard of care for CL. However, the heterogeneous clinical presentation of CL, which is dependent on parasite species and host immunity, may require informed clinical intervention with immunotherapies. This review explores the clinical and immunological characteristics of CL, emphasising the current landscape of immunotherapies in in vivo models and clinical studies. Such immune-based interventions aim to modulate immune responses against Leishmania, with additive therapeutic effects enabling the efficacy of lower drug doses and decreasing the associated toxicity. Understanding the mechanisms that underlie immunotherapy for CL provides critical insights into developing safer and more effective treatments for this neglected tropical disease. Identifying suitable therapeutic candidates and establishing their safety and efficacy are essential steps in this process. However, the feasibility and utility of these treatments in resource-limited settings must also be considered, taking into account factors such as cost of production, temperature stability, and overall patient access.
Collapse
Affiliation(s)
- Andrea Lafleur
- Doctoral Training Centre, University of Oxford, Oxford OX1 3NP, UK
| | - Stephane Daffis
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (S.D.)
| | - Charles Mowbray
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (S.D.)
| | - Byron Arana
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (S.D.)
| |
Collapse
|
5
|
Kos M, Bojarski K, Mertowska P, Mertowski S, Tomaka P, Dziki Ł, Grywalska E. Immunological Strategies in Gastric Cancer: How Toll-like Receptors 2, -3, -4, and -9 on Monocytes and Dendritic Cells Depend on Patient Factors? Cells 2024; 13:1708. [PMID: 39451226 PMCID: PMC11506270 DOI: 10.3390/cells13201708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
(1) Introduction: Toll-like receptors (TLRs) are key in immune response by recognizing pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). In gastric cancer (GC), TLR2, TLR3, TLR4, and TLR9 are crucial for modulating immune response and tumor progression. (2) Objective: This study aimed to assess the percentage of dendritic cells and monocytes expressing TLR2, TLR3, TLR4, and TLR9, along with the concentration of their soluble forms in the serum of GC patients compared to healthy volunteers. Factors such as disease stage, tumor type, age, and gender were also analyzed. (3) Materials and Methods: Blood samples from newly diagnosed GC patients and healthy controls were immunophenotyped using flow cytometry to assess TLR expression on dendritic cell subpopulations and monocytes. Serum-soluble TLRs were measured by ELISA. Statistical analysis considered clinical variables such as tumor type, stage, age, and gender. (4) Results: TLR expression was significantly higher in GC patients, except for TLR3 on classical monocytes. Soluble forms of all TLRs were elevated in GC patients, with significant differences based on disease stage but not tumor type, except for serum TLR2, TLR4, and TLR9. (5) Conclusions: Elevated TLR expression and soluble TLR levels in GC patients suggest a role in tumor pathogenesis and progression, offering potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Marek Kos
- Department of Public Health, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Krzysztof Bojarski
- General Surgery Department, SP ZOZ in Leczna, 52 Krasnystawska Street, 21-010 Leczna, Poland;
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Piotr Tomaka
- Department of Anesthesiology and Intensive Care, SP ZOZ in Leczna, 52 Krasnystawska Street, 21-010 Leczna, Poland;
| | - Łukasz Dziki
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, 251 Street, 92-213 Lodz, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (P.M.); (E.G.)
| |
Collapse
|
6
|
Zhang Z, Lu Y, Liu W, Huang Y. Nanomaterial-assisted delivery of CpG oligodeoxynucleotides for boosting cancer immunotherapy. J Control Release 2024; 376:184-199. [PMID: 39368710 DOI: 10.1016/j.jconrel.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/03/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Cancer immunotherapy aims to improve immunity to not only eliminate the primary tumor but also inhibit metastasis and recurrence. It is considered an extremely promising therapeutic approach that breaks free from the traditional paradigm of oncological treatment. As the medical community learns more about the immune system's mechanisms that "turn off the brake" and "step on the throttle", there is increasingly successful research on immunomodulators. However, there are still more restrictions than countermeasures with immunotherapy related to immunomodulators, such as low responsiveness and immune-related adverse events that cause multiple adverse reactions. Therefore, medical experts and materials scientists attempted to the efficacy of immunomodulatory treatments through various methods, especially nanomaterial-assisted strategies. CpG oligodeoxynucleotides (CpG) not only act as an adjuvant to promote immune responses, but also induce autophagy. In this review, the enhancement of immunotherapy using nanomaterial-based CpG formulations is systematically elaborated, with a focus on the delivery, protection, synergistic promotion of CpG efficacy by nanomaterials, and selection of the timing of treatment. In addition, we also discuss and prospect the existing problems and future directions of research on nanomaterials in auxiliary CpG therapy.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yu Lu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Wenjing Liu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
7
|
Wang J, Yang J, Narang A, He J, Wolfgang C, Li K, Zheng L. Consensus, debate, and prospective on pancreatic cancer treatments. J Hematol Oncol 2024; 17:92. [PMID: 39390609 PMCID: PMC11468220 DOI: 10.1186/s13045-024-01613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic cancer remains one of the most aggressive solid tumors. As a systemic disease, despite the improvement of multi-modality treatment strategies, the prognosis of pancreatic cancer was not improved dramatically. For resectable or borderline resectable patients, the surgical strategy centered on improving R0 resection rate is consensus; however, the role of neoadjuvant therapy in resectable patients and the optimal neoadjuvant therapy of chemotherapy with or without radiotherapy in borderline resectable patients were debated. Postoperative adjuvant chemotherapy of gemcitabine/capecitabine or mFOLFIRINOX is recommended regardless of the margin status. Chemotherapy as the first-line treatment strategy for advanced or metastatic patients included FOLFIRINOX, gemcitabine/nab-paclitaxel, or NALIRIFOX regimens whereas 5-FU plus liposomal irinotecan was the only standard of care second-line therapy. Immunotherapy is an innovative therapy although anti-PD-1 antibody is currently the only agent approved by for MSI-H, dMMR, or TMB-high solid tumors, which represent a very small subset of pancreatic cancers. Combination strategies to increase the immunogenicity and to overcome the immunosuppressive tumor microenvironment may sensitize pancreatic cancer to immunotherapy. Targeted therapies represented by PARP and KRAS inhibitors are also under investigation, showing benefits in improving progression-free survival and objective response rate. This review discusses the current treatment modalities and highlights innovative therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Junke Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jie Yang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Amol Narang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jin He
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christopher Wolfgang
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Lei Zheng
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
8
|
Bushra, Ahmed SI, Begum S, Maaria, Habeeb MS, Jameel T, Khan AA. Molecular basis of sepsis: A New insight into the role of mitochondrial DNA as a damage-associated molecular pattern. Mitochondrion 2024; 79:101967. [PMID: 39343040 DOI: 10.1016/j.mito.2024.101967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Sepsis remains a critical challenge in the field of medicine, claiming countless lives each year. Despite significant advances in medical science, the molecular mechanisms underlying sepsis pathogenesis remain elusive. Understanding molecular sequelae is gaining deeper insights into the roles played by various damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) in disease pathogenesis. Among the known DAMPs, circulating cell-free mitochondrial DNA (mtDNA) garners increasing attention as a key player in the immune response during sepsis and other diseases. Mounting evidence highlights numerous connections between circulating cell-free mtDNA and inflammation, a pivotal state of sepsis, characterized by heightened inflammatory activity. In this review, we aim to provide an overview of the molecular basis of sepsis, particularly emphasizing the role of circulating cell-free mtDNA as a DAMP. We discuss the mechanisms of mtDNA release, its interaction with pattern recognition receptors (PRRs), and the subsequent immunological responses that contribute to sepsis progression. Furthermore, we discuss the forms of cell-free mtDNA; detection techniques of circulating cell-free mtDNA in various biological fluids; and the diagnostic, prognostic, and therapeutic implications offering insights into the potential for innovative interventions in sepsis management.
Collapse
Affiliation(s)
- Bushra
- Central Laboratory for Stem Cell Research and Translational Medicine, Deccan College of Medical Sciences, Hyderabad 500 058, Telangana, India
| | - Shaik Iqbal Ahmed
- Central Laboratory for Stem Cell Research and Translational Medicine, Deccan College of Medical Sciences, Hyderabad 500 058, Telangana, India
| | - Safia Begum
- Central Laboratory for Stem Cell Research and Translational Medicine, Deccan College of Medical Sciences, Hyderabad 500 058, Telangana, India
| | - Maaria
- Central Laboratory for Stem Cell Research and Translational Medicine, Deccan College of Medical Sciences, Hyderabad 500 058, Telangana, India
| | - Mohammed Safwaan Habeeb
- Department of Surgery, Deccan College of Medical Sciences, Hyderabad 500 058, Telangana, India
| | - Tahmeen Jameel
- Department of Biochemistry, Deccan College of Medical Sciences, Hyderabad 500 058, Telangana, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Deccan College of Medical Sciences, Hyderabad 500 058, Telangana, India.
| |
Collapse
|
9
|
Xu X, Zhang Y, Meng C, Zheng W, Wang L, Zhao C, Luo F. Nanozymes in cancer immunotherapy: metabolic disruption and therapeutic synergy. J Mater Chem B 2024; 12:9111-9143. [PMID: 39177061 DOI: 10.1039/d4tb00769g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Over the past decade, there has been a growing emphasis on investigating the role of immunotherapy in cancer treatment. However, it faces challenges such as limited efficacy, a diminished response rate, and serious adverse effects. Nanozymes, a subset of nanomaterials, demonstrate boundless potential in cancer catalytic therapy for their tunable activity, enhanced stability, and cost-effectiveness. By selectively targeting the metabolic vulnerabilities of tumors, they can effectively intensify the destruction of tumor cells and promote the release of antigenic substances, thereby eliciting immune clearance responses and impeding tumor progression. Combined with other therapies, they synergistically enhance the efficacy of immunotherapy. Hence, a large number of metabolism-regulating nanozymes with synergistic immunotherapeutic effects have been developed. This review summarizes recent advancements in cancer immunotherapy facilitated by nanozymes, focusing on engineering nanozymes to potentiate antitumor immune responses by disturbing tumor metabolism and performing synergistic treatment. The challenges and prospects in this field are outlined. We aim to provide guidance for nanozyme-mediated immunotherapy and pave the way for achieving durable tumor eradication.
Collapse
Affiliation(s)
- Xiangrui Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chijun Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lingfeng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chenyi Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng Luo
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China.
| |
Collapse
|
10
|
Phan NM, Nguyen TL, Choi Y, Mo XW, Trinh TA, Yi GR, Kim J. High Cellular Internalization of Virus-Like Mesoporous Silica Nanoparticles Enhances Adaptive Antigen-Specific Immune Responses against Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45917-45928. [PMID: 39178210 DOI: 10.1021/acsami.4c07106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Effective activation of an antigen-specific immune response hinges upon the intracellular delivery of cancer antigens to antigen-presenting cells (APCs), marking the initial stride in cancer vaccine development. Leveraging biomimetic topological morphology, we employed virus-like mesoporous silica nanoparticles (VMSNs) coloaded with antigens and toll-like receptor 9 (TLR9) agonists to craft a potent cancer vaccine. Our VMSNs could be efficiently internalized by APCs to a greater extent than their nonviral structured counterparts, thereby promoting the activation of APCs by upregulating the TLR9 pathway and cross-presenting ovalbumin (OVA) epitopes. In in vivo animal study, VMSN-based nanovaccines triggered substantial CD4+ and CD8+ lymphocyte populations in both lymph nodes and spleen while inducing the effector memory of adaptive T cells. Consequently, VMSN-based nanovaccines suppressed tumor progression and increased the survival rate of B16-OVA-bearing mice in both prophylactic and therapeutic studies. The combination of immune checkpoint blockade (ICB) with the VMSN-based nanovaccine has synergistic effects in significantly preventing tumor progression under therapeutic conditions. These findings highlight the potential of viral structure-mimicking mesoporous silica nanoparticles as promising candidates for antigen-delivering nanocarriers in vaccine development.
Collapse
Affiliation(s)
- Ngoc Man Phan
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Thanh Loc Nguyen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- South Australian ImmunoGENomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia 5005, Australia
| | - Youngjin Choi
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Xin Wang Mo
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Thuy An Trinh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
11
|
Sarfraz Z, Sarfraz A, Farooq MD, Khalid M, Cheema K, Javad F, Khan T, Pervaiz Z, Sarfraz M, Jaan A, Sadiq S, Anwar J. The Current Landscape of Clinical Trials for Immunotherapy in Pancreatic Cancer: A State-of-the-Art Review. J Gastrointest Cancer 2024; 55:1026-1057. [PMID: 38976079 DOI: 10.1007/s12029-024-01078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Pancreatic cancer remains a lethal malignancy with a 5-year survival rate below 6% and about 500,000 deaths annually worldwide. Pancreatic adenocarcinoma, the most prevalent form, is commonly associated with diabetes, chronic pancreatitis, obesity, and smoking, mainly affecting individuals aged 60 to 80 years. This systematic review aims to evaluate the efficacy of immunotherapeutic approaches in the treatment of pancreatic cancer. METHODS A systematic search was conducted to identify clinical trials (Phases I-III) assessing immunotherapy in pancreatic cancer in PubMed/Medline, CINAHL, Scopus, and Web of Science, adhering to PRISMA Statement 2020 guidelines. The final search was completed on May 25, 2024. Ongoing trials were sourced from ClinicalTrials.gov and the World Health Organization's International Clinical Trials Registry Platform (ICTRP). Keywords such as "pancreatic," "immunotherapy," "cancer," and "clinical trial" were used across databases. Gray literature was excluded. RESULTS Phase I trials, involving 337 patients, reported a median overall survival (OS) of 13.6 months (IQR: 5-62.5 months) and a median progression-free survival (PFS) of 5.1 months (IQR: 1.9-11.7 months). Phase II/III trials pooled in a total of 1463 participants had a median OS of 12.2 months (IQR: 2.5-35.55 months) and a median PFS of 8.8 months (IQR: 1.4-33.51 months). CONCLUSIONS Immunotherapy shows potential for extending survival among pancreatic cancer patients, though results vary. The immunosuppressive nature of the tumor microenvironment and diverse patient responses underline the need for further research to optimize these therapeutic strategies.
Collapse
Affiliation(s)
- Zouina Sarfraz
- Department of Medicine, Fatima Jinnah Medical University, Queen's Road, Mozang Chungi, Lahore, Pakistan.
| | | | | | - Musfira Khalid
- Department of Medicine, Fatima Jinnah Medical University, Queen's Road, Mozang Chungi, Lahore, Pakistan
| | | | | | - Taleah Khan
- CMH Lahore Medical College and Institute of Dentistry, Lahore, Pakistan
| | - Zainab Pervaiz
- CMH Lahore Medical College and Institute of Dentistry, Lahore, Pakistan
| | | | - Ali Jaan
- Rochester General Hospital, Rochester, NY, USA
| | | | - Junaid Anwar
- Baptist Hospitals of Southeast Texas, Beaumont, TX, USA
| |
Collapse
|
12
|
Fleige L, Fillatreau S, Claus M, Capellino S. Additional use of α-IgM antibodies potentiates CpG ODN2006-induced B cell activation by targeting mainly naïve and marginal zone-like B cells. Cell Immunol 2024; 403-404:104846. [PMID: 38996539 DOI: 10.1016/j.cellimm.2024.104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
CpG ODN2006 is widely used as a potent B cell stimulant in vitro and in vivo. However, it shows a deficit in targeting naïve B cells in vitro. In this study, we investigated whether α-IgM can support ODN2006-induced effects on B cells to obtain enhanced activation with focus on different B cell subsets. Our results delineated robust B cell activation, shown by increased activation marker expression and cytokine secretion by each agent alone, and further augmented when used in combination. Interestingly, α-IgM targeted mainly naïve and marginal zone-like B cells, thus complementing the pronounced effects of ODN2006 on memory B cells and achieving optimal activation for all B cell subsets. Taken together, combining ODN2006 and α-IgM is beneficial for in vitro activation including all B cell subsets. Furthermore, our results suggest that α-IgM could enhance efficacy of ODN2006 in vivo with further need of investigation.
Collapse
Affiliation(s)
- Leonie Fleige
- Department of Immunology, Research Group of Neuroimmunology, IfADo-Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139 Dortmund, Germany.
| | - Simon Fillatreau
- Department of Immunology, Infectiology and Haematology, Research Group of Immunity in health and disease, Institut Necker Enfants Malades, Faculté de Médecine Necker, 160 rue de Vaugirard, 75015 Paris Cedex, France
| | - Maren Claus
- Department of Immunology, Research Group of Immunmodulation, IfADo-Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139 Dortmund, Germany
| | - Silvia Capellino
- Department of Immunology, Research Group of Neuroimmunology, IfADo-Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139 Dortmund, Germany
| |
Collapse
|
13
|
Nelson AD, Wang L, Laffey KG, Becher LRE, Parks CA, Hoffmann MM, Galeano BK, Mangalam A, Teixeiro E, White TA, Schrum AG, Cannon JF, Gil D. Rigid crosslinking of the CD3 complex leads to superior T cell stimulation. Front Immunol 2024; 15:1434463. [PMID: 39281668 PMCID: PMC11392757 DOI: 10.3389/fimmu.2024.1434463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/07/2024] [Indexed: 09/18/2024] Open
Abstract
Functionally bivalent non-covalent Fab dimers (Bi-Fabs) specific for the TCR/CD3 complex promote CD3 signaling on T cells. While comparing functional responses to stimulation with Bi-Fab, F(ab')2 or mAb specific for the same CD3 epitope, we observed fratricide requiring anti-CD3 bridging of adjacent T cells. Surprisingly, anti-CD3 Bi-Fab ranked first in fratricide potency, followed by anti-CD3 F(ab')2 and anti-CD3 mAb. Low resolution structural studies revealed anti-CD3 Bi-Fabs and F(ab')2 adopt similar global shapes with CD3-binding sites oriented outward. However, under molecular dynamic simulations, anti-CD3 Bi-Fabs crosslinked CD3 more rigidly than F(ab')2. Furthermore, molecular modelling of Bi-Fab and F(ab')2 binding to CD3 predicted crosslinking of T cell antigen receptors located in opposing plasma membrane domains, a feature fitting with T cell fratricide observed. Thus, increasing rigidity of Fab-CD3 crosslinking between opposing effector-target pairs may result in stronger T cell effector function. These findings could guide improving clinical performance of bi-specific anti-CD3 drugs.
Collapse
Affiliation(s)
- Alfreda D Nelson
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Liangyu Wang
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Kimberly G Laffey
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Laura R E Becher
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Christopher A Parks
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Michele M Hoffmann
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Belinda K Galeano
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Ashutosh Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Emma Teixeiro
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Tommi A White
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Adam G Schrum
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- Department of Biomedical, Biological and Medical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
| | - John F Cannon
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Diana Gil
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- Department of Biomedical, Biological and Medical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
| |
Collapse
|
14
|
Yu X, Xu C, Sun J, Xu H, Huang H, Gan Z, George A, Ouyang S, Liu F. Recent developments in two-dimensional molybdenum disulfide-based multimodal cancer theranostics. J Nanobiotechnology 2024; 22:515. [PMID: 39198894 PMCID: PMC11351052 DOI: 10.1186/s12951-024-02785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Recent advancements in cancer research have led to the generation of innovative nanomaterials for improved diagnostic and therapeutic strategies. Despite the proven potential of two-dimensional (2D) molybdenum disulfide (MoS2) as a versatile platform in biomedical applications, few review articles have focused on MoS2-based platforms for cancer theranostics. This review aims to fill this gap by providing a comprehensive overview of the latest developments in 2D MoS2 cancer theranostics and emerging strategies in this field. This review highlights the potential applications of 2D MoS2 in single-model imaging and therapy, including fluorescence imaging, photoacoustic imaging, photothermal therapy, and catalytic therapy. This review further classifies the potential of 2D MoS2 in multimodal imaging for diagnostic and synergistic theranostic platforms. In particular, this review underscores the progress of 2D MoS2 as an integrated drug delivery system, covering a broad spectrum of therapeutic strategies from chemotherapy and gene therapy to immunotherapy and photodynamic therapy. Finally, this review discusses the current challenges and future perspectives in meeting the diverse demands of advanced cancer diagnostic and theranostic applications.
Collapse
Affiliation(s)
- Xinbo Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Chen Xu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jingxu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
| | - Hainan Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ziyang Gan
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Antony George
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Sihui Ouyang
- College of Materials Science and Engineering, Chongqing University, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, China.
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China.
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
15
|
Ung AT, Chen H. Biological Properties, Health Benefits and Semisynthetic Derivatives of Edible Astraeus Mushrooms (Diplocystidiaceae): A Comprehensive Review. Chem Biodivers 2024:e202401295. [PMID: 39177069 DOI: 10.1002/cbdv.202401295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
Edible Astraeus mushrooms are known for their nutritional and culinary benefits and potential therapeutic properties. However, more investigation and discussion are still needed to understand their mechanisms of action regarding observed biological activities and thorough chemical analysis of bioactive compounds. This review provides a comprehensive summary and discussion of the bioactive properties and mode of action of Astraeus extracts and their isolated compounds. It covers their reported antioxidant, anti-inflammatory, antidiabetic, anticancer, anti-tuberculosis, antimalarial, antiviral and antileishmanial activities, as well as their potential benefits on metabolic and cardiovascular health and immune function. The review highlights the significance of the biological potential of isolated compounds, such as sugar alcohols, polysaccharides, steroids, and lanostane triterpenoids. Moreover, the review identifies under-researched areas, such as the chemical analysis of Astraeus species, which holds immense research potential. Ultimately, the review aims to inspire further research on the nutraceuticals or therapeutics of these mushrooms.
Collapse
Affiliation(s)
- Alison T Ung
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
16
|
Sun Y, Li T, Guo Y, Sun P, Wu J, Pan C, Wang H, Zhu L. A Click-Type Enzymatic Method for Antigen-Adjuvant Conjugation. SMALL METHODS 2024:e2401116. [PMID: 39177201 DOI: 10.1002/smtd.202401116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Indexed: 08/24/2024]
Abstract
The Toll-like receptor 9 (TLR9) stimulator, CpG oligodeoxynucleotide, has emerged as a potent enhancer of protein subunit vaccines. Incorporating the protein antigen directly with the CpG adjuvant presents a novel strategy to significantly reduce the required dosage of CpG compared to traditional methods that use separate components. In contrast to existing chemical conjugation methods, this study introduces an enzymatic approach for antigen-adjuvant coupling using a recombinant endonuclease DCV fused with SpyTag. This fusion protein catalyzes the covalent linkage between itself and the CpG adjuvant under mild conditions. These conjugates can be further linked with target protein antigens containing the SpyCatcher sequence, yielding stable, covalently-linked antigen-adjuvant complexes. The corresponding complex utilizing the receptor-binding domain (RBD) of SARS-CoV-2 spike protein as the model antigen, elicits high-titer, specific antibody production in mice via both subcutaneous administration and intratracheal inoculation. Notably, the tumor vaccine candidate fabricated by this method has also shown significant inhibition of cancer progression after intratracheal administration. The technique ensures precise, site-specific coupling and preserves the antigen's structural integrity due to the post-purification coupling strategy that simplifies manufacturing and aids in developing inhalable vaccines.
Collapse
Affiliation(s)
- Yange Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Peng Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jun Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| |
Collapse
|
17
|
Yan W, Cao Y, Yin Q, Li Y. Biomimetic Nucleic Acid Drug Delivery Systems for Relieving Tumor Immunosuppressive Microenvironment. Pharmaceutics 2024; 16:1028. [PMID: 39204373 PMCID: PMC11360391 DOI: 10.3390/pharmaceutics16081028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Immunotherapy combats tumors by enhancing the body's immune surveillance and clearance of tumor cells. Various nucleic acid drugs can be used in immunotherapy, such as DNA expressing cytokines, mRNA tumor vaccines, small interfering RNAs (siRNA) knocking down immunosuppressive molecules, and oligonucleotides that can be used as immune adjuvants. Nucleic acid drugs, which are prone to nuclease degradation in the circulation and find it difficult to enter the target cells, typically necessitate developing appropriate vectors for effective in vivo delivery. Biomimetic drug delivery systems, derived from viruses, bacteria, and cells, can protect the cargos from degradation and clearance, and deliver them to the target cells to ensure safety. Moreover, they can activate the immune system through their endogenous activities and active components, thereby improving the efficacy of antitumor immunotherapeutic nucleic acid drugs. In this review, biomimetic nucleic acid delivery systems for relieving a tumor immunosuppressive microenvironment are introduced. Their immune activation mechanisms, including upregulating the proinflammatory cytokines, serving as tumor vaccines, inhibiting immune checkpoints, and modulating intratumoral immune cells, are elaborated. The advantages and disadvantages, as well as possible directions for their clinical translation, are summarized at last.
Collapse
Affiliation(s)
- Wenlu Yan
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (W.Y.); (Y.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Cao
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (W.Y.); (Y.C.)
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Qi Yin
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (W.Y.); (Y.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (W.Y.); (Y.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264000, China
| |
Collapse
|
18
|
Sharma A, Vaswani P, Bhatia D. Revolutionizing cancer therapy using tetrahedral DNA nanostructures as intelligent drug delivery systems. NANOSCALE ADVANCES 2024; 6:3714-3732. [PMID: 39050960 PMCID: PMC11265600 DOI: 10.1039/d4na00145a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
DNA nanostructures have surfaced as intriguing entities with vast potential in biomedicine, notably in the drug delivery area. Tetrahedral DNA nanostructures (TDNs) have received worldwide attention from among an array of different DNA nanostructures due to their extraordinary stability, great biocompatibility, and ease of functionalization. TDNs could be readily synthesized, making them attractive carriers for chemotherapeutic medicines, nucleic acid therapeutics, and imaging probes. Their varied uses encompass medication delivery, molecular diagnostics, biological imaging, and theranostics. This review extensively highlights the mechanisms of functional modification of TDNs and their applications in cancer therapy. Additionally, it discusses critical concerns and unanswered problems that require attention to increase the future application of TDNs in developing cancer treatment.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University Mathura Uttar Pradesh-281406 India
| | - Payal Vaswani
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj 382355 Gandhinagar India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj 382355 Gandhinagar India
| |
Collapse
|
19
|
Gao W, Liu S, Wu Y, Wei W, Yang Q, Li W, Chen H, Luo A, Wang Y, Liu Z. Enhancer demethylation-regulated gene score identified molecular subtypes, inspiring immunotherapy or CDK4/6 inhibitor therapy in oesophageal squamous cell carcinoma. EBioMedicine 2024; 105:105177. [PMID: 38924839 PMCID: PMC11259699 DOI: 10.1016/j.ebiom.2024.105177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The 5-year survival rate of oesophageal squamous cell carcinoma (ESCC) is approximately 20%. The prognosis and drug response exhibit substantial heterogeneity in ESCC, impeding progress in survival outcomes. Our goal is to identify a signature for tumour subtype classification, enabling precise clinical treatments. METHODS Utilising pre-treatment multi-omics data from an ESCC dataset (n = 310), an enhancer methylation-eRNA-target gene regulation network was constructed and validated by in vitro experiments. Four machine learning methods collectively identified core target genes, establishing an Enhancer Demethylation-Regulated Gene Score (EDRGS) model for classification. The molecular function of EDRGS subtyping was explored in scRNA-seq (n = 60) and bulk-seq (n = 310), and the EDRGS's potential to predict treatment response was assessed in datasets of various cancer types. FINDINGS EDRGS stratified ESCCs into EDRGS-high/low subtypes, with EDRGS-high signifying a less favourable prognosis in ESCC and nine additional cancer types. EDRGS-high exhibited an immune-hot but immune-suppressive phenotype with elevated immune checkpoint expression, increased T cell infiltration, and IFNγ signalling in ESCC, suggesting a better response to immunotherapy. Notably, EDRGS outperformed PD-L1 in predicting anti-PD-1/L1 therapy effectiveness in ESCC (n = 42), kidney renal clear cell carcinoma (KIRC, n = 181), and bladder urothelial carcinoma (BLCA, n = 348) cohorts. EDRGS-low showed a cell cycle-activated phenotype with higher CDK4 and/or CDK6 expression, demonstrating a superior response to the CDK4/6 inhibitor palbociclib, validated in ESCC (n = 26), melanoma (n = 18), prostate cancer (n = 15) cells, and PDX models derived from patients with pancreatic cancer (n = 30). INTERPRETATION Identification of EDRGS subtypes enlightens ESCC categorisation, offering clinical insights for patient management in immunotherapy (anti-PD-1/L1) and CDK4/6 inhibitor therapy across cancer types. FUNDING This study was supported by funding from the National Key R&D Program of China (2021YFC2501000, 2020YFA0803300), the National Natural Science Foundation of China (82030089, 82188102), the CAMS Innovation Fund for Medical Sciences (2021-I2M-1-018, 2022-I2M-2-001, 2021-I2M-1-067), the Fundamental Research Funds for the Central Universities (3332021091).
Collapse
Affiliation(s)
- Wenyan Gao
- State Key Lab of Molecular Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shi Liu
- State Key Lab of Molecular Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yenan Wu
- State Key Lab of Molecular Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenqing Wei
- State Key Lab of Molecular Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qi Yang
- State Key Lab of Molecular Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenxin Li
- State Key Lab of Molecular Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongyan Chen
- State Key Lab of Molecular Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Aiping Luo
- State Key Lab of Molecular Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yanfeng Wang
- Department of Comprehensive Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhihua Liu
- State Key Lab of Molecular Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
20
|
Alakhras NS, Moreland CA, Wong LC, Raut P, Kamalakaran S, Wen Y, Siegel RW, Malherbe LP. Essential role of pre-existing humoral immunity in TLR9-mediated type I IFN response to recombinant AAV vectors in human whole blood. Front Immunol 2024; 15:1354055. [PMID: 39007143 PMCID: PMC11240241 DOI: 10.3389/fimmu.2024.1354055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
Recombinant adeno-associated virus (AAV) vectors have emerged as the preferred platform for gene therapy of rare human diseases. Despite the clinical promise, host immune responses to AAV vectors and transgene remain a major barrier to the development of successful AAV-based human gene therapies. Here, we assessed the human innate immune response to AAV9, the preferred serotype for AAV-mediated gene therapy of the CNS. We showed that AAV9 induced type I interferon (IFN) and IL-6 responses in human blood from healthy donors. This innate response was replicated with AAV6, required full viral particles, but was not observed in every donor. Depleting CpG motifs from the AAV transgene or inhibiting TLR9 signaling reduced type I IFN response to AAV9 in responding donors, highlighting the importance of TLR9-mediated DNA sensing for the innate response to AAV9. Remarkably, we further demonstrated that only seropositive donors with preexisting antibodies to AAV9 capsid mounted an innate immune response to AAV9 in human whole blood and that anti-AAV9 antibodies were necessary and sufficient to promote type I IFN release and plasmacytoid dendritic (pDC) cell activation in response to AAV9. Thus, our study reveals a previously unidentified requirement for AAV preexisting antibodies for TLR9-mediated type I IFN response to AAV9 in human blood.
Collapse
Affiliation(s)
- Nada S. Alakhras
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | | | - Li Chin Wong
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly, New York, NY, United States
| | - Priyam Raut
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly, New York, NY, United States
| | - Sid Kamalakaran
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly, New York, NY, United States
| | - Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Robert W. Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Laurent P. Malherbe
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| |
Collapse
|
21
|
He C, Hua G, Liu Y, Li S. Unveiling the hidden role of the interaction between CD36 and FcγRIIb: implications for autoimmune disorders. Cell Mol Biol Lett 2024; 29:76. [PMID: 38762740 PMCID: PMC11102138 DOI: 10.1186/s11658-024-00593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/08/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND The role of the scavenger receptor CD36 in cell metabolism and the immune response has been investigated mainly in macrophages, dendritic cells, and T cells. However, its involvement in B cells has not been comprehensively examined. METHODS To investigate the function of CD36 in B cells, we exposed Cd36fl/flMB1cre mice, which lack CD36 specifically in B cells, to apoptotic cells to trigger an autoimmune response. To validate the proteins that interact with CD36 in primary B cells, we conducted mass spectrometry analysis following anti-CD36 immunoprecipitation. Immunofluorescence and co-immunoprecipitation were used to confirm the protein interactions. RESULTS The data revealed that mice lacking CD36 in B cells exhibited a reduction in germinal center B cells and anti-DNA antibodies in vivo. Mass spectrometry analysis identified 30 potential candidates that potentially interact with CD36. Furthermore, the interaction between CD36 and the inhibitory Fc receptor FcγRIIb was first discovered by mass spectrometry and confirmed through immunofluorescence and co-immunoprecipitation techniques. Finally, deletion of FcγRIIb in mice led to decreased expression of CD36 in marginal zone B cells, germinal center B cells, and plasma cells. CONCLUSIONS Our data indicate that CD36 in B cells is a critical regulator of autoimmunity. The interaction of CD36-FcγRIIb has the potential to serve as a therapeutic target for the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Chenfei He
- Center for Research in Animal Genomics, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Guoying Hua
- Center for Research in Animal Genomics, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yong Liu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna Campus, Stockholm, Sweden
| | - Shuijie Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China.
- Heilongjiang Province Key Laboratory of Research On Molecular Targeted Anti-Tumor Drugs, Harbin, China.
| |
Collapse
|
22
|
Wang Y, Qiao SL, Wang J, Yu MZ, Wang NN, Mamuti M, An HW, Lin YX, Wang H. Engineered CpG-Loaded Nanorobots Drive Autophagy-Mediated Immunity for TLR9-Positive Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306248. [PMID: 37897408 DOI: 10.1002/adma.202306248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Smart nanorobots have emerged as novel drug delivery platforms in nanomedicine, potentially improving anti-cancer efficacy and reducing side effects. In this study, an intelligent tumor microenvironment-responsive nanorobot is developed that effectively delivers CpG payloads to Toll-like receptor 9 (TLR9)-positive tumors to induce autophagy-mediated cell death for immunotherapy. The nanorobots are fabricated by co-self-assembly of two amphiphilic triblock polymer peptides: one containing the matrix metallopeptidase 2 (MMP2)-cleaved GPLGVRGS motif to control the mechanical opening of the nanorobots and provide targeting capability for TLR-9-positive tumors and the other consisting of an arginine-rich GRRRDRGRS sequence that can condense nuclear acid payloads through electrostatic interactions. Using multiple tumor-bearing mouse models, it is investigated whether the intravenous injection of CpG-loaded nanorobots could effectively deliver CpG payloads to TLR-9-positive tumors and elicit anti-tumor immunity through TLR9 signaling and autophagy. Therefore, besides being a commonly used adjuvant for tumor vaccination, CpG-loaded nanorobots can effectively reprogram the tumor immunosuppressive microenvironment and suppress tumor growth and recurrence. This nanorobot-based CpG immunotherapy can be considered a feasible approach to induce anti-tumor immunity, showing great therapeutic potential for the future treatment of TLR9-positive cancers.
Collapse
Affiliation(s)
- Yi Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
- Institute of Bioengineering and Institute of Materials Science & Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Sheng-Lin Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| | - Jie Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
| | - Meng-Zhen Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
| | - Nan-Nan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
| | - Muhetaerjiang Mamuti
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Hong-Wei An
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Yao-Xin Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
| |
Collapse
|
23
|
Lee D, Huntoon K, Wang Y, Kang M, Lu Y, Jeong SD, Link TM, Gallup TD, Qie Y, Li X, Dong S, Schrank BR, Grippin AJ, Antony A, Ha J, Chang M, An Y, Wang L, Jiang D, Li J, Koong AC, Tainer JA, Jiang W, Kim BYS. Synthetic cationic helical polypeptides for the stimulation of antitumour innate immune pathways in antigen-presenting cells. Nat Biomed Eng 2024; 8:593-610. [PMID: 38641710 PMCID: PMC11162332 DOI: 10.1038/s41551-024-01194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/01/2024] [Indexed: 04/21/2024]
Abstract
Intracellular DNA sensors regulate innate immunity and can provide a bridge to adaptive immunogenicity. However, the activation of the sensors in antigen-presenting cells (APCs) by natural agonists such as double-stranded DNAs or cyclic nucleotides is impeded by poor intracellular delivery, serum stability, enzymatic degradation and rapid systemic clearance. Here we show that the hydrophobicity, electrostatic charge and secondary conformation of helical polypeptides can be optimized to stimulate innate immune pathways via endoplasmic reticulum stress in APCs. One of the three polypeptides that we engineered activated two major intracellular DNA-sensing pathways (cGAS-STING (for cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes) and Toll-like receptor 9) preferentially in APCs by promoting the release of mitochondrial DNA, which led to the efficient priming of effector T cells. In syngeneic mouse models of locally advanced and metastatic breast cancers, the polypeptides led to potent DNA-sensor-mediated antitumour responses when intravenously given as monotherapy or with immune checkpoint inhibitors. The activation of multiple innate immune pathways via engineered cationic polypeptides may offer therapeutic advantages in the generation of antitumour immune responses.
Collapse
Affiliation(s)
- DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumour Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumour Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Minjeong Kang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifei Lu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumour Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seong Dong Jeong
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumour Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Todd M Link
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas D Gallup
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumour Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yaqing Qie
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumour Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuefeng Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Benjamin R Schrank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adam J Grippin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abin Antony
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - JongHoon Ha
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mengyu Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi An
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Liang Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dadi Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Brain Tumour Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
24
|
Hsu CY, Mustafa MA, Kumar A, Pramanik A, Sharma R, Mohammed F, Jawad IA, Mohammed IJ, Alshahrani MY, Ali Khalil NAM, Shnishil AT, Abosaoda MK. Exploiting the immune system in hepatic tumor targeting: Unleashing the potential of drugs, natural products, and nanoparticles. Pathol Res Pract 2024; 256:155266. [PMID: 38554489 DOI: 10.1016/j.prp.2024.155266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/01/2024]
Abstract
Hepatic tumors present a formidable challenge in cancer therapeutics, necessitating the exploration of novel treatment strategies. In recent years, targeting the immune system has attracted interest to augment existing therapeutic efficacy. The immune system in hepatic tumors includes numerous cells with diverse actions. CD8+ T lymphocytes, T helper 1 (Th1) CD4+ T lymphocytes, alternative M1 macrophages, and natural killer (NK) cells provide the antitumor immunity. However, Foxp3+ regulatory CD4+ T cells (Tregs), M2-like tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) are the key immune inhibitor cells. Tumor stroma can also affect these interactions. Targeting these cells and their secreted molecules is intriguing for eliminating malignant cells. The current review provides a synopsis of the immune system components involved in hepatic tumor expansion and highlights the molecular and cellular pathways that can be targeted for therapeutic intervention. It also overviews the diverse range of drugs, natural products, immunotherapy drugs, and nanoparticles that have been investigated to manipulate immune responses and bolster antitumor immunity. The review also addresses the potential advantages and challenges associated with these approaches.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Atreyi Pramanik
- Institute of Pharma Sciences and Research, Chandigarh University, Mohali, India
| | - Rajiv Sharma
- Institute of Pharma Sciences and Research, Chandigarh University, Mohali, India
| | - Faraj Mohammed
- Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan, Iraq
| | | | - Imad Jasim Mohammed
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | | | | | - Munther Kadhim Abosaoda
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| |
Collapse
|
25
|
Apeku E, Tantuoyir MM, Zheng R, Tanye N. Exploring the polarization of M1 and M2 macrophages in the context of skin diseases. Mol Biol Rep 2024; 51:269. [PMID: 38302766 DOI: 10.1007/s11033-023-09014-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/30/2023] [Indexed: 02/03/2024]
Abstract
Macrophages are critical components of the immune system and play vital roles in pathogen defense, immune regulation, and tissue repair. These cells exhibit different polarization states depending on environmental signals, and the M1/M2 paradigm is a useful tool for comprehending these states. This review article comprehensively presents the underlying mechanisms of M1 and M2 macrophage polarization and examines their polarization in various skin diseases. Additionally, this paper discusses therapeutic strategies that target M1 and M2 macrophage polarization in skin diseases. A more profound understanding of macrophage polarization in skin diseases could provide valuable insights for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Ernestina Apeku
- Department of Dermatology, The 1st Hospital of Shanxi Medical University; Graduate Department of Shanxi Medical University, Taiyuan, Shanxi, China
| | | | - Rui Zheng
- Department of Dermatology, The 1st Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Nestor Tanye
- School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
26
|
Moussion C, Delamarre L. Antigen cross-presentation by dendritic cells: A critical axis in cancer immunotherapy. Semin Immunol 2024; 71:101848. [PMID: 38035643 DOI: 10.1016/j.smim.2023.101848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that play a key role in shaping adaptive immunity. DCs have a unique ability to sample their environment, capture and process exogenous antigens into peptides that are then loaded onto major histocompatibility complex class I molecules for presentation to CD8+ T cells. This process, called cross-presentation, is essential for initiating and regulating CD8+ T cell responses against tumors and intracellular pathogens. In this review, we will discuss the role of DCs in cancer immunity, the molecular mechanisms underlying antigen cross-presentation by DCs, the immunosuppressive factors that limit the efficiency of this process in cancer, and approaches to overcome DC dysfunction and therapeutically promote antitumoral immunity.
Collapse
Affiliation(s)
| | - Lélia Delamarre
- Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
27
|
Agarwal M, Kumar M, Pathak R, Bala K, Kumar A. Exploring TLR signaling pathways as promising targets in cervical cancer: The road less traveled. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:227-261. [PMID: 38663961 DOI: 10.1016/bs.ircmb.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Cervical cancer is the leading cause of cancer-related deaths for women globally. Despite notable advancements in prevention and treatment, the identification of novel therapeutic targets remains crucial for cervical cancer. Toll-like receptors (TLRs) play an essential role in innate immunity as pattern-recognition receptors. There are several types of pathogen-associated molecular patterns (PAMPs), including those present in cervical cancer cells, which have the ability to activate toll-like receptors (TLRs). Recent studies have revealed dysregulated toll-like receptor (TLR) signaling pathways in cervical cancer, leading to the production of inflammatory cytokines and chemokines that can facilitate tumor growth and metastasis. Consequently, TLRs hold significant promise as potential targets for innovative therapeutic agents against cervical cancer. This book chapter explores the role of TLR signaling pathways in cervical cancer, highlighting their potential for targeted therapy while addressing challenges such as tumor heterogeneity and off-target effects. Despite these obstacles, targeting TLR signaling pathways presents a promising approach for the development of novel and effective treatments for cervical cancer.
Collapse
Affiliation(s)
- Mohini Agarwal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Manish Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, United States
| | - Kumud Bala
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Anoop Kumar
- National Institute of Biologicals, Noida, Uttar Pradesh, India.
| |
Collapse
|
28
|
Margalit O, Lieberman S, Redinsky I, Halparin S, Honig N, Raskin S, Ben-Ayun M, Shacham-Shmueli E, Halpern N, Urban D, Ackerstein A, Shulman K, Ben-Ami E, Semenisty V, Purim O, Yarom N, Golan T, Boursi B, Appel S, Symon Z, Berger R, Mauro D, Krieg AM, Lawrence YR. Combination Treatment of Intratumoral Vidutolimod, Radiosurgery, Nivolumab, and Ipilimumab for Microsatellite Stable Colorectal Carcinoma With Liver Metastases. Clin Colorectal Cancer 2023; 22:442-449.e1. [PMID: 37657954 DOI: 10.1016/j.clcc.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
INTRODUCTION Microsatellite stable metastatic colorectal cancer (MSS mCRC) is largely refractory to immune checkpoint inhibition. We hypothesized that a combination of intratumoral TLR9 agonist, radiosurgery and dual PD-1 and CTLA-4 blockade would induce a local focus of immune stimulation, evoking a systemic immune response. PATIENTS AND METHODS In this phase I single-institution study, patients with MSS mCRC were treated with a priming dose of s.c vidutolimod, 3 intratumoral injections of vidutolimod and radiosurgery, combined with nivolumab and ipilimumab. Cytokine levels were measured at baseline and at 7 (± 2) weeks. Patients were accrued to 4 consecutive cohorts: (1) Safety run-in without radiosurgery, (2) Radiosurgery prior to intratumoral therapy, (3) Radiosurgery prior to intratumoral therapy with a condensed timeline, and (4) Radiosurgery to extrahepatic lesion following completion of intratumoral therapy. RESULTS A total of 19 patients were accrued. Median age was 59 years (range 40-71), 68% were male, median number of previous systemic treatments was 3 (range 2-5). None of the patients responded, aside from 1 patient, attributed to high tumor mutational burden. Grade 3 liver toxicity was reported in 0%, 0%, 75%, and 17% in cohorts 1 to 4, respectively. Systemic levels of CXCL10 and IL-10 increased, with a median of 407 versus 78 pg/mL (P = .01), and 66 versus 40 pg/mL (P = .03), respectively. CONCLUSIONS The combination of intratumoral vidutolimod, radiosurgery, nivolumab and ipilimumab was not found to be efficacious in MSS mCRC with liver metastases. The juxtaposition of liver irradiation and intratumoral vidutolimod injection was associated with high hepatic toxicity.
Collapse
Affiliation(s)
- Ofer Margalit
- Department of Medical Oncology, Sheba Medical Center, Ramat Gan affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Sivan Lieberman
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat Gan affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Ilanit Redinsky
- Department of Medical Oncology, Sheba Medical Center, Ramat Gan affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Sharon Halparin
- Department of Medical Oncology, Sheba Medical Center, Ramat Gan affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Nir Honig
- Department of Radiation Oncology, Sheba Medical Center, Ramat Gan affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Stephen Raskin
- Department of Medical Oncology, Sheba Medical Center, Ramat Gan affiliated with Tel Aviv University, Tel Aviv, Israel; Department of Diagnostic Imaging, Sheba Medical Center, Ramat Gan affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Maoz Ben-Ayun
- Department of Radiation Oncology, Sheba Medical Center, Ramat Gan affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Einat Shacham-Shmueli
- Department of Medical Oncology, Sheba Medical Center, Ramat Gan affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Naama Halpern
- Department of Medical Oncology, Sheba Medical Center, Ramat Gan affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Damien Urban
- Department of Medical Oncology, Sheba Medical Center, Ramat Gan affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Aliza Ackerstein
- Department of Medical Oncology, Sheba Medical Center, Ramat Gan affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Katerina Shulman
- Department of Medical Oncology, Lady Davis Carmel Hospital, Haifa, Israel
| | - Eytan Ben-Ami
- Department of Medical Oncology, Sheba Medical Center, Ramat Gan affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Valeriya Semenisty
- Department of Medical Oncology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Ofer Purim
- Department of Medical Oncology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Nirit Yarom
- Department of Medical Oncology, Shamir Medical Center, Beer Yaacov, Israel
| | - Talia Golan
- Department of Medical Oncology, Sheba Medical Center, Ramat Gan affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Ben Boursi
- Department of Medical Oncology, Sheba Medical Center, Ramat Gan affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Sarit Appel
- Department of Radiation Oncology, Sheba Medical Center, Ramat Gan affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Zvi Symon
- Department of Radiation Oncology, Sheba Medical Center, Ramat Gan affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Raanan Berger
- Department of Medical Oncology, Sheba Medical Center, Ramat Gan affiliated with Tel Aviv University, Tel Aviv, Israel
| | | | | | - Yaacov R Lawrence
- Department of Radiation Oncology, Sidney Kimmel Medical College & Cancer Center at Thomas Jefferson University-Jefferson Health, Phila, PA; Department of Radiation Oncology, Sheba Medical Center, Ramat Gan affiliated with Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
29
|
Hajiabadi S, Alidadi S, Montakhab Farahi Z, Ghahramani Seno MM, Farzin H, Haghparast A. Immunotherapy with STING and TLR9 agonists promotes synergistic therapeutic efficacy with suppressed cancer-associated fibroblasts in colon carcinoma. Front Immunol 2023; 14:1258691. [PMID: 37901237 PMCID: PMC10611477 DOI: 10.3389/fimmu.2023.1258691] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/06/2023] [Indexed: 10/31/2023] Open
Abstract
The innate immune sensing of nucleic acids using effective immunoadjuvants is critical for increasing protective immune responses against cancer. Stimulators of interferon genes (STING) and toll-like receptor 9 (TLR9) agonists are considered promising candidates in several preclinical tumor models with the potential to be used in clinical settings. However, the effects of such treatment on tumor stroma are currently unknown. In this study, we investigated the immunotherapeutic effects of ADU-S100 as a STING agonist and CpG ODN1826 as a TLR9 agonist in a preclinical model of colon carcinoma. Tumor-bearing mice were treated intratumorally on days 10 and 16 post-tumor inoculation with ADU-S100 and CpG ODN1826. Cytokine profiles in the tumor and spleen, tumor cell apoptosis, the infiltration of immune cells, and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) were evaluated to identify the immunological mechanisms after treatment. The powerful antitumor activity of single and combination treatments, the upregulation of the expression of pro-inflammatory cytokines in the tumor and spleen, and the recruitment and infiltration of the TME by immune cells revealed the synergism of immunoadjuvants in the eradication of the colon carcinoma model. Remarkably, the significant downregulation of CAFs in the TME indicated that suppression of tumorigenesis occurred after immunoadjuvant therapy. The results illustrate the potential of targeting the STING and TLR9 pathways as powerful immunoadjuvants in the treatment of preclinical colon carcinoma and the possibility of harnessing these pathways in future therapeutic approaches.
Collapse
Affiliation(s)
- Sare Hajiabadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Soodeh Alidadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zohreh Montakhab Farahi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Hamidreza Farzin
- Razi Vaccine and Serum Research Institute, Agriculture Research, Education and Extension Organization (AREEO), Mashhad, Iran
| | - Alireza Haghparast
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
30
|
Kim H, Choi B, Mouli SK, Choi H, Harris KR, Kulik LM, Lewandowski RJ, Kim D. Preclinical Development and Validation of Translational Temperature Sensitive Iodized Oil Emulsion Mediated Transcatheter Arterial Chemo-Immuno-Embolization for the Treatment of Hepatocellular Carcinoma. Adv Healthc Mater 2023; 12:e2300906. [PMID: 37163283 PMCID: PMC10592544 DOI: 10.1002/adhm.202300906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Indexed: 05/11/2023]
Abstract
Herein a practical strategy for augmenting immune activation in transcatheter arterial chemoembolization (TACE) of hepatocellular carcinoma (HCC) is presented. Pluronic F127 (PF127) is incorporated with Lipiodol (LPD) to achieve safe and effective delivery of therapeutic agents during transcatheter intra-arterial (IA) local delivery. Enhanced emulsion stability, IA infusion, embolic effect, safety, pharmacokinetics, and tumor response of Doxorubicin loaded PF127-LPD (Dox-PF127-LPD) for TACE in both in vitro and in vivo preclinical VX2 liver cancer rabbit model and N1S1 HCC rat model are demonstrated. Then, transcatheter arterial chemo-immuno-embolization (TACIE) combining TACE and local delivery of immune adjuvant (TLR9 agonist CpG oligodeoxynucleotide) is successfully performed using CpG-loaded Dox-PF127-LPD. Concurrent and safe local delivery of CpG and TACE during TACIE demonstrate leveraged TACE-induced immunogenic tumor microenvironment and augment systemic anti-tumor immunity in syngeneic N1S1 HCC rat model. Finally, the broad utility and enhanced therapeutic efficacy of TACIE are validated in the diethylnitrosamine-induced rat HCC model. TACIE using clinically established protocols and materials shall be a convenient and powerful therapeutic approach that can be translated to patients with HCC. The robust anti-cancer immunity and tumor regression of TACIE, along with its favorable safety profile, indicate its potential as a novel localized combination immunotherapy for HCC treatment.
Collapse
Affiliation(s)
- Heegon Kim
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Bongseo Choi
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Samdeep K. Mouli
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Robert H. Lurie Comprehensive Cancer CenterChicagoIL60611USA
| | - Hyunjun Choi
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIL60607USA
| | - Kathleen R. Harris
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Laura M. Kulik
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Robert J. Lewandowski
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Robert H. Lurie Comprehensive Cancer CenterChicagoIL60611USA
| | - Dong‐Hyun Kim
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Robert H. Lurie Comprehensive Cancer CenterChicagoIL60611USA
- Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIL60607USA
- Department of Biomedical EngineeringMcCormick School of EngineeringEvanstonIL60208USA
| |
Collapse
|
31
|
Gunst JD, Højen JF, Pahus MH, Rosás-Umbert M, Stiksrud B, McMahon JH, Denton PW, Nielsen H, Johansen IS, Benfield T, Leth S, Gerstoft J, Østergaard L, Schleimann MH, Olesen R, Støvring H, Vibholm L, Weis N, Dyrhol-Riise AM, Pedersen KBH, Lau JSY, Copertino DC, Linden N, Huynh TT, Ramos V, Jones RB, Lewin SR, Tolstrup M, Rasmussen TA, Nussenzweig MC, Caskey M, Reikvam DH, Søgaard OS. Impact of a TLR9 agonist and broadly neutralizing antibodies on HIV-1 persistence: the randomized phase 2a TITAN trial. Nat Med 2023; 29:2547-2558. [PMID: 37696935 PMCID: PMC10579101 DOI: 10.1038/s41591-023-02547-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023]
Abstract
Inducing antiretroviral therapy (ART)-free virological control is a critical step toward a human immunodeficiency virus type 1 (HIV-1) cure. In this phase 2a, placebo-controlled, double-blinded trial, 43 people (85% males) with HIV-1 on ART were randomized to (1) placebo/placebo, (2) lefitolimod (TLR9 agonist)/placebo, (3) placebo/broadly neutralizing anti-HIV-1 antibodies (bNAbs) or (4) lefitolimod/bNAb. ART interruption (ATI) started at week 3. Lefitolimod was administered once weekly for the first 8 weeks, and bNAbs were administered twice, 1 d before and 3 weeks after ATI. The primary endpoint was time to loss of virologic control after ATI. The median delay in time to loss of virologic control compared to the placebo/placebo group was 0.5 weeks (P = 0.49), 12.5 weeks (P = 0.003) and 9.5 weeks (P = 0.004) in the lefitolimod/placebo, placebo/bNAb and lefitolimod/bNAb groups, respectively. Among secondary endpoints, viral doubling time was slower for bNAb groups compared to non-bNAb groups, and the interventions were overall safe. We observed no added benefit of lefitolimod. Despite subtherapeutic plasma bNAb levels, 36% (4/11) in the placebo/bNAb group compared to 0% (0/10) in the placebo/placebo group maintained virologic control after the 25-week ATI. Although immunotherapy with lefitolimod did not lead to ART-free HIV-1 control, bNAbs may be important components in future HIV-1 curative strategies. ClinicalTrials.gov identifier: NCT03837756 .
Collapse
Affiliation(s)
- Jesper D Gunst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper F Højen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Marie H Pahus
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Miriam Rosás-Umbert
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Birgitte Stiksrud
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - James H McMahon
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
| | - Paul W Denton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Leth
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Internal Medicine, Gødstrup Hospital, Gødstrup, Denmark
| | - Jan Gerstoft
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Mariane H Schleimann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Støvring
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Line Vibholm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne M Dyrhol-Riise
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Karen B H Pedersen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jillian S Y Lau
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Dennis C Copertino
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Noemi Linden
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Tan T Huynh
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sharon R Lewin
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas A Rasmussen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Dag Henrik Reikvam
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole S Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
32
|
Jung E, Chung YH, Steinmetz NF. TLR Agonists Delivered by Plant Virus and Bacteriophage Nanoparticles for Cancer Immunotherapy. Bioconjug Chem 2023; 34:1596-1605. [PMID: 37611278 PMCID: PMC10538388 DOI: 10.1021/acs.bioconjchem.3c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Toll-like receptors (TLRs) are promising targets in cancer immunotherapy due to their role in activating the immune system; therefore, various small-molecule TLR agonists have been tested in clinical applications. However, the clinical use of TLR agonists is hindered by their non-specific side effects and poor pharmacokinetics. To overcome these limitations, we used plant virus nanoparticles (VNPs) and bacteriophage virus-like particles (VLPs) as drug delivery systems. We conjugated TLR3 or TLR7 agonists to cowpea mosaic virus (CPMV) VNPs, cowpea chlorotic mottle virus (CCMV) VNPs, and bacteriophage Qβ VLPs. The conjugation of TLR7 agonist, 2-methoxyethoxy-8-oxo-9-(4-carboxybenzyl)adenine (1V209), resulted in the potent activation of immune cells and promoted the production of pro-inflammatory cytokine interleukin 6. We found that 1V209 conjugated to CPMV, CCMV, and Qβ reduced tumor growth in vivo and prolonged the survival of mice compared to those treated with free 1V209 or a simple admixture of 1V209 and viral particles. Nucleic acid-based TLR3 agonist, polyinosinic acid with polycytidylic acid (poly(I:C)), was also delivered by CPMV VNPs, resulting in enhanced mice survival. All our data suggest that coupling and co-delivery are required to enhance the anti-tumor efficacy of TLR agonists and simple mixing of the VLPs with the agonists does not confer a survival benefit. The delivery of 1V209 or poly(I:C) conjugated to VNPs/VLPs probably enhances their efficacy due to the multivalent presentation, prolongation of tumor residence time, and targeting of the innate immune cells mediated by the VNP/VLP carrier.
Collapse
Affiliation(s)
- Eunkyeong Jung
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Young Hun Chung
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| |
Collapse
|
33
|
He Y, Hong C, Huang S, Kaskow JA, Covarrubias G, Pires IS, Sacane JC, Hammond PT, Belcher AM. STING Protein-Based In Situ Vaccine Synergizes CD4 + T, CD8 + T, and NK Cells for Tumor Eradication. Adv Healthc Mater 2023; 12:e2300688. [PMID: 37015729 PMCID: PMC10964211 DOI: 10.1002/adhm.202300688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/15/2023] [Indexed: 04/06/2023]
Abstract
Stimulator of interferon genes (STING) signaling is a promising target in cancer immunotherapy, with many ongoing clinical studies in combination with immune checkpoint blockade (ICB). Existing STING-based therapies largely focus on activating CD8+ T cell or NK cell-mediated cytotoxicity, while the role of CD4+ T cells in STING signaling has yet to be extensively studied in vivo. Here, a distinct CD4-mediated, protein-based combination therapy of STING and ICB as an in situ vaccine, is reported. The treatment eliminates subcutaneous MC38 and YUMM1.7 tumors in 70-100% of mice and protected all cured mice against rechallenge. Mechanistic studies reveal a robust TH 1 polarization and suppression of Treg of CD4+ T cells, followed by an effective collaboration of CD4+ T, CD8+ T, and NK cells to eliminate tumors. Finally, the potential to overcome host STING deficiency by significantly decreasing MC38 tumor burden in STING KO mice is demonstrated, addressing the translational challenge for the 19% of human population with loss-of-function STING variants.
Collapse
Affiliation(s)
- Yanpu He
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Celestine Hong
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Shengnan Huang
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Material Science and EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Justin A. Kaskow
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Gil Covarrubias
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ivan S. Pires
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - James C. Sacane
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Angela M. Belcher
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Material Science and EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
34
|
Awasthi S, Onishi M, Lubinski JM, Fowler BT, Naughton AM, Hook LM, Egan KP, Hagiwara M, Shirai S, Sakai A, Nakagawa T, Goto K, Yoshida O, Stephens AJ, Choi G, Cohen GH, Katayama K, Friedman HM. Novel Adjuvant S-540956 Targets Lymph Nodes and Reduces Genital Recurrences and Vaginal Shedding of HSV-2 DNA When Administered with HSV-2 Glycoprotein D as a Therapeutic Vaccine in Guinea Pigs. Viruses 2023; 15:1148. [PMID: 37243234 PMCID: PMC10220834 DOI: 10.3390/v15051148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is a leading cause of genital ulcer disease and a major risk factor for acquisition and transmission of HIV. Frequent recurrent genital lesions and concerns about transmitting infection to intimate partners affect the quality of life of infected individuals. Therapeutic vaccines are urgently needed to reduce the frequency of genital lesions and transmission. S-540956 is a novel vaccine adjuvant that contains CpG oligonucleotide ODN2006 annealed to its complementary sequence and conjugated to a lipid that targets the adjuvant to lymph nodes. Our primary goal was to compare S-540956 administered with HSV-2 glycoprotein D (gD2) with no treatment in a guinea pig model of recurrent genital herpes (studies 1 and 2). Our secondary goals were to compare S-540956 with oligonucleotide ODN2006 (study1) or glucopyranosyl lipid A in a stable oil-in-water nano-emulsion (GLA-SE) (study 2). gD2/S-540956 reduced the number of days with recurrent genital lesions by 56%, vaginal shedding of HSV-2 DNA by 49%, and both combined by 54% compared to PBS, and was more efficacious than the two other adjuvants. Our results indicate that S-540956 has great potential as an adjuvant for a therapeutic vaccine for genital herpes, and merits further evaluation with the addition of potent T cell immunogens.
Collapse
Affiliation(s)
- Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA (J.M.L.); (B.T.F.); (A.M.N.); (L.M.H.); (K.P.E.)
| | - Motoyasu Onishi
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - John M. Lubinski
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA (J.M.L.); (B.T.F.); (A.M.N.); (L.M.H.); (K.P.E.)
| | - Bernard T. Fowler
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA (J.M.L.); (B.T.F.); (A.M.N.); (L.M.H.); (K.P.E.)
| | - Alexis M. Naughton
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA (J.M.L.); (B.T.F.); (A.M.N.); (L.M.H.); (K.P.E.)
| | - Lauren M. Hook
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA (J.M.L.); (B.T.F.); (A.M.N.); (L.M.H.); (K.P.E.)
| | - Kevin P. Egan
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA (J.M.L.); (B.T.F.); (A.M.N.); (L.M.H.); (K.P.E.)
| | - Masaki Hagiwara
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - Seiki Shirai
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - Akiho Sakai
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - Takayuki Nakagawa
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - Kumiko Goto
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - Osamu Yoshida
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - Alisa J. Stephens
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA; (A.J.S.); (G.C.)
| | - Grace Choi
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA; (A.J.S.); (G.C.)
| | - Gary H. Cohen
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA;
| | - Kazufumi Katayama
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - Harvey M. Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA (J.M.L.); (B.T.F.); (A.M.N.); (L.M.H.); (K.P.E.)
| |
Collapse
|
35
|
Kim H, Kwak M. Structures and Applications of Nucleic Acid-Based Micelles for Cancer Therapy. Int J Mol Sci 2023; 24:1592. [PMID: 36675110 PMCID: PMC9861421 DOI: 10.3390/ijms24021592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Nucleic acids have become important building blocks in nanotechnology over the last 30 years. DNA and RNA can sequentially build specific nanostructures, resulting in versatile drug delivery systems. Self-assembling amphiphilic nucleic acids, composed of hydrophilic and hydrophobic segments to form micelle structures, have the potential for cancer therapeutics due to their ability to encapsulate hydrophobic agents into their core and position functional groups on the surface. Moreover, DNA or RNA within bio-compatible micelles can function as drugs by themselves. This review introduces and discusses nucleic acid-based spherical micelles from diverse amphiphilic nucleic acids and their applications in cancer therapy.
Collapse
Affiliation(s)
| | - Minseok Kwak
- Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| |
Collapse
|
36
|
Mandour MF, Soe PP, Castonguay AS, Van Snick J, Coutelier JP. Inhibition of IL-12 heterodimers impairs TLR9-mediated prevention of early mouse plasmacytoma cell growth. Front Med (Lausanne) 2023; 9:1057252. [PMID: 36714124 PMCID: PMC9880182 DOI: 10.3389/fmed.2022.1057252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Natural prevention of cancer development depends on an efficient immunosurveillance that may be modulated by environmental factors, including infections. Innate lymphoid cytotoxic cells have been shown to play a major role in this immunosurveillance. Interleukin-12 (IL-12) has been suggested to be a key factor in the activation of innate cytotoxic cells after infection, leading to the enhancement of cancer immunosurveillance. Methods The aim of this work was to analyze in mouse experimental models by which mechanisms the interaction between infectious agent molecules and the early innate responses could enhance early inhibition of cancer growth and especially to assess the role of IL-12 by using novel antibodies specific for IL-12 heterodimers. Results Ligation of toll-like receptor (TLR)9 by CpG-protected mice against plasmacytoma TEPC.1033.C2 cell early growth. This protection mediated by innate cytolytic cells was strictly dependent on IL-12 and partly on gamma-interferon. Moreover, the protective effect of CpG stimulation, and to a lesser extent of TLR3 and TLR7/8, and the role of IL-12 in this protection were confirmed in a model of early mesothelioma AB1 cell growth. Discussion These results suggest that modulation of the mouse immune microenvironment by ligation of innate receptors deeply modifies the efficiency of cancer immunosurveillance through the secretion of IL-12, which may at least partly explain the inhibitory effect of previous infections on the prevalence of some cancers.
Collapse
Affiliation(s)
- Mohamed F. Mandour
- Unit of Experimental Medicine, Université catholique de Louvain, Brussels, Belgium,Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Pyone Pyone Soe
- Unit of Experimental Medicine, Université catholique de Louvain, Brussels, Belgium,Department of Pathology, University of Medicine (1) Yangon, Yangon, Myanmar
| | - Anne-Sophie Castonguay
- Unit of Experimental Medicine, Université catholique de Louvain, Brussels, Belgium,Département de Pharmacologie et de Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jacques Van Snick
- Unit of Experimental Medicine, Université catholique de Louvain, Brussels, Belgium,Ludwig Institute, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Paul Coutelier
- Unit of Experimental Medicine, Université catholique de Louvain, Brussels, Belgium,de Duve Institute, Université catholique de Louvain, Woluwe-Saint-Lambert, Belgium,*Correspondence: Jean-Paul Coutelier,
| |
Collapse
|
37
|
Jungles KM, Holcomb EA, Pearson AN, Jungles KR, Bishop CR, Pierce LJ, Green MD, Speers CW. Updates in combined approaches of radiotherapy and immune checkpoint inhibitors for the treatment of breast cancer. Front Oncol 2022; 12:1022542. [PMID: 36387071 PMCID: PMC9643771 DOI: 10.3389/fonc.2022.1022542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022] Open
Abstract
Breast cancer is the most prevalent non-skin cancer diagnosed in females and developing novel therapeutic strategies to improve patient outcomes is crucial. The immune system plays an integral role in the body’s response to breast cancer and modulating this immune response through immunotherapy is a promising therapeutic option. Although immune checkpoint inhibitors were recently approved for the treatment of breast cancer patients, not all patients respond to immune checkpoint inhibitors as a monotherapy, highlighting the need to better understand the biology underlying patient response. Additionally, as radiotherapy is a critical component of breast cancer treatment, understanding the interplay of radiation and immune checkpoint inhibitors will be vital as recent studies suggest that combined therapies may induce synergistic effects in preclinical models of breast cancer. This review will discuss the mechanisms supporting combined approaches with radiotherapy and immune checkpoint inhibitors for the treatment of breast cancer. Moreover, this review will analyze the current clinical trials examining combined approaches of radiotherapy, immunotherapy, chemotherapy, and targeted therapy. Finally, this review will evaluate data regarding treatment tolerance and potential biomarkers for these emerging therapies aimed at improving breast cancer outcomes.
Collapse
Affiliation(s)
- Kassidy M. Jungles
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Erin A. Holcomb
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ashley N. Pearson
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kalli R. Jungles
- Department of Biology, Saint Mary’s College, Notre Dame, IN, United States
| | - Caroline R. Bishop
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Lori J. Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Michael D. Green
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
- *Correspondence: Michael D. Green, ; Corey W. Speers,
| | - Corey W. Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH, United States
- *Correspondence: Michael D. Green, ; Corey W. Speers,
| |
Collapse
|
38
|
Zhang Z, Tan X, Jiang Z, Wang H, Yuan H. Immune checkpoint inhibitors in osteosarcoma: A hopeful and challenging future. Front Pharmacol 2022; 13:1031527. [PMID: 36324681 PMCID: PMC9618820 DOI: 10.3389/fphar.2022.1031527] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma (OS), the most common malignant tumor in the musculoskeletal system, mainly occurs in adolescents. OS results in high mortality and disability rates due to a fatal metastatic tendency and subsequent iatrogenic damage caused by surgery, radiotherapy and chemotherapy. Recently, immunotherapies have resulted in promising prognoses with reduced side effects compared with traditional therapies. Immune checkpoint inhibitors (ICIs), which are a representative immunotherapy for OS, enhance the antitumor effects of immune cells. ICIs have shown satisfactory outcomes in other kinds of malignant tumors, especially hemopoietic tumors. However, there is still a high percentage of failures or severe side effects associated with the use of ICIs to treat OS, leading to far worse outcomes. To reveal the underlying mechanisms of drug resistance and side effects, recent studies elucidated several possible reasons, including the activation of other inhibitory immune cells, low immune cell infiltration in the tumor microenvironment, different immune properties of OS subtypes, and the involvement of osteogenesis and osteolysis. According to these mechanisms, researchers have developed new methods to overcome the shortcomings of ICIs. This review summarizes the recent breakthroughs in the use of ICIs to treat OS. Although numerous issues have not been solved yet, ICIs are still the most promising treatment options to cure OS in the long run.
Collapse
Affiliation(s)
- Zeng Zhang
- Department of Orthopedics, Shanghai Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xin Tan
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zengxin Jiang
- Department of Orthopedics, Shanghai Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Hao Wang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Hao Wang, ; Hengfeng Yuan,
| | - Hengfeng Yuan
- Department of Orthopedics, Shanghai Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Hao Wang, ; Hengfeng Yuan,
| |
Collapse
|
39
|
Wu P, Han J, Gong Y, Liu C, Yu H, Xie N. Nanoparticle-Based Drug Delivery Systems Targeting Tumor Microenvironment for Cancer Immunotherapy Resistance: Current Advances and Applications. Pharmaceutics 2022; 14:pharmaceutics14101990. [PMID: 36297426 PMCID: PMC9612242 DOI: 10.3390/pharmaceutics14101990] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer immunotherapy has shown impressive anti-tumor activity in patients with advanced and early-stage malignant tumors, thus improving long-term survival. However, current cancer immunotherapy is limited by barriers such as low tumor specificity, poor response rate, and systemic toxicities, which result in the development of primary, adaptive, or acquired resistance. Immunotherapy resistance has complex mechanisms that depend on the interaction between tumor cells and the tumor microenvironment (TME). Therefore, targeting TME has recently received attention as a feasibility strategy for re-sensitizing resistant neoplastic niches to existing cancer immunotherapy. With the development of nanotechnology, nanoplatforms possess outstanding features, including high loading capacity, tunable porosity, and specific targeting to the desired locus. Therefore, nanoplatforms can significantly improve the effectiveness of immunotherapy while reducing its toxic and side effects on non-target cells that receive intense attention in cancer immunotherapy. This review explores the mechanisms of tumor microenvironment reprogramming in immunotherapy resistance, including TAMs, CAFs, vasculature, and hypoxia. We also examined whether the application of nano-drugs combined with current regimens is improving immunotherapy clinical outcomes in solid tumors.
Collapse
Affiliation(s)
- Peijie Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jun Han
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yanju Gong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Chao Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Han Yu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Correspondence: (H.Y.); (N.X.); Tel.:+86-158-8455-5293 (N.X.)
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
- Correspondence: (H.Y.); (N.X.); Tel.:+86-158-8455-5293 (N.X.)
| |
Collapse
|